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INTELLECTUAL CODE ANALYSIS IN AUTOMATION GRADING  
 

Grades for programming assignments continue to be di fficult to assign despite the fact that students have a 

wide variety of strategies available to address challenges. The primary factor is the existence of several tech-
nological frameworks and a range of coding methodologies. The subject matter of this article is the process o f 

intelligent evaluation of students’ knowledge based on code written by students during regular practical work . 

The goal is to develop an approach for intellectual code analysis that can be easily implemented and integra t -

ed into the most widespread grading systems. The tasks to be solved include: formalization of code representa-

tion for intellectual analysis by applications; analysis of the current state of research and development in the 

field of automated analysis and evaluation of software codes; introduction of a technique that offers substan-

tial feedback through the integration of intelligent code analysis via code decomposition and provid ing  grad-
ing systems an “understanding” of program log. The research subjects are methods of the programming code 

evaluation during distance learning. The methods used are: tree classification code analysis and graph trav-

ersing methods adopted for the tree linearization goal. The following results were obtained: 1. An examination  

of the current state of automated software code analysis and evaluation reveals that this issue is intricate due 

to the challenges involved in manually assessing programming projects. These challenges are further exacer-

bated by the intricate nature of the code, subjective judgment, and the need to adapt to various technical struc-

tures. Consequently, there is an urgent demand for automated assessment methods in educational settings. 2. 

The technique of representing the code structure as syntactic trees was employed to create an  automated tool 

for analyzing software code. This facilitated the decomposition of the code into interrelated logical modules, 

enabling the analysis of the structure of these modules and the relationships between them. 3. The used meth-

odologies and techniques were used for the analysis of Java code. The syntactic analysis enabled the detection  

of problematic and erroneous code blocks and the identification of fraudulent attempts (manipulating the pro-
gram's output instead of performing the algorithm). Conclusions. Most current automatic student work evalua-

tion systems rely on testing, which involves comparing the program's inputs and outputs. Unlike the other 

methods, the approach presented in this study examines the syntactic structure of the program. This e nables 

precise identification of the position and type of mistakes. An astute examination of the gathered data will ena-

ble the formulation of precise suggestions for students to enhance their coding skills. The suggested instru-

ments can be incorporated into the Intelligent Tutoring System designed for IT majors. 
 

Keywords: data processing; intelligent data analysis; intelligent assessment systems; software code analysis; 

dynamic analysis of software code; feedback generation. 

 

1. Introduction 
 

1.1. Background 

 
The incorporation of technology into the ever-

changing environment of education has changed how 

we teach, learn, and evaluate data. The automation of 

exercise grading technology is a significant advance. As 

traditional manual grading techniques struggle to meet 

the needs of modern education, automation provides an 

attractive alternative that not only answers efficiency 

problems but also opens up new opportunities for indi-

vidualized learning and pedagogical innovation. 

The traditional method for grading exercises is a 

time-consuming task for educators. As class numbers 

grow and online learning becomes more popular, in-

structors’ pressure to provide timely and frequent feed-

back has reached a new level. 

Furthermore, the subjectivity inherent in certain 

kinds of assessments frequently leads to grading dispari-

ties and biases, thus affecting the overall fairness of 

evaluations. Technology has recently intervened to 

change this landscape. Automated exercise grading 

technologies harness the power of artificial intelligence, 

machine learning, and natural language processing to 

evaluate student responses with exceptional accuracy 

and speed. The transition from manual grading to auto-

mation has numerous advantages. It not only relieves 

educators' workloads but also improves students' learn-

ing experiences by providing rapid feedback and allow-

ing them to follow their progress in real time. 

In addition to the obvious benefits of efficiency, 

automation opens up new opportunities in the field of 

education. An educational experience that is both per-
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sonalized and effective. Educators may now devote 

more time to meaningful interactions with students, 

concentrating on improving their conceptual knowledge 

rather than navigating piles of homework. Furthermore, 

the ability to handle vast amounts of data enables the 

detection of learning trends and areas where students 

frequently struggle. As a result, educators can adjust 

their teaching approaches to address unique obstacles, 

resulting in a more effective learning environment. 

 

1.2. Motivation 

 

Automation and grading technology have seen 

immense growth in the educational landscape. The in-

teraction of crucial factors that address long-standing 

issues while using new educational opportunities drives 

the rise and widespread adoption. 

Subjectivity, consistency, and scalability issues 

have long been a problem with traditional grading 

methods that rely on manual assessment. Educators fre-

quently struggle to maintain consistent grading stand-

ards, especially when faced with the onerous task of 

analyzing a huge volume of assignments. Given these 

inherent restrictions, there is an urgent need for a more 

efficient and consistent grading approach. 

Automation grading technology is introduced to 

provide a streamlined and efficient alternative to the 

time-consuming manual grading procedure. It can 

quickly grade assignments, quizzes, and tests, thus free-

ing educators from the time-consuming task of hand-

grading. Moreover, it is positioned to satisfy the increas-

ing demands of assessing assignments acros s more stu-

dents and more types of distance learning programs 

without sacrificing quality or rapid review. This frees 

educators' valuable time and skills for more meaningful 

educational activities, such as classroom instruction and 

providing focused, constructive feedback to students. 

However, not all educational areas can be easily 

covered with an automation grading system, especially 

in practical programming exercises, essays on free top-

ics, and many unstructured assessment tasks related to 

free-form text processing. 

 

1.3. Problem statement 

 

The manual grading process is not very strict in the 

matter of giving feedback, especially in learning pro-

gramming languages, because of the variety of ways 

each task can be solved, different approaches that can 

produce the same result, and different technology stacks 

that can be used under the hood. Moreover, assessment 

relies on too many human factors that are present during 

the educational process, like manual verification by the 

teacher to give advice on the task and usage of different 

technology stacks that can lead to rejecting overall 

tasks. This is very crucial to learning a programming 

language, data analysis, or AI-related courses because 

students should not be tight to technology stacks or 

frames setup by the teacher. They should have the abil-

ity to reach the goal in their own way or at least get a 

good explanation of what they need to accept bounda-

ries. These problems mostly relate to human factors and 

prevent the creation of automated, teacher-like grading 

technologies. Nevertheless, grading technology systems  

have become more popular and widespread around the 

world, which is forcing the community to investigate 

new and improve existing areas of automation grading 

methods and techniques.   

The problem of grading programming tasks is not 

new; however, it is partially solved because of the na-

ture of programming code [1] and the variety of ways 

programming code can solve tasks that prevent automa-

tion systems from giving appropriate feedback. This is 

the reason why the purpose of this study is to observe 

and validate an approach based on abstract syntax for 

automating the grading of practical programming tasks, 

along with providing substantive feedback and identify-

ing the most valuable tasks . 

 

1.4. State of the art 

 

Programming exercises are always connected to 

the process of writing part of the code. It can be a com-

plete program or a part of it; however, even simple it-

erations over an array of values can be implemented in 

different ways. Most grading systems assume that stu-

dents already have some part of the written code and 

only need to add a missing part to complete the task [2]. 

This approach is sufficient for learning basic program-

ming language concepts, terms, and syntax. However, 

what about advanced levels when students need to write 

some kind of code based on some predefined contract 

(contract is a set of features along with logic behind of 

it)? The answer to this question has not yet been deter-

mined because this type of verification is very complex 

and has various limitations. 

Ala-Mutka [3] classified the automated evaluation 

of various qualities into two major groups: static analy-

sis and dynamic analysis, in their 2005 publication, "A 

Survey of Automated Approaches for Programming 

Assignments". 

Dynamic analysis determines which properties of a 

running program will remain for one or more execu-

tions, which allows it to evaluate these attributes [4]. It 

often uses a suite of unit tests that compare the printed 

output or return values of various methods to grade the 

correctness of a student’s assignment. 

The capacity of students to generate efficient code 

or complete test suites can also be assessed using dy-

namic analysis [5]. The creation of a thorough test suite 
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usually requires considerable time and effort from in-

structors who are experts in designing unit tests using 

advanced language capabilities like reflection. Students 

typically have one of three options regarding access to 

test suites: full access before the final deadline [6], par-

tial access, or no access at all. The assessment approach 

determines how students are presented with the test 

suites [7, 8]. 

Generally, students have full access to all parts of a 

formative assignment, whereas they may only have ac-

cess to part of the tests in a summative assignment. To 

prevent students from hardcoding return values and 

gaming the system, it is common practice to either use 

hidden tests or restrict student access to the entire test 

collection [9]. 

The static analysis type evaluates software withou t  

actually running the program or considering inputs. 

Software is focused on the detection or partial identifi-

cation of faults, as well as the verification of maintaina-

bility, readability, and the presence of documentation 

[10]. There are many such tools for each of the pro-

gramming languages, e.g. JaCoCo, Checkstyle, Find-

Bugs, SonarQube etc. 

A comparison of dynamic and static code analysis 

[11] demonstrates that for optimal software quality, a 

combination of both strategies is advisable. By employ-

ing a mix of these strategies, software engineers can 

guarantee that their programs possess superior quality 

and are devoid of flaws. However, this approach will 

work for experienced developers rather than students 

who are only learning languages and executing the “hel-

lo world” programs. 

Meanwhile, from the feedback generation, dynam-

ic code analysis is the most interesting and valuable part 

of the analysis of segregation because it should deter-

mine where students made mistakes. The only thing the 

grading system needs to do is discover the code block 

that is causing a problem and give sustainable feedback 

to a student that should contain the root cause of the 

problem and instructions on how to fix it. 

The most questionable thigs are related to the 

method or methods of code block identification and 

further analysis that allows not just verification of “code 

smells” but also understanding and predicting possible 

code issues. One such identification method was ex-

plained and used by Anh-Tu Phuong Nguyen and Van-

Dung Hoang [12]. The present study relies on an ab-

stract syntax tree approach for analyzing a code written 

in Python to create an abstract layer based on abstract 

syntax trees that allows a program to walk through the 

code tree and perform analysis on its own logic on an 

isolated code base. This approach perfectly fits the goal 

of source code representation. However, testing code in 

isolation may not work with other languages due to the 

inability to isolate and run part of the code in languages 

like Java or C#. 

The usage of machine learning techniques along 

with artificial intelligence is becoming increasingly 

popular in all kinds of learning systems: from the tutor-

ing systems to educational robots and grading automa-

tion [13]. Based on this, the further use of machine 

learning for syntax trees may seem very logical. Such an 

example was provided by Francisco Ortin et al. [14] in 

his research on how to apply a machine learning tech-

nique to analyze Java language code. This study demon-

strated the ability of machine learning techniques to 

identify and evaluate constructs with high precision. 

However, from a practical perspective, using this ap-

proach on different programming languages mean to 

perform a deep investigation of each language along 

with involving subject-matter experts to validate the 

language processing results. 

There is no single silver bullet in machine learning 

that can be used for any programming language. The 

great analysis work by Peter Hazem et al. [15] proves 

this statement and forces us to think about the generali-

zation of the approach from the very beginning instead 

of moving from a concrete language-based implementa-

tion to a more generic one. 

However, not only syntax trees and machine learn-

ing techniques can also be used for code representation. 

Paiva et al. [16] described alternative approaches that 

can be used for code analysis, especially feedback gen-

eration. Based on this research, we found that syntax 

trees and code property graphs are the best candidates 

for the intermediate representation of the source code 

for further analysis. Moreover, the combination of any 

of these algorithms with others like data flow graphs or 

control flow graphs, can be an answer to the question of 

how a computer system can understand human-written 

code and compare it with an example one. 

Another significant question is a practical way to 

construct the code representation. This question can be 

solved using two common approaches: reflection usage 

that is applicable to popular languages like Java or C#, 

and object-oriented code analysis. Each of them can be 

rather correct but slow or fast but not very accurate in a 

meter of processing inheritance, which takes a major 

part in learning programming languages. The experi-

mental comparison shows that the object approach 

works better in the C# language [17]. 

Nevertheless, any type of tree-based algorithm is a 

possible performance issue due to the necessity to trav-

erse over the structure more than once along with per-

forming searching and filtering over the node values . 

 

1.5. Objective and Approach 

 

This paper investigates and evaluates an approach 

based on abstract syntax trees for automating the eval-
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uation of code submissions of students. It considers not 

only the accuracy (that is a goal of the static code analy-

sis) of the output but also the correctness and conformi-

ty in a form of evaluating the logic behind the code. 

This leads to formalization of the primary goal, namely, 

ensuring grading consistency by intellectual analysis in 

the form of a comparison of code terms and code 

branches with predefined by tutor solutions, along with 

finding the biases and explaining the mistakes in a logic 

flow and how to correct them. 
The main objectives of this research are as fol-

lows:   
- describing the problem and formalization of code 

representation for intellectual analysis by applications;  
- adapting a method and developing an algorithm 

that offers invalid code block identification via code 

decomposition and provides grading systems an “under-

standing” of program execution; 
exploring algorithm behavior in common educa-

tional cases; 
- discussion of results and recommendations; 
- summarizing the results and describing future re-

search areas. 
To achieve these aims, the article was divided into 

five sections to form the article structure: 

- Section 1 – “Introduction” explains the back-

ground and motivation of this article, along with analyz-

ing existing literature to better and accurately demon-

strate the intention of the current work. In addition, this 

section presents current trends in the research field, al-

gorithms, practical implementations, and alternative 

approaches that may solve the problem in the case of 

future research. 

- The methodology of providing feedback during 

the practical task assessment along with the use of the 

syntax tree approach is described in Section 2. This pro-

vides an understanding of the algorithm developed in 

the scope of this paper. 

- Section 3 – “Implementation and evaluation of 

code samples” explains, in an example, how the algo-

rithm works in common use cases during programming 

language learning. 

- The “Discussion and recommendations” section 

shows the benefits and concerns of this algorithm usage 

along with guiding key components that need to be tak-

en into account during algorithm implementation and 

integration into existing distance learning or grading 

systems. 

- The paper ends with a conclusion section that 

summarizes the content provided in the paper and high-

lights future research areas .  
 

2. Methodology 
 

The process of giving feedback is complicated and 

should consider already written code, be able to analyze 

errors, and make assumptions about the logical program 

component. This process breaks it down into several 

stages: determining which part of code is wrong (this 

stage supposed to include splitting code into logical 

blocks and further processing of the code structure), 

code analysis to find the exact cause  (this is the stage 

where deviation or invalid block identification should 

be performed based on the tree code structure), and gen-

erating advice on what needs to be done to make it work 

(this is a stage of advice preparation based on invalid 

code found on the previous stage) (Fig. 1).  

 

 
 

Fig. 1. General approach to advice generation 
 

However, the advice generation algorithm is more 

complex and comprises different stages (Fig. 2). 

The code block identification stage (Fig. 2) is 

almost easiest. This process comprises parsing, function 

extraction, and obfuscation stages. The goal is to walk 

through the code and split it by programming language 

expressions such as variables, simple entities, and con-

trol structures [18]. In addition, it assumes the creation 

of a dictionary of functions used in the code, e.g., the 

creation of pairs for method names and method bodies 

in programming languages like Java or C#. Another 

method of identification that will be helpful in cases of 

large amounts of code is the use of fingerprints [19] and 

text preprocessing like obfuscation, which replaces var-

iables and makes code more recognizable for finger-

prints. The results of such parsing steps are simply a 

plain code block structure and a map of pointers to code 

blocks. 

Further code analysis, invalid block identification, 

and advice preparation are the most difficult steps 

(Fig. 2). By the line of code where an error occurs, we 

can identify the block statement it belongs to. However, 

this does not mean that blocks are identified correctly 

because there may be a chain of errors that lead to er-

rors. This means that block detection is effective for 

simple pieces of code but may not be effective for tasks 

where students should implement contracts on their 

own. This is a case in which we must have some back-

ground information to identify the problem correctly. 
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Fig. 2. General flow of a grading process  

in automated systems 
 

Background in a code analysis is an understanding 

of the code logic that can be obtained by analyzing code 

blocks and their interconnections. Here, identified code 

blocks must be gathered into a logical representation 

(logical tree creation stage on Fig. 2 for further pro-

cessing. 

The best choice for gathering a logical code struc-

ture is to combine blocks into a tree because this allows 

us to create a full picture of the operations performed 

under the hood.  

A tree (the program representation) in this case is a 

finite set of nodes with a specially designated parent  

node called the root (entry point to the program). The 

remaining nodes are based on blocks and logical condi-

tions inside blocks when each block is a node in the tree 

and partitioned into d disjoint sets {R1; R2;:::;Rd} such 

that each of these sets is a tree. Each node may have 

other nodes inside unless its’ value is a terminal opera-

tion - operation that does not have code blocks inside. 

E.g., the if-else statement will be presented as a node 

with two child nodes; while i++ will be positioned as a 

leaf - node without children. 

The main benefit of tree structure is the possibility 

to perform a comparison based on subtrees 

{R1;R2;:::;Rd} for each of the nodes and identify the 

inconsistency between two trees in a way of corrupted 

nodes identification (1). The comparison is a content 

equality operation on the values of two nodes (2). 

T1(n) T2(m),                        (1) 

 

where n and m denote the positions of nodes in trees T1 

and T2, respectively. 

Ideally, n and m should be the same number or at 

least have the same degree. Therefore, each node should 

be compared with an appropriate node from a tree of 

valid solutions. This comparison (P) should consider 

expressions in the node under comparison and expres-

sions in the child nodes (2). 

 

nodei T1 nodei T2

nodei T1 nodei T1 nodei T2
i 0..k

1,  if E E        

P 1,  if E E

0,  otherwise                    



 


  



,    (2) 

 

where PnodeiT1– result of the comparison of code state-

ment EnodeiT1 in nodei of the student code tree T1 and 

code statement EnodeiT2 in nodei of the expected code tree 

T2, i – represents a logical segment in a code tree rather 

than a simple line of code. 

Thus, if an expression in a target node has at least 

one similar expression in any node to form a valid solu-

tion, we can identify such a node as a matched node and 

identify it as a mismatched node otherwise. 

The summation of the equality operations of each 

(3) node will give some correct nodes and returns the 

expected results. This number can be used to obtain a 

general understanding of the logical validity of the 

overall code. 

 

T1 nodeiT1P P ,                       (3) 

 

where PT1 – aggregation of the equality of each code 

statement PnodeiT1 in the students’ code tree T1. 
The next step is to identify the problem or invalid 

block identification (Fig. 2). In this step, two types of 

misleads must be considered 

The first is the simplest one, where an error occurs, 

and the error code and error line are already known. In 

this case, trees should be used to identify problematic 

code structures and advice generation. This situation 

does not require explanation because it is common in 

any integrated development environment and can be 

represented via hints or stack traces. 

The second type of error occurs when there is no 

error; however, the expected result is inappropriate. In 

this case, the teacher or data gathered from prior suc-

cessful code executions should provide an "ideal" im-

plementation for each task. This concept and implemen-

tation are used to compare tree nodes and find devia-

tions. The code tree comparison algorithms should con-

sider the variations in the code structures and different 

approaches that can be used. It should find the differ-

ences in the logical code composition of the input data 
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for advice generation. This leads to the comparison of 

code lines, variables, statements, methods, and even 

classes in a way of performing syntax and variable wir-

ing comparisons.  

The idea of variable wiring comparison is to iden-

tify that all variables, method usage, and return values 

are wired together. This understanding is required to 

identify cases in which a student attempts to cheat by 

returning constant values or is using inappropriate 

methods. In contrast, syntax comparison targets invalid 

method usage identification rather than verification of 

the compilation to provide an understanding of whether 

correct libraries are used or not.  

Advice generation is based on logical differences, 

syntax, and wiring analysis and can transform them into 

sustainable feedback. In this part of the process, ma-

chine learning techniques can be used along with rule-

based mechanisms. 

 

3. Implementation and evaluation  

of code samples 

 

3.1. Code parsing and metadata pre-processing 

 

Let’s assume that we have simple Java code with 

several methods and simple calculations inside (Fig. 3). 

The provided code is parsed into a code block 

structure with main operations that is easy for the ma-

chine to analyze. 

 

line 2 - variable - private int a; 

line 3 - variable - private int b; 

lines 5-7 - method - public int sum();  

line 6 - return from method; 

line 6 - math operation - a+b; 

line 9-11 - method - multiplySum(int x); 

line 10 - return from method; 

line 10 - method execution; 

line 10 - math operation - *x;  

lines 13-16 - constructor; 

line 14 - variable set - a = 3; 

line 15 - variable set - b = 5; 

lines 18-26 - entry point; 

line 21 - instance creation - new Main(); 

line 22 - method execution - m.sum(); 

line 22 - variable set - c = m.sum()); 

line 23 - if statement - if(c > 3) 

line 24-26 - output - console; 

line 25 - method execution - m.multilySum(3); 

line 27 else statement 

line 28-30 - output - console; 

line 29- method execution - m.multilySum(4); 

 

 
 

Fig. 3. Correct coding assignment execution 

 

During the parsing process various kinds of 

metadata gathered: scope of variable visibility (relation-

ship between variable declaration and places where they 

can be used), method to line relationship and method 

hierarchical usage (Fig. 4).  

The metadata algorithm can map variables and 

methods together by finding places where these varia-

bles are used (Fig. 5). Such information is a source data 

for the variable wiring analysis, which is a simple 

checking of next statements :  

- all objects have initialized variables (verification 

that class variables are present in the constructor or in 

appropriate set method and that all the set method are 

executed in the entry point or in other methods under 

the entry point execution); 

- there are no missed or undeclared variables in the 

code; 

- all the variables are of the defined, existed and 

valid types. 

Fig. 5 gives a hierarchical representation of the 

variable usage at the entry point. In the case of several 

entry points (e.g., in case of several endpoints that are 

available over the network), we obtain several hierar-

chical representations for each entry point with its own 

variables inside. 
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Fig. 4. Metadata for the entry point 

 

 This representation can be used for further finger-

print creation to simplify searches over the logical struc-

ture. A simple statement-based fingerprint can be used 

in this study [12] with minor modifications. For exam-

ple, we consider fingerprints in the miltiplySum meth-

od (Fig. 6). This method calls the sum method inside 

and performs a mathematical operation. The sum meth-

od performs a mathematical operation on the two inte-

ger values inside. 

 

 
 

Fig. 5. Hierarchical representation  

of variables inside an entry point 

 

Thus, if we remove variable names, replace con-

cert types with more generic ones (like replace int with 

number), show the hierarchy as a part of fingerprint, and 

then cut the number of method execution (linearize the 

execution tree). We will obtain the fingerprint, which 

shows what operations are actually performed for this 

method. Such an approach is very interesting in terms of 

practical experience; however, it is not a goal of this 

article. 

 

 
 

Fig. 6. Fingerprint for multiplySum method 

 

3.2. Syntax tree composition 

 

In the next step, after metadata preparation, the 

code block structure is transformed into a tree that 

shows the logical code structure from the very begin-

ning of the program to the entry point to the very end 

and possible variants of the program end (Fig. 7).  

The structure starts from the entry point that is rep-

resented via “public static void main” construct (con-

struct - is the line of code that may contain method exe-

cutions, variable declaration, mathematical operation 

and any syntax sugar that is available in the program-

ming language). This construct does not have any sub-

trees inside. 

The next node (line 21) in the tree is the instance 

creation of class Main along with variable m declara-

tion. This is a complex construct because instance crea-

tion in our case should include a variable setup at the 

instance level, which is transformed into an inner tree 

for this node. The inner tree comprises two node value 

setups for instance or class variables a and b. The same 

statement applies to the next node at line 22 because it 

is also complex due to variable c assignment and meth-

od execution on previously created local variable m. 

Sub tree of this node represents the execution of the 

method 
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Fig. 7. Logical tree structure for correct coding assignment execution 
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Fig. 8. Several method executions in one construct 

 

sum on variable m, which is an instance of class Main. 

In the case of several method execution subtrees, all 

method execution trees are combined (Fig. 8). 

Line 23 represents the conditional statement. Such 

nodes may split logical tree into more than two branch-

es, due to possibility of programming languages to 

combine several if-else statements together (Fig. 9) or 

even having special statements with more than two pos-

sible solutions like switch-case (Fig. 10). In our exam-

ple, the logical tree was split into two branches: a 

branch starting from node on line 24 and a branch start-

ing from line 28. They are almost identical in our ex-

ample because we use the same utility method and code. 

The only difference – is the constant value that is used 

inside statements (block marked in dashes and values 

highlighted via wave lines on Fig. 7). 

To minimize and simplify the overall representa-

tion of the logical tree structure in Fig. 7 and for better 

visualization, we can hide the additional data like value 

usages, remove return statement nodes, and replace 

complex construct nodes with simplified representation 

(Fig. 11).  

 

 
 

Fig. 9. Multiple outputs for several if-else statements 
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Fig. 10. Multiple outputs for several if-else statements 

 

 

 
 

Fig. 11. Simplified representation of the logical  

tree structure 

 

In Fig. 11, we have only the nodes that need to be 

considered during comparison (for the best understand-

ing only line numbers are present on the simplified view 

of Fig. 7). Moreover, additional filtering of the tree al-

lows us to remove codes that do not affect the overall 

result (marked in dash squares). Nevertheless, such re-

moval is not always possible because: from the one 

hand, it allows to minimize the number of nodes during 

further comparison in case of removing code in leaves 

(like in our example); from the other hand, such remov-

al may lead to skipping a large part of the code that will 

not be assessed at all but should be. From this stand-

point, duplicate removal is logical for program code 

understanding but not applicable to our goal-assessing 

programming language leaning tasks . 

 

3.3. Syntax tree analysis and advice generation 

 

The next algorithm step is tree analysis. For our 

example, we combine this step with the next one–advice 

generation, because this approach provides a full under-

standing of the advice creation mechanism based on a 

logical code tree.  

To demonstrate how it should work, we assume 

that we have four different cases with this structure – 

one per different student. In three cases, we simulate use 

cases when the code executes correctly but data in a 

console are completely different from the expected val-

ue – 24 and in the fourth one - with an exception during 

execution. 

 

3.3.1. Invalid constant value usage  

 

The problem occurs at line 25, where an invalid 

number is used by the student for the constant (used 

value is value 5 instead of 3). As a result, the console 

output will be 40 instead of 24 (Fig. 12). 

Per the algorithm, this change will be detected via 

tree comparison, and advice will point at the wrong con-

stant value at line 25 (Fig. 13) and explain how this val-
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ue will break the expected result (such an explanation 

should be given based on tree with a help of traversing 

on it to the very end and taking into account all direct 

and indirect usages of constant value that is different). 

Thus, advice itself will be a line of code where the 

problem occurs and used value along with showing how 

value 5 affects the result (just inlining the further tree 

into text with variables, similar to “(3 + 5) * 5”). It will 

show students the place and explains how it affects the 

overall program execution. 

 

 
 

Fig. 12. Mistake in value usage 

 

 

 
 

Fig. 13. Comparison of two nodes at the line  

where mistake occurs 

 

3.3.2. Invalid comparison operator usage 

 

In this case, the comparison operation is invalid in 

the if-else statement (Fig. 14). 

In the algorithm, the tree comparison will handle 

such deviations by comparing child nodes and determin-

ing that nodes are not in the correct order (Fig. 15). This 

leads to comparing the constructs under the node at l ine 

23. This comparison gives an understanding that the 

equality sign in the construct is invalid, or variable c 

and constant 3 are in the wrong places. As a result, there 

are two pieces of advice: correcting the sign and swap-

ping constant 3 and variable c in the code. 

 

 
 

Fig. 14. Mistake in equality sign 

 

 

 
 

Fig. 15. Invalid child node order 
 

 

3.3.3. Hardcoding of expected result value 

 

However, what if a student just hardcodes the out-

put value, like in line 25 (Fig. 16)? 

 

 
 

Fig. 16. Cheating attempt 
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The tree comparison also will be able to handle 

such a case because there will be missing nodes 

(Fig. 17). However, syntax and wiring analysis are also 

able to identify the same problem even faster due to 

comparing only a code syntax without working with a 

tree structure. For example, constant usage at line 24 

can be simply identified by the static analysis, whereas 

wiring analysis shows no problems. Such a case with  

wiring analysis is possible due to line 29, where all the 

methods used and variables are under the hood. Howev-

er, if at line 29, students put the constant too, wiring 

analysis will complain about unused methods and varia-

bles. This is why wiring and static analysis should be 

used as complementary methods and should only be 

used to clarify the problem.  
 

 
 

Fig. 17. Node difference in case of cheating attempt 

 

Nevertheless, as a result, advice not to hardcode 

expected results will be given to the student along with 

a warning that such an attempt is a use-case of inappro-

priate solution. This information can also help tutors 

better understand how many students are trying to cheat  

instead of learning the topics .  

 

3.3.2. Missing variable initialization 

 

In the case of an error, the algorithm walks 

through the tree and determines whether all variable 

assignments are in place. In the example below (Fig. 

18), variables a and b are not set, which leads to the 

error.  
 

 
 

Fig. 18. No variable initialization 

During the node comparison, we observed a dif-

ference in node structures (Fig. 19), where the algorithm 

at line 21 did not find any subtrees. However, his case 

can be simply covered by static code analysis or varia-

ble wiring, where the instance variable is identified as 

unknown due to the absence of variable set up code. 

Such an approach will work for simple cases but not for 

complex ones, where assignments are dynamic and may 

need to be investigated in-depth, which can take a sig-

nificant amount of time and computing resources. This 

leads to proving the statement from the previous case 

that wiring and static analysis should be complimentary 

methods and applied to clarify cases with finite numbers 

of nodes. 

 

 
 

Fig. 19. Node comparison when no variable  

initialization is present 

 

The algorithm provides a list of variables that were 

not initialized for the instance of class Main. Such ad-

vice points students on common issues during learning 

object-oriented programing – variable initialization and 

the usage of classes instead of primitive types. 

The above cases involve common issues while 

studying programming languages. Such issues can be 

connected to coding, understanding coding paradigms 

and principles, or even attempts at cheating. The goal of 

the proposed algorithm is to identify them and prepare 

data for advice generation. On the other hand, advice 

generation principles and mechanics are complicated 

things that are not fully a part of this article due to the 

necessity to showcase how they work in the educational 

process. Nevertheless, building the logical code tree and 

searching it along with supplementary code analysis 

methods provide full information of the code written by 

the student to identify the issue and find a way of fixing 

it in a code written by the student rather than advising 

them to rewrite the whole code from scratch. 
 

4. Discussion and recommendations 
 

According to the algorithm examples, the process 

of invalid block identification as a key point of the grad-

ing process is based on comparing the code terms and 

branches in the abstract syntax tree of the source code, 

and handles common educational cases like: 

- mistypes and cheating attempts - by validating a 

code constructs and variable values during term analy-

sis; 
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- runtime errors are identified during the variable 

validation; 

- common mistakes in operation usage are also 

identified by validating code constructs and variable 

values. 

The proposed method can be used to identify not 

only syntactical errors but also semantic and uninten-

tional errors. This capability enhances the grading pro-

cess because it allows the system to understand the in-

tended logic and flow of the code, rather than just its 

surface-level correctness.  

Nevertheless, there are obstacles linked to the use 

of the proposed algorithm due to the use of abstract syn-

tax trees for code evaluation. Obstacles arise from the 

computational difficulty associated with producing and 

analyzing abstract syntax trees, which may require sig-

nificant processing resources. In addition, an algorithm 

is capable of processing several programming lan-

guages, where individual language features may neces-

sitate customized parsing and analysis techniques, thus 

increasing complexity in the implementation process. 

Considering the advantages and obstacles de-

scribed, it is advisable to incorporate analysis into code 

grading systems after performing further experiments in 

which quantitative metrics can be used to evaluate ef-

fectiveness. Further implementation should be carried 

out considering the following factors: 

- enhance the efficiency of tree generation and 

analysis to maintain the grading system’s performance, 

especially when dealing with extensive codebases; 

- create language-specific extensions to handle dis-

tinct constructions and idioms, guaranteeing the accura-

cy of analysis across various programming languages; 

- regularly updating the system to incorporate new 

language features and paradigms, ensuring that the sys-

tem remains up-to-date and accurate; 

- provide a unified analysis approach that can be 

easily adopted to different programming languages and 

does not depend on them. 
 

5. Conclusion 
 

Manual evaluation of programming projects chal-

lenging due to the inherent intricacy of coding and the 

vast array of possible solutions. In addition to the com-

plexity of the grading process, subjective evaluation and 

the incorporation of diverse technical frameworks are 

also considered using intermediate representations of 

the programming code. Despite the limitations, there is 

a growing need to develop and enhance automated grad-

ing systems in educational settings.  

This study proposes the use of dynamic code anal-

ysis in a way of syntax trees usage to improve an auto-

mated grading system that can not only assess coding 

tasks but provides advice on how to fix existing stu-

dents’ code instead of rewriting it based on predefined 

examples. As we can see from the examples in the arti-

cle, the most common codding mistakes are perfectly 

covered by the algorithm that can potentially reduce the 

amount of tutor involvement in the education process 

when the less trivial ones should be discovered during 

the experiment. This technique attempts to solve com-

mon issues in programming training by providing stu-

dents with valuable assistance in identifying flaws, ana-

lyzing code structure, and comparing syntax. In addi-

tion, it attempts to identify the logic behind the code. 

However, although this technique demonstrates poten-

tial, it also acknowledges the complexity of coding loca-

tions, particularly at more advanced levels. To automate 

the grading and feedback generation process successful-

ly, this technique may require additional customization 

and adaptation. 

Future research. To fully realize its potential, it 

may be necessary to make additional adjustments and 

adaptations for the effective automation of grading op-

erations and feedback production along with performing 

experiments to understand the time consumptions that 

instructors dedicate to grading with a help by using an 

automated solution instead of manual grading work. By 

integrating this technique into educational systems like 

Moodle, it is feasible to significantly speed up evalua-

tion. The further research phases in this domain encom-

pass the implementation and testing of algorithms, as 

well as their subsequent incorporation into educational 

frameworks. 

Furthermore, the application of artificial intelli-

gence techniques, such as recurrent neural networks and  

massive language models, for code analysis appears to 

be highly promising. Although parsing is more reliable 

and less prone to incorrect responses, these tools can  be 

significantly more efficient than conventional methods. 

These techniques can facilitate the detection of more 

complex defect categories than traditional code analysis 

methods. 
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ІНТЕЛЕКТУАЛЬНИЙ АНАЛІЗ КОДУ  

В СИСТЕМАХ АВТОМАТИЗОВАНОГО ОЦІНЮВАННЯ  

Д. А. Селютін, О. С. Яшина 

Оцінювання завдань із програмування залишається проблемою, навіть незважаючи на різноманітність 

підходів, які студенти можуть використовувати для вирішення труднощів. Основною причиною є наявність 

численних технологічних стеків, що реалізуються, і різноманітність підходів до написання коду, які можна 

використовувати. Предметом вивчення даної статті є процес оцінювання знань студентів на основі коду, 

який був написаний студентом під час звичайної практичної роботи. Мета полягає в розробці підходу до 

інтелектуального аналізу коду, який можна легко реалізувати та інтегрувати в найпоширеніші системи  ав-

томатизованого оцінювання. Завданнями, які потрібно вирішити, є: формалізація подання коду для інтелек-

туального аналізу програмними засобами; аналіз сучасного стану досліджень та розробок в галузі автомати-

зованого аналізу та оцінювання програмного коду; розробка  методу та алгоритму, які пропонують суттєвий 

зворотній зв’язок через інтеграцію інтелектуального аналізу  методом декомпозиції та надання системам 

оцінювання «розуміння» журналу виконання програми у вигляді аналізу помилкових блоків. Предметом 

цього дослідження є методи оцінки програмного коду під час дистанційного навчання. Використовувані 

методи: методи аналізу коду на базі алгоритмів класифікації та представлення коду у вигляді дерева  разом 

із його вирівнюванням. Були отримані наступні результати: 1. Проведено аналіз сучасного стану в галузі 

автоматизованого аналізу та оцінювання програмного коду показав, що ця проблема є складною бо трудно-

щі, пов’язані з оцінюванням проектів програмування вручну, ще більше ускладнюються складною приро-

дою коду, суб’єктивним судженням і вимогою адаптації до різних технічних структур , що лише підкреслює 

нагальну потребу в автоматизованих методах оцінювання в освітніх середовищах. 2. Для розробки методу 

автоматизованого аналізу програмного коду було застосовано моделювання структури коду у вигляді синта-

ксичних дерев. Це дозволяє розбити код на взаємопов'язані логічні блоки, аналізувати структуру блоків та 

зв'язки між ними. 3. Розроблені методи та алгоритми застосовані для аналізу коду Java. Проведений синтак-

сичний аналіз дозволив виявити проблемні та помилкові блоки в коді, а також ідентифікувати спроби шах-

райства (підроблення виводу програми замість реалізації алгоритму). Висновки. Більшість існуючих систем 

автоматичного оцінювання робіт студентів основані на тестуванні, тобто співставленні входів і виходів про-

грами. На відміну від них запропонований в роботі метод передбачає аналіз синтаксичної структури про-

грами, що дозволяє точно визначити місце та характер допущених помилок. Інтелектуальний аналіз зібра-

них при цьому даних дозволить розробити точні рекомендації для студентів щодо покращення коду. Запро-

поновані засоби можуть бути частиною Intelligent Tutoring System для IT спеціальностей. 
Ключові слова: обробка даних; інтелектуальний аналіз даних; інтелектуальні системи оцінки; аналіз 

програмного коду; динамічний аналіз програмного коду; генерація зворотного зв'язку. 
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