68 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
UDC 004.89 doi: 10.32620/reks.2024.4.06

Denys SELIUTIN, Elena YASHYNA

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

INTELLECTUAL CODE ANALYSIS IN AUTOMATION GRADING

Grades for programming assignments continue to be difficult to assign despite the fact that students have a

wide variety of strategies available to address challenges. The primary factor is the existence of several tech-
nological frameworksand a range of coding methodologies. The subject matter of thisarticleis the process of
intelligent evaluation of students’ knowledge based on code written by students during regular practical work.
The goal is to develop an approach for intellectual code analysis that can be easily implemented and integrat-
ed into the most widespread grading systems. The tasks to be solved include: formalization of code representa-
tion for intellectual analysis by applications; analysis of the current state of research and development in the
field of automated analysis and evaluation of software codes; introduction of a technique that offers substan-
tial feedback through the integration ofintelligent code analysisvia code decomposition and providing grad-
ing systems an “understanding” of program log. The research subjects are methods of the programming code
evaluation during distance learning. The methods used are: tree classification code analysis and graph trav-
ersing methodsadopted for the tree linearization goal. The following results were obtained: 1. An examination
of the current state of automated software code analysis and evaluation reveals that this issue is intricate due
to the challenges involved in manually assessing programming projects. These challenges are further exacer-
bated by the intricate nature of the code, subjective judgment, and the need to adapt to varioustechnical struc-
tures. Consequently, there is an urgent demand for automated assessment methods in educational settings. 2.
The technique of representing the code structure as syntactic trees was employed to create an automated tool
for analyzing software code. This facilitated the decomposition of the code into interrelated logical modules,
enabling the analysis of the structure of these modules and the relationships between them. 3. The used meth-
odologiesand techniqueswere used for the analysis of Java code. The syntactic analysisenabled the detection
of problematic and erroneous code blocksand the identification offraudulent attempts (manipulating the pro-
gram's output instead of performing the algorithm). Conclusions. Most current automatic student work evalua-
tion systems rely on testing, which involves comparing the program's inputs and outputs. Unlike the other
methods, the approach presented in this study examines the syntactic structure of the program. This enables
precise identification ofthe position and type of mistakes. An astute examination of the gathered datawillena-
ble the formulation of precise suggestions for students to enhance their coding skills. The suggested instru-
ments can be incorporated into the Intelligent Tutoring Systemdesigned for IT majors.

Keywords: data processing; intelligent data analysis; intelligent assessment systems; software code analysis;
dynamic analysis of software code; feedback generation.

back has reached a new level.

Furthermore, the subjectivity inherent in certain
kinds of assessments frequently leads to grading dispari-
ties and biases, thus affecting the overall fairness of
evaluations. Technology has recently intervened to

1. Introduction
1.1. Background

The incorporation of technology into the ever-

changing environment of education has changed how
we teach, learn, and evaluate data. The automation of
exercise grading technology is a significant advance. As
traditional manual grading techniques struggle to meet
the needs of modern education, automation provides an
attractive alternative that not only answers efficiency
problems but also opens up new opportunities for indi-
vidualized learning and pedagogicalinnovation.

The traditional method for grading exercises is a
time-consuming task for educators. As class numbers
grow and online learning becomes more popular, in-
structors’ pressure to provide timely and frequent feed-

change this landscape. Automated exercise grading
technologies harness the power of artificial intelligence,
machine learning, and natural language processing to
evaluate student responses with exceptional accuracy
and speed. The transition from manual grading to auto-
mation has numerous advantages. It not only relieves
educators' workloads but also improves students’ learn-
ing experiences by providing rapid feedback and allow-
ing them to follow their progress in real time.

In addition to the obvious benefits of efficiency,
automation opens up new opportunities in the field of
education. An educational experience that is both per-

Creative Commons Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Intelligent information technologies

69

sonalized and effective. Educators may now devote
more time to meaningful interactions with students,
concentrating on improving their conceptual knowledge
rather than navigating piles of homework. Furthermore,
the ability to handle vast amounts of data enables the
detection of learning trends and areas where students
frequently struggle. As a result, educators can adjust
their teaching approaches to address unique obstacles,
resulting in a more effective learning environment.

1.2. Motivation

Automation and grading technology have seen
immense growth in the educational landscape. The in-
teraction of crucial factors that address long-standing
issues while using new educational opportunities drives
the rise and widespread adoption.

Subjectivity, consistency, and scalability issues
have long been a problem with traditional grading
methods that rely on manual assessment. Educators fre-
quently struggle to maintain consistent grading stand-
ards, especially when faced with the onerous task of
analyzing a huge volume of assignments. Given these
inherent restrictions, there is an urgent need for a more
efficient and consistent grading approach.

Automation grading technology is introduced to
provide a streamlined and efficient alternative to the
time-consuming manual grading procedure. It can
quickly grade assignments, quizzes, and tests, thus free-
ing educators from the time-consuming task of hand-
grading. Moreover, it is positioned to satisfy the increas-
ing demands of assessing assignments across more stu-
dents and more types of distance learning programs
without sacrificing quality or rapid review. This frees
educators' valuable time and skills for more meaningful
educational activities, such as classroominstruction and
providing focused, constructive feedback to students.

However, not all educational areas can be easily
covered with an automation grading system, especially
in practical programming exercises, essays on free top-
ics, and many unstructured assessment tasks related to
free-form text processing.

1.3. Problem statement

The manual grading process is not very strict in the
matter of giving feedback, especially in learning pro-
gramming languages, because of the variety of ways
each task can be solved, different approaches that can
produce the same result, and different technology stacks
that can be used under the hood. Moreover, assessment
relies on too many human factors that are present during
the educational process, like manual verification by the
teacher to give advice on the task and usage of different
technology stacks that can lead to rejecting overall

tasks. This is very crucial to learning a programming
language, data analysis, or Al-related courses because
students should not be tight to technology stacks or
frames setup by the teacher. They should have the abil-
ity to reach the goal in their own way or at least get a
good explanation of what they need to accept bounda-
ries. These problems mostly relate to human factors and
prevent the creation of automated, teacher-like grading
technologies. Nevertheless, grading technology systems
have become more popular and widespread around the
world, which is forcing the community to investigate
new and improve existing areas of automation grading
methods and techniques.

The problem of grading programming tasks is not
new; however, it is partially solved because of the na-
ture of programming code [1] and the variety of ways
programming code can solve tasks that prevent automa-
tion systems from giving appropriate feedback. This is
the reason why the purpose of this study is to observe
and validate an approach based on abstract syntax for
automating the grading of practical programming tasks,
along with providing substantive feedback and identify-
ing the most valuable tasks.

1.4. State of the art

Programming exercises are always connected to
the process of writing part of the code. It can be a com-
plete program or a part of it; however, even simple it-
erations over an array of values can be implemented in
different ways. Most grading systems assume that stu-
dents already have some part of the written code and
only need to add a missing part to complete the task [2].
This approach is sufficient for learning basic program-
ming language concepts, terms, and syntax However,
what about advanced levels when students need to write
some kind of code based on some predefined contract
(contract is a set of features along with logic behind of
it)? The answer to this question has not yet been deter-
mined because this type of verification is very complex
and has various limitations.

Ala-Mutka [3] classified the automated evaluation
of various qualities into two major groups: static analy-
sis and dynamic analysis, in their 2005 publication, "A
Survey of Automated Approaches for Programming
Assignments”.

Dynamic analysis determines which properties of a
running program will remain for one or more execu-
tions, which allows it to evaluate these attributes [4]. It
often uses a suite of unit tests that compare the printed
output or return values of various methods to grade the
correctness of a student’s assignment.

The capacity of students to generate efficient code
or complete test suites can also be assessed using dy-
namic analysis [5]. The creation of a thorough test suite

70

Radioelectronic and Computer Systems, 2024, no. 4(112)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

usually requires considerable time and effort from in-
structors who are experts in designing unit tests using
advanced language capabilities like reflection. Students
typically have one of three options regarding access to
test suites: full access before the final deadline [6], par-
tial access, or no access at all. The assessment approach
determines how students are presented with the test
suites [7, 8].

Generally, students have full access to all parts of a
formative assignment, whereas they may only have ac-
cess to part of the tests in a summative assignment. To
prevent students from hardcoding return values and
gaming the system, it is common practice to either use
hidden tests or restrict student access to the entire test
collection [9].

The static analysis type evaluates software without
actually running the program or considering inputs.
Software is focused on the detection or partial identifi-
cation of faults, as well as the verification of maintaina-
bility, readability, and the presence of documentation
[10]. There are many such tools for each of the pro-
gramming languages, e.g. JaCoCo, Checkstyle, Find-
Bugs, SonarQube etc.

A comparison of dynamic and static code analysis
[11] demonstrates that for optimal software quality, a
combination of both strategies is advisable. By employ-
ing a mix of these strategies, software engineers can
guarantee that their programs possess superior quality
and are devoid of flaws. However, this approach will
work for experienced developers rather than students
who are only learning languages and executing the “hel-
lo world” programs.

Meanwhile, from the feedback generation, dynam-
ic code analysis is the most interesting and valuable part
of the analysis of segregation because it should deter-
mine where students made mistakes. The only thing the
grading system needs to do is discover the code block
that is causing a problem and give sustainable feedback
to a student that should contain the root cause of the
problem and instructions on how to fix it.

The most questionable thigs are related to the
method or methods of code block identification and
further analysis that allows not just verification of “code
smells” but also understanding and predicting possible
code issues. One such identification method was ex
plained and used by Anh-Tu Phuong Nguyen and Van-
Dung Hoang [12]. The present study relies on an ab-
stract syntax tree approach for analyzing a code written
in Python to create an abstract layer based on abstract
syntax trees that allows a program to walk through the
code tree and perform analysis on its own logic on an
isolated code base. This approach perfectly fits the goal
of source code representation. However, testing code in
isolation may not work with other languages due to the
inability to isolate and run part of the code in languages

like Java or C#.

The usage of machine learning techniques along
with artificial intelligence is becoming increasingly
popular in all kinds of learning systems: from the tutor-
ing systems to educational robots and grading automa-
tion [13]. Based on this, the further use of machine
learning for syntax trees may seemvery logical. Such an
example was provided by Francisco Ortin et al. [14] in
his research on how to apply a machine learning tech-
nique to analyze Java language code. This study demon-
strated the ability of machine learning techniques to
identify and evaluate constructs with high precision.
However, from a practical perspective, using this ap-
proach on different programming languages mean to
perform a deep investigation of each language along
with involving subject-matter experts to validate the
language processing results.

There is no single silver bullet in machine learning
that can be used for any programming language. The
great analysis work by Peter Hazem et al. [15] proves
this statement and forces us to think about the generali-
zation of the approach from the very beginning instead
of moving from a concrete language-based implementa-
tion to a more generic one.

However, not only syntax trees and machine learn-
ing techniques can also be used for code representation.
Paiva et al. [16] described alternative approaches that
can be used for code analysis, especially feedback gen-
eration. Based on this research, we found that syntax
trees and code property graphs are the best candidates
for the intermediate representation of the source code
for further analysis. Moreover, the combination of any
of these algorithms with others like data flow graphs or
control flow graphs, can be an answer to the question of
how a computer system can understand human-written
code and compare it with an example one.

Another significant question is a practical way to
construct the code representation. This question can be
solved using two common approaches: reflection usage
that is applicable to popular languages like Java or C#,
and object-oriented code analysis. Each of them can be
rather correct but slow or fast but not very accurate in a
meter of processing inheritance, which takes a major
part in learning programming languages. The experi-
mental comparison shows that the object approach
works better in the C# language [17].

Nevertheless, any type of tree-based algorithmis a
possible performance issue due to the necessity to trav-
erse over the structure more than once along with per-
forming searching and filtering over the node values.

1.5. Objective and Approach

This paper investigates and evaluates an approach
based on abstract syntax trees for automating the eval-

Intelligent information technologies

71

uation of code submissions of students. It considers not
only the accuracy (that is a goal of the static code analy-
sis) of the output but also the correctness and conformi-
ty in a form of evaluating the logic behind the code.
This leads to formalization of the primary goal, namely,
ensuring grading consistency by intellectual analysis in
the form of a comparison of code terms and code
branches with predefined by tutor solutions, along with
finding the biases and explaining the mistakes in a logic
flow and how to correct them.

The main objectives of this research are as fol-
lows:

- describing the problem and formalization of code
representation for intellectual analysis by applications;

- adapting a method and developing an algorithm
that offers invalid code block identification via code
decomposition and provides grading systems an “under-
standing” of program execution;

exploring algorithm behavior in common educa-
tional cases;

- discussion of results and recommendations;

- summarizing the results and describing future re-
search areas.

To achieve these aims, the article was divided into
five sections to form the article structure:

- Section 1 — “Introduction” explains the back-
ground and motivation of this article, along with analyz-
ing existing literature to better and accurately demon-
strate the intention of the current work. In addition, this
section presents current trends in the research field, al-
gorithms, practical implementations, and alternative
approaches that may solve the problem in the case of
future research.

- The methodology of providing feedback during
the practical task assessment along with the use of the
syntax tree approach is described in Section 2. This pro-
vides an understanding of the algorithm developed in
the scope of this paper.

- Section 3 — “Implementation and evaluation of
code samples” explains, in an example, how the algo-
rithm works in common use cases during programming
language learning.

- The “Discussion and recommendations” section
shows the benefits and concerns of this algorithmusage
along with guiding key components that need to be tak-
en into account during algorithm implementation and
integration into existing distance learning or grading
systems.

- The paper ends with a conclusion section that
summarizes the content provided in the paper and high-
lights future research areas.

2. Methodology

The process of giving feedback is complicated and
should consider already written code, be able to analyze

errors, and make assumptions about the logical program
component. This process breaks it down into several
stages: determining which part of code is wrong (this
stage supposed to include splitting code into logical
blocks and further processing of the code structure),
code analysis to find the exact cause (this is the stage
where deviation or invalid block identification should
be performed based on the tree code structure),and gen-
erating advice on what needs to be done to make it work
(this is a stage of advice preparation based on invalid
code found on the previous stage) (Fig. 1).

Code Advice
for (int i=0; i<0; i++) { . ZJ?i?\See1c:3(:1rrGCt argument
Split into < I::](\e/r;tl:zy .| Prepare JA
blocks i | advice
bock
Error T

InvalidArgumentException.

Fig. 1. General approach to advice generation

However, the advice generation algorithm is more
complex and comprises different stages (Fig. 2).

The code block identification stage (Fig. 2) is
almost easiest. This process comprises parsing, function
extraction, and obfuscation stages. The goal is to walk
through the code and split it by programming language
expressions such as variables, simple entities, and con-
trol structures [18]. In addition, it assumes the creation
of a dictionary of functions used in the code, e.g., the
creation of pairs for method names and method bodies
in programming languages like Java or C#. Another
method of identification that will be helpful in cases of
large amounts of code is the use of fingerprints [19] and
text preprocessing like obfuscation, which replaces var-
iables and makes code more recognizable for finger-
prints. The results of such parsing steps are simply a
plain code block structure and a map of pointers to code
blocks.

Further code analysis, invalid block identification,
and advice preparation are the most difficult steps
(Fig. 2). By the line of code where an error occurs, we
can identify the block statement it belongs to. However,
this does not mean that blocks are identified correctly
because there may be a chain of errors that lead to er-
rors. This means that block detection is effective for
simple pieces of code but may not be effective for tasks
where students should implement contracts on their
own. This is a case in which we must have some back-
ground information to identify the problem correctly.

72 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
Code parsing TI(n) = T2(m), ()
/ - where n and m denote the positions of nodes in trees T1
Code block | Function .
identification [extraction and T2, respectively.
\ Ideally, n and m should be the same number or at
—— least have the same degree. Therefore, each node should
: P be compared with an appropriate node from a tree of
Logical tree valid solutions. This comparison (P) should consider
creation Tree comparison | ©XPressions in the node under comparison and expres-
l / sions in the child nodes (2).
. Syntax
Invalid block : i
: Ay e | S .
identification gonpanson 1 if Enodel T1 Enodel T2
\ Prodei T1 =11 T Enogei 1S V' Enogei T2+ (@
Varible wiring =0k
analysis 0, otherwise
Automatic syntax | where Pnodeiti— result of the comparison of code state-
} based analysis ment EnodeiTr in Node; of the student code tree T1 and
/ code statement EnodeiT2 in node; of the expected code tree
Advice cration | Rule based T2,i— represents a logical segment in a code tree rather
analysis thana simple line of code.
\ Thus, if an expression in a target node has at least
Machine learning | one similar expression in any node to form a valid solu-
anay= tion, we can identify such a node as a matched node and

Fig. 2. General flow of a grading process
in automated systems

Background in a code analysis is an understanding
of the code logic that can be obtained by analyzing code
blocks and their interconnections. Here, identified code
blocks must be gathered into a logical representation
(logical tree creation stage on Fig. 2 for further pro-
cessing.

The best choice for gathering a logical code struc-
ture is to combine blocks into a tree because this allows
us to create a full picture of the operations performed
under the hood.

A tree (the programrepresentation) in this case is a
finite set of nodes with a specially designated parent
node called the root (entry point to the program). The
remaining nodes are based on blocks and logical condi-
tions inside blocks when each block is a node in the tree

that each of these sets is a tree. Each node may have
other nodes inside unless its’ value is a terminal opera-
tion - operation that does not have code blocks inside.
Eg., the if-else statement will be presented as a node
with two child nodes; while i++ will be positioned as a
leaf - node without children.

The main benefit of tree structure is the possibility
to perform a comparison based on subtrees

inconsistency between two trees in a way of corrupted
nodes identification (1). The comparison is a content
equality operation on the values of two nodes (2).

identify it as a mismatched node otherwise.

The summation of the equality operations of each
(3) node will give some correct nodes and returns the
expected results. This number can be used to obtain a
general understanding of the logical validity of the
overall code.

Pr1 =2 ProdeiT1 : ®)

where Pt — aggregation of the equality of each code
statement PnodeiT1 in the students’ code tree T1.
The next step is to identify the problem or invalid

block identification (Fig. 2). In this step, two types of
misleads must be considered

The first is the simplest one, where an error occurs,
and the error code and error line are already known. In
this case, trees should be used to identify problematic
code structures and advice generation. This situation
does not require explanation because it is common in
any integrated development environment and can be
represented via hints or stack traces.

The second type of error occurs when there is no
error; however, the expected result is inappropriate. In
this case, the teacher or data gathered from prior suc-
cessful code executions should provide an "ideal" im-
plementation for each task. This concept and implemen-
tation are used to compare tree nodes and find devia-
tions. The code tree comparison algorithms should con-
sider the variations in the code structures and different
approaches that can be used. It should find the differ-
ences in the logical code composition of the input data

Intelligent information technologies

73

for advice generation. This leads to the comparison of
code lines, variables, statements, methods, and even
classes in a way of performing syntax and variable wir-
ing comparisons.

The idea of variable wiring comparison is to iden-
tify that all variables, method usage, and return values
are wired together. This understanding is required to
identify cases in which a student attempts to cheat by
returning constant values or is using inappropriate
methods. In contrast, syntax comparison targets invalid
method usage identification rather than verification of
the compilation to provide an understanding of whether
correct libraries are used or not.

Advice generation is based on logical differences,
syntax, and wiring analysis and can transformtheminto
sustainable feedback. In this part of the process, ma-
chine learning techniques can be used along with rule-
based mechanisms.

3. Implementation and evaluation
of code samples

3.1. Code parsing and metadata pre-processing

Let’s assume that we have simple Java code with
several methods and simple calculations inside (Fig. 3).

The provided code is parsed into a code block
structure with main operations that is easy for the ma-
chine to analyze.

line 2 - variable - private int a;

line 3 - variable - private intb;

lines 5-7 - method - public int sum();
line 6 - return from method,;

line 6 - math operation - a+b;

line 9-11 - method - multiplySum(int x);
line 10 - return from method;

line 10 - method execution;

line 10 - math operation - *x;

lines 13-16 - constructor;

line 14 - variable set- a = 3;

line 15 - variable set- b = 5;

lines 18-26 - entry point;

line 21 - instance creation - new Main();
line 22 - method execution - m.sum();
line 22 - variable set- ¢ = m.sum());

line 23 - if statement - if(c > 3)

line 24-26 - output - console;

line 25 - method execution - m.multilySum(3);
line 27 else statement

line 28-30 - output - console;

line 29- method execution - m.multilySum(4);

1 public class Main{
2 private int a;
private int b;

public int sum() {
return a + b;

7 }

public int multiplySum(int x) {
1C return sum(() * x;

11 }

13 public Main() {
14 this.a 3;
S;

35 this.b

16 }

18 public static void main(
19 String[] args
2C) {
21 Main m = new Main();
22 int ¢ = m.sum();

if(c > 3) {
24 System.out.println(
25 m.multiplySum(3)
26);
27 } else {
28 System.out.println(
29 m.multiplySum(4)
30)i

32 }
Fig. 3. Correct coding assignment execution

During the parsing process various kinds of
metadata gathered: scope of variable visibility (relation-
ship between variable declaration and places where they
can be used), method to line relationship and method
hierarchical usage (Fig. 4).

The metadata algorithm can map variables and
methods together by finding places where these varia-
bles are used (Fig. 5). Such information is a source data
for the variable wiring analysis, which is a simple
checking of next statements:

- all objects have initialized variables (verification
that class variables are present in the constructor or in
appropriate set method and that all the set method are
executed in the entry point or in other methods under
the entry point execution);

- there are no missed or undeclared variables in the
code;

- all the variables are of the defined, existed and
valid types.

Fig. 5 gives a hierarchical representation of the
variable usage at the entry point. In the case of several
entry points (e.g., in case of several endpoints that are
available over the network), we obtain several hierar-
chical representations for each entry point with its own
variables inside.

74

Radioelectronic and Computer Systems, 2024, no. 4(112)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

point

i
i
% ——>{[ines 2131 [

m—————— -
i i
int ¢ part of entry | Tines 2231 |]

[] lines 21-31 []«

entry point >

Main.sum()

A

Main.multiplySum() >

L___,,-/,,___,.‘_,________.I

Fig. 4. Metadata for the entry point

This representation can be used for further finger-
print creation to simplify searches over the logical struc-
ture. A simple statement-based fingerprint can be used
in this study [12] with minor modifications. For exam-
ple, we consider fingerprints in the miltiplySum meth-
od (Fig. 6). This method calls the sum method inside
and performs a mathematical operation. The sum meth-
od performs a mathematical operation on the two inte-
ger values inside.

Entry point

) Object m: Main
Variables: m, ¢

Variables: a,b

Constructor
Variables: a, b

multiply Sum()

sum()

Variables: a, b Variables: a, b, x

Fig. 5. Hierarchical representation
of variables inside an entry point

Thus, if we remove variable names, replace con-
cert types with more generic ones (like replace int with
number), show the hierarchy as a part of fingerprint, and
then cut the number of method execution (linearize the
execution tree). We will obtain the fingerprint, which
shows what operations are actually performed for this
method. Such an approach is very interesting in terms of
practical experience; however, it is not a goal of this
article.

multiply Sum(): Main[m]-=function->function(sum)*int[x]
sum(): Main[m]->=function-=int[a]+int[b]

<

Fingerprint: multiplySum()
entryPoint == function => (number+number)*number

Fig. 6. Fingerprint for multiplySum method
3.2. Syntax tree composition

In the next step, after metadata preparation, the
code block structure is transformed into a tree that
shows the logical code structure from the very begin-
ning of the program to the entry point to the very end
and possible variants of the program end (Fig. 7).

The structure starts from the entry point thatis rep-
resented via “public static void main” construct (con-
struct - is the line of code that may contain method exe-
cutions, variable declaration, mathematical operation
and any syntax sugar that is available in the program-
ming language). This construct does not have any sub-
trees inside.

The next node (line 21) in the tree is the instance
creation of class Main along with variable m declara-
tion. This is a complex construct because instance crea-
tion in our case should include a variable setup at the
instance level, which is transformed into an inner tree
for this node. The inner tree comprises two node value
setups for instance or class variables a and b. The same
statement applies to the next node at line 22 because it
is also complex due to variable ¢ assignment and meth-
od execution on previously created local variable m.
Sub tree of this node represents the execution of the
method

Intelligent information technologies

75

t @
2 Entry point =
line 18 § E No inner trees
e Code: public static void main(String[] args) £
2 Node content Node content
Instance variable set Instance variable set
Code: a=3 Code: b=5
= “F class variable a=3 ¥ Class variable b=5
..2 Creation instance of class Main § [~
o i
i o Ju— line 14 »
@9: Code: Main m = new Main(); E @
B | ¥ Iocal variable m of class =
=z Node content
Mathematical operation
Code: a+b
- VEUELICERIEET
v 5 Method execution Variable b usage £
c [T 2
@9 § Code: int ¢ = m sum()); g _E
B —
B| ¥ local integer variable g 9
- ' e L &
Variable m usage =
E Conditional statement @
c = _
8| code: ific > 3) ‘a_'; { No inner trees
[+] = c
3 Variable c usage £
=

c=3

Utility method execution

Code: System.out.printin(m.multilySum{4)});

Utility method execution

Code: System.out printin{m.multilySum(3));

Variable m usage
Constant 4 usage

Node content

LR T R e

Inner tree

F

Method execution

Variable m usage

Constant 4 usage

Inner tree

——

Node content

Method return
Node content

Code: m multilySum(4);

Mathematical operation

Node content

Code: return sum() * x;

VENELIES §IEET

Inner tree

—

Mathematical operation

Code: a+b

Variable a usage
Variable b usage

Node content

Node content
Method return

Variable m usage
Constant 3 usage

Node content

NS e
Inner tree

T

Method execution

Node content

”»
Mathematical operation E 1
c
[=]
Code: return sum() * x; o
= 1]
Variable x usage 7
=2
Inner tree
Mathematical operation | & 2| E
£ HE
Code: a+b 8 g ;
Variableausa o ol 2
Variable b usage __JRRIR: 38
ariable b usag S 2|2
-
£
2l
9o
(1]
B [1]
Qg
i |E:
=

Fig. 7. Logical tree structure for correct coding assignment execution

Code: m.multilySum(3);
Variable m usage
Constant 3 usage

Inner tree

76

Radioelectronic and Computer Systems, 2024, no. 4(112)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

£ | Mathematical operation
@
2
& | code: a+b
2 Node content
2 . g Method return Node content
z Variable b usage
— Mathematical operation
@ Code: msum() + m.sum();
|5 Method execution ® yaliablCim S4ge
= : 5 | #| Mathematical operation
3| Code: int c = msum() + m.sum(); = o
4] el
Z| ¥ local integer variable ¢ E - §|code:ath
e . - 2 Node content
Variable m usage 3 Variable a usage
[=] " Method return
Z Variable b usage P e

Fig. 8. Several method executions in one construct

sum on variable m, which is an instance of class Main.
In the case of several method execution subtrees, all
method execution trees are combined (Fig. 8).

Line 23 represents the conditional statement. Such
nodes may split logical tree into more than two branch-
es, due to possibility of programming languages to
combine several if-else statements together (Fig. 9) or
even having special statements with more than two pos-
sible solutions like switch-case (Fig. 10). In our exam-
ple, the logical tree was split into two branches: a
branch starting from node on line 24 and a branch start-

Conditional statement

Code: if(c > 3) {} else if(c<1) D else

Variable ¢ usage

Node content

ing from line 28. They are almost identical in our ex
ample because we use the same utility method and code.
The only difference — is the constant value that is used
inside statements (block marked in dashes and values
highlighted via wave lines onFig. 7).

To minimize and simplify the overall representa-
tion of the logical tree structure in Fig. 7 and for better
visualization, we can hide the additional data like value
usages, remove return statement nodes, and replace
complex construct nodes with simplified representation
(Fig. 112).

No inner trees

Inner tree

Utility method execution

Code: System.out. printin("c=>3");

{ Mo inner trees

Utility method execution [

Mode content Mode content

Code: System.out.printin("c<3");

Mo inner trees

1>=Cc=<=3

Utility method execution -

Node content

Code: System.out.printin(" 1 >= ¢ <= 3");

— Mo inner trees

Fig. 9. Multiple outputs for several if-else statements

Intelligent information technologies

77

Conditional statement

Code: switch(c)

Inner tree

Variable ¢ usage

Node content

_[No inner trees

Utili

method execution

Code: System.out printin{"c==3");

No inner trees

Utili

method execution

Node content Node content

Code: System.out.printin("c==4");

No inner trees

default Utili

method execution

Node content

Code: System.out.printin{"default");

No inner trees

Fig. 10. Multiple outputs forseveral if-else statements

’

v

line 21

Fig. 11. Simplified representation of the logical
tree structure

In Fig. 11, we have only the nodes that need to be
considered during comparison (for the best understand-
ing only line numbers are present on the simplified view
of Fig. 7). Moreover, additional filtering of the tree al-
lows us to remove codes that do not affect the overall
result (marked in dash squares). Nevertheless, such re-
moval is not always possible because: from the one

hand, it allows to minimize the number of nodes during
further comparison in case of removing code in leaves
(like in our example); from the other hand, such remov-
al may lead to skipping a large part of the code that will
not be assessed at all but should be. From this stand-
point, duplicate removal is logical for program code
understanding but not applicable to our goal-assessing
programming language leaning tasks.

3.3. Syntax tree analysis and advice generation

The next algorithm step is tree analysis. For our
example, we combine this step with the next one—advice
generation, because this approach provides a full under-
standing of the advice creation mechanism based on a
logical codetree.

To demonstrate how it should work, we assume
that we have four different cases with this structure —
one per different student. In three cases, we simulate use
cases when the code executes correctly but data in a
console are completely different from the expected val-
ue — 24 and in the fourth one - with an exception during
execution.

3.3.1. Invalid constant value usage

The problem occurs at line 25, where an invalid
number is used by the student for the constant (used
value is value 5 instead of 3). As a result, the console
outputwill be 40 instead of 24 (Fig. 12).

Per the algorithm, this change will be detected via
tree comparison, and advice will point at the wrong con-
stant value at line 25 (Fig. 13) and explain how this val-

78

Radioelectronic and Computer Systems, 2024, no. 4(112)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

ue will break the expected result (such an explanation
should be given based on tree with a help of traversing
on it to the very end and taking into account all direct
and indirect usages of constant value thatis different).

Thus, advice itself will be a line of code where the
problem occurs and used value along with showing how
value 5 affects the result (just inlining the further tree
into text with variables, similar to “(3 + 5) * 5”). It will
show students the place and explains how it affects the
overall program execution.

18 public static void main(
19 String[] args
20) {

Main m = new Main();

w
N =

int ¢ = m.sum();
Sfqe »:3) 1
System.out.println(
m.multiplySum(5)
)i
} else {
System.out.println(
m.multiplySum(4)

~1 ;o W

20 BN N

);

w Wt

I
—~—

)

}

(¢
5

Fig. 12. Mistake in value usage

Method execution

Code: m.multilySum(3);

Variable m usage
Constant 3 usage

0

Method execution

Node content

Code: m.multilySum(5);

Variable m usage
Constant 5 usage

Node content

Fig. 13. Comparison of two nodes at the line
where mistake occurs

3.3.2. Invalid comparison operator usage

In this case, the comparison operation is invalid in
the if-else statement (Fig. 14).

In the algorithm, the tree comparison will handle
such deviations by comparing child nodes and determin -
ing that nodes are not in the correct order (Fig. 15). This
leads to comparing the constructs underthe nodeat line
23. This comparison gives an understanding that the
equality sign in the construct is invalid, or variable c
and constant 3are in the wrong places. As a result, there
are two pieces of advice: correcting the sign and swap-
ping constant 3 and variable c in the code.

public static void main(
String[] args

[

[y

) {
Main m = new Main();
int ¢ = m.sum();
if(c < 3) {
System.out.println(
m.multiplySum(3)

NN N

WNHFEOWwm

[$8]

N

w b

)i
} else {
System.out.println(
9 m.multiplySum(4)
)i

S

SO RN ST oS I 6]

W w W N

N =

}

Fig. 14. Mistake in equality sign

line 28

line 28

Fig. 15. Invalid child node order

3.3.3. Hardcoding of expected result value

However, what if a student just hardcodes the out-
putvalue, like in line 25 (Fig. 16)?

public static void main(
9 String[] args
) {

=

=

|38}

. O L Y-S V% T (S S)

Main m = new Main();
int ¢ = m.sum();
GEes> 3)
System.out.println(
24

NS 0 B oS B S)

);
} else {
System.out.println(
m.multiplySum(4)

W W

)

W oW NN N

)
(&)
—~—

Fig. 16. Cheating attempt

Intelligent information technologies

79

The tree comparison also will be able to handle
such a case because there will be missing nodes
(Fig. 17). However, syntax and wiring analysis are also
able to identify the same problem even faster due to
comparing only a code syntax without working with a
tree structure. For example, constant usage at line 24
can be simply identified by the static analysis, whereas
wiring analysis shows no problems. Such a case with
wiring analysis is possible due to line 29, where all the
methods used and variables are under the hood. Howev-
er, if at line 29, students put the constant too, wiring
analysis will complain about unused methods and varia-
bles. This is why wiring and static analysis should be
used as complementary methods and should only be
used to clarify the problem.

Fig. 17. Node difference in case of cheating attempt

Nevertheless, as a result, advice not to hardcode
expected results will be given to the student along with
a warning that such an attempt is a use-case of inappro-
priate solution. This information can also help tutors
better understand howmany students are trying to cheat
instead of learning the topics.

3.3.2. Missing variable initialization

In the case of an error, the algorithm walks
through the tree and determines whether all variable
assignments are in place. In the example below (Fig.
18), variables a and b are not set, which leads to the
error.

1 public class Main{

private Integer a;
private Integer b;

public int sum() {
return a + b;

7 }

public int multiplySum(int x) {
return sum() * x;

11 }

13 public Main() {}

Fig. 18. No variable initialization

During the node comparison, we observed a dif-
ference in node structures (Fig. 19), where the algorithm
at line 21 did not find any subtrees. However, his case
can be simply covered by static code analysis or varia-
ble wiring, where the instance variable is identified as
unknown due to the absence of variable set up code.
Such an approach will work for simple cases but not for
complex ones, where assignments are dynamic and may
need to be investigated in-depth, which can take a sig-
nificant amount of time and computing resources. This
leads to proving the statement from the previous case
that wiring and static analysis should be complimentary
methods and applied to clarify cases with finite numbers
of nodes.

line 21

ey 5 = €

Fig. 19. Node comparison when no variable
initialization is present

The algorithm provides a list of variables that were
not initialized for the instance of class Main. Such ad-
vice points students on common issues during learning
object-oriented programing — variable initialization and
the usage of classes instead of primitive types.

The above cases involve common issues while
studying programming languages. Such issues can be
connected to coding, understanding coding paradigms
and principles, or even attempts at cheating. The goal of
the proposed algorithm is to identify them and prepare
data for advice generation. On the other hand, advice
generation principles and mechanics are complicated
things that are not fully a part of this article due to the
necessity to showcase how they work in the educational
process. Nevertheless, building the logical code tree and
searching it along with supplementary code analysis
methods provide full information of the code written by
the student to identify the issue and find a way of fixing
it in a code written by the student rather than advising
them to rewrite the whole code from scratch.

4. Discussion and recommendations

According to the algorithm examples, the process
of invalid block identification as a key point of the grad-
ing process is based on comparing the code terms and
branches in the abstract syntax tree of the source code,
and handles common educational cases like:

- mistypes and cheating attempts - by validating a
code constructs and variable values during term analy-
sis;

80

Radioelectronic and Computer Systems, 2024, no. 4(112)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

- runtime errors are identified during the variable
validation;

- common mistakes in operation usage are also
identified by validating code constructs and variable
values.

The proposed method can be used to identify not
only syntactical errors but also semantic and uninten-
tional errors. This capability enhances the grading pro-
cess because it allows the system to understand the in-
tended logic and flow of the code, rather than just its
surface-level correctness.

Nevertheless, there are obstacles linked to the use
of the proposed algorithm due to the use of abstract syn-
tax trees for code evaluation. Obstacles arise from the
computational difficulty associated with producing and
analyzing abstract syntax trees, which may require sig-
nificant processing resources. In addition, an algorithm
is capable of processing several programming lan-
guages, where individual language features may neces-
sitate customized parsing and analysis techniques, thus
increasing complexity in the implementation process.

Considering the advantages and obstacles de-
scribed, it is advisable to incorporate analysis into code
grading systems after performing further experiments in
which quantitative metrics can be used to evaluate ef-
fectiveness. Further implementation should be carried
out considering the following factors:

- enhance the efficiency of tree generation and
analysis to maintain the grading system’s performance,
especially when dealing with extensive codebases;

- create language-specific extensions to handle dis-
tinct constructions and idioms, guaranteeing the accura-
cy of analysis across various programming languages;

- regularly updating the system to incorporate new
language features and paradigms, ensuring that the sys-
tem remains up-to-date and accurate;

- provide a unified analysis approach that can be
easily adopted to different programming languages and
does not depend on them.

5. Conclusion

Manual evaluation of programming projects chal-
lenging due to the inherent intricacy of coding and the
vast array of possible solutions. In addition to the com-
plexity of the grading process, subjective evaluation and
the incorporation of diverse technical frameworks are
also considered using intermediate representations of
the programming code. Despite the limitations, there is
a growing need to develop and enhance automated grad-
ing systems in educational settings.

This study proposes the use of dynamic code anal-
ysis in a way of syntax trees usage to improve an auto-
mated grading system that can not only assess coding
tasks but provides advice on how to fix existing stu-
dents’ code instead of rewriting it based on predefined

examples. As we can see from the examples in the arti-
cle, the most common codding mistakes are perfectly
covered by the algorithm that can potentially reduce the
amount of tutor involvement in the education process
when the less trivial ones should be discovered during
the experiment. This technique attempts to solve com-
mon issues in programming training by providing stu-
dents with valuable assistance in identifying flaws, ana-
lyzing code structure, and comparing syntax In addi-
tion, it attempts to identify the logic behind the code.
However, although this technique demonstrates poten-
tial, it also acknowledges the complexity of coding loca-
tions, particularly at more advanced levels. To automate
the grading and feedback generation process successful-
ly, this technique may require additional customization
and adaptation.

Future research. To fully realize its potential, it
may be necessary to make additional adjustments and
adaptations for the effective automation of grading op-
erations and feedback production along with performing
experiments to understand the time consumptions that
instructors dedicate to grading with a help by using an
automated solution instead of manual grading work. By
integrating this technique into educational systems like
Moodle, it is feasible to significantly speed up evalua-
tion. The further research phases in this domain encom-
pass the implementation and testing of algorithms, as
well as their subsequent incorporation into educational
frameworks.

Furthermore, the application of artificial intelli-
gencetechniques, such as recurrent neural networks and
massive language models, for code analysis appears to
be highly promising. Although parsing is more reliable
and less prone to incorrect responses, thesetools can be
significantly more efficient than conventional methods.
These techniques can facilitate the detection of more
complex defect categories than traditional code analysis
methods.

Contribution of authors: conceptualization,
methodology — Denys Seliutin, Olena Yashyna; writ-
ing and original draft preparation — Denys Seliutin;
review — Olena Yashyna.

Conflict of Interest
The authors declare that they have no conflict of
interest in relation to this research, whether financial,
personal, authorship or otherwise, that could affect the
research and its results presented in this paper.

Financing
This study was conducted without financial sup-
port.

Data Availability
The work has no associated data.

Intelligent information technologies

81

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence methods in their work.

All the authors have read and agreed to the publi-
cation of the finale version of this manuscript.

References

1. Conejo, R, Barros, B. & Bertoa, M. F. Auto-
mated assessment of complex programming tasks using
SIETTE. IEEE Transactions on Learning Technologies,
2019, wvol. 12, no. 4, pp. 470-484. DOL
10.1109/t1t.2018.2876249.

2. Bertagnon, A., & Gavanelli, M. MAESTRO: a
semi-autoMAted Evaluation SysTem for pROgramming
assignments. Proceeding of the 2020 international con-
ference on computational science and computational
intelligence (CSCI), Las Vegas, NV, USA, IEEE, 2020,
pp. 953-958. DOI: 10.1109/csci51800.2020.00177.

3. Ala-Mutka, K. M. A survey of automated as-
sessment approaches for programming assignments.
Computer Science Education, 2005, vol. 15, iss. 2, pp.
83-102. DOI: 10.1080/08993400500150747.

4. Ball, T. The concept of dynamic analysis. ACM
SIGSOFT Software Engineering Notes, 1999, vol. 24,
iss. 6, pp. 216-234. DOI: 10.1145/318774.318944.

5. Coore, D., & Fokum, D. Facilitating course as-
sessment with a competitive programming platform.
Proceeding of the SIGCSE '19: the 50th ACM technical
symposium on computer science education, New York,
NY, USA, Association for Computing Machinery, 2019,
pp. 449-455. DOI: 10.1145/3287324.3287511.

6. Ayewah, N., Pugh, W., Hovemeyer, D., Mor-
genthaler, J. D., & Penix, J. Using static analysis to find
bugs. IEEE Software, vol. 25, no. 5, pp. 22-29. DOI:
10.1109/ms.2008.130.

7. Restrepo-Calle, F., Ramirez-Echeverry, J. &
Gonzilez, F. Using an interactive software tool for the
formative and summative evaluation in a computer pro-
gramming course: an experience report. Global Journal
of Engineering Education, 2020, vol. 22, no. 3, pp. 174—
185. Available at: https://www.researchgate.net/
publication/346004432_Using_an_interactive_software
_tool_for_the_formative_and_summative_evaluation_in
_a_computer_programming_course_an_experience_rep
ort (accessed 09 June 2024).

8. Le, D. M. Model- based automatic grading of
object- oriented programming assignments. Computer
Applications in Engineering Education, 2021, vol. 30,
iss. 2, pp. 435-457. DOI: 10.1002/cae.22464.

9. Liénardy, S., Leduc, L., Verpoorten, D., &
Donnet, B. Café’: Automatic Correction and Feedback
of Programming Challenges for a CS1 Course. Proceed-
ing of the ACE'20: twenty-second australasian compu-

ting education conference, New York, NY, USA, Asso-
ciation for Computing Machinery, 2020, pp. 95-104.
DOI: 10.1145/3373165.3373176.

10. Ahire, P., & Abraham, J. Perceive core logical
blocks of a C program automatically for source code
transformations. Proceeding of the 18-th Intelligent Sys-
tems Design and Applications conference, Springer,
Cham, 2019, pp. 386-400. DOI: 10.1007/978-3-030-
16657-1_36.

11. De Silva, D., Samarasekara, P., & Hettiarach-
chi, R. TechRxiv. A comparative analysis of static and
dynamic code analysis techniques. 2023. DOI:
10.36227/techrxiv.22810664.v1. (unpublished).

12. Narayanan, S., & Simi, S. Source code plagia-
rism detection and performance analysis using finger-
print based distance measure method. Proceeding of the
2012 7th international conference on computer science
& education (ICCSE 2012), Melbourne, VIC, Australia,
2012, pp. 1065-1068. DOI: 10.1109/iccse.2012.
6295247.

13. Xu, W., & Ouyang, F. The application of Al
technologies in STEM education: a systematic review
from 2011 to 2021. International Journal of STEM Ed-
ucation, 2022, vol. 9, article no. 59. DOI:
10.1186/s40594-022-00377-5.

14. Barros, J. P. Assessment for computer pro-
gramming courses: a short guide for the undecided
teacher. Proceeding of the 14th international conference
on computer supported education, Online Streaming,
SciTePress, 2022, pp. 549-554. DOI: 10.5220/
0011095800003182.

15. Samoaa, H. P., Bayram, F., Salza, P., & Leit-
ner, P. A systematic mapping study of source code rep-
resentation for deep learning in software engineering.
IET Software, 2022, vol. 16, iss. 4, pp. 351-385. DOI:
10.1049/sfw2.12064.

16. Paiva, J., Leal, J., & Figueira, A. Comparing
semantic graph representations of source code: the case
of automatic feedback on programming assignments.
Computer Science and Information Systems, 2024, vol.
21, no. 1, pp. 117-142. DOI: 10.2298/csis230615004p.

17. Wojszczyk, R., Hapka, A., & Krolikowski, T.
Performance analysis of extracting object structure from
source code. Procedia Computer Science, 2023, vol.
225, pp. 4065-4073. DOI: 10.1016/j.procs.2023.10.402.

18. Nguyen, A. T., & Hoang, V. D. Development
of code evaluation systembased on abstract syntaxtree.
Journal of Technical Education Science, 2024, vol. 19,
no. 1, pp. 15-24. DOI: 10.54644/jte.2024.1514.

19. Ortin, F., Facundo, G., & Garcia, M. Analyzing
syntactic constructs of Java programs with machine
learning. Expert Systems With Applications, 2023, vol.
215, iss.C. DOI: 10.1016/j.eswa.2022.119398.

https://doi.org/10.1016/j.eswa.2022.119398

82 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)

Received 17.07.2023, Accepted 18.11.2024

IHTETEKTYAJBHUN AHAJII3 KOIY
B CUCTEMAX ABTOMATHM30BAHOI'O OLIHIOBAHHSI

. A. Centomin, O. C. Awmuna

OrmiHIOBaHHS 3aBJaHb i3 MPOTPaMyBaHHS 3AJHUINAETHCS MPOOJIEMOI0, HABITh HE3BAXKAIOYHM HA PI3HOMAHITHICTH
MIXOMIB, SIKi CTYJEHTH MOJKYThb BHKOPHUCTOBYBATH JUII BHpIMIEHHA TpyXHONI[B. OCHOBHOIO NMPUYHHOIO € HASBHICTH
YUCIICHHUX TEXHOJIOTIYHUX CTEKiB, IO PeaNi3yIOThCS, 1 PISHOMAHITHICTh IMIIXOMIB 1O HANMUCAHHSA KOIy, SKi MOJKHA
BUKOpHCTOByBaTH. IlpeiMeTOM BHBUYCHHS MAHOI CTATTI € MPOIEC OIIHIOBaHHSA 3HAHb CTYJCHTIB HA OCHOBI KOy,
SIKM OyB HANMCAaHWN CTYyJCHTOM I Yac 3BHYAWHOI MpakTHUHOi poOoTH. MeTa mosirae B po3poOIi mimxomy 1o
IHTeJIeKTyaJIbHOTO aHAJ3y KOIy, KM MOXHA JIETKO peasi3yBaTH Ta IHTEIPYBATH B HAWIONIMPEHINI CHCTEMH aB-
TOMAaTH30BaHOTO OIIHIOBAHHA. 3aBJAaHHAMM, SIKi MOTPIOHO BHpIMIHNTH, €: (hopMa3amis MOJAHHS KOAY UL iHTEJeK-
TyaJbHOTO aHaJi3y MPOTPaMHUMH 3aco00aMU; aHa3 CyYacHOTO CTaHYy JOCHIDKEHb Ta pO3pOOOK B Tramy3i aBToMaTH-
30BaHOTO aHAJI3y Ta OLIHIOBAaHHS NMPOTPAMHOTO KOJy; PO3pOOKa METOIy Ta alrOPUIMY, SIKi IPOMOHYIOTh CyTTEBUH
3BOPOTHI 3B’S30K dYepe3 IHTerpamiio iHTeNeKTyaIbHOTO aHali3y METOJOM JeKOMIIO3WIii Ta HaJaHHS CHCTEMaM
OIIHIOBaHHS «PO3YMIHHS» XypHaly BHKOHAHHS NPOTPAMH Yy BHUILLAI aHAN3y NMOMMIKOBHX OsiokiB. Ilpeqmetom
I[BOTO JOCTIDKEHHA € METOJM OLIHKM NPOTPAMHOTO KOOy I Yac IUCTAHLIMHOTO HaBUaHHS. BHKOpHCTOBYBaHi
MeTOAM: METOAM aHam3y KoJy Ha 0a3i alropuTMiB KIacudikanii Ta MpeACTaBICHHSA KOAy y BHUINII AepeBa pa3oM
13 #foro BupiBHIOBaHHAM. by oTpumani HacTynHi pe3yastatu: 1. [IpoBeneHo aHaii3 CydyacHOTO CTaHy B Taiy3i
aBTOMATH30BAHOTO aHaJi3y Ta OLIHIOBAHHA MPOTPAMHOTO KOy MOKa3aB, IO L MpodiiemMa € CKIaJHOI 00 TpyAHO-
I1i, MOB’sI3aHi 3 OL[HIOBAHHSAM MPOEKTIB MPOrpaMyBaHHS BPYUHY, L€ OUIbLIE YCKIaJHIOIOTHCS CKIAQAHOIO MPHUPO-
JIOI0 KOy, CYyO’€KTUBHMM CYJDKEHHSIM 1 BUMOTOIO aJanTallii I0 Pi3HUX TEXHIYHUX CTPYKTYp, IO JIMIIE IMiIKPECIIOE
HarajpHy NoTpe0y B aBTOMAaTHM30BaHMX METOJaX OI[IHIOBaHHS B OCBITHIX cepemoBuuiax. 2. g po3poOku mMeTomy
ABTOMATHU30BAaHOTO aHAN3y IPOTPaMHOTO KOAy OYJIO 3aCTOCOBAHO MOJCIIOBAHHS CTPYKTYPH KOAY Y BUIVIAJl CHHTA-
KCHYIHUX JepeB. Lle mo3Bosse po30UTH KO Ha B3a€MOTIOB'A3aHi JIOTIYHI OJIOKH, aHAN3yBaTH CTPYKTYpy OJIOKIB Ta
3B'I3KM MK HUMH. 3. Po3poOiieHi MeToM Ta aJIrOpUTMU 3aCTOCOBaHI i aHamizy kojay Java. [IpoBeneHmii CHHTAK-
CUYHHWIA aHaNi3 JO3BOJMB BHUSBUTA MPOOJEMHI Ta MOMMIIKOBI OJIOKA B KO, 2 TAKOXK iICHTH(IKYBATH CIIPOOH IaxX-
paiictBa (miApOOJCHHS BUBOJY MPOTpPaMH 3aMiCTh pealizalii aqroput™y). BUCHOBKH. ButblIicTs iCHYIOUHX CHCTEM
AaBTOMATHYHOTO OIIHIOBAaHHS POOIT CTYJGHTIB OCHOBaHI Ha TECTyBaHHI, TOOTO CITIBCTaBJICHHI BXOMIB i BHXOAIB IIPO-
rpamu. Ha BiaMiHYy BiJ HUX 3alpONOHOBAHHWI B PoOOTI MeTOX mependadae aHalli3 CHHTAKCUYIHOI CTPYKTYpH MPO-
rpamMu, IO JO03BOJIIE TOYHO BH3HAYMTH MiCIle Ta XapakKTep NOMYIIEHWX NOMWJIOK. [HTenekTyanpHHMH aHami3 3i0pa-
HUX TIPH IIbOMY JaHWX JO3BOJIMTH PO3POOHTH TOUHI peKOMEHMAMIl I CTYICHTIB MO0 MOKpaIleHHS KOAy. 3ampo-
MMOHOBAaHI 3ac00M MOy Th OyTH dactiHOMO Intelligent Tutoring System must IT cnieniagbHOCTEH.

KnrouoBi cioBa: o0poOka maHWX; IHTENEKTyaJbHUI aHAN3 JAHMX; IHTEIEKTyalbHI CHCTEMH OIIHKH; aHaJI3
IPOTPaMHOTO KOJy; AMHAMIYHMH aHaJIi3 MPOrpaMHOTO KOJIy; TeHepallisi 3BOPOTHOTO 3B'I3Ky .

Cemorin Jlenuc AmHaTomiiioBn4 — acmipaHT kagd. KOMITIOTEPHHX HAayK Ta IH(QOPMAaNifHUX TEXHOJOTIH,
HanionampHuit aepokocMmiunui yHiBepcuteT iM. M. €. J)KykoBcbkoro «XapkiBChKHM aBiamifHuil iHCTHTYT», XapKis,
VkpaiHa.

Slumna Ogena CepriiBHa — KaHI. Texd. HaykK, JOIL., JOL. Kad. KOMIT'IOTEpHHUX HAyK Ta iHGOpMaLifHHUX
TexHosorili, HamionampHu# aepoxocMmiunuil yuiBepcuteT iM. M. €. JKykoBcbkoro «XapKiBChKHH aBiamifiHH
IHCTUTYT», XapkiB, YKpaiHa.

Denys Seliutin — PhD Student of the Computer Sciences and Information Technologies Department, National
Aerospace University "Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: denis.selutin.ds@gmail.com, ORCID: 0009-0000-2843-9689.

Elena Yashyna — PhD in Information Technologies, Associate Professor at the Computer Sciences and Infor-
mation Technologies Department, National Aerospace University "Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: o.yashina@khai.edu, ORCID: 0000-0003-2459-1151.

