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IMPACT OF DISTORTIONS IN UAV IMAGES ON QUALITY
AND ACCURACY OF OBJECT LOCALIZATION

The localization and classification of objects of different types in images is an important and actively
researched topic because the designed methods and tools are exploited in a wide variety of fields, including
remote sensing, security systems, and medical diagnostics. Imaging systems installed on-board unmanned
aerial vehicles (UAVs) and drones have become popular recently, and they are potentially beneficial for
numerous applications like mine detection, traffic control, and crowd control. Images acquired by such systems
may suffer from low quality because of the use of rather cheap cameras and the necessity to transfer obtained
data via communication lines with limited bandwidth, employing lossy compression. These factors can
influence the quality and accuracy of object localization, which is typically negatively performed by trained
neural networks. However, the intensity of the noise and distortions that can be considered acceptable, i.e.
such that they do not lead to radical reduction of the performance characteristics are unclear. Given this, it is
reasonable to investigate the impact of these effects on the quality of object localization and classification
using a reliable data size and various noise/distortion intensities. Therefore, the research subject of this paper
is the performance of object localization and classification methods for color images acquired by UAV-
installed sensors. The primary focus is on the dependence of localization and classification metrics on the
noise intensity, where the simulated noise mimics not only noise but also distortions due to lossy compression
by modern coders. The aim of this work is to obtain adequate statistics and analyze them to build
dependencies of the metrics on the intensity of distortions. The objective is to obtain conditions for which the
effects of noise and distortions can be considered negligible or acceptable in practice. The second objective is
to analyze the sensitivity of several modern neural network models to noise/distortions. The result is a
statistical assessment of the dependence of model performance on input data quality. The conclusions are
based on the statistics characterizing the model performance for the noise/distortion intensity interval. The
conclusions allow the selection of the best (most robust) neural networks and the establishment of appropriate
performance conditions.
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Introduction installed onboard for solving various tasks [10, 11].
These can be forestry [12], mine detection [13], and
Motivation digital elevation map reconstruction [14]. For these

tasks and applications, high-quality images are required

Object (target) detection and estimation of spatial  for processing and extracting useful information.
coordinates (localization) is a standard task in radar [1], However, the quality of images acquired by UAV-
hydroacoustics [2], optical [3], and infrared [4] imaging.  based sensors and/or passed to on-land centers for data
There are numerous application areas where automatic  processing can be quite low [15, 16]. A question is how
localization and classification of objects can be the acquired image quality can influence object
required, including remote sensing [5], security systems  detection and localization?
[6], and medical diagnostics [7], etc.

Systems intended for object detection can be State-of-the-art
installed on land or onboard ships, satellites, or
airplanes (e.g., fighters) [8, 9]. With the increase in
UAV and drone technologies and applications, it has
become popular to use different types of cameras

There are several basic factors that influence the
quality of images acquired by UAV-based sensors and
received after transfer via communication lines.
Consider some of them in more detail.
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First, UAVs are usually equipped with small
modules to reduce the weight of the vehicle and/or
increase the payload. Therefore, camera modules
installed on UAVs are often small and cheap. Thus,
acquired images can be noisy [17].

Second, another challenge is the transmission of
acquired images "to the ground”, namely to the
operator's device, for processing and blending. This
requires good (broad enough) communication channels
or a rather small amount of data to be transferred [18].
To reduce image size, compression methods and
algorithms are employed, mostly with losses, which
affect image quality and introduce distortions [19].

Thus, object localization and classification
methods should be resistant to noise and distortion due
to lossy compression. Note that the latter ones, under
certain conditions, have properties very similar [20] to
additive white Gaussian noise (AWGN), which is often
used as the simplest noise model employed for initial
stage studies [21, 22].

It is obvious that noise and distortion due to lossy
compression have a negative impact on image/object
classification [23, 24]. In particular, the effect of noise
and its filtering was studied in [23], where it was shown
that noise could lead to significant degradation of
classification accuracy, whereas its pre-filtering could
improve classification. The authors of the paper [24]
demonstrated a negative effect of lossy compression on
classification accuracy, although this effect was quite
small for relatively small values of the compression
ratio. In the paper [25], it was demonstrated that lossy
compression  sometimes  results in  improved
classification accuracy. Thus, the effects can be rather
complex and worth studying for each situation.

Currently, neural networks are widely used for
object localization and classification [26, 27]. Some
authors prefer to conduct training for high-quality image
data [28]. In addition, many modern localization
methods employ augmentation techniques such as noise,
blur, and compression during training [29, 30]. This
augmentation often improves the quality of model
performance on different data types.

Objectives and the approach

Previously, we studied the accuracy of neural
networks for localizing and classifying objects in UAV
images [26]. However, when shooting under bad
conditions, one may have a large negative influence of
various factors, including interference from various
kinds, mostly noise. Given the importance of obtaining
accurate object localization and classification results,
the main objective of this study is to analyse the impact
of noise and lossy compression on the accuracy of
neural networks. To investigate this topic, we
generalized the types of noise and used the additive

white Gaussian noise (AWGN) model as noise
interference.

The proposed approach consists of creating a
common benchmark for neural networks of different
architectures. For this purpose, we used the VisDrone
[31] dataset, which has high quality labeled data that
meets our requirements. The dataset is also quite diverse
in terms of lighting, natural conditions, shooting height,
and other factors. Using the dataset, we have trained 5
models of different architectures under the same
conditions on the same device and using the same data.
The obtained neural networks were tested using the
Intersection over Union (loU) [32] and F1 scores [33].
These metrics allow us to determine the initial quality of
the model and the subsequent impact of noise on the
quality of the neural network.

The paper structure is the following. Section 1
describes the data used for training and testing. In
Section 2, we consider the networks used and the
peculiarities of their training. In Section 3, we discuss
the impact of noise by distorting the test dataset with
noise of varying intensity and estimating the
aforementioned metrics. The obtained data were
analysed, and conclusions were drawn regarding the
magnitude of the metric drop and the immunity of
neural networks to the influence of noise for each of the
tasks: localization and classification. A short discussion,
conclusions, and directions for further research are then
presented.

1. Data for research

Recall that any neural network to be effectively
used requires preliminary training using data that
effectively represent possible practical situations. The
VisDrone [31] dataset was chosen by us for model
training and studying the effects of noise and distortion.
There are several reasons for this choice. First, this
dataset contains sufficiently high-quality images, which
allows us to work with data without distortion. The size
of the test part of the dataset was quite large (1610
images), which allowed studying the effect of noise and
distortions at different angles, shooting conditions, and
UAV flight heights. The objects in this dataset are
divided into 11 classes, which makes it possible to
evaluate the impact of noise on both small and large
objects.

Using the training part of the dataset, several test
models were trained and used in the research. The
training dataset comprised 6471 images with 344737
labelled objects of different sizes and type (Class). The
largest part of the dataset was represented by the Class
"Car" (42%), followed by "Pedestrian" and "Motor".
More detailed statistics about the class distribution are
presented in Figure 1, a.
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We also considered the statistics of the test sample,
which was used to study the impact of noise on object
recognition quality. The test (verification) dataset
contains 1610 images, which were also divided into 11
classes. In line with the training data, the "car" Class has
the largest number of labelled objects in the test data
(37%). The statistics of data distribution between
classes are shown in Figure 1,b.

Next, we take a closer look at the content of the
images presented in the dataset to better understand the
quality of the data and relevance of the results. The
dataset contains images captured by UAV sensors at
different flight heights, where the UAV height for each
image is unknown. Examples of these images are shown
in Figure 2. The images in the dataset also have high
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variability in terms of the position of objects (different
vision angles, stationary and moving objects), as well as
different shooting conditions and light and quality.
Given the context of the images and their quality, we
assume that the data are sufficient to test the impact of
noise and distortion on the quality of object detection.

2. Neural network training

In this study, we have selected 5 popular neural
networks for object detection. In particular, these are
models from the YOLO (You Only Look Once) [34]
structure, versions 5 and 8. Classical approaches have
been also chosen, such as Faster Recurrent Convolution
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Figure 2. Examples of images in the VisDrone dataset
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Neural Network (Faster RCNN) [35], RetinaNet [36],
and Single Shot Detector (SSD) [37]. Here, we briefly
consider each model.

A Faster RCNN is a neural network that uses the
Region Proposal Network (RPN) as a predictor of
object boxes. This is a fairly classic object detection
method. It has a relatively high accuracy in detecting
objects of different sizes [38, 39].

SSD works by selecting and classifying boxes that
are found based on anchors, which can be set manually
according to the dataset and the task, or selected
automatically based on the dataset. Accordingly, by
using different variations of the anchors, the size of the
objects to be recognized can be taken into consideration
and studied. The architecture is classical and supports
various backbones, which also affects the quality of the
trained model.

RetinaNet is based on a multilevel model; thus,
predictions are made at different levels and then
aggregated. This structure allows for the recognition of
objects of different sizes, particularly by controlling the
number of levels and selecting their resolution. The
proposed architecture also supports different backbones,
thereby providing a wide variety of models.

The YOLO architecture represents the detection
problem as a regression problem to spatially separated
rectangles and their class probabilities. In this process,
the entire image is considered, allowing the model to
better understand the context [40].

To begin the study, all of the above models were
trained using the noise/distortion-free images from
VisDrone dataset analyzed in the previous section. The
results obtained for the aforementioned models for the
test dataset are presented in Table 1 and plotted in
Figure 3, where the values of Intersection Over Union
(loU) [32] and F1 score [33] are given. Recall that, for
both loU and F1 scores, the larger the scores, the better.

Table 1
loU and F1 score metrics of the trained models
Metric F1 score loU
Faster RCNN 0.7078 0.736
RetinaNet 0.6855 0.6562
SSDLite 0.732 0.618
Yolo v5 0.825 0.763
Yolo v8 0.820 0.763

The results demonstrate that all five models
performed reasonably well given the obtained metric
values, where the YOLO networks provided the best
results. The initial high-quality detection for training
data allows studying the effect of image quality on
object detection given the data obtained using the
trained models.

3. Case Study

In general, noise in images can be of different
types and appearances. The most typical noise sources
in optical images are read and shot noise [41]. As
mentioned above, the AWGN was used as the initial
step in our study.

Modeling different noise intensities allows
studying the influence of noise intensity on classifier
performance. For AWGN with zero mean and uniform
power spectral density at all frequencies, it is possible to
vary only the variance or standard deviation (STD). The
images distorted by AWGN are shown in Figure 4 for
different standard deviation values. We considered 10
values of the noise standard deviation: 3, 5, 7, 10, 15,
20, 25, 30, 35, and 50. Recall that noise with standard
deviations 3 and 5 is usually invisible, whereas noise
with standard deviations 30, 35, and 50 becomes
annoying. Also note that noise in R, G and B
components is independent and has the same standard
deviation values.

1.0
. loU
F1 Score
0.8
0.6
ol
=
@
=
0.4
0.2
0.0 2 5 8
faster! renn f r t‘naned e {5 obilenet yolov yolov

Neural Network
Figure 3. Metrics results of the trained models

Using the obtained noisy images, we studied the
object localization and classification quality of
previously trained models. For this purpose, we created
a model testing environment, the so-called benchmark,
to calculate metrics. This method of comparison obtains
estimates of the accuracy of each model and compares
the impact of image quality on localization quality.

Several criteria were selected as metrics, which are
often used to characterize object localization accuracy.
The Inersection over Union (loU) [32] metric represents
the ratio of the overlap of two frames to their total area.
This metric estimates localization accuracy relative to
markup in the dataset.
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Figure 4. Noise-distorted images with standard deviation of 10 (a), 20 (b), 30 (c) and 50 (d)

The next comparison criterion was the
F1 score [33]. It is calculated based on Precision and
Recall [42]. The metric reflects the accuracy of the
model's classification based on precision and recall. The
metric is mathematically expressed as follows (1):

*
“FT 4 A @
+FP+FN
where TP is the true positive rate, i.e. the number of
correctly predicted objects, FP is the false positive rate
(i.e., the number of objects that were marked but were
not in the markup), and FN is the false negative rate
(i.e., the number of objects that were in the markup but
were not predicted by the neural network).

The studied criteria are standard indicators for
object classification and localization models [32, 33], so
their use in this case is appropriate and relevant to the
study.

For each subsample (images with the added
AWGN with certain standard deviation), we estimated
the aforementioned indicators. Based on the obtained
statistics, graphs showing the dependence of
localization accuracy on noise intensity are plotted. The
graph showing the ratio of the loU metric to the
intensity of the noise in the image (expressed in the
STD) is shown in Figure 5.
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Figure 5. Graph of the loU versus noise

standard deviation

In general, the loU metric reduced for all tested
models, at least for noise standard deviations greater
than 20. The reduction speed is also different. Some
models are more susceptible to interference, such as the
SSD Lite, where the metric drops by 35.7% for
STD=50. Some are considerably less susceptible to
interference, such as YOLOv8 and RetinaNet, which
have drops of 9.4% and 9%, respectively. YOLOV5 is
characterized by high immunity to noise and distortions
for STD<25. Considering the obtained values of the
metric drops, we can state that invisible noise (STD<5)
has practically no negative impact on the result of object
localization.
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By studying the effect of noise intensity on object
classification using the same dataset, we also obtained
the dependence of the F1 score on the noise intensity
(Figure 6).
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Figure 6. Graph of F1 score versus noise STD

The behavior of the classification quality metric is
similar to the localization results. In this case, we
observed a significantly faster drop in the metric value
with the increase of the noise level. All dependencies
decrease monotonically. Although the impact on the
models is somewhat different, unlike localization, the
SSD Lite has a 13.6% drop in the metric, which is the
smallest among all the models studied. The largest drop
in this metric was observed for the Faster RCNN model,
which exhibited a 51.7% drop. The performance was the
best for YOLOVS, which is more resistant to noise than
YOLOV5, but only for STD>25, i.e. for very intensive
noise and distortions.

The reason for the poor immunity of the RCNN
model is that with a higher number of localized blocks,
there is also a higher probability that an object will be
misclassified. The fact that the models that produce
better localization (Faster RCNN, RetinaNet) ended up
with  worse classification results confirms this
hypothesis.

Despite the differences in the behavior of the
localization and classification metrics for different
models, the dynamics of the metrics’ values decreasing
with increasing noise level remain. Classification is
reduced more than localization, precisely because of the
small size of the target objects and the specifics of the
considered task.

4. Discussion

We studied the negative influence of AWGN in
wide limits of its intensity. This was performed to
understand the conditions when NN performance starts
to deteriorate rapidly. In fact, noise with a standard
deviation greater than 20 can be met in practice very

rarely, or such distortions due to lossy compression
might occur only for large compression ratios. This
means that the best variants of the considered neural
networks can perform well under typical conditions.

On the other hand, there exist methods of blind
evaluation of noise characteristics [43, 44]. When
applied to acquired images subject to further extraction
of useful information, such methods can “characterize”
image quality. In particular, methods [43, 44] can
determine the dominant noise type, is the noise spatially
correlated or no. This might help in further actions such
as decision undertaking or producing pre-cautions (Be
careful, original data of poor quality). Thus, intelligent
systems with autonomous operation can be designed.

Conclusions

The study of the impact of image quality, namely
the level of noise in the image, on the quality of object
localization and classification demonstrated that this
dependence is quite strong. Thus, with an increase in
AWGN STD, we obtain worse localization metrics that
drop by 10-20% on average. Taking into account the
classification metrics, we have a 25-35% drop for
different models for the largest STDs. In addition, for
STD<10, the performance reduction was negligible,
especially for YOLO-type networks.

The classification result is highly dependent on
image quality, which is also a specific feature of the
task. A large number of small objects in UAV images
are poorly classified when the noise level is high. This
is primarily due to distortions, which is a main problem
in small object detection tasks.

Two directions of work with noise-distorted data
should be investigated in future research. The first
approach relates to filtering UAV data and its
subsequent processing [45]. In this case, there may also
be some loss of information about small objects due to
filtering. The second direction is to study the impact of
adding noise to the data when training the neural
network. Such an approach can improve the accuracy of
neural networks and reduce the impact of various types
of interference on the quality of work.
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AOCJIUKEHHS BIIMBY HTYMOBHX 3ABAJl PI3BHOI'O TUITY HA 30BPAKEHHSIX
OTPUMAHHMX 3A JOIIOMOI'OIO BIIJIA HA AAKICTb TA TOYHOCTI JIOKAJII3AIII OBEKTIB

P. B. Ilexmucmpo, O. C. Pybens, O. B. IIpucasxcuwk, B. B. JIykin

Jlokamizamis Ta Kimacudikamis o0'€KTiB pI3HHX THIIB Ha 300paKEHHSX € BAKIMBOIO TEMOIO, IO AKTUBHO
JOCIIJPKYETBCS, OCKIIBKH i METOOHM Ta 3aCO0M BHKOPHCTOBYIOTHCS B HAaHpi3HOMaHITHIMMX cdepax, BKIIOYAIOYH
JMCTaHIiHE 30HyBaHHS, CUCTEMH OE3IeKH, MEIUYHY IiarHOCTHKY Tomo. OCTaHHIM 4acoM CTald HOMYJISIPHUMH
cucteMu oOpoOKM 300pakeHb, BCTaHOBJIEHI Ha Oopry Oe3miyorHux JitaidpHux amapariB (BIIJIA) i apowiB, ski
MOTEHIITHO MOXXYTh OYTH KOPHCHUMH JUIsl 6araThox cep, TaKHUX SIK BUABIEHHS MiH, KOHTPOIb 33 JOPOXKHIM PyXOM
1 HaToBHOM. 300paKeHHs, OTpUMaHi TAKUMH CHCTEMaMH, MOKYTh MaTH JIOCHTh HU3bKY SIKICTh Yepe3 BUKOPHCTaHHS
BiJTHOCHO JEIIEBMX KaMep 1 HEOOXiIHICTh IepenaBaTH OTPUMAaHi JaHi uepe3 JIHII 3B'SI3Ky 3 0OMEXEHOIO
MIPOITYCKHOIO 3JIaTHICTIO 13 3aCTOCYBaHHSIM CTHCHEHHS 3 BTpaTamu. Lli dakTopy MOXyTh HEraTHBHO BIUTMBaTH Ha
SIKICTB 1 TOYHICTh JIOKai3aIlii 00'€KTiB, Ky 3a3BHYail BUKOHYIOTh HaBUCHI HEHpoHHI Mepexi. OHaK, HE3PO3yMLIIO,
SIKy IHTEHCHUBHICTh IIYMYy Ta CHOTBOPEHb MOXKHA BB2)XKaTH NPUHHATHOI, TOOTO TakKOlO, IO HE MPU3BOAUTH JIO
paMKaJIbHOIO 3HIDKEHHSI pOOOYMX XapaKTepHCTHK HEHPOHHOI Mepexi. 3 OISy Ha I1e, IOUIIBHO JOCIHIUTH BILIHB
uux edexTiB Ha SKICTh JIoKadizamii Ta kimacudikamii 00'€KTiB, BUKOPHUCTOBYIOUM IOCTOBIpHI OOCATM IaHUX Ta
IIMPOKHUN Jiama3oH IHTEHCHBHOCTI IIIYMY/CIIOTBOpEHb. TOMY OCHOBHOIO TeMOIO IIi€l CTAaTTi € IOCHiIKCHHS
e(peKTUBHOCTI METOIB JIOKami3amii Ta kinacugikamii 00'€KTIB Ha KOJIbOPOBHUX 300paKEHHSX, OTPHMaHHX 32
JIOIIOMOTOI0 CeHCOPiB, BcTaHoBieHHX Ha BITJIA. OcHoBHa yBara npuAiIsIETbCS 3aI€KHOCTI METPUK JIOKaji3amii Ta
Knacudikanii BiJi iIHTEHCUBHOCTI IIyMYy, J€ T€HEpOBaHI 3aBaJy IMITYIOTh HE TUIBKH IIyM, ajileé H CIIOTBOPEHHS,
CIIPUYHMHEHI CTHCHEHHSM 3 BTparaMH Cy4aCHHUMH Kojepamu. MeTolo po0OTH € OTpUMaHHS aJleKBaTHUX CTaTHCTHK
Ta X aHami3, mMoOynoBa 3aJIeKHOCTEH METPHK BiJ IHTEHCHMBHOCTI HAaKJIQJIEHUX CIIOTBOPEHb. 3aBIaHHA NOJSIrac B
TOMY, 100 OTpUMaTH YMOBH, JJISl SIKUX BIUIMB IIYMY Ta CIIOTBOPEHb MOKHA BBa)KATH HE3HAYHUM a00 NMPUHHATHUM
JUIsl TIPAKTUKH. [HIIa MeTa - MpoaHani3yBaTH YyTIMBICT JIEKIIBKOX CYy4aCHHUX HEHPOMEpEX JIO HIYMY/CIIOTBOPEHb.
Pe3yabTraToM € craTHCTHYHA OIIHKA 3aJeXHOCTI e()eKTHBHOCTI MOIeNi BiJ SIKOCTI BXiJHUX NaHWX. BHCHOBKH
IPYHTYIOTBCSI Ha CTaTUCTUYHUX JaHHX, IO XapaKTepu3yloTh poOOTy MoOzelli Ha IHTEepBaJi IHTEHCHBHOCTI
IyMYy/CIIOTBOpeHb. BUCHOBKH J103BONISIIOTH BUOpaTH HaMKpaii (HaifOIbI CTiiKi) HEHPOHHI MEepexXi Ta BCTAHOBUTH
YMOBH IXHbOI HAJIEKHOI POOOTH.

KurouoBi ciioBa: jokanizailis 00’ €KTiB; JTiTalbHI anaparty, Kiacudikalisi TeXHIKY, IyMoBi 3aBaju, BITJIA.

Hexmucrpo PoctuciaaBs BikropoBuu — acn. kad. iHQopManidiHO-KOMYHIKAIIITHUX — TEXHOIOTIH
iMm. 0. O. 3enencekoro, HarioHanbHuii aepokocmiunui yHiBepcuter iM. M. €. JKykoBcbkoro «XapKiBChbKHiA
aBianiiHUi IHCTUTYTY», XapKiB, YKpaiHa.

Py6esb Ouekciii CepriiioBu4 — KaH. TexXH. HayK, Jol. Kad. iHGOpMaIiiiHO-KOMyHIKaIlIHHIX TEXHOJIOTii
iMm. O. O. 3enencekoro, HarionanbHuit aepoxocmiunmii yHiBepcuteT iM. M. €. JKykoBcbkoro «XapKiBChKHiA
aBiauiiHUi IHCTUTYTY», XapKiB, YKpaiHa.

Hpucskniok  Ounexcanap BacwiboBuy — acn. kad. iHdopMamiiiHO-KOMYHIKAIIHUX — TEXHOIOTIN
iMm. O. O. 3enencokoro, HamionanbHuii aepokocmiunmii yHiBepcurer im. M. €. JKykoBchkoro «XapkiBChbKHIA
aBianiiHUi IHCTUTYTY», XapKiB, YKpaiHa.

Jlykin Bonomumup BacwiboBuu — na-p TexH. Hayk, npod., 3aB. kad. iH(opmaliiitHO-KOMyHIKaIliHHUX
texHonoriit iM. O. O. 3eneHcekoro, HarionanpHuit aepokocmiunmii  yHiBepcuter iM. M.E. JKyKoBchKOro
«XapKiBChbKHI aBialliiHUil IHCTUTYT», XapKiB, YKpaiHa.

Rostyslav Tsekhmystro — PhD Student of the Department of Information and Communication Technologies
named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: rostyslav.tsekhmystro@gmail.com, ORCID: 0000-0002-1515-7065.

Oleksii Rubel — Candidate of Technical Science, Associate Professor at the Department of Information-
Communication Technologies named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation
Institute”, Kharkiv, Ukraine,
e-mail: s.rubel@khai.edu, ORCID: 0000-0001-6206-3988.

Oleksandr Prysiazhniuk — PhD Student of the Department of Information and Communication Technologies
named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine,
e-mail: o.v.prysiazhniuk@khai.edu.

Vladimir Lukin — Doctor of Technical Sciences, Professor, Head of the Department of Information-
Communication Technologies named after O. O. Zelensky, National Aerospace University "Kharkiv Aviation
Institute”, Kharkiv, Ukraine,
e-mail: v.lukin@khai.edu, ORCID: 0000-0002-1443-9685.



