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The localization and classification of objects of different types in images is an important and actively 

researched topic because the designed methods and tools are exploited in a wide variety of fields, including 

remote sensing, security systems, and medical diagnostics. Imaging systems installed on-board unmanned 

aerial vehicles (UAVs) and drones have become popular recently, and they are potentially beneficial for 

numerous applications like mine detection, traffic control, and crowd control. Images acquired by such systems 

may suffer from low quality because of the use of rather cheap cameras and the necessity to transfer obtained 

data via communication lines with limited bandwidth, employing lossy compression. These factors can 

influence the quality and accuracy of object localization, which is typically negatively performed by trained 

neural networks. However, the intensity of the noise and distortions that can be considered acceptable, i.e. 

such that they do not lead to radical reduction of the performance characteristics are unclear. Given this, it is 
reasonable to investigate the impact of these effects on the quality of object localization and classification 

using a reliable data size and various noise/distortion intensities. Therefore, the research subject of this paper 

is the performance of object localization and classification methods for color images acquired by UAV-

installed sensors. The primary focus is on the dependence of localization and classification metrics on the 

noise intensity, where the simulated noise mimics not only noise but also distortions due to lossy compression 

by modern coders. The aim of this work is to obtain adequate statistics and analyze them to build 

dependencies of the metrics on the intensity of distortions. The objective is to obtain conditions for which the 

effects of noise and distortions can be considered negligible or acceptable in practice. The second objective is 

to analyze the sensitivity of several modern neural network models to noise/distortions.  The result is a 

statistical assessment of the dependence of model performance on input data quality. The conclusions are 

based on the statistics characterizing the model performance for the noise/distortion intensity interval. The 

conclusions allow the selection of the best (most robust) neural networks and the establishment of appropriate 
performance conditions. 
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Introduction 
 

Motivation 
 

Object (target) detection and estimation of spatial 

coordinates (localization) is a standard task in radar [1], 

hydroacoustics [2], optical [3], and infrared [4] imaging. 

There are numerous application areas where automatic 

localization and classification of objects can be 

required, including remote sensing [5], security systems 

[6], and medical diagnostics [7], etc.  

Systems intended for object detection can be 

installed on land or onboard ships, satellites, or 

airplanes (e.g., fighters) [8, 9]. With the increase in 

UAV and drone technologies and applications, it has 

become popular to use different types of cameras 

installed onboard for solving various tasks [10, 11]. 

These can be forestry [12], mine detection [13], and 

digital elevation map reconstruction [14]. For these 

tasks and applications, high-quality images are required 

for processing and extracting useful information. 

However, the quality of images acquired by UAV-

based sensors and/or passed to on-land centers for data 

processing can be quite low [15, 16]. A question is how 

the acquired image quality can influence object 

detection and localization?  
 

State-of-the-art 
 

There are several basic factors that influence the 

quality of images acquired by UAV-based sensors and 

received after transfer via communication lines. 

Consider some of them in more detail.  
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First, UAVs are usually equipped with small 

modules to reduce the weight of the vehicle and/or 

increase the payload. Therefore, camera modules 

installed on UAVs are often small and cheap. Thus, 

acquired images can be noisy [17].  

Second, another challenge is the transmission of 

acquired images "to the ground", namely to the 

operator's device, for processing and blending. This 

requires good (broad enough) communication channels 

or a rather small amount of data to be transferred [18]. 

To reduce image size, compression methods and 

algorithms are employed, mostly with losses, which 

affect image quality and introduce distortions [19]. 

Thus, object localization and classification 

methods should be resistant to noise and distortion due 

to lossy compression. Note that the latter ones, under 

certain conditions, have properties very similar [20] to 

additive white Gaussian noise (AWGN), which is often 

used as the simplest noise model employed for initial 

stage studies [21, 22].  

It is obvious that noise and distortion due to lossy 

compression have a negative impact on image/object 

classification [23, 24]. In particular, the effect of noise 

and its filtering was studied in [23], where it was shown 

that noise could lead to significant degradation of 

classification accuracy, whereas its pre-filtering could 

improve classification. The authors of the paper [24] 

demonstrated a negative effect of lossy compression on 

classification accuracy, although this effect was quite 

small for relatively small values of the compression 

ratio. In the paper [25], it was demonstrated that lossy 

compression sometimes results in improved 

classification accuracy. Thus, the effects can be rather 

complex and worth studying for each situation.  

Currently, neural networks are widely used for 

object localization and classification [26, 27]. Some 

authors prefer to conduct training for high-quality image 

data [28]. In addition, many modern localization 

methods employ augmentation techniques such as noise, 

blur, and compression during training [29, 30]. This 

augmentation often improves the quality of model 

performance on different data types. 
 

Objectives and the approach 
 

Previously, we studied the accuracy of neural 

networks for localizing and classifying objects in UAV 

images [26]. However, when shooting under bad 

conditions, one may have a large negative influence of 

various factors, including interference from various 

kinds, mostly noise. Given the importance of obtaining 

accurate object localization and classification results, 

the main objective of this study is to analyse the impact 

of noise and lossy compression on the accuracy of 

neural networks. To investigate this topic, we 

generalized the types of noise and used the additive 

white Gaussian noise (AWGN) model as noise 

interference.  

The proposed approach consists of creating a 

common benchmark for neural networks of different 

architectures. For this purpose, we used the VisDrone 

[31] dataset, which has high quality labeled data that 

meets our requirements. The dataset is also quite diverse 

in terms of lighting, natural conditions, shooting height, 

and other factors. Using the dataset, we have trained 5 

models of different architectures under the same 

conditions on the same device and using the same data. 

The obtained neural networks were tested using the 

Intersection over Union (IoU) [32] and F1 scores [33]. 

These metrics allow us to determine the initial quality of 

the model and the subsequent impact of noise on the 

quality of the neural network.  

The paper structure is the following. Section 1 

describes the data used for training and testing. In 

Section 2, we consider the networks used and the 

peculiarities of their training. In Section 3, we discuss 

the impact of noise by distorting the test dataset with 

noise of varying intensity and estimating the 

aforementioned metrics. The obtained data were 

analysed, and conclusions were drawn regarding the 

magnitude of the metric drop and the immunity of 

neural networks to the influence of noise for each of the 

tasks: localization and classification. A short discussion, 

conclusions, and directions for further research are then 

presented.   

 

1. Data for research 
 

Recall that any neural network to be effectively 

used requires preliminary training using data that 

effectively represent possible practical situations. The 

VisDrone [31] dataset was chosen by us for model 

training and studying the effects of noise and distortion. 

There are several reasons for this choice. First, this 

dataset contains sufficiently high-quality images, which 

allows us to work with data without distortion. The size 

of the test part of the dataset was quite large (1610 

images), which allowed studying the effect of noise and 

distortions at different angles, shooting conditions, and 

UAV flight heights. The objects in this dataset are 

divided into 11 classes, which makes it possible to 

evaluate the impact of noise on both small and large 

objects. 

Using the training part of the dataset, several test 

models were trained and used in the research. The 

training dataset comprised 6471 images with 344737 

labelled objects of different sizes and type (Class). The 

largest part of the dataset was represented by the Class 

"Car" (42%), followed by "Pedestrian" and "Motor". 

More detailed statistics about the class distribution are 

presented in Figure 1, a. 
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We also considered the statistics of the test sample, 

which was used to study the impact of noise on object 

recognition quality. The test (verification) dataset 

contains 1610 images, which were also divided into 11 

classes. In line with the training data, the "car" Class has 

the largest number of labelled objects in the test data 

(37%). The statistics of data distribution between 

classes are shown in Figure 1,b. 

Next, we take a closer look at the content of the 

images presented in the dataset to better understand the 

quality of the data and relevance of the results. The 

dataset contains images captured by UAV sensors at 

different flight heights, where the UAV height for each 

image is unknown. Examples of these images are shown 

in Figure 2. The images in the dataset also have high 

variability in terms of the position of objects (different 

vision angles, stationary and moving objects), as well as 

different shooting conditions and light and quality. 

Given the context of the images and their quality, we 

assume that the data are sufficient to test the impact of 

noise and distortion on the quality of object detection.   

 

2. Neural network training 
 

In this study, we have selected 5 popular neural 

networks for object detection. In particular, these are 

models from the YOLO (You Only Look Once) [34] 

structure, versions 5 and 8. Classical approaches have 

been also chosen, such as Faster Recurrent Convolution 

 

 
а 

 
б 

Figure 1. Distribution of classes in the training (a) and test (b) parts of the dataset 

 

  

  
Figure 2. Examples of images in the VisDrone dataset 
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Neural Network (Faster RCNN) [35], RetinaNet [36], 

and Single Shot Detector (SSD) [37]. Here, we briefly 

consider each model. 

A Faster RCNN is a neural network that uses the 

Region Proposal Network (RPN) as a predictor of 

object boxes. This is a fairly classic object detection 

method. It has a relatively high accuracy in detecting 

objects of different sizes [38, 39]. 

SSD works by selecting and classifying boxes that 

are found based on anchors, which can be set manually 

according to the dataset and the task, or selected 

automatically based on the dataset. Accordingly, by 

using different variations of the anchors, the size of the 

objects to be recognized can be taken into consideration 

and studied. The architecture is classical and supports 

various backbones, which also affects the quality of the 

trained model.  

RetinaNet is based on a multilevel model; thus, 

predictions are made at different levels and then 

aggregated. This structure allows for the recognition of 

objects of different sizes, particularly by controlling the 

number of levels and selecting their resolution. The 

proposed architecture also supports different backbones, 

thereby providing a wide variety of models. 

The YOLO architecture represents the detection 

problem as a regression problem to spatially separated 

rectangles and their class probabilities. In this process, 

the entire image is considered, allowing the model to 

better understand the context [40].  

To begin the study, all of the above models were 

trained using the noise/distortion-free images from 

VisDrone dataset analyzed in the previous section. The 

results obtained for the aforementioned models for the 

test dataset are presented in Table 1 and plotted in 

Figure 3, where the values of Intersection Over Union 

(IoU) [32] and F1 score [33] are given. Recall that, for 

both IoU and F1 scores, the larger the scores, the better. 

 

Table 1 

IoU and F1 score metrics of the trained models 

Metric F1 score IoU 

Faster RCNN 0.7078 0.736 

RetinaNet 0.6855 0.6562 

SSDLite 0.732 0.618 

Yolo v5 0.825 0.763 

Yolo v8 0.820 0.763 

 

The results demonstrate that all five models 

performed reasonably well given the obtained metric 

values, where the YOLO networks provided the best 

results. The initial high-quality detection for training 

data allows studying the effect of image quality on 

object detection given the data obtained using the 

trained models. 

3. Case Study 
 

In general, noise in images can be of different 

types and appearances. The most typical noise sources 

in optical images are read and shot noise [41]. As 

mentioned above, the AWGN was used as the initial 

step in our study.  

Modeling different noise intensities allows 

studying the influence of noise intensity on classifier 

performance. For AWGN with zero mean and uniform 

power spectral density at all frequencies, it is possible to 

vary only the variance or standard deviation (STD). The 

images distorted by AWGN are shown in Figure 4 for 

different standard deviation values. We considered 10 

values of the noise standard deviation: 3, 5, 7, 10, 15, 

20, 25, 30, 35, and 50. Recall that noise with standard 

deviations 3 and 5 is usually invisible, whereas noise 

with standard deviations 30, 35, and 50 becomes 

annoying. Also note that noise in R, G, and B 

components is independent and has the same standard 

deviation values.  

 

 
Figure 3. Metrics results of the trained models 

 

Using the obtained noisy images, we studied the 

object localization and classification quality of 

previously trained models. For this purpose, we created 

a model testing environment, the so-called benchmark, 

to calculate metrics. This method of comparison obtains 

estimates of the accuracy of each model and compares 

the impact of image quality on localization quality. 

Several criteria were selected as metrics, which are 

often used to characterize object localization accuracy. 

The Inersection over Union (IoU) [32] metric represents 

the ratio of the overlap of two frames to their total area. 

This metric estimates localization accuracy relative to 

markup in the dataset. 
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Figure 4. Noise-distorted images with standard deviation of 10 (a), 20 (b), 30 (c) and 50 (d) 

 

The next comparison criterion was the 

F1 score [33]. It is calculated based on Precision and 

Recall [42]. The metric reflects the accuracy of the 

model's classification based on precision and recall. The 

metric is mathematically expressed as follows (1): 

 

2*TP
F1

2*TP FP FN


 
, (1) 

 

where TP is the true positive rate, i.e. the number of 

correctly predicted objects, FP is the false positive rate 

(i.e., the number of objects that were marked but were 

not in the markup), and FN is the false negative rate 

(i.e., the number of objects that were in the markup but 

were not predicted by the neural network). 

The studied criteria are standard indicators for 

object classification and localization models [32, 33], so 

their use in this case is appropriate and relevant to the 

study. 

For each subsample (images with the added 

AWGN with certain standard deviation), we estimated 

the aforementioned indicators. Based on the obtained 

statistics, graphs showing the dependence of 

localization accuracy on noise intensity are plotted. The 

graph showing the ratio of the IoU metric to the 

intensity of the noise in the image (expressed in the 

STD) is shown in Figure 5. 

 

 
Figure 5. Graph of the IoU versus noise  

standard deviation 

 

In general, the IoU metric reduced for all tested 

models, at least for noise standard deviations greater 

than 20. The reduction speed is also different. Some 

models are more susceptible to interference, such as the 

SSD Lite, where the metric drops by 35.7% for 

STD=50. Some are considerably less susceptible to 

interference, such as YOLOv8 and RetinaNet, which 

have drops of 9.4% and 9%, respectively. YOLOv5 is 

characterized by high immunity to noise and distortions 

for STD<25. Considering the obtained values of the 

metric drops, we can state that invisible noise (STD≤5) 

has practically no negative impact on the result of object 

localization.  
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By studying the effect of noise intensity on object 

classification using the same dataset, we also obtained 

the dependence of the F1 score on the noise intensity 

(Figure 6). 

 

 
Figure 6. Graph of F1 score versus noise STD 

 

The behavior of the classification quality metric is 

similar to the localization results. In this case, we 

observed a significantly faster drop in the metric value 

with the increase of the noise level. All dependencies 

decrease monotonically. Although the impact on the 

models is somewhat different, unlike localization, the 

SSD Lite has a 13.6% drop in the metric, which is the 

smallest among all the models studied. The largest drop 

in this metric was observed for the Faster RCNN model, 

which exhibited a 51.7% drop. The performance was the 

best for YOLOv8, which is more resistant to noise than 

YOLOv5, but only for STD≥25, i.e. for very intensive 

noise and distortions.  

The reason for the poor immunity of the RCNN 

model is that with a higher number of localized blocks, 

there is also a higher probability that an object will be 

misclassified. The fact that the models that produce 

better localization (Faster RCNN, RetinaNet) ended up 

with worse classification results confirms this 

hypothesis. 

Despite the differences in the behavior of the 

localization and classification metrics for different 

models, the dynamics of the metrics’ values decreasing 

with increasing noise level remain. Classification is 

reduced more than localization, precisely because of the 

small size of the target objects and the specifics of the 

considered task. 

 

4. Discussion 
 

We studied the negative influence of AWGN in 

wide limits of its intensity. This was performed to 

understand the conditions when NN performance starts 

to deteriorate rapidly. In fact, noise with a standard 

deviation greater than 20 can be met in practice very 

rarely, or such distortions due to lossy compression 

might occur only for large compression ratios. This 

means that the best variants of the considered neural 

networks can perform well under typical conditions.  

On the other hand, there exist methods of blind 

evaluation of noise characteristics [43, 44]. When 

applied to acquired images subject to further extraction 

of useful information, such methods can “characterize” 

image quality. In particular, methods [43, 44] can 

determine the dominant noise type, is the noise spatially 

correlated or no. This might help in further actions such 

as decision undertaking or producing pre-cautions (Be 

careful, original data of poor quality). Thus, intelligent 

systems with autonomous operation can be designed.           

 

Conclusions 
 

The study of the impact of image quality, namely 

the level of noise in the image, on the quality of object 

localization and classification demonstrated that this 

dependence is quite strong. Thus, with an increase in 

AWGN STD, we obtain worse localization metrics that 

drop by 10-20% on average. Taking into account the 

classification metrics, we have a 25-35% drop for 

different models for the largest STDs. In addition, for 

STD≤10, the performance reduction was negligible, 

especially for YOLO-type networks. 

The classification result is highly dependent on 

image quality, which is also a specific feature of the 

task. A large number of small objects in UAV images 

are poorly classified when the noise level is high. This 

is primarily due to distortions, which is a main problem 

in small object detection tasks. 

Two directions of work with noise-distorted data 

should be investigated in future research. The first 

approach relates to filtering UAV data and its 

subsequent processing [45]. In this case, there may also 

be some loss of information about small objects due to 

filtering. The second direction is to study the impact of 

adding noise to the data when training the neural 

network. Such an approach can improve the accuracy of 

neural networks and reduce the impact of various types 

of interference on the quality of work. 
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ДОСЛІДЖЕННЯ ВПЛИВУ ШУМОВИХ ЗАВАД РІЗНОГО ТИПУ НА ЗОБРАЖЕННЯХ 

ОТРИМАНИХ ЗА ДОПОМОГОЮ БПЛА НА ЯКІСТЬ ТА ТОЧНОСТІ ЛОКАЛІЗАЦІЇ ОБЄКТІВ 

Р. В. Цехмистро, О. С. Рубель, О. В. Присяжнюк, В. В. Лукін 

Локалізація та класифікація об'єктів різних типів на зображеннях є важливою темою, що активно 

досліджується, оскільки ці методи та засоби використовуються в найрізноманітніших сферах, включаючи 

дистанційне зондування, системи безпеки, медичну діагностику тощо. Останнім часом стали популярними 

системи обробки зображень, встановлені на борту безпілотних літальних апаратів (БПЛА) і дронів, які 

потенційно можуть бути корисними для багатьох сфер, таких як виявлення мін, контроль за дорожнім рухом 

і натовпом. Зображення, отримані такими системами, можуть мати досить низьку якість через використання 

відносно дешевих камер і необхідність передавати отримані дані через лінії зв'язку з обмеженою 

пропускною здатністю із застосуванням стиснення з втратами. Ці фактори можуть негативно впливати на 
якість і точність локалізації об'єктів, яку зазвичай виконують навчені нейронні мережі. Однак, незрозуміло, 

яку інтенсивність шуму та спотворень можна вважати прийнятною, тобто такою, що не призводить до 

радикального зниження робочих характеристик нейронної мережі. З огляду на це, доцільно дослідити вплив 

цих ефектів на якість локалізації та класифікації об'єктів, використовуючи достовірні обсяги даних та 

широкий діапазон інтенсивності шуму/спотворень. Тому основною темою цієї статті є дослідження 

ефективності методів локалізації та класифікації об'єктів на кольорових зображеннях, отриманих за 

допомогою сенсорів, встановлених на БПЛА. Основна увага приділяється залежності метрик локалізації та 

класифікації від інтенсивності шуму, де генеровані завади імітують не тільки шум, але й спотворення, 

спричинені стисненням з втратами сучасними кодерами. Метою роботи є отримання адекватних статистик 

та їх аналіз, побудова залежностей метрик від інтенсивності накладених спотворень. Завдання полягає в 

тому, щоб отримати умови, для яких вплив шуму та спотворень можна вважати незначним або прийнятним 
для практики. Інша мета - проаналізувати чутливість декількох сучасних нейромереж до шуму/спотворень.  

Результатом є статистична оцінка залежності ефективності моделі від якості вхідних даних. Висновки 

ґрунтуються на статистичних даних, що характеризують роботу моделі на інтервалі інтенсивності 

шуму/спотворень. Висновки дозволяють вибрати найкращі (найбільш стійкі) нейронні мережі та встановити 

умови їхньої належної роботи. 

Ключові слова: локалізація об’єктів; літальні апарати, класифікація техніки, шумові завади, БПЛА. 
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