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THE RELIABLY STABLE NEURAL NETWORK CONTROLLERS' SYNTHESIS
WITH THE TRANSIENT PROCESS PARAMETERS OPTIMIZATION

The subject of this paper is to develop a method for synthesizing stable neural network controllers with optimi-
zation of transient process parameters. The goal is to develop a method for synthesizing a neural network con-
troller for control systems that guaranteesthe closed-loop system stability through automated selection of Lya-
punov function with the involvement of an additional neural network trained on the d ata obtained in the solving
process the integer linear programming problem. The tasks to be solved are: study the stability ofa closed-loop
control system with a neural network controller, train the neurocontroller and Lyapunov neural network func-
tion, create an optimization model for the loss function minimization, and conduct a computational experiment
as an example of the neural network stabilizing controller synthesis. The methods used are: a neural network-
based control object simulator trainingmethod described by anequations systemtaking into account the Smooth-
ReLU activation function, a direct Lyapunov method to the closed-loop system stability guarantee, and a mixed
integer programming method that allows minimizing losses and ensuring stability and minimum time regulation
for solving the optimization problem. The following results were obtained: the neural network used made it
possible to obtain results related to the transient process time reduction to 3.0 s and a 2.33-fold reduction in
overregulation compared to the traditional controller (on the example of the TV3-117 turboshaft engine fuel
consumption model). The results demonstrate the proposed approach'sadvantages, remarkably increasing the
dynamic stability and parameter maintenance accuracy, and reducing fuel consumption fluctuations. Conclu-
sions. This study is the first to develop a method for synthesizing a stabilizing neural network controller for
helicopter turboshaft engines with guaranteed system stability based on Lyapunov theory. The proposed
method's novelty liesin its linear approximation of the SmoothReLU activation function using binary variables,
which allowed us to reduce the stability problem to an optimization problemusing the mixed integer program-
ming method. A system of constraints was developed that considersthe control signal and stability conditions to
minimize the system stabilization time. The results confirmed the proposed approach's effectiveness in increasing
engine adaptability and energy efficiency in various operating modes.

Keywords: optimization; controller; neural network; Lyapunov function; mixed integer programming.

is of particular importance in critical systems such as avi-
ation [5], energy [6], and robotic [7] systems. These sys-

1. Introduction

Motivation. Modern control systems increasingly
use neural network approaches to ensure adaptability to
the changing external influences and the parameters of
control objects [1]. One critical task in this area is the
synthesis of controllers, which can guarantee the entire
control system's stability under various external and in-
ternal disturbances [2]. This approach requires powerful
optimization methods and consideration of the transient
process specifics that determine the dynamic characteris-
tics of systems [3]. Achieving a compromise between sta-
bility and the quality of transient processes is vital forde-
signing neural network controllers [4]. Guaranteed stable
controllers using neural networks technologies synthesis

tems require high reliability and can quickly adapt to
changing conditions. However, standard approaches of-
ten do not correctly provide the quality of transient pro-
cesses, leading to decreased operational efficiency and
safety. In this context, methods that simultaneously pro-
vide guaranteed stability and optimization of transient
process development are becoming an urgent scientific
and practical task.

State of the art. Neural network controllers are a
promising development in the automatic control systens
(ACS) field due to their ability to train and adapt under
uncertainty. Researchers [8, 9] have considered deep
neural networks used forthe controller's synthesis, which
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improves the dynamic characteristics of the control sys-
tems. Research [10, 11] has shown thatthe recurrent and
convolutional architectures provide high accuracy for
modelling and controlling complex dynamic objects,
such as robotic manipulators and autonomous vehicles.
However, neural network-based approaches often face
overfitting and insufficient interpretability.

Currently, the control system's stability ensures that
the problem is of primary importance, which has been
emphasized in previous studies [11, 12]. Methods based
on Lyapunov theory and guaranteed stability allow us to
obtain strict criteria for designing controllers [13, 14].
However, many analyzed methods, for example, [12, 14],
do not considerthe nonlinear nature of complex objects,
which limits their application in highly dynamic systerrs.
A previous study [15] highlighted the need to integrate
classical approaches with modern machine learning
methods to ensure guaranteed stability of control sys-
tems.

The optimization of transient processes is also an
essentialaspect of research. The researchers [16, 17] used
gradient descent and evolutionary computation algo-
rithms to minimize overshoot and transient time. These
studies focused on the selection of parameters by neural
network controllers considering the systems' dynamic
characteristics. However, asignificant part of existing so-
lutions is focused on the problem’s specific classes and
do not have universality, which limits their practical ap-
plication.

Researchers [18, 19] have considered the possibility
of hybrid approaches that combine neural networks and
classical methods. These systems allow us to achieve a
compromise between adaptability and stability. How-
ever, most of them are at the laboratory testing stage [19,
20], indicating the need for further research to create ap-
plied solutions for critical control systems.

Despite significant advances in the development of
neural network controllers [8-12], the problem of inte-
grating stability methods into neural network training re-
mains unresolved. In particular, approaches based on
Lyapunov theory [13, 14] require accurately defining
Lyapunov functions to analyze closed-loop system sta-
bility. Traditional methods [14] for finding such func-
tions are excessively computationally complex or do not
scale to high-dimensional systems. One promising idea is
to use an additional neural network to perform an auto-
mated search for

Lyapunov function [21, 22]. However, training such
a network requires structured data[16, 18], which entails
solving the integer linear programming (ILP) adjoint
problem and ensuring the correctness ofthe obtained data
and physicalinterpretability.

The developing methods for generating training
data for a neural network approximating

Lyapunov function problem considering the stabil-
ity limitations remain relevant. The issues ofselecting the
optimal neural network architecture, training algorithms,
and interpretation of the results remain open. Modifying
the research approach involves hybrid methods in which
the stability problem is reduced to the sequential integra-
tion of the ILP and neuralnetwork models. This approach
requires approximation errors and computational com-
plexity impact analysis on stability guarantees, which
makes it promising but requires additional research.

Objective and Approach. Based on the above, the
research goal is to improve the approach to the neural
network controller's synthesis for control systems to en-
sure the guaranteed stability of closed systems by auto-
mated search for Lyapunov function using an additional
neural network trained on data obtained by solving an in-
teger linear programming problem. The research objec-
tive is control systems with neural network controllers
operating under dynamic and nonlinear influences. The
research subject includes methods and algorithms for the
guaranteed stable neural network controller's synthesk,
including Lyapunov function used, neural network mod-
els, and integer linear programming methods.

Structure of the article. The article is structured as
follows: introduction, sections “Materials and methods of
research”, “Case study”, “Discussion”, conclusions, and
references. The introduction substantiates the research’
relevance, the existing research overview provides in the
research area, highlights unresolved issues, and formu-
lates the research’ aim. In the section “Materials and
methods of research”, a method for modeling a closed-
loop control system using neural networks is developed.
This method guarantees the system’ stability based on
Lyapunov function, minimizes the stabilization time, and
complies with the constraints on the control signals. In
addition, the parameter optimization process is imple-
mented through mixed integer programming with linear
approximation of the SmoothReLU activation function.
The section “Case study” presents the computational ex-
perimental results using the example of synthesizing a
neural network stabilization controller for a simplified
fuel consumption model of helicopter turboshaft engines.
It is shown that neural controller use significantly im-
proves the fuel regulation quality of helicopter turboshatt
engines, providing a reduction in the transient process
time and a decrease in overshoot by 2.33 times compared
to the traditional approach. The section “Discussion” pre-
sents adiscussion ofthe results obtained, highlights their
limitations, and develops prospects for further research.
The conclusions present the main results of the research.

2. Materials and methods of research

This research proposes a method to develop arobust
and stable neural network controller using the nonlinear
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object’ closed discrete control system (Figure 1)
optimization concept [23, 24] based on Lyapunov func-
tion [21] using mixed integer programming (MIP) to ap-
proximate theactivation function and ensure systemsta-
bility by satisfying Lyapunov conditions. Training is per-
formed using the error's backpropagation method using a
direct neural emulator [25].

Neural network controller

Control object
Up. % = F(x, u) X

A

Neural network Lyapunov function

Fig. 1. Scheme of the closed neural network
control system

In the first stage, the control object simulator train-
ing [26] is performed and implemented on a neural net-
work, which is described as follows:

X +1=f(%, Ur) — O(x, U) - O, u”)+X,
@)

Umin < Ut < Umax,

where X is the state vector of the control objects at time
t; ut is the value of the control signals at time t; umin and
Umex are the lower/upper limits of the objects' controlsig-
nals; X is the systems equilibrium point in the phase
space; U™ is the control value at this point; © is a direct
propagation neural network with the SmoothReLU acti-
vation function, developed by this group of authors

in [27]:

X, ifx>0,

fx) = 1 3]

1T _Y_X,ifXS 0.
e

To represent the SmoothReLU activation function
as an inequalities systemwith binary variables and con-
straints, we can use the functions'parts linear approxima-
tion method to activate the corresponding branch through
binary variables. It is assumed thatz € {0, 1} is a binary
variable, where z= 1if x > 0, and z = 0 if x < 0. Then,
the constraints for branch activation are represented as:

X-M-(1-2<0atz=1,x>0,
©)

x+M-z>0atz=0,x<0,

where M is a large positive number that limits the x

range. For outputy, enter:

yZXx-z
y<x:z+M-(l-2),

1 @
y21+e_y,x-(1—z),
! M
< — -7
y_1+e‘Y'X+ z

The constraints system is reduced to the form
y = f(x), where

x>0=>z=1y=x
x<0=>z=0,y=;. ©)
- 1+e77x

Thus, based on [21, 27], the neural network is rep-
resented as an algebraic equalities and inequalities sys-
tem, describing each neuron taking into account (3)-(5),
which allows for the SmoothReLU linear approximation
branches using mixed integer constraints.

In this case, the neural network controller is ex-
pressed as follows:

Ue=r(x) = 0r(x) — O«(X) + u”, (6)

where O is the neural network at the core of the control-
lers.

This form of equations (1) and (6) representation
guarantees the fulfilment of the conditions at the equilib-
rium point. According to Lyapunov's theory [12, 21, 22],
a systemis considered stable if a function is strictly pos-
itive and decreases at all points except the equilibrium
state. Therefore, Lyapunov function must satisfy the fol-
lowing requirements:

V[t > ovxlt] € S,x[t] # x*, O
V[t + 1D — &[tD) < ovx[tl € S, ®)
V(X) =0, )

where % is the state of the control objects at time t, X" is
the equilibrium state,and S is the initial condition region
in which the systemis stable.

Lyapunov function is represented by the neural net-
work Qv as:

V(x) = 0y(x) — 0y ") + Rllx, — x*l;, (10)
where R is a matrix with full rank, and Rllx, — x*Il, al-
lows us to satisfy (7). For x =X, this equation enables us
to satisfy requirement (9).

Totrain the neural controller and the neural network
Lyapunov function, it is necessary to form databased on
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points found in the phase space S limited region that
violate conditions (7) and (8) to the greatest extent. The
finding of such point is reduced to solving the ILP prob-
lem, thatis, optimizing the following objective functions:

m%(sm"xt —x* I -Vv(x)),
(11)
){R?E)(S(V(X[t +1D+ -1 -V(x)).

The obtained points are used to train the neural net-
works, and these points should minimize the detected vi-
olations:

L, = max (elRllx, — x*Il;| =V (x,)),
1= R ! 12
L, = ){E]ﬁé(s(V(X[t-}- 1D+ -1 vix)).

A systemis modeled from each point found with a
sampling step dt for the interval tm > t; to control the reg-
ulation time tr. The points recorded after tr are compared
with the equilibrium point to calculate the stabilization
error, which is minimized in the learning process. The
proposed method encourages the neural network control-
ler to reduce the regulation time. According to [19, 21],
the criterion is expressed as follows:

Ls = i] - X, (13)
where Xi] is the state at the discrete i-th step from the
simulation start, and i is the discrete step number from
the required control time to the simulation end.

The general loss function looks like this:

L= + @), + (Ly),. (14

Thus, by minimizing (14), the neural networks of
Lyapunov function and the neurocontroller are trained.
The resulting closed system will be stable in the local
area with the confirmed Lyapunov function, and the reg-
ulation time will be minimized.

Then, the optimization problem for minimizing L is
expressed as follows:

el\},lé?,R(Ll + L, + Ly), (15)

in which the expression represents the objective function:

L(®y,0,,R) = ){R]':le)gs(sm”xt x|l -
—vix,)) + ){m&g{s(V(x[t+ MD+E-1D- (16)

Vx) + li] = x").

The constraint on the neural networks 0y (x,) —
0y (") + Rllx, — x*Il, for all {t] € S ensures that Lya-
punov function is approximated correctly, given its be-
haviour in the phase space. The constraint on the control
signal umin < ut < umax for all t values limits the possible
values ofthe controlsignal. The systems'state constraints
are represented as llx, — x*|l;, where X" is the systems'
equilibrium point, and S'is the initial conditions domain.
Lyapunov conditions V(X{t]) >0V Xt] € S, {t] = X" and
V(X) = 0 ensure that the systemis stable in the initial
conditions domain.

To minimize the objective function (16), it is advis-
able to use the MIP method [28], which allows the objec-
tive function L(®v, O, R), to be minimized while con-
sidering the constraints. The problem is transformed into
a linear representation that includes binary variables for
activating the SmoothReLU activation function
branches, approximating Lyapunov conditions, and con-
trolling constraints. The objective functions' (16) final
MIP model is represented as:

E(21+Ez+23)

min
0v,0rR 81,8283 (1
subjectto the constraints given in Table 1.

Table 1
Constraints applied in the MIP model

No. Constraints

&, = elRllx, — x"|lj| — V(xp),vx[t] € S
&, = V[t+ 1D + (e — 1) - V(xp),vx[t] € S
V(xy) = Oy(xp) — 0y(x™) + Rllx; — x"I|;

Conditions on z for the SmoothReLU

Control signal constraints Umin < ut < umax

ol |l W[N]

Stability conditions: V(x[t]) > 0, V(X) =0

Model (17) with constraints (Table 1) is passedtoa
MIP solver (e.g., Gurobi, CPLEX), which will find the
Oy, 0, R" optimal values.

The proposed method leverages a neural network-
based control object simulator, where the systemdynam-
ics and equilibrium are modeled using MIP. The Smooth-
ReLU activation function is linearized using binary vari-
ables to represent activation branches, which ensures a
piecewise algebraic description. Stability is guaranteed
via Lyapunov function trained alongside the neurocon-
troller to minimize stabilization time and ensure compli-
ance with system constraints. The optimization process
minimizes a composite loss function reflecting stability,
control signal constraints, and regulation time, which is
solved using the MIP to determine the optimal parameter.
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3. Case study

The research conducted a computational experi-
ment as a neural network stabilizing controller synthesis
example for the helicopter turboshaft engines (TE) sim-
plified fuel consumption model [29]. Solving the prob-
lem of the TE fuel consumption control is essential for
increasing the efficiency and operational effectiveness
[30, 31]. In this context, neural network methods allow
the synthesis of adaptive controllers capable of effec-
tively stabilizing helicopter TE operations, considering
complex nonlinear dependencies. According to [32, 33],
the simplified model of the helicopter TE fuel consump-
tion simplified model is represented as:

dG; @)

18
" (18)

T +Gp® =Kp P +a-G,®,
where Kr is the specific fuel consumption per unit of
power (kg/(W:s)), P(t) is the current engine power (W),
Ga(t) is the volumetric air flow rate (kg/s), a is an empir-
ical coefficient taking into account additional losses, T is
the time constant of the fuel supply systems, reflecting
the inertia of fuel supply regulation. These parameters
were determined analytically using a helicopter TE uni-
versal mathematical model [34] based on the parameters
recorded on board the helicopter by standard sensors
[27]: gas-generator rotor speed (nc), free turbine rotor
speed (nr1), and gas temperature in front of the compres-
sor turbine (Tg).

The computational experiment useda TV3-117 TE
[35], which is a part of the Mi-8MTV helicopter power
plant. The initial engine parameters (ntc, ner, TE) were
obtained exclusively from the flight datarecorded during
the helicopter flight tests. The data were collected using
the D-2M and D-1M sensors and 14 pairs of T-101 ther-
mocouples. The recording was performed during 256 s of
the actual flight ata frequency of 1 measurement per sec-
ond [36]. Based on (18) and using the analytical expres-
sions from [34], the fuel consumption values were ob-
tained and subsequently normalized using z-normaliza-
tion [37, 38] as follows:

G;i) _ % . ZiN=1G'§‘i)
1 oy (@ 1 on ~®V
\[N XN (GT _N'Zi:1 Gy )

where N = 256.

The normalized fuel consumption values (Table 2)
form a training dataset homogeneous according to the
Fisher-Pearson [39, 40] and Fisher-Snedecor [41, 42] cri-
teria at the strict significance level of a = 0.01 [43, 44]
(Table 3).

Z(GT)i =

(19)

Thus, based on the fuel consumption values (Ta-
ble 2), it is necessary to synthesize a controller to ensure
minimum fuel consumption while the transient process
time should not exceed 5 seconds [45, 46]. To confirm
stability, Lyapunov neural network function was con-
structed. For the system, using the backpropagation
method with an adaptive training rate [47], a stabilizing
controller and the control objects' (helicopter TE) neural
network simulator were obtained, presented in the form
of a direct propagation neural network with adaptive ele-
ments [47] (Figure 2).

Table 2
The training dataset fragment
No. Gr No. Gr No. Gr
value value value
1 0.973
2 0.982 110 0.979 213 0.976
36 0.988 143 0.980 242 0.983
71 0.975 182 0.967 256 0.980
Table 3
Results of homogeneity assessment
of the training dataset
The Fisher-Pearson The Fisher-
Pa- o .
criterion Snedecor criterion
fame- Calcu- Calcu-
ter Critical Critical
lated lated
Gr 6.028 6.635 4.932 5.12

Fig. 2. Refined proposed feedforward
neural network

Using the ILP, Lyapunov neural network function
was obtained, as shown in Figure 3. Figures 4 and 5 show
the diagrams of transient processes according to the sim-
plified TE fuel consumption model.

The diagrams (Figures 4 and 5) showthe helicopter
TE-normalized fuel consumption transient processes de-
pending on time (0...5 seconds). The traditional control-
ler is characterized by a slow transient process, where the
normalized value reaches 0.63 in 2 seconds and asymp-
totically approaches 1.
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Fig. 3. Diagram of the neural network Lyapunov function surface
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Fig. 4. Diagrams of transient processes with regulation time optimization:
“red curve” (1) is the traditional controller use; “blue curve” (2) is the neural network controller use
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Fig. 5. Diagrams of transient processes without regulatory time requirements:
“red curve” (1) is the traditional controller use; “blue curve” (2) is the neural network controller use
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The neural network controller demonstrated a fastertran-
sientprocess, reaching 0.78 by 2 s and stabilizing at 1 by
3 s. The results show the advantages of the neural net-
work approach, including reduced regulation time, im-
proved dynamic stability, and more accurate mainte-
nance of set parameters, which are critical for helicopter
TE control under variable load conditions. According to
Figures 4 and 5, the overshoot value for transient pro-
cesses was calculated as the difference between the nor-
malized fuel consumption maximum value and its
steady-state value [48] (Gr = 1.0). For thetraditional con-
troller, the maximum fuel consumption value reached
1.105, corresponding to an overshoot of 10.5 %, while
for the neural network controller, the maximum value
was 1.045, corresponding to an overshoot of 4.5 %.
These data show that the neural network controller, ac-
cording to the proposed approach, improves the regula-
tion quality by 2.33 times with less overshoot, thereby
reducing fluctuations in fuel consumption during transi-
ent processes.

The proposed model evaluates the neural network
controller quality using the following traditional metrics:
accuracy [49, 50], Precision [50, 51], Recall [51], and F1
score [51, 52], which are defined as follows:

In the context of the helicopter TE fuel consumption
model, TP (True Positive) reflects cases in which the
model correctly predicts the need to increase fuel con-
sumption with increasing load, TN (True Negative) is a
correct prediction of maintaining or decreasing consump-
tion with an unchanged or decreasing load, FP (False
Positive) characterizes erroneous predictions of increas-
ing fuel consumption when there is no need, and FN
(False Negative) is the missed cases when the model does
not record the need to improve fuel consumption with in-
creasing load.

Figures 6 and 7 show the Accuracy and Loss met-
rics as the model was trained over 200 epochs.

The accuracy diagram (Figure 6) shows that the
metric for the training dataset (blue curve) gradually
increased from 0.5 t0 0.992, reaching convergence by the
200th epoch. The accuracy of the test dataset (orange
curve) increased, butat a slightly slower rate, reaching a
value of approximately 0.975. In the loss plot (Figure 7),
the curve for the training dataset (blue) starts at 0.02 and
decreases exponentially to 0.005, indicating successful
model optimization. The loss for the test dataset (orange
curve) also decreased, but at a slower rate, reaching a
value of approximately 0.006. Both graphs demonstrate
successful convergence of the model with improved

TP + TN _ ae
Accuracy = TP+ TN + FP + FN accuracy and reduced loss during training.
TP In the helicopter TE simplified fuel consumption
Precision = ———, model context, the obtained metrics Precision = 0.983,
TP +FP (20) Recall =0.999, and F1-score = 0.991 indicate the models'
Recall = TP high quality in predicting fuel consumption or identifying
TP + FN’ certain issues, such as possible malfunctions or optimal
Precision - Recall engine operating modes.
F1 —score =2 - — .
Precision + Recall
A
1.0 ccuracy
1. Train Accuracy
2 Test Accuracy

0.9

Accuracy
e
[=2]

e
~

0.6

0'50 25 50 75

100 125 150 175 200

Epochs

Fig. 6. The accuracy metric: “blue curve” (1) is the accuracy on training dataset;
“orange curve” (2) is theaccuracy on the test dataset
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Fig. 7. The loss metric: “blue curve” (1) represents the loss on training dataset;
“orange curve” (2) represents the loss on the test dataset

Precision = 0.983 indicates that the model correctly clas-
sified almost all positive cases, minimizing false posi-
tives, and recall =0.999 demonstrates that the model ef-
fectively identified nearly all positive events without
missing significant cases. The F1-score =0.991 confirms
that the model's balance between Precision and Recall is
optimal, providing high accuracy and recall in predic-
tions.

4. Discussion

A method that uses a neural networkto model a con-
trol object and synthesizes a neural controller with guar-
anteed systemstability was further developed. The pro-
posed process is based on the SmoothReLU activation
function linear approximation using binary variables and
Lyapunov theory to ensure stability. A constraintsystem
was developed, including constraints on the control sig-
nals and the fulfilment of stability conditions, which were
reduced to an optimization problem using mixed integer
programming. The result is a neural controller that mini-
mizes stabilization time and meets all specified system
conditions.

The results showthat using neural networks to syn-
thesize a stabilizing controller for helicopter turboshaft
engines and the simplified fuel consumption model can
effectively solve the problems of increasing energy effi-
ciency and operational effectiveness. The neural network
methods allow the creation of adaptive controllers that
stabilize helicopter turboshaft engine operation, taking
into account complex nonlinear dependencies, which is
confirmed by the system's Lyapunov function construc-
tion for the systemand the backpropagation method with

an adaptive training rate successfulapplication.

The results showed that, unlike the traditional con-
troller, the neural network demonstrates faster fuel con-
sumption regulation with minor fluctuations and smaller
overruns, significantly improving the dynamic stability
and accuracy of maintaining specified parameters under
changing loads. The results obtained for the model qual-
ity labels (Precision =0.983, Recall =0.999 and F1-score
= 0.991) confirm the high efficiency of the neural net-
works in predicting fuel consumption and identifying
faults or optimal engine operating modes with minimiza-
tion of classification errors.

The main limitations of the obtained results are re-
lated to simplifications and assumptions in the helicopter
TE fuel consumption model, which may affect the gener-
alizability and accuracy of the proposed neural controller
under real operating conditions. The simplified model
does not consider all the complexities and variations of
natural engine dynamics, such as detailed thermody-
namic processes orthe influence of external factors such
as weather conditions [53, 54]. Although the neural con-
troller showed faster regulation time and improved regu-
lation quality compared to traditional controllers, metrics
such as Precision, Recall, and F1-score may not fully re-
flect possible rare cases or extraordinary operating con-
ditions. In addition, the flight test data used to record over
a limited period (256 seconds)with a fixed setof sensors
may introduce a particular bias into the training dataset,
which reduces the generality of the controllers in broader
operating scenarios.

Despite the significant improvement in control
quality (more than 2 times) during the optimization pro-
cess, it depends on the selected parameters and training
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conditions, which may not be universal for othertypes of
engines [55, 56] or fuel consumption models [57]. The
computational complexity of neural network training, es-
pecially considering the time required for optimization
and the MIP use, may posea scalability problem in more
complex systems.

Prospects for further research include the develop-
ment of more complex and accurate models of helicopter
TE fuel consumption that consider all the physical and
thermodynamic aspects of engine operation in various
operating modes [52, 53]. Anothercritical area is the pro-
posed neural controller integration with natural onboard
control systems [58, 59], optimizing its operation under
changing external factors, suchas weather conditions or
engine loads [60]. Further research may consider hybrid
methods that combine neural network approaches with
classical control algorithms [61, 62] to improve the sta-
bility and adaptability of systems under dynamically
changing operating conditions.

4. Conclusions

The closed discrete controlsystem’s stability-ensur-
ing method has been further developed, which differs
from the existing ones in that, based on Lyapunov func-
tion, the regulation time is minimized and the specified
constraints are satisfied. At the same time, a control ob-
ject simulator was developed based on a neural network,
and it describes the system dynamics considering the
control constraints and the SmoothReLU activation func-
tion. The control object’s developed neural network sim-
ulator training is performed by the error backpropagation
method through a direct neural emulator, which allows
simulating of the system’ behavior in various modes with
an accuracy of more than 99 %, taking into accountnon-
linearities and dynamic changes, and also ensures high
adaptability to changing control conditions.

The results of the computational experiment on the
stabilizing neural network controller synthesis fora heli-
copterturboshaft engine fuel consumption model are pre-
sented. The developed neural controller demonstrated ad-
vantages over a traditional controller, including a reduc-
tion in the transient process time to 3 s, an increase in
dynamic stability, and a decrease in overshoot to 4.5 %
(compared to 10.5 % for a traditional controller). Accu-
racy = 0.992, Precision = 0.983, Recall =0.999, and F1-
score = 0.991 confirmed the model’s high accuracy and
reliability in predicting fuel consumption and identifying
optimal engine operating modes.
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CUHTE3 HAIIMHO CTIMKUX HEMPOMEPEXXEBWX PEIYJISAATOPIB
B OIMTUMBALIEIO NTAPAMETPIB MEPEXITHOI'O MPOLECY
C. I. Braoos, A. O. Cauenxo, B. A. Bucouvka, €. €. Boakanin,
/. B. Kyxapenxo, /. Ceéepunenko

IlpenmMeTOM BHMBYEHHS B CTATTi € pO3pPOOKa METOy CHHTE3Y CTIHKMX HEHpOMEpPEKEBUX PEryJSsITopiB i3 ONTHMI-
3alli€ro mapaMeTpiB nepexiHoro mnpouecy. MeTol € po3poOkaMeToly CHHTE3y HeHpOoMepexeBOro KOHTpoJiepa mis
CHCTeM yTPaBIiHHS, IO FapaHTy€ CTIKICTh 3aMKHEHHX CHCTEM 4epe3 aBTOMaTU30BaHUM mindip ¢yHkmil JlsmyHoBa
13 3aJly9eHHSIM JI0JATKOBOT HEHPOHHOT Mepexi, HABYSHOT Ha JAHWX, OTPUMAaHHX Yy MPOIIEeCi PO3B’I3aHHS 3a/adi o -
YHCIIOBOTO JIHIHHOTO MpoTrpaMyBaHHS. 3aBIAaHHS: JOCTIDKEHHS CTIHKOCTI 3aMKHEHOI CHCTEMH yTPaBIiHHSA 3 HeHpo-
MEpPEKEBUM PETYITOPOM, HaBUaHHS HEHPOPETyJsITOpa Ta HelpoMepexeBoi GyHKIii JIamyHOBa, CTBOPUTH ONTUMI-
3allifiHy MOJieNb MiHIMi3amil QYHKII BTpaT, MPOBECTH OOUYHCIIOBAILHIA SKCIIEPUMEHT SIK IPHUKIA]] CHHTE3y HEWpo-
MEpPEKEBOTO CTAOLII3YI04Or0 peryyaropa. BUKOpUCTOBYBaHMMH METOJAMH €: METOJ| HABYaHHS CUMYJISITOpa 00'eKTa
KEepyBaHHsS Ha OCHOBI HEHPOHHOI Mepexi, 0 OMHCYEThCSI CHUCTEMOIO PIBHSHb 3 ypaxyBaHHSAM (yHKUil akTv Baiii
SmoothReLU, mpsmuii meton JIsmyHOBa IUTsl TapaHTYBaHHS CTIHKOCTI 3aMKHEHOI CHCTEMU, METO] 3MIIIaHOTO IO -
YHCIIOBOTO IIPOTPAaMYBaHHS, AKa JJO3BOJIIE MIHIMI3yBaTH BTpaTH Ta 3a0€3MEYHTH CTIMKICTh 1 MIHIMANBHHI dac pery-
JEOBAaHHS JUI1 PO3BA3aHHS ONTHMIi3aliiHOI 3amadi. OTpuMaHi Taki pe3yJbTaTH. 3acTOCYBaHHsS HEHPOHHOI Mepexi
JI03BOJIJIO OTPUMATH Pe3yJbTaTH, MOB’A3aHi i3 3MEHIICHHSIM Yacy nepexigHoro mpouecy 10 3,0 CeKyH[ Ta 3HHKEH-
HSIM IepeperyioBaHHs y 2,33 pa3u MOPIBHAHO 3 TPAJMIIITHUM KOHTPOJIEPOM (Ha NMPHKIALl MOJEN BUTPATH IaJlMBa
razotyp6inHoro asuryra TB3-117). BucuoBku. Y poGoTi Brepiie po3po06ieHO METO | CHHTE3y CTabil3y0uoro Hei-
pPOMEpPEKEBOTO pEryisTopa I ra30TypOiHHUX IBUTYHIB BEPTOJBOTIB i3 TapaHTOBAHOIO CTIMKICTIO CHCTEMH Ha OC-
HOBI Teopii JlamynoBa. HoBu3Ha MeToxy moisirae y BHKOPHCTaHHI JiHIMHOI ampokcuManii ¢yHKmil axTuBaimii
SmoothReLU i3 3actocyBaHHSIM OiHApHHUX 3MIHHUX, IO JIO3BOJHJIO 3BECTH 3aJa4y 3a0e3MedeHHsI CTIKOCTI 0 3a1adi
ontuMizalii MeToIoM 3MIIAaHOTO LIIOYMCIOBOTO IpOTpaMyBaHHs. Po3po0OiieHO cucteMy oOMEKeHb, IKa Bpa XOBYE
CHTHAJI PEryJIIOBaHHS Ta YMOBH CTIHKOCTI, 110 3a0e3neuye MiHIMi3amliro wacy ctabimsarii cuctemMu. OTpuMaHi pe-
3yJbTaTH MiATBEPHKYIOTh €(eKTUBHICTh 3alPOMOHOBAHOTO MIAX0dy IS MiIBHUIEHHS €Heproe()eKTUBHOCTI IBUTYHIB
Ta IXHbO1 aJANTHUBHOCTI IO 3MIHHHX PEXHUMIB pOOOTH.

KrouoBi cjoBa: onmmuMisamist; peryisaTop; HelpoHHa Mepeska; ¢pyHKuis JIamyHoBa; 3MillIaHe UIOYUCIIOBE MPO-
rpaMyBaHHS.
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