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DEEP LEARNING MODELS FOR DETECTION OF EXPLOSIVE ORDNANCE  

USING AUTONOMOUS ROBOTIC SYSTEMS: TRADE-OFF BETWEEN ACCURACY 

AND REAL-TIME PROCESSING SPEED  
 

The study focuses on deep learning models for real-time explosive ordnance detection (EO). This study aimed 

to evaluate and compare the performance of YOLOv8 and RT-DETR object detection models in terms of 
accuracy and speed for EO detection via autonomous robotic systems. The objectives are as follows: 1) 

conduct a comparative analysis of YOLOv8 and RT-DETR image processing models for explosive ordnance 

(EO) detection, focusing on accuracy and real-time processing speed;2) to explore the impact of different input 

image resolutions on model performance for identifying the optimal resolution for EO detection task s;3) to 

analyze how object size (small, medium, large) affects detection efficiency for enhancing EO recognition 

accuracy; 4) to develop recommendations for EO detection model configurations; 5) to propose methods for 
enhancing EO detection model performance in complex environments. The following results were obtained. 1 )  

The results of a comparative analysis of YOLOv8 and RT-DETR models for EO detection in the context of 

speed-accuracy trade-offs. 2) Recommendations for EO detection model configurations aimed at improving the 

efficiency of autonomous demining robotic systems, including optimal camera parameter selection. 3)  Methods 

for improving EO detection model performance to increase its accuracy in complex environments, including 

synthetic data generation and confidence threshold tuning. Conclusions. The main contribution of this study i s 

the results of a detailed evaluation of the YOLOv8 and RT-DETR models for real-time EO detection, helping to 

find trade-offs between the speed and accuracy of each model and emphasizing the need for special datasets 

and algorithm optimization to improve the reliability of EO detection in autonomous systems . 
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1. Introduction 
 

1.1. Motivation 

 

Real-time object detection is a critical component 

in various applications, ranging from autonomous 

driving to security surveillance. In particular, explosive 

ordnance detection, such as  landmines and unexploded 

ordnance (UXO), requires highly accurate and efficient 

object detection models to ensure human safety and 

operational effectiveness .  

The use of modern technology in demining can 

revolutionize the field, offering significant 

improvements in efficiency and safety. Automated 

systems, such as those that integrate robotic and 

biological components [1], enhance the detection and 

identification capabilities of explosive ordnance. 

Unmanned aerial vehicles (UAVs) equipped with 

advanced imaging technologies, such as thermal 

cameras and high-resolution optical cameras, have 

shown great promise in explosive ordnance (EO) 

detection. These UAVs can be part of robotic-biological 

systems, thus enhancing their capabilities. In addition, 

Machine learning algorithms can detect EO in various 

environments by analyzing footage from these cameras. 

This method is particularly useful for wide-area surveys, 

where manual detection is time-consuming and 

hazardous. 

While some tasks, like humanitarian demining of 

agricultural fields or recreational zones, are not time-

critical, the speed of object detection is crucial in 

scenarios where rapid decision-making and fast 

response are vital for success. For instance, planning 

evacuation routes for civilians in combat zones requires 

real-time detection of threats like explosives to ensure 

that the safest possible path is quickly identified. The 

dynamic nature of such environments requires 

continuous monitoring, where delays can endanger 

lives. 

Autonomous robots and UAVs can also be used 

for real-time object detectors. Because their on-board 

computing capabilities  are limited, they must rely on 

fast lightweight detection algorithms to navigate 

hazardous terrains and accomplish missions such as 

search and rescue. In all these scenarios, striking a 

balance between speed and accuracy is crucial, with an 

emphasis on ensuring that detection systems operate 

quickly enough within specific constraints on detection 

accuracy. 
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Ensuring trade-offs between the accuracy and 

speed of real-time object detectors for EO detection 

provides many important advantages. First, optimized 

systems allow sufficient data processing speed, which is 

critical for rapid response in high-risk situations. This 

reduces the time delay of decision-making and enables 

immediate danger detection. Secondly, maintaining an 

acceptable accuracy level reduces the number of false 

alarms and minimizes the likelihood of missing 

explosive ordnance, which increases the overall 

reliability of the system. 

This trade-off, along with the active use of 

advances in machine learning and edge computing, will 

allow for the development of solutions that can operate 

in resource-limited environments on mobile platforms 

such as UAVs, unmanned ground vehicles (UGVs). 

This will facilitate the rapid deployment of the EO 

detection system in the appropriate locations, increase 

its flexibility and adaptability to changing operational 

environments, and allow it to be scaled up as needed. 

 

1.2. State of the art 
 

The application of deep learning techniques to 

UAV-based detection systems has been demonstrated in  

several studies. For instance, authors of [2] presented a 

study focusing on the detection of scatterable landmines  

using UAVs equipped with multispectral and thermal 

imaging systems. Their methodology, which employs a 

Faster R-CNN (Region-based Convolutional Neural 

Network) model, is calibrated for detecting scatterable 

plastic landmines, such as PFM-1, and has shown 

promising results in automating landmine detection 

through supervised learning algorithms. 

In another study [3], the authors proposed a real-

time detection system for surface landmines that uses 

optical imaging integrated within a demining robot. This 

system uses YOLOv8 (You Only Look Once) models to 

achieve high recall rates in detecting PFM-1 (butterfly) 

and PMA-2 (starfish with tripwire) landmines. The 

integration of this system into a demining robot 

demonstrates the potential of combining optical imaging 

and artificial intelligence to enhance demining 

operations. Both “nano” and “small” YOLOv8 models 

used in this study demonstrated strong capacity for 

detecting objects similar to those in the training set. 

However, the relatively high false positive rates suggest 

that further optimization is required.  

Object detection has seen significant 

advancements over the past few decades, transitioning 

from classical methods to modern deep learning-based 

models. The study [4] provides a comprehensive review 

of the field, covering the evolution of object detection 

from the 1990s to 2022. This review discusses 

milestone detectors, key datasets, evaluation metrics, 

and speed-up techniques, providing a detailed 

understanding of the advances and current state-of-the-

art object detection techniques. Classic object detection 

methods often relied on handcrafted features and simple 

classifiers; however, they have largely been superseded 

by deep learning-based models due to the latter's 

superior performance and ability to learn features 

autonomously. The authors have identified lightweight 

object detection as a promising future direction. They 

mentioned that despite significant progress  in recent 

years, there is still a considerable speed gap between 

machine detection and the human eye, particularly when 

it comes to identifying small objects or processing 

information from multiple sources . 

Several studies have conducted comparative 

analyses of different object detection models to evaluate 

their performance across various parameters. For 

instance, authors of [5] evaluated YOLOv3, YOLOv5, 

and YOLOX models on edge computing devices such as 

NVIDIA Jetson Nano and Google Coral Dev Board. In 

this study, the MS COCO dataset was used for 

evaluation, providing insights into the trade-offs 

between accuracy and inference speed across different 

devices and input sizes. 

A previous study [6] analyzed deep learning 

algorithms in the context of smart cities to identify 

accurate models for urban object detection, emphasizing 

the importance of real-time performance. The findings 

highlight the challenges of achieving high accuracy in 

urban scenes while meeting real-time requirements, 

with Dynamic Head emerging as a top-performing 

model due to its high precision and recall at medium 

IoU thresholds. Authors stress that high computational 

demands of advanced algorithms, like Dynamic Head, 

could also present challenges for real-time deployment 

in resource-limited tasks. Additionally, established 

metrics like AP and mAP, while useful, may not fully 

reflect the peculiarities of the subject area, suggesting 

the need for more context-specific evaluations. 

In [7], the authors compared three major image 

processing algorithms Single Shot Detection (SSD), 

Faster R-CNN, and YOLO to determine the fastest and 

most efficient model. Their results indicated that 

YOLOv3 outperforms SSD and Faster R-CNN in terms 

of speed and efficiency, making it a preferred choice for 

real-time applications. 

In study [8], an in-depth analysis of various object 

detection algorithms. This study evaluates different 

models on different datasets, focusing on key factors, 

such as accuracy, speed, resource usage, and robustness. 

The results also highlight the importance of 

understanding how different variables, such as 

backbone architecture and image size influence the 

performance of these detectors. Notably, the study finds 

that keypoint-based detectors, like NanoDet, generally 
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perform well across multiple metrics, offering a good 

balance between accuracy and speed while being 

resource-efficient. In contrast, anchor-based detectors 

such as SSD and YOLO are more optimized for edge 

devices, making them suitable for applications with 

limited computational resources. Overall, this survey 

serves as a guideline for selecting suitable object 

detection models for specific applications, considering 

both their strengths and potential limitations. 

The authors of the study [9] provided a guide for 

selecting object detection architectures based on specific 

speed, memory, and accuracy requirements. It evaluates 

Faster R-CNN and SSD models, highlighting that SSD 

with MobileNet is the fastest, making it suitable for 

real-time applications, while Faster R-CNN with 

Inception Resnet offers the highest accuracy but at a 

slower speed. This paper also explores the impact of 

image resolution and proposal numbers on performance 

and demonstrates how speed can be increased with 

minimal accuracy loss. Although they are insightful, 

their findings are somewhat outdated due to 

advancements in object detection technology since their 

release. 

In the study [10], is presented YOLOv10, an 

advancement over previous YOLO models, focusing on 

improved efficiency and performance. The proposed 

method introduces a dual assignment strategy for NMS-

free training to optimize accuracy and inference speed 

while reducing computational redundancy. Achieving 

state-of-the-art results, YOLOv10 outperforms its 

predecessors and contemporary models in terms of 

speed and parameter reduction. This study highlights the 

need for optimal confidence thresholds and future 

improvements in spatial and label quality for high-

accuracy applications such as UAVs, static cameras, 

and orbital sensors. 

The performance evaluation of object detection 

algorithms requires a thorough understanding of various  

metrics. The study [11] presents an extensive review of 

the most frequently used metrics for object detection, 

highlighting their differences, applications, and main 

concepts. The proposed method proposes a standard 

implementation for benchmarking different datasets 

with minimal adaptation to annotation files. The 

proposed comprehensive evaluation framework is 

crucial for consistent performance assessment across 

various models and datasets. 

The authors of the study [12] addressed an often 

overlooked aspect of object detection: selecting the 

optimal confidence score threshold for model 

deployment. Typically, models are optimized for 

benchmark datasets like COCO, which favors low 

thresholds to maximize detection scores, resulting in a 

higher number of false positives. However, this 

approach may be inadequate in scenarios in which high 

confidence is crucial. The authors proposed a method to 

identify the optimal performance points of models, 

thereby enabling fairer comparisons and deeper insights 

into the trade-offs between true positives, false 

positives, and false negatives. They highlight the 

importance of balancing accuracy and efficiency, 

particularly for edge devices such as UAVs or static 

cameras, where model selection and confidence 

thresholds are critical.  

Thе article [13] addresses the critical challenge of 

landmine detection and removal, focusing on UAV-

based Airborne Magnetometry for identifying magnetic 

anomalies. The proposed method highlights the 

integration of edge computing for real-time data 

analysis to enhance the efficiency, security, and 

decision-making of landmine detection processes. The 

proposed Magnetometry Imaging-based Classification 

System (MAGICS) demonstrated high accuracy by 

leveraging deep learning to achieve a mean average 

precision of 97.8% for landmine identification. 

These studies demonstrate significant advance-

ments in deep learning applications for real-time 

detection, particularly EO detection. Techniques like 

Faster R-CNN and YOLOv8 exhibit high detection 

accuracy and are optimized for speed in field appli-

cations; however, they often have trade-offs in preci-

sion. Many of these studies emphasized the need to 

balance accuracy and speed, especially for edge devices, 

making the compromise between high precision and fast 

inference a central focus (Table 1). 
 

1.3. Objectives and the methodology 
 

The aim of this study was to evaluate and compare 

the performance of YOLOv8 and RT-DETR object 

detection models in terms of accuracy and speed for EO 

detection via autonomous robotic systems. 

The objectives are as follows: 

1) to perform a comparative analysis of YOLOv8 

and RT-DETR image processing models for EO 

detection, focusing on accuracy and real-time 

processing speed; 

2) explore the impact of different input image 

resolutions on model performance to identify the 

optimal resolution for EO detection tasks; 

3) to analyze how the object size (small, medium, 

large) affects detection efficiency to enhance EO 

recognition accuracy;  

4) to develop recommendations for EO detection 

model configurations;  

5) to propose methods to enhance EO detection 

model performance in complex environments . 

The research methodology is based on the 

principles of comparative analysis and integration of the 

YOLOv8 and RT-DETR models to identify EO in the 

context of speed-accuracy trade-offs. 
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Table 1  

Approaches to providing speed-accuracy trade-offs 

in the reviewed studies 

Reference 
Approach to providing speed-accuracy 

trade-offs 

[2] Faster R-CNN was optimized for UAV-

based landmine detection, achieving 

high accuracy with manageable 

processing times for UAV deployment. 

[3] YOLOv8 models in a demining robot 

achieved high recall but need 

optimization to reduce false positives, 

emphasizing the speed-accuracy trade-

off in real-time detection. 

[5] Studies on YOLOv3, YOLOv5, and 

YOLOX show that smaller configu-

rations (e.g., “nano” versions) trade 

some accuracy for faster inference on 

edge devices like NVIDIA Jetson Nano. 

[9] Comparing Faster R-CNN and SSD, the 

authors found SSD with MobileNet to be 

faster but less accurate, making it more 

suitable for real-time applications 

prioritizing speed. 

[10] YOLOv10 enhances both speed and 

accuracy using a dual assignment 

strategy and NMS-free training, 

significantly lowering inference latency 

while maintaining performance. 

 

The research methodology consists of the 

following steps: 

1. Dataset selection and preparation. The dataset 

used in the experiment was a subset of the COCO 2014 

validation dataset, which is a common benchmark for 

object detection research. This subset was selected 

randomly to reflect the diversity of object categories, 

sizes, and complexity of the environment. Cluttered 

scenes, multiple objects, and different lighting 

conditions were included in the data selection, and the 

variety required to test the robustness of the models. 

2. Model selection and configuration. This study 

focused on two advanced object detection models, 

YOLOv8 and RT-DETR, due to their efficiency in 

balancing accuracy and inference speed. Each model 

was configured and tested using the Ultralytics 

YOLOv8 and RT-DETR frameworks implemented in 

the PyTorch environment. 

3. Experimental design and input resolutions. The 

models were examined at 384, 448, 512, 576, and 640 

pixels to evaluate the impact of input data resolution on 

model performance. The models were tested at each 

resolution to evaluate changes in mean accuracy (mAP) 

and inference time as the input size varied. 

4. Object classification by size. To evaluate model 

performance across different object scales, the objects in 

the dataset were categorized into three size groups based 

on pixel area: small (less than 322 pixels), medium (322–

962 pixels), and large (more than 962 pixels). 

5. Choice of performance evaluation metrics. The 

primary evaluation metrics used to assess model 

performance were as follows:  

- Mean Average Precision (mAP) to evaluate how 

accurately each model detects objects across different 

resolutions and sizes; 

- Precision and Recall to provide a holistic view of 

model performance across the entire dataset; 

-  Inference Time to measure each model’s 

suitability for real-time applications; 

- Confidence Score Analysis to provide insight 

into how well each model is calibrated to detect EO, 

focusing on reducing false positives without 

compromising detection accuracy. 

6. Data analysis. Experimental results were 

presented in  

- tables showing mAP, precision, and recall at 

various resolutions and object sizes; 

- charts to compare model performance in terms of 

detection reliability; 

- scatter plots to assess model behavior across 

varying object scales and to help optimize confidence 

thresholds for each model based on detection 

requirements. 

The article is structured as follows . Section 2 

discusses the trade-off between accuracy and processing 

speed in real-time object detection models, highlighting 

challenges and solutions relevant to practical 

applications. Section 3 presents a comparative 

performance analysis of YOLOv8 and RT-DETR 

models, focusing on their behavior across different 

resolutions and object sizes. Section 4 discusses the 

implications of the findings, including their limitations 

and potential applications in real-world scenarios such 

as explosive ordnance detection. Section 5 concludes 

the paper by summarizing the key contributions, 

highlighting practical recommendations, and proposing 

directions for future research. 

 

2. Accuracy vs. speed trade-off 
 

Evaluating performance metrics across different 

object scales (small, medium, and large) is crucial in the 

context of landmine and UXO detection using UAVs or 

ground robots. UAVs capture images at varying 

altitudes, and ground robots encounter objects at 

different distances, leading to significant changes in 

object size. Assessing AP across scales ensures that  the 

model performs well under diverse conditions, which 

enhances its robustness and reliability. This metric is 

critical for detecting small objects like landmines, where 
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missing an object can have severe consequences. 

Evaluating mAP across scales  also helps identify the 

model’s strengths and weaknesses, thus guiding 

improvements for better overall detection. By ensuring 

high detection accuracy regardless of object size, AP 

across scales contributes to operational efficiency and 

safety in real-world applications. 

The main challenge in real-time object detection is 

to optimize the trade-offs between accuracy and image 

processing time. Highly accurate models often require 

significant computational resources, which increases the 

output time. Understanding how different object 

detection models perform at different input signal 

resolutions is essential for selecting and tuning models 

that meet the requirements of the particular industry. 

Real-time object detection models have improved 

significantly, with modern neural network architectures 

achieving impressive accuracy and speed. Advanced 

deep learning models, such as YOLO [14] and RT-

DETR (Real-Time Detection Transformer) [15], offer a 

compelling balance between performance and accuracy: 

• Known for their speed and efficiency, YOLO 

models process images in a single neural network pass. 

• RTDETR uses a transformer architecture to 

improve detection capabilities, particularly in 

understanding the relationships between objects in an 

image and increasing detection accuracy. RTDETR 

models provide high accuracy, although often at the cost 

of increased computational requirements. 

The purpose of this study is to evaluate and 

compare the performance of two state-of-the-art object 

detection models, YOLOv8 [16] and RT-DETR, and the 

degradation of their performance as the input image size 

changes; to demonstrate how these models balance 

accuracy and inference time and how object size affects 

their performance. Although the focus is on detecting 

objects of a “general nature”, the results can be applied 

to critical areas such as landmine and unexploded 

ordnance detection, where fast and reliable object 

identification is crucial. 

 

3. Performance analysis of detection models 

 

The following outputs are produced: 

• Comparison of the YOLOv8 and RT-DETR 

models in terms of accuracy and inference time. 

• Assessment of the impact of different input 

data resolutions on model performance. 

• Understanding how the size of objects in an 

image (small, medium, large) affects detection 

performance. 

The dataset used in this study was a randomly 

selected subset of the COCO 2014 validation dataset. 

The original COCO dataset [17] is known for its diverse 

and large collection of annotated images, which were 

designed to facilitate object detection research. 

The subset was randomly selected and shows an 

imbalance of classes, which is typical for such datasets. 

Despite this imbalance, the subset preserved the 

diversity and complexity of the original dataset, 

showing cluttered scenes, numerous objects, and 

different lighting conditions. The number of annotated 

objects in the original dataset is shown in Fig. 1. 

The neural networks used for this study were 

implemented using the Ultralyics [16] YOLOv8 and 

RTDETR frameworks, which are known for their 

performance in object detection tasks. All experiments 

were performed on an NVIDIA RTX 2060 GPU. The 

runtime environment was PyTorch [18], with batch 

processing disabled. The confidence score threshold 

was left at a default value of 0.2. 

The parameters evaluated in this study include the 

mean Average Precision (mAP) at different Intersection 

over Union (IoU) thresholds (0.5 and 0.75) and the 

average processing time for each image. The objects 

were classified as small (area less than 322 pixels), 

medium (area from 322 to 962 pixels), and large (more 

than 962 pixels) to evaluate the model’s performance at 

different scales. We also included the percentage of 

correct predictions (precision) and the percentage of 

detected objects (recall) for the entire dataset without 

dividing it into classes to provide an understanding of 

the model's overall performance. Custom-made scripts 

based on [19] were used for performance evaluation. 

Results are shown in Ошибка! Источник ссылки не 

найден.. 

As can be seen, YOLOv8l and YOLOv8x 

demonstrate high mean average precision with a high 

percentage of correct predictions and balanced 

percentage of detected objects. Both RTDETR models 

had higher mAP rates than the YOLOv8 models; 

however, the RTDETR model had a significantly higher 

false positive rate, with a significantly higher percentage 

of detected objects. 

Compared to YOLOv8, the proposed RTDETR 

model also demonstrated high mAP for large and 

medium-sized objects, with noticeable improvements in 

detecting small objects. 

Tables 2 to 5 summarize the performance of four 

object detection models (RTDETR-L, RTDETR-X, 

YOLOv8l, and YOLOv8x) at different input resolutions 

(384, 448, 512, 576, and 640 pixels). The evaluated 

performance includes the average accuracy at IoU 

thresholds of 0.5 and 0.75, as well as the average 

accuracy for large, medium, and small objects at IoU 

0.5. 

Predictably, a decrease in input resolution leads to 

a decrease in mAP@0.5 and mAP@0.75 for all models. 

RTDETR-L and RTDETR-X demonstrate high average 

accuracy at all resolutions, although performance 
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degrades very sharply with decreasing resolution.  

 
 

Fig. 1. Number of ground-truth objects per class  

in selected dataset 
 

In the detection of small objects, RTDETR 

outperformed YOLO even at lower resolutions. All 

models performed well on large objects with less 

variability in mAP with decreasing resolution. The gap 

in average accuracy between RTDETR and YOLOv8 

decreased with increasing localization accuracy 

requirements. 

It is worth noting that the data in the tables 

represent average precision and should not be taken as 

absolute values. First, the MS COCO dataset is very 

diverse and contains a wide range of object categories, 

from animals to household items; however, when 

detecting EOs, the diversity of objects is much smaller. 

Second, the images in the COCO dataset have different 

backgrounds and environments; however, when it 

comes to finding EOs, the number of typical contexts is 

much more limited. The combination of these factors 

can improve the accuracy of detection methods in 

demining tasks. The degradation of mAP and the 

increase in performance associated with the change in 

resolution are shown in Figs. 2 and 3. 

As can be seen, with a decrease in resolution, 

RTDETR models show a slight increase in performance 

compared to YOLO, but the mean average precision's 

degradation rate is much higher. This decrease may  have 

occurred because the models were not retrained when 

scaling the resolution. As mentioned in [12], the numbers o f 

false positives/negatives (and, consequently, precision  and  

recall) are highly dependent on the selected confidence score 

threshold. To optimize this threshold, we analyzed the 

confidence score distributions for true and fals e positives 

(Fig. 4.) Table 6 provides a detailed characterization o f the 

confidence scores for different object sizes (all, big, medium, 

and small) at IoU@0.5 across four models: YOLO8l, 

YOLO8x, RTDETR-l, and RTDETR-x. This shows the 

distribution of confidence scores by listing the first, median, 

and third quartiles for both true and false positives. 

From the histogram of confidence scores in 

combination with the previous table, we can derive some 

common trends regarding the performance and behavior of 

YOLO and RTDETR models in terms of the detection 

confidence for both true and false positives:  

1. The confidence scores for true positives in both 

YOLO models are heavily skewed toward the higher end 

of the confidence range. RTDETR models also show a 

similar right-skewed distribution for true positives but with 

a slightly larger volume of true positives compared to 

YOLO models. From these results, we conclude that bo th 

RTDETR and YOLO models are well-calibrated for true 

positives, providing high confidence when the model is 

correct. 

2. YOLO had fewer false positives across all 

confidence values. Most false positives occur at lower 

confidence scores, with fewer false positives at high 

confidence. RTDETR models also show similar left-

skewed distributions for false positives but with a much 

larger number of false positives compared to YOLO 

models. 

3. Both models showed a similar tendency: larger 

detections have higher confidence scores for both false 

positives and true positives. Smaller detections result in 

lower confidence thresholds. However, with an increase 

in the object size difference between the median 

confidence scores for false positives and true positives, 

it is easier to filter out the majority of false positives 

with minimal effect on the true positive count. 
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Table 2 

Object detectors’ performance at original resolution  

Model 
mAP 

@0.5 

mAP 

@0.75 
Precision Recall 

Big object 

mAP@0.5 

Medium object 

mAP@0.5 

Small object 

mAP@0.5 

YOLOv8l 70.92 63.53 77.04 72.86 85.04 68.56 33.59 

YOLOv8x 72.55 65.39 76.53 74 85.92 70.44 36.5 

RTDETR-L 78.14 66.04 48.15 84.24 87.74 73.19 45.43 

RTDETR-X 78.32 66.74 48.67 84.61 87.78 73.75 44.01 

 

Table 3 

YOLOv8-X performance at different resolutions 

Resolution mAP@0.5 mAP@0.75 mAP(big)@0.5 
mAP(medium) 

@0.5 
mAP(small)@0.5 

384 64.23 57.2 84.88 60.88 17.65 

448 67.53 60.4 85.85 65.11 22.8 

512 68.87 61.88 85.71 66.57 26.77 

576 70.13 62.85 85.57 67.63 30.73 

640 70.92 63.53 85.04 68.56 33.59 

 

Table 4 

RTDETR-L performance at different resolutions  

Resolution mAP@0.5 mAP@0.75 mAP(big)@0.5 
mAP(medium) 

@0.5 
mAP(small)@0.5 

384 66.26 59.24 86.06 64.09 19.81 

448 69.65 62.51 86.71 68.35 26.53 

512 70.68 63.77 86.62 69.02 30.42 

576 71.85 64.74 86.44 70.26 33.8 

640 72.55 65.39 85.92 70.44 36.5 
 

Table 5 

RTDETR-X performance at different resolutions  

Resolution mAP@0.5 mAP@0.75 mAP(big)@0.5 mAP(medium)@0.5 mAP(small)@0.5 

384 69.65 56.06 84.49 62.71 27.67 

448 73.21 60.23 86.57 67.73 33.97 

512 75.43 62.98 87.3 70.46 37.43 

576 76.88 64.69 87.52 72.15 41.42 

640 78.14 66.04 87.74 73.19 45.43 

 

To further refine the confidence score threshold 

selection, we can examine the Scatter Plot of 

Confidence vs Detection Size should be examined  

(Fig. 5), showing the relationship between object size 

and confidence score. Understanding how confidence 

varies with object size provides deeper insight into 

selecting appropriate thresholds for each model. 

The scatter plot of the confidence versus detection 

size reveals the key trends of the YOLO and RTDETR 

models. In YOLO models, true positives consistently 

show higher confidence scores, especially for larger 

objects, whereas false positives generally have lower 

confidence; thus, it is easier to filter out false positives 

by setting a threshold of approximately 0.6. In contrast, 

RTDETR models displayed higher confidence scores 

for false positives, particularly in medium-sized 

detections, indicating that thresholding was less 

effective without considering detection size. Although 

both models showed an increase in confidence for larger 

objects, the overlap of confidence scores between true 

and false positives was more pronounced in RTDETR, 

indicating that size-based filtering might be necessary to 

boost precision. Thus, YOLO benefits more from 

simple confidence thresholding, whereas RTDETR 

requires a combination of strategies to achieve similar 

precision improvements.  

Based on these plots and tables, the key 

recommendation for selecting a camera with a fixed 

field of view, resolution, and flight altitude for a drone 

searching for EO is to optimize for medium to large 

object detection. Both YOLO and RTDETR models 

demonstrate higher confidence scores for larger objects, 

particularly true positives, which means that setting the 

drone’s altitude and field of view to capture larger 

detection areas will likely improve detection precision. 
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Fig. 1. Precision vs inference speed curves  

for different resolutions at IoU=0.75 

 

 
 

Fig. 2. Precision vs inference speed curves  

for different resolutions at IoU=0.5 

Table 6 

Confidence Score Distribution for YOLO and RTDETR Models by Object Size  

Metrics 
Models 

YOLO8l YOLO8x RTDETR-L RTDETR-X 

All objects IoU@0.5 

True positives 

First quartile 0.599 0.615 0.557 0.559 

Median 0.809 0.821 0.813 0.813 

Third quartile 0.907 0.914 0.918 0.917 

False positives 

First quartile 0.304 0.304 0.281 0.281 

Median 0.388 0.39 0.327 0.327 

Third quartile 0.526 0.537 0.412 0.413 

Big objects IoU@0.5 

True positives 

First quartile 0.83 0.846 0.854 0.851 

Median 0.911 0.919 0.927 0.926 

Third quartile 0.941 0.946 0.952 0.951 

False positives 

First quartile 0.328 0.33 0.287 0.287 

Median 0.448 0.454 0.346 0.347 

Third quartile 0.649 0.663 0.46 0.46 

Medium objects IoU@0.5 

True positives 

First quartile 0.578 0.596 0.56 0.558 

Median 0.767 0.784 0.785 0.785 

Third quartile 0.86 0.868 0.883 0.883 

False positives 

First quartile 0.315 0.319 0.287 0.285 

Median 0.414 0.423 0.342 0.341 

Third quartile 0.579 0.601 0.444 0.442 

Small objects IoU@0.5 

True positives 

First quartile 0.407 0.413 0.389 0.390 

Median 0.567 0.581 0.546 0.556 

Third quartile 0.721 0.731 0.732 0.736 

False positives 

First quartile 0.295 0.295 0.277 0.277 

Median 0.366 0.364 0.317 0.317 

Third quartile 0.487 0.49 0.391 0.392 
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Fig. 4. Distribution of detections confidence scores for different models for objects of all sizes  

 

Given that false positives in RTDETR are more 

frequent, especially in medium-sized objects, it is 

important to fine-tune the flight altitude to a level where 

the EO values are sufficiently large in the image to 

trigger higher confidence in true positive detections. A 

higher camera resolution is also essential to resolve 

small or medium-sized EO better because the detection 

accuracy for small objects is more challenging for both 

models, especially in RTDETR.  

 

4. Discussion 

 

This study utilized a subset of the COCO 2014 

validation dataset, which is known for its wide range of 

object categories, environments, and image contexts. 

However, the unique and repetitive background and 

object characteristics that often occur in EO detection 

scenarios may not be fully covered by this generic 

dataset. The complexity and chaos in COCO images 

provide a good benchmark for overall performance; 

however, EO images are limited, meaning that detection 

accuracy may vary in real-field conditions. 

To analyze the performance of the model at 

different scales, this study used a range of input 

resolutions from 384 to 640 pixels. Real-world EO 

detection applications may benefit from even higher 

resolutions, especially for small or partially enclosed 

objects. This is even though it is useful for 

understanding the trade-off between accuracy and 

processing time. Thus, limiting testing to these 

resolutions may result in a limited understanding of the 

full potential of detection models at higher resolutions. 

To balance detection sensitivity with false 

positives, the default confidence threshold for detection 

was set to 0.2. However, EO detection applications 

require higher confidence levels to mitigate risks in 

high-stake environments and reduce false positives . The 

threshold affects the generalizability of the results  
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Fig. 3. Scatter plot of confidence vs detection size for different models 

 

becauset he optimal confidence level for fault detection 

is likely to depend on the facility size, environmental 

conditions, and model type. 

 Although YOLO models are designed for speed 

and efficiency, they do not perform as well on smaller 

objects as RT-DETR, which uses a transformer-based 

architecture to capture the relationships between 

objects. However, the higher computational 

requirements of RT-DETR may not be feasible to install 

on every UAV or peripheral used for EO detection, 

limiting its practical application.  

This study assesses small, medium, and large 

objects, but it assumes a balanced distribution between 

these categories. Nevertheless, the EO detection may 

assume a higher detection rate for smaller objects, such 

as landmines. This may affect the accuracy of these 

models in real-world situations, where the model may 

have trouble maintaining extremely high accuracy for 

much smaller objects .  
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5. Conclusions 
 

The main contribution of this study is the results of 

a detailed evaluation of the YOLOv8 and RT-DETR 

models for real-time EO detection, helping to find trade-

offs between the speed and accuracy of each model and 

emphasizing the need for special datasets and algorithm 

optimization to improve the reliability of EO detection 

in autonomous systems. 

The real-time object detection models YOLOv8 

and RT-DETR demonstrate effective trade-offs between 

accuracy and inference time. The mean precision of the 

RT-DETR models was higher than average; RT-DETR-

X reached 78.32% at an IoU of 0.5, outperforming 

YOLOv8x, which had 72.55%. However, the RT-DETR 

models showed higher false alarm rates, indicating that 

the performance must be balanced. 

The input resolution significantly affects the 

detection performance. YOLOv8x achieved a 

mAP@0.5 of 72.55% at the highest test resolution of 

640 pixels, whereas RT-DETR-X achieved a mAP@0.5 

of 78.32%. When the resolution was reduced to 384 

pixels, mAP@0.5 decreased to 66.26% for YOLOv8x 

and 70.53% for RT-DETR-X, indicating a significant 

performance degradation when the resolution was 

reduced. 

The RT-DETR model performed well for large 

objects, with RT-DETR-X achieving 87.78% 

mAP@0.5. YOLOv8x also detects large objects well, 

achieving 85.92% mAP@0.5. However, it lags behind 

RT-DETR in detecting small objects. 

YOLO models excel at output speed, processing 

images in a single pass. This feature makes it more 

suitable for time-sensitive applications, where the 

additional computational requirements of RT-DETR 

may present limitations despite its higher accuracy for 

certain tasks. 

The transformer-based architecture of RT-DETR 

improves the understanding of object relationships in 

images, thereby improving detection accuracy but 

leading to higher computational requirements. For 

example, RT-DETR-L achieved 78.14% mAP@0.5, 

although it had a higher false positive rate than YOLO 

models. 

The COCO 2014 subset validation dataset, which 

preserves diversity with complex backgrounds and 

varying object scales, is ideal for testing object 

detection. However, this generic dataset may not be 

fully contextualized for explosive detection tasks where 

constant backgrounds and object types are common. 

According to the confidence estimate analysis, the 

YOLO models maintain a high calibration for true 

positives; for large sites, the average confidence 

estimate is approximately 0.92. However, RT-DETR 

models show a larger discrepancy between true and 

false positive estimates, which requires the use of 

deeper filtering strategies to achieve a higher level of 

accuracy. 

For UAV-based detection applications, optimizing 

the camera resolution and altitude improves the 

detection accuracy of medium- and large objects. The 

YOLO and RT-DETR models improve the detection 

reliability of large objects. 

Applying the above results to the field of 

humanitarian demining, it can be concluded that the 

design of an optoelectronic system and the planning of 

UAV or ground-robot routes should be carried out, 

because increasing the size of the EO in an image will 

positively affect the detection accuracy. This can be 

achieved using high-resolution sensors, lenses with a 

narrow field of view, and a camera height above the 

ground. However, meeting such requirements means 

that either the number of images that need to be 

processed to survey the same area or the resolution of 

these images will increase. This increases the computing 

power requirements of robotic systems . 

Future research can include: 

- minimizing false positives in RT-DETR and 

YOLO models, especially in complex EO detection 

scenarios, to improve accuracy and reliability; 

- training models on specialized datasets tailored to 

EO environments rather than general datasets like 

COCO, to increase model adaptability and precision in 

relevant contexts; 

- in real-world conditions, exploring the impact of 

incorporating multispectral or thermal imaging to 

enhance detection accuracy, particularly for smaller or 

camouflaged objects. 

Since reliability and autonomy are important 

characteristics for the systems under consideration, 

providing the speed-accuracy-reliability-autonomy 

trade-off can also be considered a promising area of 

research. 
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МОДЕЛІ ГЛИБОКОГО НАВЧАННЯ ДЛЯ ВИЯВЛЕННЯ ВИБУХОНЕБЕЗПЕЧНИХ ПРЕДМЕТІВ  

ЗА ДОПОМОГОЮ АВТОНОМНИХ РОБОТИЗОВАНИХ СИСТЕМ:  

КОМПРОМІС МІЖ ТОЧНІСТЮ ТА ШВИДКІСТЮ ОБРОБКИ В РЕАЛЬНОМУ ЧАСІ 

В. В. Міщук, Г. В. Фесенко, В. С. Харченко 

Предметом дослідження є моделі глибокого навчання для виявлення вибухонебезпечних предметів 

(ВНП) у реальному часі. Метою цього дослідження є оцінка та порівняння продуктивності моделей 

виявлення об’єктів YOLOv8 і RT-DETR з точки зору точності та швидкості виявлення ВНП за допомогою 

автономних роботизованих систем. Завдання: 1) провести порівняльний аналіз моделей обробки зображень 

YOLOv8 і RT-DETR для виявлення ВНП, зосереджуючись на точності та швидкості обробки в реальному 

часі; 2) вивчити вплив роздільної здатності вхідного зображення на продуктивність моделі для визначення 

оптимальної роздільної здатності для завдань виявлення ВНП; 3) проаналізувати, як розмір об’єкта (малий, 

середній, великий) впливає на ефективність виявлення для підвищення точності розпізнавання ВНП; 4) 

розробити рекомендації щодо конфігурації моделі виявлення ВНП; 5) запропонувати методи підвищення 

ефективності моделі виявлення ВНП в складних середовищах. Були отримані наступні результати. 1) 

Результати порівняльного аналізу моделей YOLOv8 і RT-DETR для виявлення ВНП в контексті компромісів 

швидкодія-точність. 2) Рекомендації щодо конфігурації моделі виявлення ВНП, спрямовані на підвищення 

ефективності роботизованих автономних систем розмінування, зокрема, оптимальний вибір параметрів 

камери. 3) Методи підвищення продуктивності моделі виявлення ВНП для підвищення її точності в 

складних середовищах, включно генерацію синтетичних даних і налаштування порогу достовірності. 

Висновки. Основним внеском дослідження є детальна оцінка моделей YOLOv8 і RT-DETR для виявлення 

ВНП в реальному часі, підкреслюючи компроміси між швидкістю та точністю кожної моделі та 

наголошуючи на необхідності спеціальних наборів даних і оптимізації алгоритмів для покращення 

виявлення та надійності в автономних системах. 

Ключові слова: вибухонебезпечні предмети; виявлення об’єктів; точність; швидкодія; YOLO; 

трансформери. 
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