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DIMENSIONALITY CUTBACK AND DEEP LEARNING ALGORITHMS
EFFICACY AS TO THE BREAST CANCER DIAGNOSTIC DATASET

Breast cancer is a significant threat because it is the most frequently diagnosed form of cancer and one of the
leading causes of mortality among women. Early diagnosis and timely treatment are crucial for saving livesand
reducing treatment costs. Various medical imaging techniques, such as mammography, computed tomography,
histopathology, and ultrasound, are contemporary approachesfor detecting and classifying breast cancer. Ma-
chine learning professionals prefer Deep Learning algorithms when analyzing su bstantial medical imaging data.
However, the application ofdeep learning-based diagnostic methodsin clinical practice is limited despite their
potential effectiveness. Deep Learning methods are complex and opaque; however, their effectiveness can help
balance these challenges. The research subjects. Deep Learning algorithms implemented in WEKA software
and theirefficacy onthe Wisconsin Breast Cancer dataset. Objective. Significant cutback ofthe dataset's dimen-
sionality without losing the predictive power. Methods. Computer experiments in the WEKA medium provide
preprocessing, supervised, and unsupervised Deep Learning for full and reduced datasets with estimations of
their efficacy. Results. Triple sequential filtering notably reduced the dimensionality of the initial dataset: from
30 attributes up to four. Unexpectedly, all three Deep Learning classifiers implemented in WEKA (Dl4jMlp,
Multilayer Perceptron, and Voted Perceptron) showed the statistically same performance. In addition, the per-
formance was statistically the same for full and reduced datasets. For example, the percentage of correctly
classified instanceswas in range (95.9-97.7) with a standard deviation ofless than 2.5 %. Two clustering algo-
rithms that use neurons (Self Organized Map, SOM, and Learning Vector Quantization, LVQ) have also shown

similar results. The two clusters in all datasets are not well separated, but they accurately represent both preas-
signed classes, with the Fowlkes—Mallow indexes (FMI) ranging from 0.81 to 0.99. Conclusion. The results
indicate that the dimensionality of the Wisconsin Breast Cancer dataset, which is increasingly becoming the
"gold standard" for diagnosing Malignant-Benign tumors, can be significantly reduced without losing predictive
power. The Deep Learning algorithmsin WEKA deliver excellent performance for both supervised and unsuper-
vised learning, regardless of whetherdealing with full or reduced datasets.

Keywords: breast cancer; Deep Learning algorithms; WEKA; Wisconsin Breast Cancer dataset; diagnosing
Malignant-Benign tumors.

breast cancer mortality among women. Under optimal
coverage conditions, it is estimated that 23% more breast

1. Introduction

1.1. Motivation

The incidence of breast cancer (BC) is increasing in
Ukraine, with mortality rates similar to thosein Europe.
One of the profound reasons for this is the diagnosis of a
disease that is too late. Currently, medical observations
detect less than a third of BC cases, and this fraction is
decreasing steadily [1]. The up-to-date homeland
screening mammography studies included in the medical
guarantee program have an unacceptably low coverage of
women from the target groups (only 3.7%). Aside from
this, there is an alarming lack of medical awareness and
activity among our women, resulting in only about 17%
of them getting mammograms even when referred for the
procedure [1].

Research conducted in Europe showed that
implementation of mammographic screening decreases

cancer deaths could be prevented in Eastern Europe,
compared to 21% in Western Europe, 15% in Southern
Europe, and 9% in Northern Europe [2].

Early and effective detection of this disease
significantly increases the survival rate and reduces
treatment costs [3]. In recent decades, machine learning
(ML) and Deep Learning (DL) have emerged as valuable
tools in data-driven decision-making, for example, within
resource management [4]. Besides, they are recognized
as contemporary methods for the early diagnosis of breast
cancer (BC) [3].

1.2. State ofthe art

Several well-known datasets related to female
breast cancer have been used in machine learning (ML).
A notable dataset was obtained from the Institute of
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Oncology at the University Medical Center in Ljubljana,
which was first made available in 1988 [5]. The proposed
dataset contains 10 attributes and contains 286 instances.
It includes two binary classes: "no-recurrence events,”
with 201 cases, and “recurrence events,” with 85
instances. This dataset is considered noisy and
demonstrated relatively low performance. However, it
was recently partially cleaned to reduce noise and
improve performance [6].

The Wisconsin Breast Cancer Dataset (WBCD),
which has been in use since 1995, comprises 30 attributes
and 569 instances [7]. This class includes two
imbalanced tumor classes: 212 malignant and 357
benign. The dataset focuses on the geometric parameters
of tumors identified through mammography screening
images. The newer BreakHis database ([8] and [9]) can
expand on this dataset by providing additional
information on biopsy, tumor class, tumor type, patient
ID, and magnification factor. It is worth noting that the
extension of WBCD requires some caution because the
initial dataset [7] was already sufficiently bulky.

The use of Deep Learning techniques is effective for
detecting breast cancer, enabling early diagnosis, and
increasing patient survival. First, Deep Learning (DL)
requires less human intervention for feature extraction
than classical Machine Learning (ML) techniques [10].
Second, the DL methods are suitable for bulky datasets,
like WBCD, although they require more machine
resources. Finally, Deep Learning has become a standard
tool for breast cancer detection. For instance, DL
methods can diagnose breast cancer up to 12 months
earlier than conventionalclinical procedures [11].

A long time ago, we observed that the predictive
power of any classifier initially increased with the
number of dimensions (number of attributes). However,
after reaching some dimension size, the performance
degrades using a fixed-size training set. This effect is
known as the "curse of dimensionality" or the Hughes
phenomenon [12].

Machine learning, particularly DL, cannot avoid
this problem. Volumetric WBCD, with its 30 attributes,
certainly needs the correct lowering of dimensionality.
Such attempts are being made using WEKA — a Java-
based environment for ML [13]. The spread insight that
DL can achieve high performance regardless of the
dimensionality of the feature space is, to be sure, nothing
more than a harmful illusion.

1.3. Objectives and the Approach

This research aimed to improve WBCD's
predictivity power and enhance clinical usability using a
few DL algorithms implemented in WEKA. Sundry tasks
will be performed to achieve this goal:

1) The dataset should be thoroughly preprocessed,
including standardizing numeric attributes, optimizing
their selection, and using principal component analysis to
reduce dimensionality.

2) WEKA comparable experiment with three DL
classifiers and three datasets (complete and two gradually
reduced ones), the design of that includes tuning of hy-
perparameters for DL classifiers (supervised deep learn-
ing).

3) Unsupervised Deep Learning and collating the
efficacy of two DL clustering algorithms within the
Knowledge Flow module of WEKA in work with the
three above datasets.

The list of tasks determines the research approach.
Thus, preprocessing and reduction of the initial WBCD
are considered in section "2. Materials and methods."
Supervised Deep Learning experiments and clustering
will be presented in the following two subsections of
section "3. Results.” Sections for Discussion and
Conclusions will be on the traditional places.

2. Materials and methods of research

2.1. Dataare ""Materials"
within Machine Learning

Therefore, we begin by describing the WBCD da-
taset. Ten valid characteristics were calculated for each
cell nucleus extracted from the mammographic im-
ages [7]:

1) radius (mean of distances from the center to
points on the perimeter)

2) texture (standard deviation of gray-scale values)

3) perimeter

4) area

5) smoothness (local variation in radius lengths)

6) compactness (perimeter? / area)

7) concavity (severity of concave portions of the
contour)

8) concave points (number of concave portions of
the contour)

9) symmetry

10) fractal dimension ("coastline approximation™)

The WBCD dataset foresees three attributes: mean,
standard deviation, and "worst" (extreme) value for each
attribute. "Worst values" are factually outliers from a sta-
tistical perspective [13]. As a result, the number of nu-
meric features was increased to 30. All numeric features
(attributes) are continuous and have no missing values.

The single categorial feature is the nominal class:
benign (357) or malignant (212) diagnosis,without miss-
ing values. Perhaps it is a "trade-off matter" to consider
this class nearly balanced or inversely. In this article, we
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selected imbalance as our insight. WBCD provided suf-
ficient precision for neural network classifiers in the
range (0.865 - 0.9597) [7].

2.2. Methods

First, all numeric attributes were standardized with
an attribute filter incorporated into WEKA

weka.filters.unsupervised.attribute.Standardize

As a result, all numeric attributes have zero mean
values and standard deviations of unity. Standardization
assumes that attributes have a Gaussian (bell curve) dis-
tribution. This does not have to be strictly proven; how-
ever, this technique is beneficial if the attribute distribu-
tion is closer to Gaussian. WEKA automatically builds
histograms for all attributes. A simple visual analysis of
these histograms demonstrates that most of the features
(attributes) of WBCD have distributions that are close
enough to Gaussian ones. Thus, our first dataset (ds1) for
the following experiment included 30 filtered (standard-
ized) numerical attributes and one nominal class.

The second reduced dataset (ds2) was obtained by
further filtering ds1 through an attribute selection filter
(CfsSubsetEval). The configuration of this filter was set
using the following Java-line:

weka.filters.supervised.attribute.AttributeSelection
-E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S
"weka.attributeSelection.BestFirst-D 1 -N 5".

This dataset (ds2) contains only 11 standardized at-
tributes against 30 in ds1and one nominal class. Among
these 11 attributes of the reduced dataset are six of the
"worst" type, three of "mean,” and two of "se" follow-
ing [13].

Eleven attributes of ds2are far superior to the 30 in
dsl, yet still considered "excessive." Therefore, we
should implement an additional filter to condense the 11
attributes into a lower-dimensional space. This filter can
be a principal component filter with the following con-
figuration:

weka.filters.unsupervised.attribute.Principal Com-
ponents-R 0.91-A 11 -M -1.

This filter reduces ds2 from 11 to four principal
components, capturing 91% of the total variance. It is al-
ways tempting to reduce the number of principal compo-
nents even further, perhaps to two. However, doing so
would mean accepting a smaller share of the total vari-
ance coverage; therefore, there is a "trade-off" to con-
sider. The resulting dataset, which was triple-filtered and
reduced to four attributes (ds3), can be regarded as "over-
simplified." However, we will wait until the comparative
analysis results are ready.

WEKA includes several DL algorithms: Multi-
Layer Perceptron (MLP) [14], Voted Perceptron [15],
and the newer DI4jMIp [16]. Although all of them are

based on Rosenblatt's prototype [14], they still have dif-
ferent tuning options. In our experiment, these tunings
(configurations) are presented in (Table 1).

Table 1
Classifier's configurations

Algo-

rithm Configuration

weka.classifiers.functions.MultilayerPer-
ceptron-L 0.3 -M 0.2-N500-V0-SO -E
20-Ha

MLP

Voted
Percep-
tron

weka.classifiers.functions.VotedPercep-
tron-11-E 1.0-S1-M 10000

weka.classifiers.functions.DI4jMIpClassi-
fier -S 1 -cache-mode MEMORY -early-
stopping  "weka.dl4j.earlystopping.Ear-
lyStopping -maxEpochsNolmprovementO -
valPercentage 0.0" -normalization " Stand-
ardize training data" -iterator
"weka.dl4j.iterators.instance.Default-
Instancelterator -bs 1" -iteration-listener
"weka.dl4j.listener.EpochListener  -eval
true -n 5" -layer "weka.dl4j.layers.Output-
Layer  -losskn  \"weka.dl4j.lossfunc-
tions.LossMCXENT \" -nOut 2 -activation
\"weka.dl4j.activations.ActivationSoftmax
\" -name \"Output layer\"" -logConfig
"weka.core.LogConfiguration  -append
true -dl4jLogLevel WARN -logFile C:\\Us-
ers\\master\\wekafiles\\wekaDeeplearn-
ing4j.log -nd4jLogLevel INFO -we-
kaDl4jLogLevel INFO" -config
"weka.dl4j.NeuralNetConfiguration -bi-
aslnit 0.0 -biasUpdater \"weka.dl4j.up-
dater.Sgd  -Ir 0.001 -IrSchedule
\W"weka.dl4j.schedules.ConstantSchedule
-scheduleType EPOCHW"\" -dist
\"weka.dl4j.distribution.Disabled \" -drop-
out \"weka.dl4j.dropout.Disabled \" -gra-
dientNormalization None -grad-
NormThreshold 1.0 -I1 NaN -12 NaN -min-
imize -algorithm STOCHASTIC _
GRADIENT_DESCENT -updater
\"weka.dl4j.updater. Adam -betalMean-
Decay 0.9 -beta2VarDecay 0.999 -epsilon
1.0E-8 -Ir 0.001 -IrSchedule
\W"weka.dl4j.schedules.ConstantSchedule
-scheduleType EPOCH\W"\" -weightlnit
XAVIER -weightNoise  \"weka.dl4;j
weightnoise.Disabled \"" -numEpochs 10 -
numGPUs 1 -averagingFrequency 10 -
prefetchSize 24 -queueSize 0 -zooModel
"weka.dl4j.zoo.CustomNet -channelsLast
false -pretrained NONE"\
"weka.dl4j.weightnoise.Disabled \"" -nu-
mEpochs 10 -numGPUs 1 -averagingFre-
quency 10 -prefetchSize 24 -queueSize 0 -
zooModel "weka.dl4j.zoo.CustomNet -
channelsLast false -pretrained NONE"

DI4jMIp
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The proposed design provides 10-fold cross-valida-
tion for each classification and requires ten repetitions.
With three datasets, three classifiers, 10-fold cross-vali-
dation, and ten repetitions, we can summarize 900 exper-
imental results. This allows us to conduct specific statis-
tics, hypotheses, and conclusions. The confidence level
was setat 0.95 ( p<0.05). The corrected paired Student’s
t-test was exploited for statistics hypotheses. The confi-
dence level was setat 0.95 ( p<0.05). The WEKA Exper-
imenter logs state that such a design demands about 20-
21 minutes to execute on a middle-class personal com-
puter.

WEKA offers two DL algorithms for clustering: a)
LVQ (Learning Vector Quantization) — an artificial neu-
ral network that applies a "winner-take-all" learning-
based approach [17]; b) Self Organized Map (SOM, Ko-
honen's net) [18], which is similar to learning.

In principle, the Experimenter allows us to create an
advanced experiment that can collate both clustering al-
gorithms, as described in [19]. Unfortunately, this ap-
proach is still not feasible for most clustering algorithms,
particularly DL algorithms.

For this reason, we performed clustering of our da-
tasets "manually,” ensuring the evaluations of the align-
ment between preassigned classes and clusters. This
means that the clustering mode included "classes-to-clus-
ters" estimations. This clustering mode allows the calcu-
lation of complexity matrices for each algorithm and da-
taset. These matrices are analogous to confusion matrices
at the classification level and allow for calculating
Fowlkes-Mallows Indexes [20], which are numeric esti-
mates of class-to-clustercongruency.

The configurations of both clustering algorithms
were as follows:

weka.clusterers.SelfOrganizingMap -L 1.0 -O 2000
-C 1000-H2-W 1

weka.clusterers.LVQ -L 1.0 -T 1000-C 2

3. Results and Discussion

3.1.Supervised Deep Learning
experiment results

The WEKA experiment described in the previous
section allows us to compile performance metrics and
their standard deviations for three datasets (ds1,ds2, and
ds3) and three Deep Learning algorithms. Table 2 pro-
vides an example of this compilation. The percentage of
correctly classified instances for each dataset and algo-
rithm (accuracies).

It appears that the table exhibits a slight perfor-
mance drop across its rows (i.e., ds1->ds2->ds3) and col-
umns. However, this illusion is only an illusion, as none
of these "differences" are statistically significant. Thus,
all datasets were equally good, and the algorithms were

similarly powerful regarding the percentage of instances
correctly classified. Furthermore, other well-known per-
formance indices (precision, recall, F-measure, Mat-
thew's correlation coefficient (MCC), and Kappa statis-
tic) are statistically identical across datasets and algo-
rithms.

Table 2
Percentage of correctly classified instances
(brackets show the standard deviations)

Da DL Algorithms
Voted Per-
tasets i
Dl4jMIp MLP ceptron
dsl | 97.68 (1.80) | 96.72 (2.20) 96.45 (2.11)
ds2 | 9758 (1.79) | 96.64 (1.90) 96.78 (2.14)
ds3 | 96.40 (2.26) | 95.87 (2.47) 95.96 (2.33)

Some exceptions exist regarding the areas underthe
Receiver Operating Characteristic (ROC) curve and the
Precision-Recall Curve (PRC). It is widely recognized
that PRC area index values greater than 0.85 indicate a
reliable classifier, whereas values approaching 1.0 sug-
gest a perfect classifier. However, it is essential to note
that the PRC area values listed in Table 3 for the Voted
Perceptron algorithm, although excellent, are statistically
significantly worse than those of the other two algo-
rithms. In addition, we found no significant differences
between the datasets.

Table 3
The area underthe PRC curves
Algorithms
DA T 4MIp MLP Vzteepir:r'
dsl 1.00 (0.01) | 0.99 (0.01) | 0.97 (0.02) *
ds2 0.99 (0.01) | 0.99 (0.01) | 0.97 (0.02) *
ds3 0.99 (0.01) | 0.99 (0.01) | 0.96 (0.02) *

The performances of all three Deep Learning algo-
rithms were evaluated using full and reduced datasets,
and all algorithms proved equally effective. For simplic-
ity, we present the classification results for only one al-
gorithm, the Multilayer Perceptron (MLP), and one da-
taset, which is referred to as ds3. Table 4 presents the
confusion matrix and performance metrics for the MLP
classifier applied to the most reduced version of the ds3
dataset, where 'M" indicates malignant tumors and 'B' in-
dicates benign tumors (Fig. 1).

Table 4 shows that the Deep Learning classifiers are
sufficiently robust for both classes to be roughly alike alt-
hough the Benign class appears slightly better.
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Fig. 1. WEKA screenshot of Multilayer Perceptron (MLP) for reduced dataset ds3; Perceptron contains
four neurons (pcl, pc2, pc3, and pc4 meet to the number of principal components) in the input layer,
three neurons in the hidden layer, and two output neurons. The MLP architecture
is more complex for ds2 and is even more complex for ds1 than for ds3

Table 4
Confusion matrix and performance of MLP algorithm
for ds3 dataset

Con- F.
fusion Pr_eC|- Re- meas- | Mcc PRC Class
ma- sion | call area

. ure
trix
[201 uj 0.966 | 0.948 | 0.957 | 0.932 | 0.986 M

T o%0/1°0970 | 0.980 [ 0.975 | 0.932 | 0.994 B

3.2.Unsupervised Deep Learning results

Neural network clustering methods, such as SOM
(Self Organized Map), are part of model-based clustering
methods. As a typical example, SOM maps a higher-di-
mensional input space to a lower-dimensional output
space, assuming thata specific topology exists in the in-
put data [20]. These methods can effectively separate
even overlapping clusters without requiring prior
knowledge about the data's topology. However, they

Benign

o

have the following drawbacks: a relatively long pro-
cessing time, and the clustering result is sensitive to the
parameters of the selected models.

Figure 2 shows pie charts showing the relative ca-
pacities of the clusters obtained by the SOM and LVQ
(Learning Vector Quantization) algorithms compared to
the relative capacities of the classes. The charts appear
similar, but clusters matching malignant tumors have
slightly fewer sizes than this class within the datasetand
are even more imbalanced.

A higher VRC value indicates that the clusters are
dense and well separated although there is no "accepta-
ble" cut-off value. WEKA builds and describes centroids
for each cluster; thus,the VRC evaluations are not diffi-
cult. The estimated VRC values were 1.78 for the LVQ
algorithm and 1.87 for the SOM algorithm. They are un-
doubtedly low, indicating that clusters are notwell sepa-
rated or overlapped.

Several well-known internal indexes of clustering
validity exist [21], including the Variance Ratio Criterion

Fig. 2. The pie charts illustrate the class distribution in the entire dataset
(ds1, left-hand side) and clusters in the most reduced dataset (ds3, middle, and right-hand side).
The middle chart is created using the SOM algorithm, while the right chart uses the LVQ algorithm
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(VRC), which measures how similar an object is to its
cluster (cohesion) compared to other clusters (separation)
[22]. Here, cohesion is estimated based on the squared
distances from the data points within a cluster to its cen-
ter, and separation is based on the squared distance be-
tween the cluster centroids.

WEKA provides a special clustering mode called
"classes to clusters evaluation." This mode yields a ma-
trix that is structurally identical to the confusion matrix.
This matrix helps evaluate the congruency between clus-
ters and preassigned classes in the dataset. The numeric
estimators for are known as the Fowlkes—Mallow indexes
(FMI) [23]. They can be written down as follows:

TP

= J(TP+FP)(TP+FN)
TN @)

- J(TN+FP)(TN+FN)

FMI

positive

FMI

negativw

where TP, FP, FN, TN are well-known matrix ele-
ments for "positive” and "negative" classes.

ds3 4o
dsl

0.8

0.61

0.4

I Benign Malignant ]

Fig. 3. Fowlkes—Mallow's indexes (FMI)
for classes-to-clusters congruency evaluations;
three pairs on the left-hand side meet the SOM

algorithm, whereas the three pairs of FMI

from the right-hand side—the LVQ one

Figure 3 shows the calculated FMI for both cluster-
ing algorithms and all datasets. All FMI values were in
the range (0.81-0.99), indicating relatively high congru-
ence between clusters and classes. The differences be-
tween the benign and malignant tumor classes were not
significant. Nevertheless, the systematic differences be-
tween them, with the benefit of the first, might be a con-
sequence of the imbalanced data sets.

4. Discussion

DI4jMIp is a Deep Learning WEKA package that
integrates new Deep Learning techniques into the WEKA
workbench [24]. This algorithm differs in vast opportu-
nities relative to tuning hyperparameters compared to
MLP or Voted Perceptron (see Table 1, for instance). We

chose a neural network configuration with a stochastic
gradient descent optimization algorithm as follows [24].

The MLP and Voted Perceptron are feedforward ar-
tificial neuron networks with at least three layers (see
Figure 1). They can effectively separate nonlinearly dis-
tinguishable data. The Voted Perceptron differs because
it provides more stability to the data size and has weight
vectors that offer larger "margins." Surprisingly, the per-
formance of these classifiers was unexpectedly similar
when tested on the initial and reduced versions of
WBCD. Nevertheless, the performance of all algorithms
was excellent regardless of whether the datasets were
complete or reduced.

The Unsupervised Deep Learning (clustering) of
WBCD and its reduced versions confirms data division
into classes. In other words, despite the poor separation
of clusters and noise. For example, the Interquartile
Range filter (weka.filters.unsupervised.attribute. The In-
terquartileRange -R first-last -O 3.0 -E 6.0) shows the
presence of 55 cases that should be recognized as outliers
(17 for the Benign class and 38 for the Malignant class,
respectively). Thus, emissions comprise approximately
10% of WBCD, which is a challenge to consider as a mi-
nor factor. The insensitivity of Deep Learning algorithms
to noise is one of the features proposed in this study.

5. Conclusions

The dimensionality of the Wisconsin Breast Cancer
dataset, which is increasingly recognized as the "gold
standard" for diagnosing malignant and benign tumors,
can be significantly reduced without sacrificing predic-
tive power. The attribute space dimension was reduced
using the methods described in subsection 1.3 (first task).

The deep learning algorithms in WEKA demon-
strate excellent performance in supervised and unsuper-
vised learning, regardless of whether they are applied to
full or reduced datasets. The WEKA experiment, which
was planned for Task #2 in subsection 1.3, confirmed this
finding.

In addition, the clustering of all datasets aligns well
with the results obtained from classifications using deep
learning algorithms.
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EQEKTUBHICTb AJITOPUTMIB CKOPOYEHHSI BUMIPHOCTI TA I'NIMBOKOI'O HABYAHHA
mMOJ0 HABOPY AIATHOCTHYHHUX JAHHUX PAKY MOJIOYHOI KMBKH

I'. I1. 9yiiko, /1. C. I'onuapoes

Pak MoJI0uHO1 3271031 € cepHO3HOIO 3arp03010, OCKIIbKM il HAWOIIBII YacTO AJATHOCTYIOTh Ta BOHA € OJHIEIO 3
OCHOBHHX NPHYUH CMEPTHOCTI cepel )KIiHOK. PaHHS [arHOCTHKa Ta CBOE€YACHE JIKyBaHHS MalOTh BHpIlIaJbHE 3HA-
YeHHS i1 30epeKEeHHS JKUTTS MAaIliEHTOBI Ta 3HIKEHHS BUTPAT Ha JIKYBaHHSA. Pi3HOMAHITHI MeIW4Hi METOM Bidya-
Jizalii, Taki sk Mamorpadis, koM roTepHa ToMmorpadis, TiICTONATOJOTisA Ta yJIbTPa3ByK, € CYyYaCHUMH IMIIX0JAMH JI0
BUABJICHHS Ta KilacuQikaiii paky MoJIOUHOI 3a703u. DaxiBIli 3 MAIIUHHOTO HABYAHHS BIINAIOTh TEpeBary ajropur-
MaM INIMOOKOTO HAaBYaHHS [UT1 aHAJNI3y 3HAYHUX JaHUX MEAMYHHUX 300pakeHb. OmHAK 3aCTOCYBAaHHS arHOCTHYHUX
METOJIIB Ha OCHOBI MTMOOKOTO HABYAHHS B KIHIUHIA MPaKTUI[ Bce e 0OMeKeHe, He3BaXKAIUH Ha 1X MOTEHIHHY
eexTuBHICTh. X04Ya METOIM TIMOOKOT0 HaBYaHHS CKJIAJHI Ta HEMPO30pi, iXHs €(EKTHBHICTh MOXKE JOTOMOTTH 30a-
nmaHcyBatH Iii mpobiemu. IlpeaMeTn mocJriiKkeHHS. AITOPUTMH IIMOOKOTO HABYAHHS, peati3oBaHi B IPOrPaMHOMY
3abe3neueHni WEKA, 1 ixas edexruBHIiCTs moa0 BiHCKOHCIHCEKOTO Ha0OpY JaHMX MPO pak MOJIOYHOi3aI03u. MeTa.
3HayHe 3MEHIIEHHS PO3MIPHOCTI Ha0OpYy MaHUX Oe3 BTpaTH IPOTHOCTHYHOI MoTykHOcT.. MeTtoman. Komm’toTepHi
excriepuMeHTH B cepenoBumi WEKA 3abesnedyioTs momepenHio oOpoOKy, KOHTPOJILOBAaHE Ta HEKOHTPOJHOBAHE
rMOOKe HaBYAHHS IMMOBHUX 1 CKOPOYEHUX HAOOPIB JaHUX 3 OliHKOI 1X edextuBHOCT. PesyabraTtn. IMoTtpiiiHa moc-
JAoBHA (UIBTpAIls JO3BOJIA IOMITHO CKOPOTATH PO3MIPHICTh BUXITHOTO Habopy maHux: Bim 30 atpuOyTIB 110 YO-
mprox. HecmoxiBano Bci Tpm kiacu¢ikatopu rmmboxoro HaB4aHHS, peanizoBani B WEKA (DMjMlp, Multilayer
Perceptron i Voted Perceptron), moka3anu CTaTUCTUYHO OJHAKOBY MPOIYKTHBHICTh. KpiM TOTO, MPOMYKTHBHICT OyJia
CTATUCTHYHO OJHAKOBOIO I MMOBHUX i CKOPOUEHNX HaOopiB manmx. Hampukiazx, BiICOTOK MpaBMIBHO KiacH(ikoBa-
HHUX ex3eMIIpipiB OyB y miamasosi (95,9-97,7) 3i crammapTHUM BimxiieHHSAM MeHmre 2,5 %. JIBa anmropuT™MH KiacTe-
pu3arii, siki BUKOpHCTOBYIOTh HelipoHu (Self Organized Map, SOM, i Learning Vector Quantization, LVQ), Takox
MOKa3amu MoMiOHI pe3yipTaTd. J{Ba KIacTepu B ycix Habopax JaHUX HE PO3ALUICHI HaJle)KHUM YHHOM, ajle BOHU TOYHO
MPEeACTABILIIOTh 00UABa MOTEPEIHbO NMpU3HaUeHi kiacu 3 inaekcamu Paynkca—Memnoy (FMI) y mianazoni Bin 0,81
10 0,99. BucHoBku. JloCHipKeHHS IOKa3ye, IO PO3MIpHICTE BiHCKOHCIHCBKOTO HAaOOpy JAHHX MPO pak MOJOYHOT
3aJI031, SIKUI Bce Oible CTAa€ «30J0TUM CTAaHAAPTOMY» Ul JArHOCTHKH 3JOSKICHHX 1 JOOPOSIKICHUX IMyXIHH, MOJE
OyTH 3HaYHO 3MEHILIEHA 0e3 BTpaTi MPOTHOCTUYHOI MOTYKHOCTI. ANTOopuUT™MHU Tbokoro HaB4aHHsI B WEKA 3a6es3-
MEeYYIOTh YyJOBY MPOJyKTHBHICTH SIK ISl KOHTPOJILOBAHOTO, TAK 1 yIi HEKOHTPOJILOBAHOTO HABYAHHS, HE3AJICIKHO
Bill TOTO, UM WIETHCS MPO MOBHI a00 CKOPOYCHI HAOOPH JAHHX.

KmouoBi cjoBa: pak MOJIOUHOT3a1031; aaropuT™MH Iuookoro Hapuanusa; WEKA; Habip JaHUX paKy MOJIOYHOT
3a1031 BiCKOHCIHCHKOTO YHIBEpCHTETa; MArHOCTHKA 3JOSKICHUX 1 JOOPOSIKICHUX IYXITHH.

Yyiiko I'ennaniii HetpoBuu — 1-p ¢i3-mart.. HayK, mpod., npod.kad. koM F0TepHOI iHxeHepii, HopHOMOPCEH-
Kuil HanioHanbHUl yHiBepcutetT iMm. I[letpa Moruwm, Mukomnais, YkpaiHa.

T'onuapoB Jdenmnc CepriiioBuy — acm. kxad. koMm’'roTepHoi imkeHepii, YopHOMOpPCHKHI HaliOHAJIHHU I
yHiBepcuteT iM. [Tetpa Morumu, Mukonais, YkpaiHa.

Gennady Chuiko — D.Sc. in Physics and Mathematics, Professor at the Computer Engineering Department,
Petro Mohyla Black Sea National University, Mykolaiv, Ukraine,
e-mail: henadiy.chuyko@chmnu.edu.ua, ORCID: 0000-0001-5590-9404.

Denys Honcharov — PhD Student of the Computer Engineering Department, Petro MohylaBlack Sea National
University, Mykolaiv, Ukraine, e-mail: honcharov.denys@chmnu.edu.ua, ORCID: 0009-0004-1200-6677.


mailto:honcharov.denys@chmnu.edu.ua

