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DEVELOPMENT OF REMOTE DIAGNOSTIC MONITORING SYSTEM  

FOR PUMPING EQUIPMENT WITH OPEN ARCHITECTURE 
 

The study aim was to develop a remote diagnostic monitoring system for pumping equipment with an open 

architecture to improve the reliability and efficiency of pump operation in various industrial sectors. The 

system is designed for the periodic collection and analysis of vibration and temperature signals, which  a l lows 

for the prompt identification of potential equipment malfunctions and avoidance of emergency shutdowns 
during the production process. The aim of this study was to develop an effective open architecture for a 

diagnostic monitoring system for pumping equipment based on  IoT technologies. The primary focus is on 

creating a system architecture that simplifies the installation and operation of equipment, ensures scalability 

and ease of integration with existing enterprise information systems, and reduces material implementa tion 

costs. To achieve this goal, the following objectives were addressed within the study: 1) selection of 

informative features from vibration signals that allow for the diagnosis of the most common faults in pumping 

equipment during periodic monitoring; 2) selection of hardware specifications that ensure the diagnostic 

monitoring system meets the stated requirements; and 3) development of a software and network architecture 
for the diagnostic monitoring system based on open hardware and software standards . The results of the 

experiments demonstrated that the developed system enables effective monitoring of the condition of pumping 

equipment and reduces the risk of emergency shutdowns, thereby optimizing operating costs. The 

incorporation of wireless technologies, open software products, and standards makes systems flexible and 
cost-effective, which is especially important for small and medium-sized industrial enterprises. Conclusion. 

The use of the proposed monitoring system improves the reliability of pump ing equipment and maintenance 

management based on the current state data. 
 

Keywords: pumping equipment; diagnostic monitoring; vibration signals; wireless technologies; open 

architecture. 

 

1. Introduction 

 

1.1. Motivation 
 

At the present stage of industrial production, 

pumping equipment is an integral part of many 

technological processes, ensuring the transportation of 

liquids and maintaining the stability of various systems. 

The reliable and uninterrupted operation of pumps is 

critically important for industries such as oil and gas, 

chemicals, energy, and utilities. In the context of 

increasing competition and requirements for reducing 

operating costs, increasing the reliability and efficiency 

of pumping equipment has become an urgent task. 

The basis for increasing reliability is timely 

diagnosis of the pump condition, which allows the 

identification of potential faults at early stages [1, 2]. 

However, in most cases, the existing diagnostic methods 

used in the industry are limited to checking the 

condition of the equipment only at the commissioning 

stage [3] or after repair work [4]. This is due to the lack 

of qualified specialists, additional material costs, limited 

access to pumping units, and the complexity of 

organizing monitoring. Consequently, faults are often 

identified at late stages when the equipment already 

requires expensive repairs, and it becomes necessary to 

stop the production process [5]. 

The introduction of modern automatic monitoring 

technologies significantly improves the situation by 

providing continuous monitoring of key diagnostic 

parameters that reflect the current state of the pumps. 

Simultaneously, the operating features of the pumping 

equipment allow periodic monitoring, thus reducing the 

cost of organizing the infrastructure of the control 

system [6].  

Among the many parameters used to assess 

equipment condition, vibration and temperature signals 

are the most informative [7, 8]. The analysis of 

vibration signals allows for the effective diagnosis of 

mechanical faults such as bearing wear, rotor 
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imbalance, pump impeller imbalance, and other defects. 

Vibration parameters provide insights into the operation 

of mechanical components and allow for the early 

detection of deviations from the norm [9, 10]. 

The temperature signals complement the vibration 

analysis by reflecting the thermal characteristics of the 

pump. Monitoring the temperature of bearings and other 

components helps to detect problems with cooling, 

lubrication, or early wear, thus creating a 

comprehensive picture of the condition of the 

equipment [11]. 

In turn, it should be noted that temperature and 

vibration monitoring do not account for all possible 

emergency situations for a pumping unit, although they 

are distinguished by the simplicity of data recording and 

their obvious correlation with specified faults. More 

complete functional monitoring requires the use of 

additional sources of information (for example, the 

consumed power of an electric motor, pressure and 

movement of liquid, acoustic signals, etc.). In particular, 

the work [12] presented the principles of constructing 

diagnostic models that are capable of reflecting the 

complex relationship of a set of measured direct and 

indirect diagnostic features for the holistic control of the 

operability of complex systems. 

However, using additional diagnostic parameters 

significantly complicates the architecture and operation 

of monitoring systems, increasing the costs associated 

with their development, installation, and operation. In 

contrast, using only vibration and temperature signals 

allows for creating simpler and more cost-effective 

solutions. Although these solutions are limited to the 

scope of the diagnosed faults, they enable timely 

detection of the most common issues. This approach 

achieves an optimal balance between system complexity 

and diagnostic capabilities, thus making monitoring 

accessible to various enterprises, including small and 

medium-sized businesses. 

Therefore, the development of diagnostic 

monitoring systems using vibration and temperature 

data as informative features remains a pressing task in 

the field of industrial pump engineering. Particular 

attention should be paid to ensuring the simplicity of 

installation and maintenance of the monitoring system, 

minimization of the mechanical impacts on equipment, 

reduction of installation time costs, and the possibility 

of seamless integration with existing information and 

communication systems. At the same time, the open 

architecture of the system and the use of open-source 

software will allow for significant savings in material 

resources, as well as provide opportunities for 

scalability and future functionality expansion. 

Considering the accumulated research experience, 

to form a detailed picture of the equipment conditions, 

this system must control a set of vibration signal 

parameters along three axes.  

Based on the above, a diagnostic monitoring 

system for pumping equipment was developed that 

meets the stated requirements . 

 

1.2. State of the art 
 

Several well-known publications have focused on 

using vibration and temperature parameters to assess the 

condition of pumping equipment. In contemporary 

studies, authors have employed machine learning 

algorithms, such as multilayer perceptron, support 

vector machines [13], random forests [14], and artificial 

neural networks [14, 15], to construct informative 

features and address equipment fault classification. 

Additionally, statistical methods are used for these 

purposes, including linear regression [16] and hidden 

Markov models [17]. 

These approaches demonstrate high diagnostic 

problem solving efficiency, particularly when 

processing complex and multidimensional data. 

However, most of these studies did not adequately 

address the practical aspects of organizing the data 

collection process, simplifying the operation of 

monitoring systems, and optimizing their 

implementation costs. In addition, machine learning 

methods require substantial amounts of information to 

train models, which places significant demands on data 

collection infrastructure. This often necessitates the 

installation of complex sensor systems and the 

transmission of large volumes of data, thereby 

increasing the costs of system implementation and 

operation. Consequently, these studies tend to overlook 

strategies for reducing material costs associated with the 

creation and implementation of monitoring systems . 

In the context of the fourth industrial revolution, 

significant attention is being paid to the development 

and application of the concept of digital twins in 

modern pumping equipment monitoring tasks [18]. 

These virtual models enable real-time analysis of data 

from sensors, modeling of work processes, and 

prediction of fault development [19]. Digital twins offer 

a comprehensive approach to equipment diagnostics, as 

they consider not only current measured parameters 

such as vibration and temperature but also the 

interaction of various factors, including fluid 

characteristics, electric motor conditions, load 

conditions, and dynamic processes. With these 

capabilities, digital twins serve as an effective tool for 

ensuring high monitoring accuracy and optimizing 

pumping unit operation processes. 

On the other hand, diagnostic monitoring systems 

that use digital twin models often require large amounts 

of data recorded in real time [11], which can be 

problematic in the absence of wired sensor interfaces. 
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Existing solutions primarily focus on servicing complex 

industrial facilities or specific equipment while 

considering operating conditions and unit locations [20, 

21]. This focus is due to the fact that implementing 

digital twins requires significant resources, including 

highly qualified specialists, powerful computing 

systems, intricate data processing algorithms, and 

additional procedures for integrating digital twins into 

the existing infrastructure of enterprises [22]. 

Within Industry 4.0, IoT technologies are actively 

being developed [23], providing effective solutions for 

collecting diagnostic data [24]. A previous study [25] 

proposed an IoT-based system architecture for 

monitoring and diagnosing faults in centrifugal pumps. 

Despite the benefits of using IoT technologies, the 

architecture described in this paper has several 

shortcomings. It lacks detailed explanations of the 

interactions between the system components. In 

addition, insufficient information is available on the 

data processing algorithms used, which are critical to 

the system’s performance. The issue of scalability when 

processing data from multiple sensors is also not 

addressed, and the user interface required by service 

personnel for effective monitoring and diagnostics of 

pump condition is not described. 

In the study [26], the authors developed a 

structured methodology based on IoT solutions that 

combines key stages and tools for implementing 

predictive maintenance (PdM) for pump units. 

However, this study does not provide explicit 

information about the architecture of the monitoring 

system, such as system levels (sensors, gateways, 

servers), data transfer protocols, or user interaction 

interfaces. 

The analysis of the existing literature shows that 

researchers are paying considerable attention to the 

development of machine learning algorithms for 

diagnosing pump unit faults. These approaches 

demonstrate high classification efficiency and 

processing multidimensional data; however, the 

practical implementation of such systems is often 

insufficiently addressed. The development of the 

concept of digital twins within the framework of 

Industry 4.0 opens up new prospects for monitoring 

pumping equipment, but their implementation requires 

high requirements for enterprise infrastructure and 

personnel training. 

In addition, the methodology for using IoT 

technologies to monitor pumping equipment has certain 

limitations. Although these studies have provided IoT 

system architectures, the authors did not adequately 

address aspects related to the use of open technologies. 

Furthermore, there is a lack of information about the 

key components of the architecture, criteria for selecting 

data transfer protocols, and user interaction interfaces. 

In addition, insufficient attention is given to system 

scalability issues when integrating multiple sensors, 

data storage, and processing. 

 

1.3. Objectives and the approach 

 

An analysis of the current state of diagnostic 

monitoring systems for pumping equipment forms the 

goal of this study: to develop an effective open 

architecture for a diagnostic monitoring system based 

on IoT technologies. The system's effectiveness is 

defined by its ability to provide diagnostic information 

on the condition of pumps through vibration and 

temperature characteristics, as well as by facilitating 

installation, operation, and maintenance. In addition, it 

should offer flexibility, scalability, and an open 

architecture for integration into enterprise infrastructure. 

Achieving this goal requires solving the following 

tasks:  

1. Selecting informative features from vibration 

signals that enable the diagnosis of the most common 

faults in pumping equipment during periodic 

monitoring;  

2. Selecting hardware characteristics to ensure that 

the diagnostic monitoring system meets these 

requirements;  

3. development of software and network 

architectures for diagnostic monitoring systems based 

on open hardware and software standards. 

The following issues were addressed in the 

following sections of this study. The second s ection 

provides information on the materials and research 

methods used to create the new open architecture for the 

diagnostic monitoring system of the pumping 

equipment. Methods for solving the research tasks are 

presented. The third section presents the results obtained 

by evaluating the experimental data. The fourth section 

draws conclusions based on the results of the study  and  

presents directions for further development of the 

proposed approaches for diagnostic monitoring systems 

for pumping equipment. 

 

2. Materials and methods of research 
 

2.1. Selection of informative features  

of diagnostic signals 
 

The applied standards for assessing the vibration 

states of pumping equipment [27] describe two main 

criteria that determine the operating mode of an 

installation. According to the first criterion, a 

comparison is made between the values of absolute 

vibration parameters in a wide frequency band (usually 

from 10 to 1000 Hz) and the established threshold 

values of the root mean square (RMS) of the vibration 
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velocity VRMS and/or the amplitude of the vibration 

displacement SPP .  

The RMS vibration velocity was measured in 

mm/s and was determined using the following 

expression: 

 

                          (1) 

 

where vi  – vibration velocity value at the i-th discrete 

measurement, N — total number of measurements. The 

frequency of discrete measurements fS should be at least 

twice the maximum value of the studied frequency 

range of the vibration signal. That is fS ≥ 2000 Hz [28]. 

The second criterion for assessing the vibration 

state of pumps is the monitoring of the changes in the 

vibration parameters over time under the assumption of 

a possible deviation of these parameters from the initial 

normal values. 

Note that in the existing standards and 

recommendations, the numerical values of the vibration 

parameters are defined only for equipment with a 

capacity exceeding 1 kW. At the same time, the 

recommended threshold values are not strictly fixed and 

can change depending on the type of equipment, as 

mutual agreement between the manufacturer and 

consumer. This is because the vibration level of the 

pumping equipment depends on its size, the dynamic 

characteristics of the vibrating elements, the installation 

method, and the purpose [27]. When selecting 

permissible vibration zones, it is necessary to consider 

the conditions that affect the vibration state of the unit. 

Thus, the wide variability of pump unit designs 

requires the use of additional informative parameters 

when designing a functional diagnostic monitoring 

system that can provide a more comprehensive 

assessment of the operating equipment. 

In particular, monitoring the acceleration of the 

RMS vibration allows additional control of the bearing 

condition [29, 30]. The crest factor is an indicative 

characteristic of the vibration signal [29]: 

 

                                 (2) 

 

where  – RMS vibration 

acceleration, AP  – peak value. 

The crest factor CF allows for evaluating the 

nature of the vibration signal. In other words, a high 

value of this coefficient indicates  sharp spikes or pulses 

in the signal-probable signs of a mechanical failure. 

In turn, the peak value of the vibration acceleration 

(AP) can be used as an indicator of extreme vibration 

events. High signal spikes may indicate sharp impacts, 

impulse loads, or other dynamic effects that can damage 

equipment. 

The statistical analysis of complex vibration 

signals can also provide useful informative features . In 

particular, it is possible to quantitatively assess the 

deviation of the real distribution of the studied vibration 

signal parameters from the normal distribution law N(, 

2) [311]. Here,  – is the mathematical expectation, а 

2 – is the dispersion of the distribution. The deviation 

of the distribution from the normal distribution may 

indicate dominant harmonics in the signal spectrum, 

which can be caused, for example, by impact effects . 

Thus, an informative statistical parameter of 

vibration acceleration is the asymmetry coefficient 

(Skewness), which is the third central standardized 

moment: 

 

                            (3) 

 

where – arithmetic mean of the vibration acceleration 

and  – standard deviation [322]. 

From equation (3), it follows that SKEW ≈ 0 

indicates a symmetric distribution of the vibration signal 

sample and normal operation of the equipment. 

Otherwise, large outliers in the distribution can be 

observed, which indicate rare but significant vibration 

events. 

Another informative indicator is the coefficient of 

excess (Kurtosis), which is the fourth central 

standardized moment as follows: 

 

                         (4) 

 

Because the excess coefficient for the normal 

distribution is equal to three, formula (4) can be 

modernized as follows: 

 

KURT = m’4 – 3.                         (5) 

 

The advantage of the kurtosis coefficient (5) is that 

it allows one to assess the presence of outliers in a 

symmetrical distribution, which may not be evident in 

the mean or RMS. From the viewpoint of vibration 

diagnostics, KURT > 3 may indicate strong short-term 

vibrations or impacts. KURT < 3 indicates a flatter 

distribution, indicating uniform vibrations without sharp 

peaks. 

Thus, the use of the proposed set of vibration 

parameters along the three axes for diagnostics of the 

pumping equipment condition allows obtaining a 

detailed and comprehensive picture of the system 

operation. Each of the described parameters  provides 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 4(112)               ISSN 2663-2012 (online) 
196 

unique information, and their combined use allows for a 

more accurate representation of the equipment 

conditions [33]. The selected parameters allow periodic 

monitoring of the pumping equipment without the need 

to transmit large amounts of data in real-time. 

To simplify the analysis of the described criteria in 

the monitoring process, we used a single integral 

parameter obtained by forming an aggregating feature in 

the form of a technical condition index (TCI). 

In addition to diagnostic vibration signals, the TCI 

may also include additional information, including 

quantitative features such as the total operating time of 

the equipment TΣ, the power consumption of the pump 

electric motor P1, the bearing temperature measured on 

the housing t, and nominal features such as the number 

of previously performed repairs and maintenance k, and 

operating conditions and others. 

The TCI in the form of a quantitative one-

dimensional feature characterizing the current state of 

the pump can be obtained using the Principal 

Component Analysis (PCA) method [34]. The proposed 

method is one of the most widely used algorithms for 

reducing the dimensionality of data, allowing us to 

identify the main features of the multidimensional set of 

features used. In this study, the TCI of the pump was 

determined based on the following parameters along the 

three axes: VRMS, SPP , CF, Skew, Kurt. 

Let us have a data matrix X of size m×n, where m  

number of observations and n  number of parameters 

characterizing the pump. To perform PCA, it is 

necessary to first center the data by subtracting the 

mean value of each parameter. After centering, the 

covariance matrix C of size n×n is calculated as follows: 

 

,                             (6) 

 

where  – centered data matrix. Next, to determine the 

principal components, it is necessary to calculate the 

eigenvectors vi and the corresponding eigenvalues λ i of 

the covariance matrix C: 

 

Сvi = viλi, i = 1, 2, …, n,                    (7) 

 

where λ i are ordered in such a way that λ1 ≥ λ2 ≥ …  

≥ λn. 

The principal components are linear combinations 

of the original parameters: 

 

                   (8) 

 

where each main component zi – it is a new feature 

containing the main information of the original dataset . 

As a result, the first principal component z1 can be 

As a result, the first principal component z1 can be 

selected to form the TCI, which explains the greatest 

variance in the original data as follows: 

 

                                 (9) 

 

Note that depending on the number and type of 

diagnostic features used, the first principal component 

may not be sufficient to determine the TCI. The number 

of principal components should be selected such that the 

level of explained variance is 90–95%. 

Thus, TCI simplifies the understanding of the 

current state of equipment and can also be used for 

monitoring and forecasting the pump unit performance 

and making maintenance decisions. In addition, if 

necessary, forecasting the remaining resources can be 

performed using classical regression methods or 

machine-learning algorithms. 

 

2.2. Selecting hardware 
 

Owing to the clear balance between size, cost, and 

functionality, microelectromechanical systems (MEMS) 

accelerometers are increasingly being used as vibration 

sensors in modern measuring transducers. The vibration 

velocity and displacement signals are obtained from the 

vibration acceleration signal from integration [35]. In 

line with this, the use of MEMS accelerometers as 

vibration sensors is justified for the construction of 

diagnostic monitoring systems. Accordingly, the use of 

MEMS accelerometers with wireless data transmission 

channels as vibration sensors is justified for building 

diagnostic monitoring systems. In addition, to improve 

noise immunity, the measurement signals should be 

converted and transmitted in digital form. The use of 

digital systems increases the degree of integration of 

components and therefore makes it possible to place a 

temperature sensor in one housing to monitor the 

heating of bearings. 

When choosing a protocol to transmit data from 

sensors in an information collection system, it is 

essential to consider the specific operational 

characteristics of the pumping units. The equipment 

being diagnosed is often situated in hard-to-reach areas 

or locations with increased risks, which makes regular 

inspections significantly challenging. In addition, laying 

extra signal lines is often undesirable because it 

complicates pump installation and maintenance, thereby 

increasing the risk of mechanical damage.  

Moreover, installing wires incurs additional costs 

and effort, especially in difficult industrial 

environments. These challenges can be mitigated using 

wireless transmission systems. When periodic 

monitoring is organized, wireless technologies can 

lower installation and maintenance costs, minimize 

equipment downtime, and provide more flexible 
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integration with the existing information infrastructure 

of the enterprise. 

To select a wireless communication standard, we 

performed a comparative analysis of the most common 

and developed data transmission technologies presented  

in Table 1. 

From Table 1, it follows that LoRaWAN [36], 

LTE-M, NB-IoT [37], and SigFox [38] technologies are 

optimal for the designed system to monitor the 

condition of pumping equipment in terms of range. 

These networks enable monitoring in remote and urban 

areas. However, the LTE-M and NB-IoT standards 

require cellular operator infrastructure. These 

technologies use licensed frequency ranges, and their 

operation is impossible without a connection to a base 

station. In addition, in terms of architectural openness, 

access to the specifications and settings of these 

standards is limited. Thus, in terms of the totality of 

characteristics, the LTE-M and NB-IoT technologies do 

not meet the requirements of the developed system. 

When conducting periodic monitoring, the energy 

efficiency and data transfer rate of the LoRaWAN and 

SigFox standards satisfy the requirements of the 

designed system. Simultaneously, the LoRaWAN 

protocol has an open architecture because it was 

developed and managed by the LoRa Alliance, which 

made the specifications publicly available. The 

LoRaWAN transmission standard is open to use and 

supports various implementations, which contributes to 

its development and wide distribution. 

However, the Sigfox architecture is closed because 

the network is managed only by Sigfox and its partners. 

Access to specifications is limited, and devices must 

meet strict requirements to operate on the SigFox 

network. 

Thus, based on this analysis, LoRaWAN wireless 

data transmission technology can be an optimal choice 

for diagnostic monitoring systems . In particular, the 

long range (Table 1) allows LoRaWAN networks to 

cover a wide area of industrial facilities and all hard-to-

reach locations without the need for additional 

repeaters. The low power consumption makes this 

standard ideal for autonomous sensors, ensuring a long 

service life without batteries, which is especially 

important when access to equipment is limited. 

LoRaWAN supports the transmission of small amounts 

of data at a low speed, which meets the needs of 

periodic monitoring and reduces operating costs. In 

addition, this communication is resistant to interference, 

which is critical in industrial conditions, and provides 

flexibility and scalability to the system, allowing new 

devices to be easily added as needed. 

Table 2 presents the minimum technical 

requirements for vibration- and temperature-measuring 

transducers based on the selected diagnostic parameters  

and existing evaluation criteria [27]. 

The diagnostic signal features proposed in this 

study avoid complex data analysis methods, thereby 

simplifying the requirements for primary converters 

(Table 2. Thus, many sensors offered by vendors can be 

used as part of the developed diagnostic monitoring 

system. In addition, ready-made industrial solutions for 

vibration and temperature sensors can be used as part o f 

the system. 

 

Table 1 

Comparison of wireless communication technologies  

Network 

type 
Range Transfer speed 

Energy 

efficiency 

Ease of 

integration 

Wi-Fi 
Up to 100 m (indoors); up to 300 

m (outdoors) 

Up to 600 Mbps (802.11n); 

up to 3.5 Gbps (802.11ac) 
Low Very simple 

Bluetooth Up to 100 m Up to 3 Mbps 
High (especially 

in BLE) 
Very simple 

Zigbee 
Up to 100 m (indoors); up to 300 

m (outdoors) 
Up to 250 kbps High Simple 

LoRaWAN 
Up to 15 km in open space; up to 

5 km in urban environments  
Up to 50 kbps Very high Simple 

LTE-M 
Up to 10 km (depending on 

cellular network coverage) 

Up to 1 Gbps (depending on 

cellular network coverage) 
Average Simple 

NB-IoT 
Up to 10 km in open space; up to 

2 km in urban environments  
Up to 250 kbps High Simple 

SigFox 
Up to 50 km in open space; up to 

10 km in urban environments  
Up to 100 bps High 

Relatively 

simple 
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Table 2 

Technical characteristics of measuring transducers  

Parameter Meaning 

Accelerometer 

Number of 

measurement axes 
3 – x, y, z 

Frequency range 10 – 1000 Hz 

Amplitude range  16 g 

Analog-to-digital 

converter bit 

depth 

10 bit 

Relative error ≤ 5 % 

Nonlinearity  0,5 % 

Temperature sensor 

Measurement 

range 
-20°С – +120°С 

Relative error 
≤ 5 % throughout the entire 

measurement range 

 

2.3. Development of an open software  

and network architecture for a diagnostic 

monitoring system 

 

Fig. 1 shows the structure of the developed 

software and network architecture of the diagnostic 

monitoring system for pumping equipment. The 

proposed architecture uses a wireless channel to collect 

data from sensors using the LoRaWAN protocol, which 

is based on free software. 

As shown in Fig. 1, in the developed system, the 

gateway serves as a bridge between the end nodes in the 

form of vibration and temperature sensors and the 

LoRaWAN network infrastructure. LoRa devices can 

send data over long distances, which are received by 

one or more gateways. Gateways collect data from all 

devices in the coverage area and forward them to the 

network server via a standard connection (e.g., Ethernet 

and LTE). 

The network server is shown in Fig. 1 is the central 

part of the LoRaWAN infrastructure, and it manages the 

interaction of all network components. The server 

receives data from gateways, processes the data, and 

routes it to the application server. 

The application server is responsible for data 

processing and user application interactions. Here, data 

are useful for monitoring tasks. In the proposed 

architecture, data processing is performed using an 

MQTT broker (message-queuing telemetry transport), 

as shown in Fig. 1. The broker publishes data received 

from sensors in the form of corresponding MQTT 

topics, allowing for easy integration of any number of 

sensors into the monitoring system.  

The Telegraf software [39] acts as a "subscriber.” 

This means to subscribe to the specific topics published 

by the MQTT broker. In other words , Telegraf acts as a 

data collection agent. The choice of this software was 

justified by the fact that Telegraf is lightweight and can 

operate in real time, which is important for the 

operational monitoring of equipment status .  

The data obtained using Telegraf were transferred 

to the InfluxDB database [40] for storage and 

subsequent analysis (Fig. 1). InfluxDB is a high-

performance database optimized for storing and 

analyzing time series. 

 

 
 

Fig. 1. Open software and network architecture of the diagnostic monitoring system 
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In the context of the developed system, it is used to 

store the vibration and temperature data received from 

sensors via Telegraf. InfluxDB has high speed for 

writing and reading data, which is important for scalable 

monitoring systems. 

The Grafana data-visualization platform is used as 

a web application that provides a graphical user 

interface for monitoring tasks [41]. Grafana is integrated 

with InfluxDB, providing convenient tools to create 

dashboards and graphs. Using the Grafana platform 

allows support for various types of visualizations, 

including graphs, tables, histograms, and heat maps. 

Alerts and notifications can be set up, allowing prompt 

responses to data anomalies. In addition, it supports the 

use of various data sources, thereby making it flexible 

for integration into complex systems. 

When deploying software on an application server 

(Fig. 1), Docker containerization technology is used 

[42]. This ensures the isolation and management of each 

element of the system separately to prevent dependency 

conflicts and ensure scalability. To launch all software 

components, Docker Compose was used, which allows 

the management of a group of containers as a single 

application. 

Using Docker and Docker Compose allows for 

creating a modular and easily managed system that can 

be deployed on any platform that supports Docker. This 

significantly simplified the process of installing and 

maintaining the pumping equipment monitoring system. 

In addition, in accordance with the purpose of this 

study, all the software used is distributed under open-

source licenses, which, together with the concept of 

building LoRa networks, ensures the openness of the 

software and network architecture of the diagnostic 

monitoring system. 

 

3. Results and Discussion 
 

The proposed diagnostic monitoring system was 

tested on the basis of an experimental rig for evaluating 

the operation of a centrifugal cantilever pump 

developed in the U.A. Dzholdasbekov Institute of 

Mechanical Engineering (Almaty, Kazakhstan). The 

experimental rig was a pump unit SNR of 32-160 

(Karlskrona LLC, Kazakhstan) connected to an electric 

motor. The pump has the following main characteristics: 

0.75 kW, 1500 rpm, a pressure of 5 m, and a flow rate 

of 8000 l/h. The rig also includes a control panel with a 

frequency-speed controller, a water flow meter, shut-off 

valves, and pressure gauges. The experimental stand is 

shown in Fig. 2. 

The stand design allows the simulation of 

malfunctions in the operation of the mechanical and 

hydraulic parts of the equipment. 

The equipment from Advantech, which meets the 

requirements listed in Table 2, the wireless vibration 

and temperature sensors WISE-2410 [43], and the 

industrial LoRaWAN gateway WISE-6610 [44], were 

used as measuring equipment for the monitoring system 

in the experimental studies . 

 

 
 

Fig. 2. External appearance  

of the experimental stand 

 

By programming the WISE-2410 sensors, it was 

possible to record the vibration parameters along the 

three axes defined in this study, as well as the 

temperature data. The sensor is fixed to the pump body 

using a magnetic mount. In addition, the WISE-6610 

equipment is a comprehensive solution that combines a 

LoRaWAN gateway, a network server, and an 

application server in a single case (Fig. 1). However, in 

this study, the application server functionality was 

implemented separately on a personal computer with the 

Ubuntu 22.04 operating system and the following main 

characteristics: Intel Core i5, RAM 16 GB DDR 4, SSD 

256 GB, HDD 1 TB, Ethernet 1 Gbps, and Wi-Fi. 

A series of diagnostic monitoring system tests 

were performed on the specified equipment during 

normal pump operation and under cavitation conditions. 

For this purpose, the pressure at the pump inlet was 

reduced by partially closing the valve inlet. The pump 

was also operated at an increased speed to simulate 

cavitation. Experiments to record data on pump 

operation in normal mode and under cavitation 

conditions were carried out at different times, which 

made it possible to divide the obtained measurements 

into two classes: class y = 0 - normal operation mode 

and class y = 1 - mode with deviation from the norm. 

As part of the tests conducted to demonstrate the 

openness and broad functional capabilities of the 

developed architecture, TCI calculation was performed 

by introducing an additional module into the overall 

software structure of the system, as shown in Fig. 3. 
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Fig. 3. Expanding the functionality of the monitoring 

system for PCA calculations  

 

To calculate the TCI in the high-level language 

Python 3, a separate script was written that acted as an 

additional module in the system to perform PCA. The 

use of additional Python scripts will be justified in cases 

where the limitations of the Flux query language for 

InfluxDB do not allow the required manipulations with 

data to be performed. 

As shown in Fig. 3, the Python script was 

programmed to read diagnostic parameters from the 

database for a specified time interval and apply the PCA 

algorithm to them to extract the first principal 

component (9). The script can also act as a subscriber to 

the MQTT broker and an independent data collection 

agent. The script frequency on the server was set using 

the cron daemon.  

According to Fig. 3, a certain TCI parameter can 

be sent to the database and/or a corporate messenger to 

receive urgent notifications. As noted previously, the 

functionality of the Grafana software allows users to 

send notifications about registered events to the most 

common messengers. 

To implement the PCA method in the Python 

script, the scikit-learn 1.5 library was used, and to work 

with the database, influxdb-client 1.47.0. Receiving 

MQTT messages is performed using the paho-mqtt 

2.1.0 library, and the notifiers 1.3.3 library is 

responsible for sending notifications. 

Fig. 4 gives the calculated principal component (9) 

values obtained from the recorded data. It can be seen 

that although there are some deviations by class, the 

data can be separated by setting threshold values close 

to zero. It is expected that the use of machine learning 

methods will enable a more accurate classification of 

pump operation by TCI. 

For the diagnostic monitoring system based on the 

Grafana software, a dashboard was developed as a web 

application, consisting of the following monitoring 

panels: sensor status and signal transmission parameters  

panel (Device Status), temperature panel (temperature), 

vibration signal monitoring panel (accelerometer), and 

statistical characteristics panel (accelerometer statistics). 

The following parameters were monitored in the panels:  

VRMS, SPP , ARMS, AP , CF, , Skew, Kurt, t (bearing 

temperature measured on the housing). 

Fig. 5 displays the Device Status panel. The panel 

displays the LSNR (LoRa Signal-to-Noise Ratio) and 

RSSI (Received Signal Strength Indicator) parameters 

to monitor the status of the LoRa transmission channel. 

 

 
Fig. 4. Distribution of pump operating modes by 

class using principal component method 

 

The experimental environment during system 

testing was organized such that the pumping unit with 

measuring sensors was located in the basement of the 

building. The receiving equipment was located on the 

first floor at a considerable distance from the pumping 

unit, so that several monolithic load-bearing walls and 

technical rooms were in the path of the radio signal. In 

other words, unfavorable conditions for signal 

transmission were intentionally created. At the same 

time, as shown in Fig. 5, the SNR = 10 dB. Therefore, it 

can be concluded that the received signal is slightly 

distorted and that there is still a significant reserve in the 

transmission range. 

The RSSI parameter also shows the power of the 

received signal, which is measured in decibels relative 

to milliwatt-dBm. The RSSI value in Fig. 5 is -79 dBm, 

which is acceptable according to the LoRa standard. 

In addition, the Device Status panel (Fig. 5) 

displays the status of the Device Status sensor (OK, the 

sensor is operating in normal mode), a graph of the 

change in the frequency of the transmission channel 

frequency, the type and voltage of the sensor’s Power 

Source (in this case, from the battery – battery), and the 

number of transmitted and lost FCNT packets. The 

information content of this panel was determined from 

the data provided by the WISE-2410 sensor during 

operation. The data collection frequency was set to 10 s . 
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Fig. 5. Device Status panel 

 

Fig. 6 shows the temperature control panel. As can 

be seen from the (Fig. 5), information is provided on the 

sensor operability (Sensor Status), the current bearing 

temperature value measured on the housing, and the 

temperature measurement in dynamics over the 

analyzed period of time. 

In addition, the ability to control the set 

temperature threshold value was implemented using the 

Alarm Status window and Temperature Event time 

scale. 

Fig. 7 (a) A part of the developed monitoring panel 

responsible for notifying the service personnel when the 

specified vibration acceleration thresholds are exceeded 

along the three axes. In addition, threshold values for all 

monitored parameters can be set using Grafana software 

with the ability to send notifications to e-mail or to a 

corporate chat (Fig. 3). 

Fig. 7 (b) shows the time data of the VRMS, 

vibration velocity measurement as an element of the 

vibration-signal monitoring panel. The graph shows the 

measured values of the parameters along the three axes. 

In addition to the graphs of the changes in the monitored  

parameters, the minimum, maximum, and last measured 

values of the vibration characteristics for the displayed 

period of time, as well as the average value, standard 

deviation, and signal amplitude for this period. 

Fig. 7(c) shows a portion of the statistical 

characteristics panel with the calculated values for the 

kurtosis coefficient (4) and the skewness coefficient (3). 

Thus, the monitoring system can assess the 

condition of the pumping equipment according to the 

criteria presented in regulatory documents [27, 45] and 

by using the additional parameters proposed in this 

work. The system provides flexible options for setting 

the threshold values of the vibration and temperature 

parameters, with the ability to change them for different 

types of pumps. 

The indication of alarm signals and the sending of 

corresponding notifications to personnel are supported, 

which increases the efficiency of response to potential 

malfunctions. The system functionality also provides 

additional modules to calculate and monitor the 

necessary parameters. The presented version of the 

implementation of the additional functionality of the 

TCI monitoring system demonstrated the effectiveness 

of the proposed integrated assessment of the condition 

of the pumping unit based on the experimental setup. 

 

 

 
 

Fig. 6. The temperature monitoring panel 
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Fig. 7. Elements of the developed monitoring system dashboard  

 
A limitation of the proposed solution is that it is 

important to specify that diagnosis is restricted to pump 

unit faults that clearly correlate with the informative 

features presented in the study. Bearing wear is 

expected to manifest as an increase in ARMS vibration 

acceleration, the peak factor СF and the excess factor 

KURT. Rotor and impeller imbalances are indicated by 

an increase in the vibration displacement SPP  and a 

change in the asymmetry coefficient SKEW. Shaft 

misalignment results in an increased vibration velocity 

VRMS, whereas cavitation affects both - KURT and СF. 

Shaft defects and the failure of support elements are 

characterized by an increase in low-frequency vibration 

and instability.  

Additionally, the placement of a temperature 

sensor in the monitoring setup allows the determination 

of pump temperature at the installation site.  

However, positioning the sensor on the bearing 

support enables the detection of inadequate or 

contaminated lubricant, bearing wear, increased 

mechanical loads, and cooling system malfunctions due 

to temperature increases. 

 

4. Conclusions 
 

In this article, we propose a remote diagnostic 

monitoring system for pumping equipment that features 

an open architecture and uses wireless data transmission  

via the LoRaWAN protocol. The article outlines the 

selection criteria and required characteristics for the 

system’s hardware and software components. 

Scalability is achieved by integrating data collection 

technology using the LoRaWAN protocol and 

application server software, which form part of the 

overall software and network architecture. The proposed 

software products facilitate the integration of additional 

functional components into the system, as demonstrated  

by the example of calculating the TCI of a pump. A 

judicious choice of the wireless communication 

standard simplifies system installation, extends the 

geographical monitoring range, and enables the use of 

hardware from various manufacturers, thereby allowing 

a network to be built without dependence on a specific 

vendor. 
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In addition, the use of open standards and open-

source software enables the architecture of the proposed 

diagnostic monitoring system to be integrated into the 

existing infrastructure of industrial facilities. This will 

ensure accessibility to various users, including small 

and medium enterprises. Furthermore, the selected 

informative features, which consist of vibration and 

temperature signals, facilitate this integration. This 

choice balances the informativeness of the system with 

its infrastructural complexity. 

Based on the proposed vibration parameters, this 

work demonstrates the potential of periodic monitoring 

to diagnose cavitation processes in a pump. It can be 

concluded that the proposed signal characteristics can 

effectively identify the most significant and common 

faults in pump units, which are correlated with the 

vibration and temperature data. 

Experimental testing of the system based on a 

centrifugal pump demonstrated its operability and 

efficiency under simulated operating conditions, 

including both normal and abnormal scenarios. In 

addition, the proposed technical condition index, which 

is calculated using the principal component method, can 

help generalize diagnostic parameters and simplify 

equipment condition monitoring. To enhance 

convenience and accessibility for service personnel, 

specialized monitoring panels were designed to present 

information about the condition of the research object in 

an easily perceivable format, with options for 

customization and notification. 

Thus, the proposed monitoring system has 

significant potential for use in industrial enterprises, 

where reliable and uninterrupted operation of pumping 

units is crucial. Adopting open architectures and 

standards reduces the barrier to implementing such 

solutions. In the future, as the system operates and 

accumulates a sufficient volume of diagnostic data, its 

functionality can be enhanced by incorporating machine 

learning methods to predict the remaining lifespan of 

the equipment and improve diagnostic accuracy. 
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РОЗРОБКА СИСТЕМИ ДИСТАНЦІЙНОГО ДІАГНОСТИЧНОГО МОНІТОРИНГУ 

НАСОСНОГО ОБЛАДНАННЯ З ВІДКРИТОЮ АРХІТЕКТУРОЮ  

О. О. Савостін, К. Т. Кошеков, А. К. Тулешова,  

Г. А. Савостіна, А. К. Кошеков 

Об’єктом дослідження в даній роботі є система дистанційного діагностичного моніторингу насосного 

обладнання з відкритою архітектурою, розроблена для підвищення надійності та ефективності експлуатації 

насосів у різних промислових галузях. Система призначена для періодичного збору та аналізу вібраційних і 

температурних сигналів, що дає змогу оперативно виявляти потенційні несправності обладнання та уникати 

аварійних зупинок виробничого процесу. Метою даного дослідження є розробка ефективної відкритої 

архітектури системи діагностичного моніторингу насосного обладнання, що базується на технологіях IoT. 

Основну увагу приділено розробленню такої архітектури системи, яка дасть змогу спростити монтаж і 

експлуатацію обладнання, забезпечити масштабованість і простоту інтеграції з наявними інформаційними 

системами підприємств, а також знизити матеріальні витрати на її впровадження. Для досягнення мети в 

рамках дослідження вирішено такі завдання: 1) добір інформативних ознак сигналів вібрації, що дають 

змогу діагностувати найпоширеніші несправності насосного обладнання під час періодичного моніторингу; 

2) вибір характеристик апаратної частини, які забезпечують відповідність системи діагностичного 

моніторингу пред'явленим вимогам; 3) розробка програмно -мережевої архітектури системи діагностичного 

моніторингу, яка базується на відкритих стандартах апаратного та програмно го забезпечення. Результати 

проведених експериментів засвідчили, що розроблена система дає змогу ефективно контролювати стан 

насосного обладнання та знижує ризик аварійних зупинок, оптимізуючи у такий спосіб експлуатаційні 

витрати. Застосування бездротових технологій, відкритих програмних продуктів і стандартів робить систему 

гнучкою та економічно ефективною, що особливо важливо для промислових підприємств малого та 

середнього масштабу. Висновок: використання запропонованої системи моніторингу дозволить підвищити 

надійність роботи насосного обладнання та поліпшити управління їх технічним обслуговуванням.  

Ключові слова: насосне обладнання; діагностичний моніторинг; вібросигнали; бездротові технології; 

відкрита архітектура. 
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