
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
68

UDC 004.89 doi: 10.32620/reks.2024.4.06

Denys SELIUTIN, Elena YASHYNA

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

INTELLECTUAL CODE ANALYSIS IN AUTOMATION GRADING

Grades for programming assignments continue to be di fficult to assign despite the fact that students have a

wide variety of strategies available to address challenges. The primary factor is the existence of several tech-
nological frameworks and a range of coding methodologies. The subject matter of this article is the process o f

intelligent evaluation of students’ knowledge based on code written by students during regular practical work .

The goal is to develop an approach for intellectual code analysis that can be easily implemented and integra t -

ed into the most widespread grading systems. The tasks to be solved include: formalization of code representa-

tion for intellectual analysis by applications; analysis of the current state of research and development in the

field of automated analysis and evaluation of software codes; introduction of a technique that offers substan-

tial feedback through the integration of intelligent code analysis via code decomposition and provid ing grad-
ing systems an “understanding” of program log. The research subjects are methods of the programming code

evaluation during distance learning. The methods used are: tree classification code analysis and graph trav-

ersing methods adopted for the tree linearization goal. The following results were obtained: 1. An examination

of the current state of automated software code analysis and evaluation reveals that this issue is intricate due

to the challenges involved in manually assessing programming projects. These challenges are further exacer-

bated by the intricate nature of the code, subjective judgment, and the need to adapt to various technical struc-

tures. Consequently, there is an urgent demand for automated assessment methods in educational settings. 2.

The technique of representing the code structure as syntactic trees was employed to create an automated tool

for analyzing software code. This facilitated the decomposition of the code into interrelated logical modules,

enabling the analysis of the structure of these modules and the relationships between them. 3. The used meth-

odologies and techniques were used for the analysis of Java code. The syntactic analysis enabled the detection

of problematic and erroneous code blocks and the identification of fraudulent attempts (manipulating the pro-
gram's output instead of performing the algorithm). Conclusions. Most current automatic student work evalua-

tion systems rely on testing, which involves comparing the program's inputs and outputs. Unlike the other

methods, the approach presented in this study examines the syntactic structure of the program. This e nables

precise identification of the position and type of mistakes. An astute examination of the gathered data will ena-

ble the formulation of precise suggestions for students to enhance their coding skills. The suggested instru-

ments can be incorporated into the Intelligent Tutoring System designed for IT majors.

Keywords: data processing; intelligent data analysis; intelligent assessment systems; software code analysis;

dynamic analysis of software code; feedback generation.

1. Introduction

1.1. Background

The incorporation of technology into the ever-

changing environment of education has changed how

we teach, learn, and evaluate data. The automation of

exercise grading technology is a significant advance. As

traditional manual grading techniques struggle to meet

the needs of modern education, automation provides an

attractive alternative that not only answers efficiency

problems but also opens up new opportunities for indi-

vidualized learning and pedagogical innovation.

The traditional method for grading exercises is a

time-consuming task for educators. As class numbers

grow and online learning becomes more popular, in-

structors’ pressure to provide timely and frequent feed-

back has reached a new level.

Furthermore, the subjectivity inherent in certain

kinds of assessments frequently leads to grading dispari-

ties and biases, thus affecting the overall fairness of

evaluations. Technology has recently intervened to

change this landscape. Automated exercise grading

technologies harness the power of artificial intelligence,

machine learning, and natural language processing to

evaluate student responses with exceptional accuracy

and speed. The transition from manual grading to auto-

mation has numerous advantages. It not only relieves

educators' workloads but also improves students' learn-

ing experiences by providing rapid feedback and allow-

ing them to follow their progress in real time.

In addition to the obvious benefits of efficiency,

automation opens up new opportunities in the field of

education. An educational experience that is both per-

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

Intelligent information technologies

69

sonalized and effective. Educators may now devote

more time to meaningful interactions with students,

concentrating on improving their conceptual knowledge

rather than navigating piles of homework. Furthermore,

the ability to handle vast amounts of data enables the

detection of learning trends and areas where students

frequently struggle. As a result, educators can adjust

their teaching approaches to address unique obstacles,

resulting in a more effective learning environment.

1.2. Motivation

Automation and grading technology have seen

immense growth in the educational landscape. The in-

teraction of crucial factors that address long-standing

issues while using new educational opportunities drives

the rise and widespread adoption.

Subjectivity, consistency, and scalability issues

have long been a problem with traditional grading

methods that rely on manual assessment. Educators fre-

quently struggle to maintain consistent grading stand-

ards, especially when faced with the onerous task of

analyzing a huge volume of assignments. Given these

inherent restrictions, there is an urgent need for a more

efficient and consistent grading approach.

Automation grading technology is introduced to

provide a streamlined and efficient alternative to the

time-consuming manual grading procedure. It can

quickly grade assignments, quizzes, and tests, thus free-

ing educators from the time-consuming task of hand-

grading. Moreover, it is positioned to satisfy the increas-

ing demands of assessing assignments acros s more stu-

dents and more types of distance learning programs

without sacrificing quality or rapid review. This frees

educators' valuable time and skills for more meaningful

educational activities, such as classroom instruction and

providing focused, constructive feedback to students.

However, not all educational areas can be easily

covered with an automation grading system, especially

in practical programming exercises, essays on free top-

ics, and many unstructured assessment tasks related to

free-form text processing.

1.3. Problem statement

The manual grading process is not very strict in the

matter of giving feedback, especially in learning pro-

gramming languages, because of the variety of ways

each task can be solved, different approaches that can

produce the same result, and different technology stacks

that can be used under the hood. Moreover, assessment

relies on too many human factors that are present during

the educational process, like manual verification by the

teacher to give advice on the task and usage of different

technology stacks that can lead to rejecting overall

tasks. This is very crucial to learning a programming

language, data analysis, or AI-related courses because

students should not be tight to technology stacks or

frames setup by the teacher. They should have the abil-

ity to reach the goal in their own way or at least get a

good explanation of what they need to accept bounda-

ries. These problems mostly relate to human factors and

prevent the creation of automated, teacher-like grading

technologies. Nevertheless, grading technology systems

have become more popular and widespread around the

world, which is forcing the community to investigate

new and improve existing areas of automation grading

methods and techniques.

The problem of grading programming tasks is not

new; however, it is partially solved because of the na-

ture of programming code [1] and the variety of ways

programming code can solve tasks that prevent automa-

tion systems from giving appropriate feedback. This is

the reason why the purpose of this study is to observe

and validate an approach based on abstract syntax for

automating the grading of practical programming tasks,

along with providing substantive feedback and identify-

ing the most valuable tasks .

1.4. State of the art

Programming exercises are always connected to

the process of writing part of the code. It can be a com-

plete program or a part of it; however, even simple it-

erations over an array of values can be implemented in

different ways. Most grading systems assume that stu-

dents already have some part of the written code and

only need to add a missing part to complete the task [2].

This approach is sufficient for learning basic program-

ming language concepts, terms, and syntax. However,

what about advanced levels when students need to write

some kind of code based on some predefined contract

(contract is a set of features along with logic behind of

it)? The answer to this question has not yet been deter-

mined because this type of verification is very complex

and has various limitations.

Ala-Mutka [3] classified the automated evaluation

of various qualities into two major groups: static analy-

sis and dynamic analysis, in their 2005 publication, "A

Survey of Automated Approaches for Programming

Assignments".

Dynamic analysis determines which properties of a

running program will remain for one or more execu-

tions, which allows it to evaluate these attributes [4]. It

often uses a suite of unit tests that compare the printed

output or return values of various methods to grade the

correctness of a student’s assignment.

The capacity of students to generate efficient code

or complete test suites can also be assessed using dy-

namic analysis [5]. The creation of a thorough test suite

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
70

usually requires considerable time and effort from in-

structors who are experts in designing unit tests using

advanced language capabilities like reflection. Students

typically have one of three options regarding access to

test suites: full access before the final deadline [6], par-

tial access, or no access at all. The assessment approach

determines how students are presented with the test

suites [7, 8].

Generally, students have full access to all parts of a

formative assignment, whereas they may only have ac-

cess to part of the tests in a summative assignment. To

prevent students from hardcoding return values and

gaming the system, it is common practice to either use

hidden tests or restrict student access to the entire test

collection [9].

The static analysis type evaluates software withou t

actually running the program or considering inputs.

Software is focused on the detection or partial identifi-

cation of faults, as well as the verification of maintaina-

bility, readability, and the presence of documentation

[10]. There are many such tools for each of the pro-

gramming languages, e.g. JaCoCo, Checkstyle, Find-

Bugs, SonarQube etc.

A comparison of dynamic and static code analysis

[11] demonstrates that for optimal software quality, a

combination of both strategies is advisable. By employ-

ing a mix of these strategies, software engineers can

guarantee that their programs possess superior quality

and are devoid of flaws. However, this approach will

work for experienced developers rather than students

who are only learning languages and executing the “hel-

lo world” programs.

Meanwhile, from the feedback generation, dynam-

ic code analysis is the most interesting and valuable part

of the analysis of segregation because it should deter-

mine where students made mistakes. The only thing the

grading system needs to do is discover the code block

that is causing a problem and give sustainable feedback

to a student that should contain the root cause of the

problem and instructions on how to fix it.

The most questionable thigs are related to the

method or methods of code block identification and

further analysis that allows not just verification of “code

smells” but also understanding and predicting possible

code issues. One such identification method was ex-

plained and used by Anh-Tu Phuong Nguyen and Van-

Dung Hoang [12]. The present study relies on an ab-

stract syntax tree approach for analyzing a code written

in Python to create an abstract layer based on abstract

syntax trees that allows a program to walk through the

code tree and perform analysis on its own logic on an

isolated code base. This approach perfectly fits the goal

of source code representation. However, testing code in

isolation may not work with other languages due to the

inability to isolate and run part of the code in languages

like Java or C#.

The usage of machine learning techniques along

with artificial intelligence is becoming increasingly

popular in all kinds of learning systems: from the tutor-

ing systems to educational robots and grading automa-

tion [13]. Based on this, the further use of machine

learning for syntax trees may seem very logical. Such an

example was provided by Francisco Ortin et al. [14] in

his research on how to apply a machine learning tech-

nique to analyze Java language code. This study demon-

strated the ability of machine learning techniques to

identify and evaluate constructs with high precision.

However, from a practical perspective, using this ap-

proach on different programming languages mean to

perform a deep investigation of each language along

with involving subject-matter experts to validate the

language processing results.

There is no single silver bullet in machine learning

that can be used for any programming language. The

great analysis work by Peter Hazem et al. [15] proves

this statement and forces us to think about the generali-

zation of the approach from the very beginning instead

of moving from a concrete language-based implementa-

tion to a more generic one.

However, not only syntax trees and machine learn-

ing techniques can also be used for code representation.

Paiva et al. [16] described alternative approaches that

can be used for code analysis, especially feedback gen-

eration. Based on this research, we found that syntax

trees and code property graphs are the best candidates

for the intermediate representation of the source code

for further analysis. Moreover, the combination of any

of these algorithms with others like data flow graphs or

control flow graphs, can be an answer to the question of

how a computer system can understand human-written

code and compare it with an example one.

Another significant question is a practical way to

construct the code representation. This question can be

solved using two common approaches: reflection usage

that is applicable to popular languages like Java or C#,

and object-oriented code analysis. Each of them can be

rather correct but slow or fast but not very accurate in a

meter of processing inheritance, which takes a major

part in learning programming languages. The experi-

mental comparison shows that the object approach

works better in the C# language [17].

Nevertheless, any type of tree-based algorithm is a

possible performance issue due to the necessity to trav-

erse over the structure more than once along with per-

forming searching and filtering over the node values .

1.5. Objective and Approach

This paper investigates and evaluates an approach

based on abstract syntax trees for automating the eval-

Intelligent information technologies

71

uation of code submissions of students. It considers not

only the accuracy (that is a goal of the static code analy-

sis) of the output but also the correctness and conformi-

ty in a form of evaluating the logic behind the code.

This leads to formalization of the primary goal, namely,

ensuring grading consistency by intellectual analysis in

the form of a comparison of code terms and code

branches with predefined by tutor solutions, along with

finding the biases and explaining the mistakes in a logic

flow and how to correct them.
The main objectives of this research are as fol-

lows:
- describing the problem and formalization of code

representation for intellectual analysis by applications;
- adapting a method and developing an algorithm

that offers invalid code block identification via code

decomposition and provides grading systems an “under-

standing” of program execution;
exploring algorithm behavior in common educa-

tional cases;
- discussion of results and recommendations;
- summarizing the results and describing future re-

search areas.
To achieve these aims, the article was divided into

five sections to form the article structure:

- Section 1 – “Introduction” explains the back-

ground and motivation of this article, along with analyz-

ing existing literature to better and accurately demon-

strate the intention of the current work. In addition, this

section presents current trends in the research field, al-

gorithms, practical implementations, and alternative

approaches that may solve the problem in the case of

future research.

- The methodology of providing feedback during

the practical task assessment along with the use of the

syntax tree approach is described in Section 2. This pro-

vides an understanding of the algorithm developed in

the scope of this paper.

- Section 3 – “Implementation and evaluation of

code samples” explains, in an example, how the algo-

rithm works in common use cases during programming

language learning.

- The “Discussion and recommendations” section

shows the benefits and concerns of this algorithm usage

along with guiding key components that need to be tak-

en into account during algorithm implementation and

integration into existing distance learning or grading

systems.

- The paper ends with a conclusion section that

summarizes the content provided in the paper and high-

lights future research areas .

2. Methodology

The process of giving feedback is complicated and

should consider already written code, be able to analyze

errors, and make assumptions about the logical program

component. This process breaks it down into several

stages: determining which part of code is wrong (this

stage supposed to include splitting code into logical

blocks and further processing of the code structure),

code analysis to find the exact cause (this is the stage

where deviation or invalid block identification should

be performed based on the tree code structure), and gen-

erating advice on what needs to be done to make it work

(this is a stage of advice preparation based on invalid

code found on the previous stage) (Fig. 1).

Fig. 1. General approach to advice generation

However, the advice generation algorithm is more

complex and comprises different stages (Fig. 2).

The code block identification stage (Fig. 2) is

almost easiest. This process comprises parsing, function

extraction, and obfuscation stages. The goal is to walk

through the code and split it by programming language

expressions such as variables, simple entities, and con-

trol structures [18]. In addition, it assumes the creation

of a dictionary of functions used in the code, e.g., the

creation of pairs for method names and method bodies

in programming languages like Java or C#. Another

method of identification that will be helpful in cases of

large amounts of code is the use of fingerprints [19] and

text preprocessing like obfuscation, which replaces var-

iables and makes code more recognizable for finger-

prints. The results of such parsing steps are simply a

plain code block structure and a map of pointers to code

blocks.

Further code analysis, invalid block identification,

and advice preparation are the most difficult steps

(Fig. 2). By the line of code where an error occurs, we

can identify the block statement it belongs to. However,

this does not mean that blocks are identified correctly

because there may be a chain of errors that lead to er-

rors. This means that block detection is effective for

simple pieces of code but may not be effective for tasks

where students should implement contracts on their

own. This is a case in which we must have some back-

ground information to identify the problem correctly.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
72

Fig. 2. General flow of a grading process

in automated systems

Background in a code analysis is an understanding

of the code logic that can be obtained by analyzing code

blocks and their interconnections. Here, identified code

blocks must be gathered into a logical representation

(logical tree creation stage on Fig. 2 for further pro-

cessing.

The best choice for gathering a logical code struc-

ture is to combine blocks into a tree because this allows

us to create a full picture of the operations performed

under the hood.

A tree (the program representation) in this case is a

finite set of nodes with a specially designated parent

node called the root (entry point to the program). The

remaining nodes are based on blocks and logical condi-

tions inside blocks when each block is a node in the tree

and partitioned into d disjoint sets {R1; R2;:::;Rd} such

that each of these sets is a tree. Each node may have

other nodes inside unless its’ value is a terminal opera-

tion - operation that does not have code blocks inside.

E.g., the if-else statement will be presented as a node

with two child nodes; while i++ will be positioned as a

leaf - node without children.

The main benefit of tree structure is the possibility

to perform a comparison based on subtrees

{R1;R2;:::;Rd} for each of the nodes and identify the

inconsistency between two trees in a way of corrupted

nodes identification (1). The comparison is a content

equality operation on the values of two nodes (2).

T1(n) T2(m), (1)

where n and m denote the positions of nodes in trees T1

and T2, respectively.

Ideally, n and m should be the same number or at

least have the same degree. Therefore, each node should

be compared with an appropriate node from a tree of

valid solutions. This comparison (P) should consider

expressions in the node under comparison and expres-

sions in the child nodes (2).

nodei T1 nodei T2

nodei T1 nodei T1 nodei T2
i 0..k

1, if E E

P 1, if E E

0, otherwise



 


  



, (2)

where PnodeiT1– result of the comparison of code state-

ment EnodeiT1 in nodei of the student code tree T1 and

code statement EnodeiT2 in nodei of the expected code tree

T2, i – represents a logical segment in a code tree rather

than a simple line of code.

Thus, if an expression in a target node has at least

one similar expression in any node to form a valid solu-

tion, we can identify such a node as a matched node and

identify it as a mismatched node otherwise.

The summation of the equality operations of each

(3) node will give some correct nodes and returns the

expected results. This number can be used to obtain a

general understanding of the logical validity of the

overall code.

T1 nodeiT1P P , (3)

where PT1 – aggregation of the equality of each code

statement PnodeiT1 in the students’ code tree T1.
The next step is to identify the problem or invalid

block identification (Fig. 2). In this step, two types of

misleads must be considered

The first is the simplest one, where an error occurs,

and the error code and error line are already known. In

this case, trees should be used to identify problematic

code structures and advice generation. This situation

does not require explanation because it is common in

any integrated development environment and can be

represented via hints or stack traces.

The second type of error occurs when there is no

error; however, the expected result is inappropriate. In

this case, the teacher or data gathered from prior suc-

cessful code executions should provide an "ideal" im-

plementation for each task. This concept and implemen-

tation are used to compare tree nodes and find devia-

tions. The code tree comparison algorithms should con-

sider the variations in the code structures and different

approaches that can be used. It should find the differ-

ences in the logical code composition of the input data

Intelligent information technologies

73

for advice generation. This leads to the comparison of

code lines, variables, statements, methods, and even

classes in a way of performing syntax and variable wir-

ing comparisons.

The idea of variable wiring comparison is to iden-

tify that all variables, method usage, and return values

are wired together. This understanding is required to

identify cases in which a student attempts to cheat by

returning constant values or is using inappropriate

methods. In contrast, syntax comparison targets invalid

method usage identification rather than verification of

the compilation to provide an understanding of whether

correct libraries are used or not.

Advice generation is based on logical differences,

syntax, and wiring analysis and can transform them into

sustainable feedback. In this part of the process, ma-

chine learning techniques can be used along with rule-

based mechanisms.

3. Implementation and evaluation

of code samples

3.1. Code parsing and metadata pre-processing

Let’s assume that we have simple Java code with

several methods and simple calculations inside (Fig. 3).

The provided code is parsed into a code block

structure with main operations that is easy for the ma-

chine to analyze.

line 2 - variable - private int a;

line 3 - variable - private int b;

lines 5-7 - method - public int sum();

line 6 - return from method;

line 6 - math operation - a+b;

line 9-11 - method - multiplySum(int x);

line 10 - return from method;

line 10 - method execution;

line 10 - math operation - *x;

lines 13-16 - constructor;

line 14 - variable set - a = 3;

line 15 - variable set - b = 5;

lines 18-26 - entry point;

line 21 - instance creation - new Main();

line 22 - method execution - m.sum();

line 22 - variable set - c = m.sum());

line 23 - if statement - if(c > 3)

line 24-26 - output - console;

line 25 - method execution - m.multilySum(3);

line 27 else statement

line 28-30 - output - console;

line 29- method execution - m.multilySum(4);

Fig. 3. Correct coding assignment execution

During the parsing process various kinds of

metadata gathered: scope of variable visibility (relation-

ship between variable declaration and places where they

can be used), method to line relationship and method

hierarchical usage (Fig. 4).

The metadata algorithm can map variables and

methods together by finding places where these varia-

bles are used (Fig. 5). Such information is a source data

for the variable wiring analysis, which is a simple

checking of next statements :

- all objects have initialized variables (verification

that class variables are present in the constructor or in

appropriate set method and that all the set method are

executed in the entry point or in other methods under

the entry point execution);

- there are no missed or undeclared variables in the

code;

- all the variables are of the defined, existed and

valid types.

Fig. 5 gives a hierarchical representation of the

variable usage at the entry point. In the case of several

entry points (e.g., in case of several endpoints that are

available over the network), we obtain several hierar-

chical representations for each entry point with its own

variables inside.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
74

Fig. 4. Metadata for the entry point

 This representation can be used for further finger-

print creation to simplify searches over the logical struc-

ture. A simple statement-based fingerprint can be used

in this study [12] with minor modifications. For exam-

ple, we consider fingerprints in the miltiplySum meth-

od (Fig. 6). This method calls the sum method inside

and performs a mathematical operation. The sum meth-

od performs a mathematical operation on the two inte-

ger values inside.

Fig. 5. Hierarchical representation

of variables inside an entry point

Thus, if we remove variable names, replace con-

cert types with more generic ones (like replace int with

number), show the hierarchy as a part of fingerprint, and

then cut the number of method execution (linearize the

execution tree). We will obtain the fingerprint, which

shows what operations are actually performed for this

method. Such an approach is very interesting in terms of

practical experience; however, it is not a goal of this

article.

Fig. 6. Fingerprint for multiplySum method

3.2. Syntax tree composition

In the next step, after metadata preparation, the

code block structure is transformed into a tree that

shows the logical code structure from the very begin-

ning of the program to the entry point to the very end

and possible variants of the program end (Fig. 7).

The structure starts from the entry point that is rep-

resented via “public static void main” construct (con-

struct - is the line of code that may contain method exe-

cutions, variable declaration, mathematical operation

and any syntax sugar that is available in the program-

ming language). This construct does not have any sub-

trees inside.

The next node (line 21) in the tree is the instance

creation of class Main along with variable m declara-

tion. This is a complex construct because instance crea-

tion in our case should include a variable setup at the

instance level, which is transformed into an inner tree

for this node. The inner tree comprises two node value

setups for instance or class variables a and b. The same

statement applies to the next node at line 22 because it

is also complex due to variable c assignment and meth-

od execution on previously created local variable m.

Sub tree of this node represents the execution of the

method

Intelligent information technologies

75

Fig. 7. Logical tree structure for correct coding assignment execution

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
76

Fig. 8. Several method executions in one construct

sum on variable m, which is an instance of class Main.

In the case of several method execution subtrees, all

method execution trees are combined (Fig. 8).

Line 23 represents the conditional statement. Such

nodes may split logical tree into more than two branch-

es, due to possibility of programming languages to

combine several if-else statements together (Fig. 9) or

even having special statements with more than two pos-

sible solutions like switch-case (Fig. 10). In our exam-

ple, the logical tree was split into two branches: a

branch starting from node on line 24 and a branch start-

ing from line 28. They are almost identical in our ex-

ample because we use the same utility method and code.

The only difference – is the constant value that is used

inside statements (block marked in dashes and values

highlighted via wave lines on Fig. 7).

To minimize and simplify the overall representa-

tion of the logical tree structure in Fig. 7 and for better

visualization, we can hide the additional data like value

usages, remove return statement nodes, and replace

complex construct nodes with simplified representation

(Fig. 11).

Fig. 9. Multiple outputs for several if-else statements

Intelligent information technologies

77

Fig. 10. Multiple outputs for several if-else statements

Fig. 11. Simplified representation of the logical

tree structure

In Fig. 11, we have only the nodes that need to be

considered during comparison (for the best understand-

ing only line numbers are present on the simplified view

of Fig. 7). Moreover, additional filtering of the tree al-

lows us to remove codes that do not affect the overall

result (marked in dash squares). Nevertheless, such re-

moval is not always possible because: from the one

hand, it allows to minimize the number of nodes during

further comparison in case of removing code in leaves

(like in our example); from the other hand, such remov-

al may lead to skipping a large part of the code that will

not be assessed at all but should be. From this stand-

point, duplicate removal is logical for program code

understanding but not applicable to our goal-assessing

programming language leaning tasks .

3.3. Syntax tree analysis and advice generation

The next algorithm step is tree analysis. For our

example, we combine this step with the next one–advice

generation, because this approach provides a full under-

standing of the advice creation mechanism based on a

logical code tree.

To demonstrate how it should work, we assume

that we have four different cases with this structure –

one per different student. In three cases, we simulate use

cases when the code executes correctly but data in a

console are completely different from the expected val-

ue – 24 and in the fourth one - with an exception during

execution.

3.3.1. Invalid constant value usage

The problem occurs at line 25, where an invalid

number is used by the student for the constant (used

value is value 5 instead of 3). As a result, the console

output will be 40 instead of 24 (Fig. 12).

Per the algorithm, this change will be detected via

tree comparison, and advice will point at the wrong con-

stant value at line 25 (Fig. 13) and explain how this val-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
78

ue will break the expected result (such an explanation

should be given based on tree with a help of traversing

on it to the very end and taking into account all direct

and indirect usages of constant value that is different).

Thus, advice itself will be a line of code where the

problem occurs and used value along with showing how

value 5 affects the result (just inlining the further tree

into text with variables, similar to “(3 + 5) * 5”). It will

show students the place and explains how it affects the

overall program execution.

Fig. 12. Mistake in value usage

Fig. 13. Comparison of two nodes at the line

where mistake occurs

3.3.2. Invalid comparison operator usage

In this case, the comparison operation is invalid in

the if-else statement (Fig. 14).

In the algorithm, the tree comparison will handle

such deviations by comparing child nodes and determin-

ing that nodes are not in the correct order (Fig. 15). This

leads to comparing the constructs under the node at l ine

23. This comparison gives an understanding that the

equality sign in the construct is invalid, or variable c

and constant 3 are in the wrong places. As a result, there

are two pieces of advice: correcting the sign and swap-

ping constant 3 and variable c in the code.

Fig. 14. Mistake in equality sign

Fig. 15. Invalid child node order

3.3.3. Hardcoding of expected result value

However, what if a student just hardcodes the out-

put value, like in line 25 (Fig. 16)?

Fig. 16. Cheating attempt

Intelligent information technologies

79

The tree comparison also will be able to handle

such a case because there will be missing nodes

(Fig. 17). However, syntax and wiring analysis are also

able to identify the same problem even faster due to

comparing only a code syntax without working with a

tree structure. For example, constant usage at line 24

can be simply identified by the static analysis, whereas

wiring analysis shows no problems. Such a case with

wiring analysis is possible due to line 29, where all the

methods used and variables are under the hood. Howev-

er, if at line 29, students put the constant too, wiring

analysis will complain about unused methods and varia-

bles. This is why wiring and static analysis should be

used as complementary methods and should only be

used to clarify the problem.

Fig. 17. Node difference in case of cheating attempt

Nevertheless, as a result, advice not to hardcode

expected results will be given to the student along with

a warning that such an attempt is a use-case of inappro-

priate solution. This information can also help tutors

better understand how many students are trying to cheat

instead of learning the topics .

3.3.2. Missing variable initialization

In the case of an error, the algorithm walks

through the tree and determines whether all variable

assignments are in place. In the example below (Fig.

18), variables a and b are not set, which leads to the

error.

Fig. 18. No variable initialization

During the node comparison, we observed a dif-

ference in node structures (Fig. 19), where the algorithm

at line 21 did not find any subtrees. However, his case

can be simply covered by static code analysis or varia-

ble wiring, where the instance variable is identified as

unknown due to the absence of variable set up code.

Such an approach will work for simple cases but not for

complex ones, where assignments are dynamic and may

need to be investigated in-depth, which can take a sig-

nificant amount of time and computing resources. This

leads to proving the statement from the previous case

that wiring and static analysis should be complimentary

methods and applied to clarify cases with finite numbers

of nodes.

Fig. 19. Node comparison when no variable

initialization is present

The algorithm provides a list of variables that were

not initialized for the instance of class Main. Such ad-

vice points students on common issues during learning

object-oriented programing – variable initialization and

the usage of classes instead of primitive types.

The above cases involve common issues while

studying programming languages. Such issues can be

connected to coding, understanding coding paradigms

and principles, or even attempts at cheating. The goal of

the proposed algorithm is to identify them and prepare

data for advice generation. On the other hand, advice

generation principles and mechanics are complicated

things that are not fully a part of this article due to the

necessity to showcase how they work in the educational

process. Nevertheless, building the logical code tree and

searching it along with supplementary code analysis

methods provide full information of the code written by

the student to identify the issue and find a way of fixing

it in a code written by the student rather than advising

them to rewrite the whole code from scratch.

4. Discussion and recommendations

According to the algorithm examples, the process

of invalid block identification as a key point of the grad-

ing process is based on comparing the code terms and

branches in the abstract syntax tree of the source code,

and handles common educational cases like:

- mistypes and cheating attempts - by validating a

code constructs and variable values during term analy-

sis;

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
80

- runtime errors are identified during the variable

validation;

- common mistakes in operation usage are also

identified by validating code constructs and variable

values.

The proposed method can be used to identify not

only syntactical errors but also semantic and uninten-

tional errors. This capability enhances the grading pro-

cess because it allows the system to understand the in-

tended logic and flow of the code, rather than just its

surface-level correctness.

Nevertheless, there are obstacles linked to the use

of the proposed algorithm due to the use of abstract syn-

tax trees for code evaluation. Obstacles arise from the

computational difficulty associated with producing and

analyzing abstract syntax trees, which may require sig-

nificant processing resources. In addition, an algorithm

is capable of processing several programming lan-

guages, where individual language features may neces-

sitate customized parsing and analysis techniques, thus

increasing complexity in the implementation process.

Considering the advantages and obstacles de-

scribed, it is advisable to incorporate analysis into code

grading systems after performing further experiments in

which quantitative metrics can be used to evaluate ef-

fectiveness. Further implementation should be carried

out considering the following factors:

- enhance the efficiency of tree generation and

analysis to maintain the grading system’s performance,

especially when dealing with extensive codebases;

- create language-specific extensions to handle dis-

tinct constructions and idioms, guaranteeing the accura-

cy of analysis across various programming languages;

- regularly updating the system to incorporate new

language features and paradigms, ensuring that the sys-

tem remains up-to-date and accurate;

- provide a unified analysis approach that can be

easily adopted to different programming languages and

does not depend on them.

5. Conclusion

Manual evaluation of programming projects chal-

lenging due to the inherent intricacy of coding and the

vast array of possible solutions. In addition to the com-

plexity of the grading process, subjective evaluation and

the incorporation of diverse technical frameworks are

also considered using intermediate representations of

the programming code. Despite the limitations, there is

a growing need to develop and enhance automated grad-

ing systems in educational settings.

This study proposes the use of dynamic code anal-

ysis in a way of syntax trees usage to improve an auto-

mated grading system that can not only assess coding

tasks but provides advice on how to fix existing stu-

dents’ code instead of rewriting it based on predefined

examples. As we can see from the examples in the arti-

cle, the most common codding mistakes are perfectly

covered by the algorithm that can potentially reduce the

amount of tutor involvement in the education process

when the less trivial ones should be discovered during

the experiment. This technique attempts to solve com-

mon issues in programming training by providing stu-

dents with valuable assistance in identifying flaws, ana-

lyzing code structure, and comparing syntax. In addi-

tion, it attempts to identify the logic behind the code.

However, although this technique demonstrates poten-

tial, it also acknowledges the complexity of coding loca-

tions, particularly at more advanced levels. To automate

the grading and feedback generation process successful-

ly, this technique may require additional customization

and adaptation.

Future research. To fully realize its potential, it

may be necessary to make additional adjustments and

adaptations for the effective automation of grading op-

erations and feedback production along with performing

experiments to understand the time consumptions that

instructors dedicate to grading with a help by using an

automated solution instead of manual grading work. By

integrating this technique into educational systems like

Moodle, it is feasible to significantly speed up evalua-

tion. The further research phases in this domain encom-

pass the implementation and testing of algorithms, as

well as their subsequent incorporation into educational

frameworks.

Furthermore, the application of artificial intelli-

gence techniques, such as recurrent neural networks and

massive language models, for code analysis appears to

be highly promising. Although parsing is more reliable

and less prone to incorrect responses, these tools can be

significantly more efficient than conventional methods.

These techniques can facilitate the detection of more

complex defect categories than traditional code analysis

methods.

Contribution of authors: conceptualization,

methodology – Denys Seliutin, Olena Yashyna; writ-

ing and original draft preparation – Denys Seliutin;

review – Olena Yashyna.

Conflict of Interest
The authors declare that they have no conflict of

interest in relation to this research, whether financial,

personal, authorship or otherwise, that could affect the

research and its results presented in this paper.

Financing
This study was conducted without financial sup-

port.

Data Availability
The work has no associated data.

Intelligent information technologies

81

Use of Artificial Intelligence
The authors confirm that they did not use artificial

intelligence methods in their work.

All the authors have read and agreed to the publi-

cation of the finale version of this manuscript.

References

1. Conejo, R., Barros, B. & Bertoa, M. F. Auto-

mated assessment of complex programming tasks using

SIETTE. IEEE Transactions on Learning Technologies,

2019, vol. 12, no. 4, pp. 470–484. DOI:

10.1109/tlt.2018.2876249.

2. Bertagnon, A., & Gavanelli, M. MAESTRO: a

semi-autoMAted Evaluation SysTem for pROgramming

assignments. Proceeding of the 2020 international con-

ference on computational science and computational

intelligence (CSCI), Las Vegas, NV, USA, IEEE, 2020,

pp. 953-958. DOI: 10.1109/csci51800.2020.00177.

3. Ala-Mutka, K. M. A survey of automated as-

sessment approaches for programming assignments.

Computer Science Education , 2005, vol. 15, iss. 2, pp.

83–102. DOI: 10.1080/08993400500150747.

4. Ball, T. The concept of dynamic analysis . ACM

SIGSOFT Software Engineering Notes, 1999, vol. 24,

iss. 6, pp. 216–234. DOI: 10.1145/318774.318944.

5. Coore, D., & Fokum, D. Facilitating course as-

sessment with a competitive programming platform.

Proceeding of the SIGCSE '19: the 50th ACM technical

symposium on computer science education , New York,

NY, USA, Association for Computing Machinery, 2019,

pp. 449-455. DOI: 10.1145/3287324.3287511.

6. Ayewah, N., Pugh, W., Hovemeyer, D., Mor-

genthaler, J. D., & Penix, J. Using static analysis to find

bugs. IEEE Software, vol. 25, no. 5, pp. 22–29. DOI:

10.1109/ms.2008.130.

7. Restrepo-Calle, F., Ramirez-Echeverry, J. &

González, F. Using an interactive software tool for the

formative and summative evaluation in a computer pro-

gramming course: an experience report. Global Journal

of Engineering Education , 2020, vol. 22, no. 3, pp. 174–

185. Available at: https://www.researchgate.net/

publication/346004432_Using_an_interactive_software

_tool_for_the_formative_and_summative_evaluation_in

_a_computer_programming_course_an_experience_rep

ort (accessed 09 June 2024).

8. Le, D. M. Model‐ based automatic grading of

object‐ oriented programming ass ignments. Computer

Applications in Engineering Education , 2021, vol. 30,

iss. 2, pp. 435–457. DOI: 10.1002/cae.22464.

9. Liénardy, S., Leduc, L., Verpoorten, D., &

Donnet, B. Café’: Automatic Correction and Feedback

of Programming Challenges for a CS1 Course. Proceed-

ing of the ACE'20: twenty-second australasian compu-

ting education conference, New York, NY, USA, Asso-

ciation for Computing Machinery, 2020, pp. 95–104.

DOI: 10.1145/3373165.3373176.

10. Ahire, P., & Abraham, J. Perceive core logical

blocks of a C program automatically for source code

transformations. Proceeding of the 18-th Intelligent Sys-

tems Design and Applications conference, Springer,

Cham, 2019, pp. 386–400. DOI: 10.1007/978-3-030-

16657-1_36.

11. De Silva, D., Samarasekara, P., & Hettiarach-

chi, R. TechRxiv. A comparative analysis of static and

dynamic code analysis techniques . 2023. DOI:

10.36227/techrxiv.22810664.v1. (unpublished).

12. Narayanan, S., & Simi, S. Source code plagia-

rism detection and performance analysis using finger-

print based distance measure method. Proceeding of the

2012 7th international conference on computer science

& education (ICCSE 2012) , Melbourne, VIC, Australia,

2012, pp. 1065–1068. DOI: 10.1109/iccse.2012.

6295247.

13. Xu, W., & Ouyang, F. The application of AI

technologies in STEM education: a systematic review

from 2011 to 2021. International Journal of STEM Ed-

ucation, 2022, vol. 9, article no. 59. DOI:

10.1186/s40594-022-00377-5.

14. Barros, J. P. Assessment for computer pro-

gramming courses: a short guide for the undecided

teacher. Proceeding of the 14th international conference

on computer supported education , Online Streaming,

SciTePress, 2022, pp. 549–554. DOI: 10.5220/

0011095800003182.

15. Samoaa, H. P., Bayram, F., Salza, P., & Leit-

ner, P. A systematic mapping study of source code rep-

resentation for deep learning in software engineering.

IET Software, 2022, vol. 16, iss. 4, pp. 351–385. DOI:

10.1049/sfw2.12064.

16. Paiva, J., Leal, J., & Figueira, Á. Comparing

semantic graph representations of source code: the case

of automatic feedback on programming assignments .

Computer Science and Information Systems, 2024, vol.

21, no. 1, pp. 117–142. DOI: 10.2298/csis230615004p.

17. Wojszczyk, R., Hapka, A., & Królikowski, T.

Performance analysis of extracting object structure from

source code. Procedia Computer Science, 2023, vol.

225, pp. 4065–4073. DOI: 10.1016/j.procs.2023.10.402.

18. Nguyen, A. T., & Hoang, V. D. Development

of code evaluation system based on abstract syntax tree .

Journal of Technical Education Science, 2024, vol. 19,

no. 1, pp. 15–24. DOI: 10.54644/ jte.2024.1514.

19. Ortin, F., Facundo, G., & Garcia, M. Analyzing

syntactic constructs of Java programs with machine

learning. Expert Systems With Applications, 2023, vol.

215, iss. C. DOI: 10.1016/j.eswa.2022.119398.

https://doi.org/10.1016/j.eswa.2022.119398

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 4(112) ISSN 2663-2012 (online)
82

Received 17.07.2023, Accepted 18.11.2024

ІНТЕЛЕКТУАЛЬНИЙ АНАЛІЗ КОДУ

В СИСТЕМАХ АВТОМАТИЗОВАНОГО ОЦІНЮВАННЯ

Д. А. Селютін, О. С. Яшина

Оцінювання завдань із програмування залишається проблемою, навіть незважаючи на різноманітність

підходів, які студенти можуть використовувати для вирішення труднощів. Основною причиною є наявність

численних технологічних стеків, що реалізуються, і різноманітність підходів до написання коду, які можна

використовувати. Предметом вивчення даної статті є процес оцінювання знань студентів на основі коду,

який був написаний студентом під час звичайної практичної роботи. Мета полягає в розробці підходу до

інтелектуального аналізу коду, який можна легко реалізувати та інтегрувати в найпоширеніші системи ав-

томатизованого оцінювання. Завданнями, які потрібно вирішити, є: формалізація подання коду для інтелек-

туального аналізу програмними засобами; аналіз сучасного стану досліджень та розробок в галузі автомати-

зованого аналізу та оцінювання програмного коду; розробка методу та алгоритму, які пропонують суттєвий

зворотній зв’язок через інтеграцію інтелектуального аналізу методом декомпозиції та надання системам

оцінювання «розуміння» журналу виконання програми у вигляді аналізу помилкових блоків. Предметом

цього дослідження є методи оцінки програмного коду під час дистанційного навчання. Використовувані

методи: методи аналізу коду на базі алгоритмів класифікації та представлення коду у вигляді дерева разом

із його вирівнюванням. Були отримані наступні результати: 1. Проведено аналіз сучасного стану в галузі

автоматизованого аналізу та оцінювання програмного коду показав, що ця проблема є складною бо трудно-

щі, пов’язані з оцінюванням проектів програмування вручну, ще більше ускладнюються складною приро-

дою коду, суб’єктивним судженням і вимогою адаптації до різних технічних структур , що лише підкреслює

нагальну потребу в автоматизованих методах оцінювання в освітніх середовищах. 2. Для розробки методу

автоматизованого аналізу програмного коду було застосовано моделювання структури коду у вигляді синта-

ксичних дерев. Це дозволяє розбити код на взаємопов'язані логічні блоки, аналізувати структуру блоків та

зв'язки між ними. 3. Розроблені методи та алгоритми застосовані для аналізу коду Java. Проведений синтак-

сичний аналіз дозволив виявити проблемні та помилкові блоки в коді, а також ідентифікувати спроби шах-

райства (підроблення виводу програми замість реалізації алгоритму). Висновки. Більшість існуючих систем

автоматичного оцінювання робіт студентів основані на тестуванні, тобто співставленні входів і виходів про-

грами. На відміну від них запропонований в роботі метод передбачає аналіз синтаксичної структури про-

грами, що дозволяє точно визначити місце та характер допущених помилок. Інтелектуальний аналіз зібра-

них при цьому даних дозволить розробити точні рекомендації для студентів щодо покращення коду. Запро-

поновані засоби можуть бути частиною Intelligent Tutoring System для IT спеціальностей.
Ключові слова: обробка даних; інтелектуальний аналіз даних; інтелектуальні системи оцінки; аналіз

програмного коду; динамічний аналіз програмного коду; генерація зворотного зв'язку.

Селютін Денис Анатолійович – аспірант каф. комп’ютерних наук та інформаційних технологій,

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут», Харків,

Україна.

Яшина Олена Сергіївна – канд. техн. наук, доц., доц. каф. комп’ютерних наук та інформаційних

технологій, Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний

інститут», Харків, Україна.

Denys Seliutin – PhD Student of the Computer Sciences and Information Technologies Department, National

Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine,

e-mail: denis.selutin.ds@gmail.com, ORCID: 0009-0000-2843-9689.
Elena Yashyna – PhD in Information Technologies, Associate Professor at the Computer Sciences and Infor-

mation Technologies Department, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine,

e-mail: o.yashina@khai.edu, ORCID: 0000-0003-2459-1151.

