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THE RELIABLY STABLE NEURAL NETWORK CONTROLLERS' SYNTHESIS 

WITH THE TRANSIENT PROCESS PARAMETERS OPTIMIZATION 
 

The subject of this paper is to develop  a method for synthesizing stable neural network controllers with optimi-

zation of transient process parameters. The goal is to develop a method for synthesizing a neural network con-

troller for control systems that guarantees the closed-loop system stability through automated selection of Lya-

punov function with the involvement of an additional neural network trained on the d ata obtained in the solving 
process the integer linear programming problem. The tasks to be solved are: study the stability of a closed-loop 

control system with a neural network controller, train the neurocontroller and Lyapunov neural network func-

tion, create an optimization model for the loss function minimization, and conduct a computational experiment 
as an example of the neural network stabilizing controller synthesis. The methods used are: a neural network -

based control object simulator training method described by an equations system taking into account the Smooth-

ReLU activation function, a direct Lyapunov method to the closed -loop system stability guarantee, and a mixed 

integer programming method that allows minimizing losses and ensuring stability a nd minimum time regulation 
for solving the optimization problem. The following results were obtained: the neural network used made it 

possible to obtain results related to the transient process time reduction to 3.0 s and a 2.33 -fold reduction in 

overregulation compared to the traditional controller (on the example of the TV3 -117 turboshaft engine fuel 
consumption model). The results demonstrate the proposed approach's advantages, remarkably increasing the 

dynamic stability and parameter maintenance accuracy, and reducing fuel consumption fluctuations. Conclu-

sions. This study is the first to develop a method for synthesizing a stabilizing neural network controller for 

helicopter turboshaft engines with guaranteed system stability based on Lyapunov theory. Th e proposed 

method's novelty lies in its linear approximation of the SmoothReLU activation function using binary variables, 

which allowed us to reduce the stability problem to an optimization problem using the mixed integer program-

ming method. A system of constraints was developed that considers the control signal and stability conditions to 

minimize the system stabilization time. The results confirmed the proposed approach's effectiveness in increasing 

engine adaptability and energy efficiency in various operating modes. 

 

Keywords: optimization; controller; neural network; Lyapunov function; mixed integer programming. 

 

1. Introduction 

 
Motivation. Modern control systems increasingly 

use neural network approaches to ensure adaptability to 

the changing external influences and the parameters of 

control objects [1]. One critical task in this area is the 

synthesis of controllers, which can guarantee the entire 

control system's stability under various external and in-

ternal disturbances [2]. This approach requires powerful 

optimization methods and consideration of the transient 

process specifics that determine the dynamic characteris-

tics of systems [3]. Achieving a compromise between sta-

bility and the quality of transient processes is vital for de-

signing neural network controllers [4]. Guaranteed stable 

controllers using neural networks technologies synthesis 

is of particular importance in critical systems such as avi-

ation [5], energy [6], and robotic [7] systems. These sys-

tems require high reliability and can quickly adapt to 

changing conditions. However, standard approaches of-

ten do not correctly provide the quality of transient pro-

cesses, leading to decreased operational efficiency and 

safety. In this context, methods that simultaneously pro-

vide guaranteed stability and optimization of transient 

process development are becoming an urgent scientific 

and practical task. 

State of the art. Neural network controllers are a 

promising development in the automatic control systems 

(ACS) field due to their ability to train and adapt under 

uncertainty. Researchers [8, 9] have considered deep  

neural networks used for the controller's synthesis, which 
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improves the dynamic characteristics of the control sys-

tems. Research [10, 11] has shown that the recurrent and 

convolutional architectures provide high accuracy for 

modelling and controlling complex dynamic objects, 

such as robotic manipulators and autonomous vehicles. 

However, neural network-based approaches often face 

overfitting and insufficient interpretability. 

Currently, the control system's stability ensures that 

the problem is of primary importance, which has been 

emphasized in previous studies [11, 12]. Methods based 

on Lyapunov theory and guaranteed stability allow us to 

obtain strict criteria for designing controllers [13, 14]. 

However, many analyzed methods, for example, [12, 14], 

do not consider the nonlinear nature of complex objects, 

which limits their application in highly dynamic systems. 

A previous study [15] highlighted the need to integrate 

classical approaches with modern machine learning 

methods to ensure guaranteed stability of control sys-

tems. 

The optimization of transient processes is also an 

essential aspect of research. The researchers [16, 17] used 

gradient descent and evolutionary computation algo-

rithms to minimize overshoot and transient time. These 

studies focused on the selection of parameters by neural 

network controllers considering the systems' dynamic 

characteristics. However, a significant part of existing so-

lutions is focused on the problem’s  specific classes and 

do not have universality, which limits their practical ap-

plication. 

Researchers [18, 19] have considered the possibility 

of hybrid approaches that combine neural networks and 

classical methods. These systems allow us to achieve a 

compromise between adaptability and stability. How-

ever, most of them are at the laboratory testing stage [19, 

20], indicating the need for further research to create ap-

plied solutions for critical control systems. 

Despite significant advances in the development of 

neural network controllers [8–12], the problem of inte-

grating stability methods into neural network training re-

mains unresolved. In particular, approaches based on 

Lyapunov theory [13, 14] require accurately defining 

Lyapunov functions to analyze closed-loop system sta-

bility. Traditional methods [14] for finding such func-

tions are excessively computationally complex or do not 

scale to high-dimensional systems. One promising idea is 

to use an additional neural network to perform an auto-

mated search for  

Lyapunov function [21, 22]. However, training such 

a network requires structured data [16, 18], which entails 

solving the integer linear programming (ILP) adjoint 

problem and ensuring the correctness of the obtained data 

and physical interpretability. 

The developing methods for generating training 

data for a neural network approximating  

Lyapunov function problem considering the stabil-

ity limitations remain relevant. The issues of selecting the 

optimal neural network architecture, training algorithms, 

and interpretation of the results remain open. Modifying 

the research approach involves hybrid methods in which 

the stability problem is reduced to the sequential integra-

tion of the ILP and neural network models. This approach 

requires approximation errors and computational com-

plexity impact analysis on stability guarantees, which 

makes it promising but requires additional research. 

Objective and Approach. Based on the above, the 

research goal is to improve the approach to the neural 

network controller's synthesis for control systems to en-

sure the guaranteed stability of closed systems by auto-

mated search for Lyapunov function using an additional 

neural network trained on data obtained by solving an in-

teger linear programming problem. The research objec-

tive is control systems with neural network controllers 

operating under dynamic and nonlinear influences. The 

research subject includes methods and algorithms for the 

guaranteed stable neural network controller's synthesis, 

including Lyapunov function used, neural network mod-

els, and integer linear programming methods. 

Structure of the article. The article is structured as 

follows: introduction, sections “Materials and methods of 

research”, “Case study”, “Discussion”, conclusions, and 

references. The introduction substantiates the research’ 

relevance, the existing research overview provides in the 

research area, highlights unresolved issues, and formu-

lates the research’ aim. In the section “Materials and 

methods of research”, a method for modeling a closed -

loop control system using neural networks is developed. 

This method guarantees the system’ stability based on 

Lyapunov function, minimizes the stabilization time, and 

complies with the constraints on the control signals. In 

addition, the parameter optimization process is imple-

mented through mixed integer programming with linear 

approximation of the SmoothReLU activation function. 

The section “Case study” presents the computational ex-

perimental results using the example of synthesizing a 

neural network stabilization controller for a simplified  

fuel consumption model of helicopter turboshaft engines. 

It is shown that neural controller use significantly im-

proves the fuel regulation quality of helicopter turboshaft 

engines, providing a reduction in the transient process 

time and a decrease in overshoot by 2.33 times compared 

to the traditional approach. The section “Discussion” pre-

sents a discussion of the results obtained, highlights their 

limitations, and develops prospects for further research. 

The conclusions present the main results of the research. 

 

2. Materials and methods of research 
 

This research proposes a method to develop a robust 

and stable neural network controller using the nonlinear 
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object’ closed discrete control system (Figure 1)  

optimization concept [23, 24] based on Lyapunov func-

tion [21] using mixed integer programming (MIP) to ap-

proximate the activation function and ensure system sta-

bility by satisfying Lyapunov conditions. Training is per-

formed using the error's backpropagation method using a 

direct neural emulator [25].  
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...

...

...

...
...

...

...

x
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Neural network controller
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Fig. 1. Scheme of the closed neural network  

control system 

 

In the first stage, the control object simulator train-

ing [26] is performed and implemented on a neural net-

work, which is described as follows: 

 

xt + 1 = f(xt, ut) – Θ(xt, ut) – Θ(x*, u*) + x*, 

umin ≤ ut ≤ umax, 
(1) 

 

where xt is the state vector of the control objects at time 

t; ut is the value of the control signals at time t; umin and 

umax are the lower/upper limits of the objects' control sig-

nals; x* is the systems equilibrium point in the phase 

space; u* is the control value at this point; Θ is a direct 

propagation neural network with the SmoothReLU acti-

vation function, developed by this group of authors 

in [27]: 

 

f(x) = {
x,                 if x > 0,

1

1 + e−γ∙x
, if x ≤ 0.

 (2) 

 

To represent the SmoothReLU activation function 

as an inequalities system with binary variables and con-

straints, we can use the functions' parts linear approxima-

tion method to activate the corresponding branch through 

binary variables. It is assumed that z ∈ {0, 1} is a binary 

variable, where z = 1 if x > 0, and z = 0 if x ≤ 0. Then , 

the constraints for branch activation are represented as: 
 

x – M · (1 − z) ≤ 0 at z = 1, x > 0, 

x + M · z ≥ 0 at z = 0, x ≤ 0, 
(3) 

 

where M is a large positive number that limits the x 

range. For output y, enter: 
 

y ≥ x · z,  

y ≤ x · z + M · (1 − z), 

y ≥
1

1 + e−γ∙x
∙ (1 − z), 

y ≤
1

1 + e−γ∙x
+ M ∙ z. 

(4) 

 

The constraints system is reduced to the form 

y = f(x), where 

 

{
x > 0 ⇒ z = 1, y = x,

x ≤ 0 ⇒ z = 0, y =
1

1 + e−γ∙x
.
 (5) 

 

Thus, based on [21, 27], the neural network is rep-

resented as an algebraic equalities and inequalities sys-

tem, describing each neuron taking into account (3)–(5), 

which allows for the SmoothReLU linear approximation  

branches using mixed integer constraints. 

In this case, the neural network controller is ex-

pressed as follows: 

 

ut = r(xt) = Θr(xt) – Θr(x*) + u*, (6) 

 

where Θr is the neural network at the core of the control-

lers. 

This form of equations (1) and (6) representation 

guarantees the fulfilment of the conditions  at the equilib-

rium point. According to Lyapunov's theory [12, 21, 22], 

a system is considered stable if a function is strictly pos-

itive and decreases at all points except the equilibrium 

state. Therefore, Lyapunov function must satisfy the fol-

lowing requirements: 

V(x[t]) > 0∀x[t] ∈ S,x[t] ≠ x∗ , (7) 

V(x[t + 1]) − (x[t]) < 0∀x[t] ∈ S, (8) 

V(x*) = 0, (9) 

 

where xt is the state of the control objects at time t, x* is 

the equilibrium state, and S is the initial condition region 

in which the system is stable. 

Lyapunov function is represented by the neural net-

work ΘV as: 

 

V(xt
) = ΘV

(xt
) − ΘV

(x∗ ) + R‖xt − x∗‖
l , (10) 

 

where R is a matrix with full rank, and R‖xt − x∗‖
l  al-

lows us to satisfy (7). For xt = x*, this equation enables us 

to satisfy requirement (9). 

To train the neural controller and the neural network 

Lyapunov function, it is necessary to form data based on 
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points found in the phase space S limited region that  

violate conditions (7) and (8) to the greatest extent. The 

finding of such point is reduced to solving the ILP prob-

lem, that is, optimizing the following objective functions : 

 

max
x[t]∈S

(ε|R‖xt − x∗ ‖
l
| − V(xt

)), 

max
x[t]∈S

(V(x[t + 1] ) + (ε − 1) ∙ V(xt
)). 

(11) 

 

The obtained points are used to train the neural net-

works, and these points should minimize the detected vi-

olations: 

 

L1 = max
x[t]∈S

(ε|R‖xt − x∗‖
l
| − V(xt

)),   

L2 = max
x[t]∈S

(V(x[t + 1]) + (ε − 1) ∙ V(xt
)). 

(12) 

 

A system is modeled from each point found with a 

sampling step dt for the interval tm > tr to control the reg-

ulation time tr. The points recorded after tr are compared 

with the equilibrium point to calculate the stabilization  

error, which is minimized in the learning process. The 

proposed method encourages the neural network control-

ler to reduce the regulation time. According to [19, 21], 

the criterion is expressed as follows: 

 

L3 = x[i] – x*, (13) 

 

where x[i] is the state at the discrete i-th step from the 

simulation start, and i is the discrete step number from 

the required control time to the simulation end. 

The general loss function looks like this: 

 

L = (L1
)

l + (L2
)

l + (L3
)

l . (14) 

 

Thus, by minimizing (14), the neural networks of 

Lyapunov function and the neurocontroller are trained. 

The resulting closed system will be stable in the local 

area with the confirmed Lyapunov function, and the reg-

ulation time will be minimized. 

Then, the optimization problem for minimizing L is 

expressed as follows: 

 

min
ΘV,Θr,R

(L1 + L2 + L3
),  (15) 

 

in which the expression represents the objective function: 

 

L(ΘV ,Θr, R) = max
x[t]∈S

(ε|R‖xt − x∗ ‖
l
| − 

−V(xt
)) + max

x[t]∈S
(V(x[t + 1]) + (ε − 1) ∙ 

∙ V(xt
) + (x[i] − x∗). 

(16) 

 

The constraint on the neural networks ΘV
(xt

) −

ΘV
(x∗ ) + R‖xt − x∗‖

l for all x[t] ∈ S ensures that Lya-

punov function is approximated correctly, given its be-

haviour in the phase space. The constraint on the control 

signal umin ≤ ut ≤ umax for all t values limits the possible 

values of the control signal. The systems' state constraints 

are represented as ‖xt − x∗‖
l, where x* is the systems' 

equilibrium point, and S is the initial conditions  domain. 

Lyapunov conditions V(x[t]) > 0 ∀ x[t] ∈ S, x[t] = x* and 

V(x*) = 0 ensure that the system is stable in the initial 

conditions domain. 

To minimize the objective function (16), it is advis-

able to use the MIP method [28], which allows the objec-

tive function L(ΘV, Θr, R), to be minimized while con-

sidering the constraints. The problem is transformed into 

a linear representation that includes binary variables for 

activating the SmoothReLU activation function 

branches, approximating Lyapunov conditions, and con-

trolling constraints. The objective functions' (16) final 

MIP model is represented as: 

 

min
ΘV,Θr,R,ξ1,ξ2 ,ξ3

(ξ1 + ξ2 + ξ3
)  (17) 

 

subject to the constraints given in Table 1. 

 

Table 1 

Constraints applied in the MIP model 

No. Constraints 

1 ξ1 ≥ ε|R‖xt − x ∗‖l| − V(xt), ∀x[t] ∈ S 

2 ξ2 ≥  V(x[t + 1]) + (ε − 1) ∙ V(xt), ∀x[t] ∈ S 

3 V(xt) = ΘV(xt) − ΘV(x ∗) + R‖xt − x ∗‖l 

4 Conditions on z for the SmoothReLU 

5 Control signal constraints umin ≤ ut ≤ umax 

6 Stability conditions: V(x[t]) > 0, V(x*) = 0 

 

Model (17) with constraints (Table 1) is passed to a 

MIP solver (e.g., Gurobi, CPLEX), which will find the 

ΘV
∗ , Θr

∗, R* optimal values. 

The proposed method leverages a neural network-

based control object simulator, where the system dynam-

ics and equilibrium are modeled using MIP. The Smooth-

ReLU activation function is linearized using binary vari-

ables to represent activation branches, which ensures a 

piecewise algebraic description. Stability is guaranteed 

via Lyapunov function trained alongside the neurocon-

troller to minimize stabilization time and ensure compli-

ance with system constraints. The optimization process 

minimizes a composite loss function reflecting stability, 

control signal constraints, and regulation time, which is 

solved using the MIP to determine the optimal parameter. 
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3. Case study 
 

The research conducted a computational experi-

ment as a neural network stabilizing controller synthesis 

example for the helicopter turboshaft engines (TE) sim-

plified fuel consumption model [29]. Solving the prob-

lem of the TE fuel consumption control is essential for 

increasing the efficiency and operational effectiveness 

[30, 31]. In this context, neural network methods allow 

the synthesis of adaptive controllers capable of effec-

tively stabilizing helicopter TE operations, considering 

complex nonlinear dependencies. According to [32, 33], 

the simplified model of the helicopter TE fuel consump-

tion simplified model is represented as : 

 

τ ∙
dGT

(t)

dt
+ GT

(t) = KT ∙ P(t) + a ∙ Ga
(t), (18) 

 

where KT is the specific fuel consumption per unit of 

power (kg/(W∙s)), P(t) is the current engine power (W), 

Ga(t) is the volumetric air flow rate (kg/s), a is an empir-

ical coefficient taking into account additional losses, τ is 

the time constant of the fuel supply systems, reflecting  

the inertia of fuel supply regulation. These parameters 

were determined analytically using a helicopter TE uni-

versal mathematical model [34] based on the parameters 

recorded on board the helicopter by standard sensors 

[27]: gas-generator rotor speed (nTC), free turbine rotor 

speed (nFT), and gas temperature in front of the compres-

sor turbine (TG
∗). 

The computational experiment used a TV3-117 TE 

[35], which is a part of the Mi-8MTV helicopter power 

plant. The initial engine parameters (nTC, nFT, TG
∗) were 

obtained exclusively from the flight data recorded during 

the helicopter flight tests. The data were collected using 

the D-2M and D-1M sensors and 14 pairs of T-101 ther-

mocouples. The recording was performed during 256 s of 

the actual flight at a frequency of 1 measurement per sec-

ond [36]. Based on (18) and using the analytical expres-

sions from [34], the fuel consumption values were ob-

tained and subsequently normalized using z-normaliza-

tion [37, 38] as follows: 

 

z(GT
)

i =
GT

(i)
−

1
N

∙ ∑ GT

(i)N
i =1

√1
N

∙ ∑ (G
T

(i)
−

1
N

∙ ∑ G
T

(i)N
i=1

)
2

N
i=1

, (19) 

 

where N = 256. 

The normalized fuel consumption values (Table 2) 

form a training dataset homogeneous according to the 

Fisher-Pearson [39, 40] and Fisher-Snedecor [41, 42] cri-

teria at the strict significance level of α = 0.01 [43, 44] 

(Table 3). 

Thus, based on the fuel consumption values (Ta-

ble 2), it is necessary to synthesize a controller to ensure 

minimum fuel consumption while the transient process 

time should not exceed 5 seconds [45, 46]. To confirm 

stability, Lyapunov neural network function was con-

structed. For the system, using the backpropagation 

method with an adaptive training rate [47], a stabilizing  

controller and the control objects ' (helicopter TE) neural 

network simulator were obtained, presented in the form 

of a direct propagation neural network with adaptive ele-

ments [47] (Figure 2).  

 

Table 2 

The training dataset fragment 

No. 
GT 

value 
No. 

GT 

value 
No. 

GT 

value 

1 0.973 … … … … 

2 0.982 110 0.979 213 0.976 

… … … … … … 

36 0.988 143 0.980 242 0.983 

… … … … … … 

71 0.975 182 0.967 256 0.980 

 

Table 3 

Results of homogeneity assessment  

of the training dataset 

Pa-

rame-

ter 

The Fisher-Pearson 

criterion 

The Fisher-

Snedecor criterion 

Calcu-

lated 
Critical 

Calcu-

lated 
Critical 

GT 6.028 6.635 4.932 5.12 

 

...
GT GT

opt

 
 

Fig. 2. Refined proposed feedforward  

neural network 

 

Using the ILP, Lyapunov neural network function 

was obtained, as shown in Figure 3. Figures 4 and 5 show 

the diagrams of transient processes according to the sim-

plified TE fuel consumption model. 

The diagrams (Figures 4 and 5) show the helicopter 

TE-normalized fuel consumption transient processes de-

pending on time (0…5 seconds). The traditional control-

ler is characterized by a slow transient process, where the 

normalized value reaches 0.63 in 2 seconds and asymp-

totically approaches 1. 
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Fig. 3. Diagram of the neural network Lyapunov function surface 

 

 
Fig. 4. Diagrams of transient processes with regulation time optimization:  

“red curve” (1) is the traditional controller use; “blue curve” (2) is the neural network controller use  

 

 
Fig. 5. Diagrams of transient processes without regulatory time requirements:  

“red curve” (1) is the traditional controller use; “blue curve” (2) is the neural network controller use  

1 

2 

1 

2 

1 

2 

1 

2 
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The neural network controller demonstrated a faster tran-

sient process, reaching 0.78 by 2 s and stabilizing at 1 by 

3 s. The results show the advantages of the neural net-

work approach, including reduced regulation time, im-

proved dynamic stability, and more accurate mainte-

nance of set parameters, which are critical for helicopter 

TE control under variable load conditions. According to 

Figures 4 and 5, the overshoot value for transient pro-

cesses was calculated as the difference between the nor-

malized fuel consumption maximum value and its 

steady-state value [48] (GT = 1.0). For the traditional con-

troller, the maximum fuel consumption value reached 

1.105, corresponding to an overshoot of 10.5 %, while 

for the neural network controller, the maximum value 

was 1.045, corresponding to an overshoot of 4.5 %. 

These data show that the neural network controller, ac-

cording to the proposed approach, improves the regula-

tion quality by 2.33 times with less overshoot, thereby 

reducing fluctuations in fuel consumption during transi-

ent processes. 

The proposed model evaluates the neural network 

controller quality using the following traditional metrics: 

accuracy [49, 50], Precision [50, 51], Recall [51], and F1 

score [51, 52], which are defined as follows: 
 

Accuracy =
TP + TN

TP + TN + FP + FN
,  

Precision =
TP

TP + FP
, 

Recall =
TP

TP + FN
, 

F1 − score = 2 ∙
Precision ∙ Recall

Precision + Recall
. 

(20) 

In the context of the helicopter TE fuel consumption 

model, TP (True Positive) reflects cases in which the 

model correctly predicts the need to increase fuel con-

sumption with increasing load, TN (True Negative) is a 

correct prediction of maintaining or decreasing consump-

tion with an unchanged or decreasing load, FP (False 

Positive) characterizes erroneous predictions of increas-

ing fuel consumption when there is no need, and FN 

(False Negative) is the missed cases when the model does 

not record the need to improve fuel consumption with in-

creasing load. 

Figures 6 and 7 show the Accuracy and Loss met-

rics as the model was trained over 200 epochs .  

The accuracy diagram (Figure 6) shows that the 

metric for the training dataset (blue curve) gradually 

increased from 0.5 to 0.992, reaching convergence by the 

200th epoch. The accuracy of the test dataset (orange 

curve) increased, but at a slightly slower rate, reaching a 

value of approximately 0.975. In the loss plot (Figure 7), 

the curve for the training dataset (blue) starts at 0.02 and 

decreases exponentially to 0.005, indicating successful 

model optimization. The loss for the test dataset (orange 

curve) also decreased, but at a slower rate, reaching a 

value of approximately 0.006. Both graphs demonstrate 

successful convergence of the model with improved  

accuracy and reduced loss during training. 

In the helicopter TE simplified fuel consumption 

model context, the obtained metrics Precision = 0.983, 

Recall = 0.999, and F1-score = 0.991 indicate the models' 

high quality in predicting fuel consumption or identifying 

certain issues, such as possible malfunctions or optimal 

engine operating modes. 

 
 

 
 

Fig. 6. The accuracy metric: “blue curve” (1) is the accuracy on training dataset;  

“orange curve” (2) is the accuracy on the test dataset 

1 

2 

1 

2 
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Fig. 7. The loss metric: “blue curve” (1) represents the loss on training dataset;  

“orange curve” (2) represents the loss on the test dataset 

 

Precision = 0.983 indicates that the model correctly clas-

sified almost all positive cases, minimizing false posi-

tives, and recall = 0.999 demonstrates that the model ef-

fectively identified nearly all positive events without 

missing significant cases. The F1-score = 0.991 confirms  

that the model's balance between Precision and Recall is 

optimal, providing high accuracy and recall in predic-

tions. 

 

4. Discussion 

 

A method that uses a neural network to model a con-

trol object and synthesizes a neural controller with guar-

anteed system stability was further developed. The pro-

posed process is based on the SmoothReLU activation 

function linear approximation using binary variables and 

Lyapunov theory to ensure stability. A constraint system 

was developed, including constraints on the control sig-

nals and the fulfilment of stability conditions, which were 

reduced to an optimization problem using mixed integer 

programming. The result is a neural controller that mini-

mizes stabilization time and meets all specified system 

conditions.  

The results show that using neural networks to syn-

thesize a stabilizing controller for helicopter turboshaft 

engines and the simplified fuel consumption model can 

effectively solve the problems of increasing energy effi-

ciency and operational effectiveness. The neural network 

methods allow the creation of adaptive controllers that 

stabilize helicopter turboshaft engine operation, taking 

into account complex nonlinear dependencies, which is 

confirmed by the system's Lyapunov function construc-

tion for the system and the backpropagation method with 

an adaptive training rate successful application. 

The results showed that, unlike the traditional con-

troller, the neural network demonstrates faster fuel con-

sumption regulation with minor fluctuations and smaller 

overruns, significantly improving the dynamic stability 

and accuracy of maintaining specified parameters under 

changing loads. The results obtained for the model qual-

ity labels (Precision = 0.983, Recall = 0.999 and F1-score 

= 0.991) confirm the high efficiency of the neural net-

works in predicting fuel consumption and identifying 

faults or optimal engine operating modes with minimiza-

tion of classification errors. 

The main limitations of the obtained results are re-

lated to simplifications and assumptions in the helicopter 

TE fuel consumption model, which may affect the gener-

alizability and accuracy of the proposed neural controller 

under real operating conditions. The simplified model 

does not consider all the complexities and variations of 

natural engine dynamics, such as detailed thermody-

namic processes or the influence of external factors such 

as weather conditions [53, 54]. Although the neural con-

troller showed faster regulation time and improved regu-

lation quality compared to traditional controllers, metrics  

such as Precision, Recall, and F1-score may not fully re-

flect possible rare cases or extraordinary operating con-

ditions. In addition, the flight test data used to record over 

a limited period (256 seconds) with a fixed set of sensors 

may introduce a particular bias into the training dataset, 

which reduces the generality of the controllers in broader 

operating scenarios. 

Despite the significant improvement in control 

quality (more than 2 times) during the optimization pro-

cess, it depends on the selected parameters and training 

1 

2 

1 

2 
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conditions, which may not be universal for other types of 

engines [55, 56] or fuel consumption models [57]. The 

computational complexity of neural network training, es-

pecially considering the time required for optimization  

and the MIP use, may pose a scalability problem in more 

complex systems. 

Prospects for further research include the develop-

ment of more complex and accurate models of helicopter 

TE fuel consumption that consider all the physical and 

thermodynamic aspects of engine operation in various 

operating modes [52, 53]. Another critical area is the pro-

posed neural controller integration with natural onboard 

control systems [58, 59], optimizing its operation under 

changing external factors, such as weather conditions or 

engine loads [60]. Further research may consider hybrid 

methods that combine neural network approaches with 

classical control algorithms [61, 62] to improve the sta-

bility and adaptability of systems under dynamically  

changing operating conditions . 

 

4. Conclusions 
 

The closed discrete control system’s stability-ensur-

ing method has been further developed, which differs 

from the existing ones in that, based on Lyapunov func-

tion, the regulation time is minimized and the specified 

constraints are satisfied. At the same time, a control ob-

ject simulator was developed based on a neural network, 

and it describes the system dynamics considering the 

control constraints and the SmoothReLU activation func-

tion. The control object’s developed neural network sim-

ulator training is performed by the error backpropagation 

method through a direct neural emulator, which allows 

simulating of the system’ behavior in various modes with  

an accuracy of more than 99 %, taking into account non-

linearities and dynamic changes, and also ensures high 

adaptability to changing control conditions. 

The results of the computational experiment on the 

stabilizing neural network controller synthesis for a heli-

copter turboshaft engine fuel consumption model are pre-

sented. The developed neural controller demonstrated ad-

vantages over a traditional controller, including a reduc-

tion in the transient process time to 3 s, an increase in 

dynamic stability, and a decrease in overshoot to 4.5 % 

(compared to 10.5 % for a traditional controller). Accu-

racy = 0.992, Precision = 0.983, Recall = 0.999, and F1-

score = 0.991 confirmed the model’s high accuracy and 

reliability in predicting fuel consumption and identifying 

optimal engine operating modes . 
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СИНТЕЗ НАДІЙНО СТІЙКИХ НЕЙРОМЕРЕЖЕВИХ РЕГУЛЯТОРІВ  

ІЗ ОПТИМІЗАЦІЄЮ ПАРАМЕТРІВ ПЕРЕХІДНОГО ПРОЦЕСУ  

С. І. Владов, А. О. Саченко, В. А. Висоцька, Є. Є. Волканін,  

Д. В. Кухаренко, Д. Севериненко  

Предметом вивчення в статті є розробка методу синтезу стійких нейромережевих регуляторів із оптимі-

зацією параметрів перехідного процесу. Метою є розробка методу синтезу нейромережевого контролера для 

систем управління, що гарантує стійкість замкнених систем через автоматизований підбір функції Ляпунова 

із залученням додаткової нейронної мережі, навченої на даних, отриманих у процесі розв’язання задачі ціло-

числового лінійного програмування. Завдання: дослідження стійкості замкненої системи управління з нейро-

мережевим регулятором, навчання нейрорегулятора та нейромережевої функції Ляпунова, створити оптимі-

заційну модель мінімізації функції втрат, провести обчислювальний експеримент як приклад синтезу нейро-

мережевого стабілізуючого регулятора. Використовуваними методами є: метод навчання симулятора об'єкта 

керування на основі нейронної мережі, що описується системою рівнянь з урахуванням функції акти вації 

SmoothReLU, прямий метод Ляпунова для гарантування стійкості замкненої системи, метод змішаного ціло-

числового програмування, яка дозволяє мінімізувати втрати та забезпечити стійкість і мінімальний час регу-

лювання для розвязання оптимізаційної задачі. Отримані такі результати. Застосування нейронної мережі 

дозволило отримати результати, пов’язані із зменшенням часу перехідного процесу до 3,0 секунд та знижен-

ням перерегулювання у 2,33 рази порівняно з традиційним контролером (на прикладі моделі витрати палива 

газотурбінного двигуна TВ3-117). Висновки. У роботі вперше розроблено метод синтезу стабілізуючого ней-

ромережевого регулятора для газотурбінних двигунів вертольотів із гарантованою стійкістю системи на ос-

нові теорії Ляпунова. Новизна методу полягає у використанні лінійної апроксимації функції активації 

SmoothReLU із застосуванням бінарних змінних, що дозволило звести задачу забезпечення стійкості до задачі 

оптимізації методом змішаного цілочислового програмування. Розроблено систему обмежень, яка вра ховує  

сигнал регулювання та умови стійкості, що забезпечує мінімізацію часу стабілізації системи. Отримані ре-

зультати підтверджують ефективність запропонованого підходу для підвищення енергоефективності двигунів 

та їхньої адаптивності до змінних режимів роботи. 

Ключові слова: оптимізація; регулятор; нейронна мережа; функція Ляпунова; змішане цілочислове про-

грамування. 
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