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OBJECT DETECTION WITH AFORDABLE ROBUSTNESS
FOR UAV AERIAL IMAGERY: MODEL AND PROVIDING METHOD

Neural network object detectors are increasingly being used for aerial video analysis, with a growing demand
for onboard processing on UAVs and other limited resources. However, the vulnerability of neural networks to
adversarial noise, out-of-distribution data, and fault injections reduces the functionality and reliability of these
solutions. The development of detector models and training methods that simultaneously ensure computational
efficiency and robustness against disturbances is an urgent scientific task. The research subjects. The model
and method for ensuring the robustness of resource-constrained neural network systems for object detection in
aerial video surveillance. Objective. Development of a model and method to ensure the robustness of object
detectors for aerial image analysis. Methods. Combination of ideas and methods for dynamic neural networks,
and methods for robustness and resilience optimization for neural networks. Results. The detector model with a
ViT-B/16 backbone modified with gate units for dynamic inference was developed. The model was trained on the
VEDAI dataset and meta-trained on the results of adaptation to different types of disturbances. The model with
different training methods was tested for robustness against random bit-flip injection where the proportion of
the modified weights is determined at a fault rate of 0.1. In addition, the model with different training methods
were tested for robustness against a black-box Adversarial Attack with a perturbation level of 3/255 according
to the Loo norm. Conclusions. The object detection model for aerial images with dynamic inference and opti-
mized robustness is developed for the first time. The model includes a transformer-based backbone, gate units,
and simplified feature pyramid network with a RetinaNet detection head. Gate units are trained to deactivate
transformer encoders that are irrelevant to the input data and disturbances. The proposed model reduces FLOPs
by more than 22% without loss of mean Average Precision (mAP) by deactivating some encoders. The detector
training method was developed for the first time, combined the RetinaNet loss function with the gate unit loss
function and applied meta-learning to the results of adaptation to various types of synthetic disturbances. The
analysis of the experimental results demonstrates that the proposed method provides an 11.7 % increase in mAP
during testing under fault injection conditions and a 15.1 % increase in mAP during adversarial attack testing.
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redundancy to absorb disturbances [3, 4]. Duplicate neu-
rons or alternative neural pathways are incorporated to
resist network weight corruption [4]. To enhance robust-

1. Introduction

1.1 Motivation for the research

Aerial images are characterized by significant vari-
ations in perspective distortion and scale as well as high
variation in context and background [1]. This places high
demands on data quality and volume and computing re-
sources. The efficient resource utilization during aerial
image processing is important for increasing the auton-
omy of the Unmanned Aerial Vehicles (UAV) and the
speed of decision-making under resource constraints. Ex-
isting neural network compression methods to reduce re-
source consumption do not provide an acceptable robust-
ness level to various kinds of disturbances acting on ob-
ject recognition systems for aerial images [2].

Robustness to noise, environmental changes, and
weight corruption in neural network technologies for
ground object recognition is achieved by incorporating

ness against noise and adversarial attacks, denoising au-
toencoders are introduced [5], disturbance or novelty de-
tectors are added [6], ensembling methods are employed
[7], and larger neural networks are trained on data aug-
mented with perturbations, among other techniques.
There is a lack of research on effective methods to ensure
robustness under resource-constrained conditions.
Object detection models have been successfully ad-
vanced toward improving architectures and microarchi-
tectures to enhance the accuracy of localization and clas-
sification of multi-scale objects in images [8]. Architec-
tures based on convolutional networks and vision trans-
formers are being enhanced by implementing dynamic
inference mechanisms to improve computational effi-
ciency [9, 10]. However, most experiments are
primarily focused on image classification rather than ob-
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ject detection. However, object detectors are the most de-
manded in practical applications. In addition, there is a
lack of research on the robustness of dynamic neural net-
works to various types of perturbations.

There is a research gap in terms of simultaneously
ensuring robustness and reducing the computational
complexity of object detection models in aerial imagery.
The development of a model and method to ensure the
efficient robustness of object detectors in aerial imagery
by combining concepts and techniques from dynamic
neural networks, robustness optimization methods, and
neural network resilience is a promising area of research.

1.2. Objectives and Contributions

This research aims to develop a model and method
for ensuring resource-efficient robustness of object de-
tectors for aerial imagery by integrating concepts and
techniques from dynamic neural networks, robustness
optimization methods, and system resilience.

Robustness defines the ability of a system to with-
stand a certain level of stress while maintaining function-
ality without significant deterioration or loss of perfor-
mance. In terms of robustness, robust means an object
detection model that implements mechanisms to absorb
and resist a certain level and type of destructive perturba-
tions. The less the performance of the detector decreases
under the influence of perturbations, the more robust is
the detector. Robustness is defined as the residual func-
tionality after exposure to an extreme destructive disturb-
ance. We compare the robustness of the models based on
their residual performance indicator after exposure to a
perturbing factor.

Affordable robustness refers to an acceptable trade-
off between robustness and inference time or computa-
tional complexity under the influence of perturbations.
This implies the ability to adjust the trade-off between
robustness and computational cost for efficient deploy-
ment on resource-constrained UAV platforms.

The key issues are as follows:

— analysis of existing solutions to ensure robustness
and reduce computational complexity in object recogni-
tion systems for aerial imagery;

— development of a dynamic neural network model
for object detection in aerial imagery under conditions of
high observation variability and the influence of various
types of noise and network weight corruption;

— development of a training method for a dynamic
neural network object detector in aerial imagery to ensure
robustness against noise, adversarial attacks, and neural
network weight corruption;

— investigation of the dependency between the per-
formance of the developed model and training method
and certain hyperparameters of the Al system.

Structurally, the work consists of the following sec-
tions. The related works are analyzed in the Section 2.
The Section 3 presents a new computationally efficient
object detection model for aerial images. The Section 4
describes a new training method that provides computa-
tional efficiency and model robustness against input and
weight perturbations. The Section 5 describes the exper-
imental results of testing the proposed object detection
model and training method. The research results are dis-
cussed in the Section 6. The last section concludes the
paper and describes directions for future research.

2. The State-of-the-Art

2.1. Deep Learning for UAV-based
Object Detection

Two-stage models (such as Faster R-CNN) and
one-stage models (such as YOLO and RetinaNet) based
on convolutional neural networks (CNNs) have long
been the mainstream approach for object detection in im-
ages [8, 11]. These models demonstrate high accuracy in
identifying and localizing objects across different scales.
However, when applied to aerial imagery collected by
unmanned aerial vehicles (UAVS), the architecture of
convolutional networks becomes significantly more
complex due to the multi-scale nature of objects and the
surrounding context. This complexity increases the de-
mand for computational resources.

Recently, Vision Transformers (ViTs) and their
modifications have shown promise in providing better in-
tegration of local and global contextual information in
images [12]. ViTs exhibit strong generalizability for
large datasets and are particularly useful for object detec-
tion tasks that require robust performance under diverse
conditions. However, despite these advantages, trans-
formers are generally less computationally efficient than
convolutional networks, which poses challenges for
UAV applications where real-time processing and lim-
ited hardware are common constraints.

2.2. Efficient Neural Network Inference

The Bi-PAN-FPN architecture [13] improves the
balance between inference speed and detection accuracy
for UAV Aerial Image Recognition by integrating an im-
proved feature pyramid network. The faster ghost module
in the neck network enables a more efficient fusion of
multiscale features with fewer parameters. The focus on
optimizing the feature pyramid allows for enhanced per-
formance without sacrificing computational efficiency,
making it suitable for UAV applications in which detect-
ing small targets is crucial. EUAVDet model [14] was
designed to further optimize the speed-accuracy trade-off
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by refining the feature fusion process. This approach in-
volves architectural improvements that make the network
lighter and faster while still being effective in challenging
scenarios like small object detection.

Various model compression techniques are em-
ployed to deploy neural networks in resource-constrained
environments like UAVs. Weight quantization, pruning
of connections or neurons, and knowledge distillation are
commonly employed to reduce the size and computa-
tional complexity of models [15, 16]. These methods
maintain or improve performance while reducing the
number of parameters and floating-point operations
(FLOPs).

However, model compression methods can lead to
a trade-off between computational efficiency and model
robustness because aggressive compression may degrade
accuracy and resilience in the presence of disturbances.
One of the more effective approaches to enhancing adapt-
ability and efficiency is the use of dynamic neural net-
works [9, 10]. Two popular strategies for dynamic neural
networks are early exit networks and networks with gate
units [17]. Early exit networks terminate computation
early when sufficient confidence is achieved, thereby re-
ducing computational costs for simpler inputs. Gate
units, on the other hand, offer a more general approach
by allowing any subset of layers to be selectively deac-
tivated based on the input context, thereby providing sig-
nificant savings in computational resources while main-
taining flexibility.

2.3. Vulnerability and Robustness
in Neural Networks

Despite advancements in architecture and effi-
ciency, neural networks remain vulnerable to adversarial
attacks, fault injections, and out-of-distribution data,
which can lead to degraded performance or incorrect pre-
dictions. This vulnerability is particularly relevant for
UAV systems operating in unpredictable environments.
Both convolutional networks and Vision Transformers
are susceptible to such disturbances [18, 19].

Recent studies have explored various techniques to
improve the robustness of neural networks against such
threats. In the context of UAV-based neural networks, a
reactive-proactive ensemble defense mechanism is intro-
duced to protect against adversarial attacks [20]. Alt-
hough the proposed method significantly improves de-
fense against gradient-based attacks, the use of an ensem-
ble of models increases the computational complexity,
making it less suitable for real-time applications on
UAVs with strict resource constraints. Phase errors in
synthetic aperture radar (SAR) imagery can be addressed
by introducing the Defocusing Adaptive Complex CNN
(DA-CCNN), which enhances robustness under atmos-
pheric turbulence [21]. While their approach effectively

improves target recognition accuracy, it is specific to
SAR data, which limits its applicability to other types of
UAYV sensor data, such as visual imagery or LiDAR.
Moreover, the model’s complexity may hinder real-time
deployment on UAV platforms where processing power
is limited.

Some studies have demonstrated improvements in
robustness through dynamic inference mechanisms by
default [22, 23]. Additionally, fault-aware training meth-
ods have been proposed to enhance resilience against
neural network weight corruption [24, 25], and adversar-
ial training methods have been developed to counter
noise and adversarial attacks [26, 27]. Other approaches
focus on preprocessing input data [28], postprocessing
results [29], and making architectural modifications to
improve robustness [30]. The study [31] explores the use
of meta-learning to improve the resilience of image clas-
sifiers against adversarial attacks.

3. Object Detection Model

As the backbone, a transformer ViT-B/16 or ViT-
L/16 pre-trained on a large dataset was used [32]. To im-
prove computational efficiency and adaptability to con-
text and disturbances, we introduce gate units that dy-
namically switch off irrelevant or misleading transformer
encoders. That is, it is assumed that only relevant features
are calculated by the activated subsets of layers. The pro-
posed architecture of the dynamic neural network back-
bone is illustrated in Fig. 1. Each encoder consists of a
Multi-Head Self-Attention Block (MSA Block), a Multi-
Layer Perceptron Block (MLP Block) with skip connect-
ors, and a gate unit g, to activate or deactivate k-th block
depending on the conditions.

2k D Z'% Zi
MSA« L MLP:
g
a
= > P >D—>
o

Figure 1. Schematic illustration of the structural unit
of a dynamic visual transformer based backbone:
a — training mode; b — inference mode
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The dependence between the input tensor z,_, and
the output tensor z, of the k-th block with the correspond-
ing skip connection and gate at training time can be de-
fined as follows:

@
O]

Zj = Zyq + Ok (Zka )MSA (241 );
Zi = Zj +9x (Zxk_1)MLP (2 ),

where g, is gate function, g, €{0,1};
f\ is a function of calculating the features of the k-

th structural block of Visual Transformer (Multi-head
Self-Attention without residual connection, Feed-For-
ward Network without residual connection).

The computational graph for inference can be
defined as follows

ifgy(zk-1) = 0

Zic = {Zk‘l' 3)
T 2+ MLP () if gi(zieey) = 1

where 7, = MSA(zy_1)+2k_1.

Based on the functional purpose of the gate unit and
the specifics of training multilayer neural networks, the
gate unit should have the following properties [9, 10]:

- low computational complexity compared to a
building block that is activated or deactivated;

- stochasticity to prevent the mode from decaying
into trivial decisions, such as always or never executing
a block;

- the ability to generate discrete solutions and cal-
culate gradients to optimize the parameters of the gate
unit.

Fig. 2 shows the gate unit structure in training and
inference modes. The addition of Gumbel noise

G =—log(~log(U)), where U ~ Unif[0, 1], to the neu-

ral output of the gate unit, allows us to add some stochas-
ticity to avoid trivial solutions in the inference mode. The
use of Gumbel-Softmax trick ensures the differentiation
of the gate unit and the ability to optimize its parameters.

— Training
s mode
EP>
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2 A
n- —
: <]
b3 g Inference
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| G« = -fog(-fogfths)) — <]

Figure 2. The architecture of the gate unit

In the experiments, the gate unit model was the
same for all network blocks. MLP with one hidden layer
of 24 neurons and an output layer of 2 neurons is used to
calculate the relevance features of blocks in the gate unit.
The activation function used is the LeakyReLU6 de-
scribed above. In the case of a convolutional network, the
Pooling function can be implemented as global average
pooling. In the case of the visual transformer, the se-
quence of token vectors is first reshaped into a 2D grid
similar to the intermediate representation of CNN, fol-
lowed by convolution (16 filters with a 3x3 kernel) i Max
Pool 2x2 [33].

Efficient adaptation of the task-agnostic plain back-
bone to a specific task of object detection in aerial images
requires adding a specific task-specific bottleneck to the
backbone output. This bottleneck should separate the
most convenient features for encoding information about
detected objects of different sizes. In [28], the so-called
Simple Feature Piramid Network was proposed, which
forms 4 different scale feature maps (Fig. 3). The 1/32
scale is constructed by stride-2 2x2 max pooling (average
pooling or convolution works similarly).

1/32 1/16 1/8 1/4
scaled map scaled map  scaled map scaled map
|LayerNorm I | LuyerNormI I LayerNorm | | LayerNorm I
I Conv 3x3 II Conv 3x3 | | Conv 3x3 | | Conv 3x3 |
|LayerNorm I | LayerNarmI | LayerNorm | | LayerNorm |
[ convixa || convix | | convixz | [ convixe |

A
Max Pool Transposed Transposed
2x2 Conv 2x2 Conv 2x2
A A
Transposed
Conv 2x2
A

Plain-Backbone

Figure 3. Architecture of Simple Feature Piramid
Network for Plain Backbone

The 1/16 scale simply uses the ViT’s final feature map.
Scale 1/8 (or 1/4) was built by one (or two) 2x2 decon-
volution layer(s) with stride=2. In the 1/4 scale case, the
first deconvolution is followed by LayerNorm(LN) [34]
and LeakyReL U6 [35]. Then, for each pyramid level, we
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apply a 1x1 convolution with LN to reduce the dimension
to 256 and then a 3x3 convolution also with LN, similar
to the per-level processing of FPN.

It is proposed to use the LeakyReLUG6 activation
function, which combines the advantages of ReL U6 and
LeakyReLU activation functions, to increase robustness
against disturbances. ReLU6 reduces the attack surface
by limiting the maximum value of the activation func-
tion. LeakyReLU activation function enhances network
adaptation efficiency and speed by providing more in-
formative gradients.

The detection head, which is applied to each feature
map, calculates the confidence and bounding boxes for
the detected objects. The detection head comprises re-
gression box subnetworks and a classifier subnetwork
(Fig. 4) [36].

It is proposed to build a one-stage detection archi-
tecture similar to RetinaNet to improve performance. 9
anchor boxes are formed for each feature map cell, each
with a different size and aspect ratio [8].

Each target box is matched to anchor boxes at each
training step. If the Intersection of Union (loU) between
the anchor box and target box is greater than 0.5, the cor-
responding anchor box is assigned to the target box. If the
loU is less than 0.4, the anchor box is considered a back-
ground box. In all other cases, the anchor box was ig-
nored during training. The classification subnetwork is
trained relative to the resulting assignments (object class
or background). The regression subnetwork is trained rel-
ative to the coordinates of the selected anchor box. The
error was calculated relative to the anchor box, not the
target box.

l Feature map

—
‘_a

x | Conv 3x3 + LeakyReLUGl

| Conv 3x3 + LeakyReLUGI
=

S ¥ S ¥
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@ a
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S | conv 3x3 + LeakyReL U6 | S [ conv 3x3 + LeakyReLUS |
o ]

E $ Y

Conv 3x3 | 3x3 Conv + Sigmoid I
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Figure 4. RetinaNet-like Detection Head

=

4. Training Method

Visual transformers can be pre-trained using any ef-
fective method. Currently, the most powerful unsuper-
vised pretraining methods are Masked Auto-Encoding

(MAE), Masked Siamese Networks (MSN) [37], Self-
Distillation With No Labels (DINO) [38], and DINOv2
[39].

Fine-tuning the backbone and training the FPN with
the detection head involves minimizing the composite
loss function as follows:

L =Xjocbioc +Acisbcls +Ausage Lusage - 4)

where L, is the regression loss of the detected ob-

jects localization on the image;
L5 is the classification loss of detected objects;

L sage 19 @ loss that characterizes the deviation of the

desired dynamic compression rate of the neural network
from the real compression rate;
Mochetshusage are the trade-off coefficients between

the different components of the composite loss function.
The bounding box regression loss is calculated us-
ing the following formula:

1
I-|0C = Nz:\ilzl'e{x,y,w,h}smom:h L1 (Pi,j _Ti,j) (5)

whereP, ; is the predicted difference between be-

tween the coordinates and the size of the anchor and tar-
get boxes;
T; ;are the real values of the difference in coordi-

nates and size of the anchor and target boxes;

0.5x2 if x| <1
x| —0.5 otherwise

smoothy 4 (X) = { (6)
The classification loss is calculated using the fol-
lowing focal loss function formula

Los = _(1_ Pt )Y log (pt ) (7)

wherep, is the probability of predicting the i-th

class;
v is a focus parameter.

Function (7) represents improved cross-entropy
function. The difference lies in the addition of the param-
eter y €(0,+00), that solves the problem of unbalanced

classes. In training, most of the objects processed by the
classifier are background objects, which are a separate
class. Therefore, there may be a problem when the neural
network learns to detect the background more effectively
than other objects. The additional parameter solves this
problem by reducing the error value of easily classified
object classes.
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The Lsge function that calculates the deviation of

the desired dynamic compression rate of the neural net-
work from the real compression rate. This function is af-
fected by the number of activated blocks in the main
model based on the decisions made by the gate units. The
L usage fUnction is calculated similarly to [9, 10],

2
1<K (1con
Lusage ZEZkl(HZilgk»i _tk] )

where g, ; is the output of the k-th gate for the i-th train-

ing data instance;
t, is the approximated target execution rate of each

neural network block in a data mini-batch, t, €(0,1) (
t, =0.5by default);

K is the number of gate units that control the activa-
tion of K neural network blocks;

n is the size of the training mini-batch.

To increase robustness against noise and weight
faults, the detector training algorithm is based on the fol-
lowing principles:

- simultaneous training of the main network weights
and the weights of the gate units;

- training is performed first on the main training set
under normal conditions and then under episodic few-
shot learning tasks of adaptation to each type of synthetic
perturbation;

- generate synthetic perturbations of data or weights
according to the white box scenario;

- generalization of experience during the adaptation
to perturbations should be based on meta-updating using
the MAML, REPTIL algorithm or meta-free weight av-
eraging.

Ensuring the robustness of the object detection net-
work under conditions of constrained resources is to op-
timize the main network and gate models so that only the
components of the neural network that can provide the
most accurate forecast under the influence of disturb-
ances are calculated in the inference mode.

Let 1, |{i :L_N} is set of disturbance implementa-
tions relevant to the object detection system for aerial im-
agery [34]. Disturbances t; can be considered as adver-

sarial attacks, fault injections, or switching tasks. Let

Dpsse = {Dgase; g:;e} is a dataset on which the model

was trained to perform the main task under known con-
ditions. Itis also given a dataset D = {D“; D |k =1,_K}
for K few-shot learning tasks, where fine-tuning data D/

is used in the fine-tuning stage and validation set D‘lia' is
used in the meta-update stage. There is also a given set of

parameters ¥ =(®,¢) , and W, where © are parameters
of the base Al model backbone, ¢ are parameters of gate

units, and W are task specified parameters (model head
parameters). Head weights W, for the main task

should be trained on Dy, -

Gradient-based meta-learning requires finding such
values of the parameters ¥, that will ensure the mini-
mum expected loss function L on the set of implementa-
tions of different types of disturbances t; during its adap-
tationon D

\I]* = arg m\li/n-r~g('r) LTi (UTi (\I]; W-ci; DTi))]r (9)

where U is operator that combine a disturbing influence
and adaptation in T steps and maps the current state of
Y to new state of V.

The pseudo-code of the meta-learning algorithm for
increasing the resilience of AIS is shown in Fig. 5. The
stochastic gradient descent (SGD) algorithm with T steps
in the U operator performs gradient meta-update ¥ . To
simplify computation and increase stability, meta-tuna-
ble parameters can be updated using the REPTIL algo-
rithm [41]. The type of disruptive influence does not
change within a single meta-adaptation step. However,
each meta-adaptation step begins with the selection of a
disruptive influence type, followed by the generation of
n implementations of the disruptive influence with a sub-
sequent nested adaptation loop for each..

As shown in Fig. 5, the formation of adversarial
samples is implemented by the function
Adversarial_perturbation (). It is proposed to use white
box attacks for meta-learning, for example FGSM attacks
or PGD attacks can be used [30]. Black box attacks have
been proposed for testing, for example, attacks based on
the search algorithm of the covariance matrix adaptation
evolution strategy (CMA-ES) [42]. The perturbation
level is limited by the L -normor L, -norm. In this case,
if the image is normalized by dividing the pixel bright-
ness by 255, then the specified disturbance level is also
divided by 255.

The Fault_injection() function generates fault in-
jections to affect the neural network tensors [43]. It is
suggested to choose the most difficult fault type to ab-
sorb, which involves generating an inversion of a ran-
domly selected bit (bit-flip injection) in the weight coef-
ficient of the model. During training, it is suggested to
damage the most sensitive weights. To determine these
weights, test datasets should be passed through the net-
work, and gradients are calculated, which can then be
sorted by their absolute values. In the top-k weights with
the highest gradient, a single bit was inverted in arandom
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position. The proposed method generates damage to ran-
dom weights for testing.

Require: Distribution over disturbances p(t); Step size hyperparameters o, p;
Number of adaptation steps T.

1 Pretrain ¥ on original data Dy,

2 While not done do:

3 Select type of disturbance from set {fault injection, evasion adversarial

attack, task change}

4 Sample disturbance implementations 7;~p(t), i = Ln

5 For i=1,2,...,n do:

6 Clone the current parameters: ¥, W, «copy(¥, Wp,e.)

7 1f disturbance type is a task change:

8 Sample the training and validation data BY}, Dﬁl“' from new task
9 else:

10 Sample the training and validation data B, DEM from Dy,
11 If disturbance type is a fault injection:

12 W, « Fault_injection( ¥, W, DI}

13 If disturbance type is an evasion adversarial attack:

14 DY, Dﬁ:" — Adversarial_perturbation(D{, D;’f‘)

15 Wy, — SCDyw(Ly (¥, W, DY), T, @)

16 W W PP, — )

Figure 5. Pseudocode of meta-learning for object
detection network robustness optimization

5. Experiments and Results

5.1. Experimental Setup

Modern onboard systems of unmanned aerial vehi-
cles (UAVSs) are increasingly being equipped with com-
panion computers to enhance their autonomy under chal-
lenging conditions. Popular single-board computers in-
clude the Radxa Rock 4, Orange Pi 4, and Bana Pi W2,
with CPU computational performance ranging from 0.1
to 0.2 TOPS. Currently, dynamic inference can only be
executed using CPUs because modern NPUs do not yet
support it. It is proposed to train and deploy the neural
network using the PyTorch framework because it sup-
ports dynamic computational graphs. The input data for
the neural network are provided by a camera connected
to the single-board computer via the MIPI CSI interface,
while communication with the command receiver and
flight controller occurs through UART interfaces. It is
planned that a slow detector will work in tandem with a
fast tracker, such as ByteTrack or a Kalman filter. The
network backbone should have a complexity that does
not exceed 100 GFLOPs to ensure that predictions can be
updated more frequently than once per second. Possible
backbones include models such as ViT-S/16 and ViT-
B/16.

This study did not explore the impact of different
backbone pretraining methods on the efficiency of incor-
porating dynamic model compression or robustness.
Therefore, we selected MAE as one of the most well-re-

searched methods. In this case, pretraining was per-
formed on the ImageNet-1k dataset with a resolution of
512x512 pixels. During fine-tuning, a step-wise learning
rate was used, starting at 0.1 and decaying by a factor of
10 after 150 and 250 epochs. VEDAI (Vehicle Detection
in Aerial Imagery) is a dataset of annotated images with
a resolution of 512x512, used for modeling the main task
in supervised learning [44]. DOTA-v2.0, cropped to
512x512, can be used as a data source for auxiliary tasks
to model task changes during meta-learning.

The loss function (8) has the following component
coefficients: Ajqc =0.5, Ags =0.5, Mysage = 2. It was

proposed to calculate the computational complexity of
the model in inference mode as the average FLOPs on the
test dataset. The parameter is affected by the parameter

tk, which can also be called the dynamic compression
rate. Here, parameter is the approximate target rate of ex-
ecution of each neural network block on a data mini-
batch during the training phase.

The mAP (mean Average Precision) for all detec-
tion categories was used as an evaluation metric of the
object detector on aerial images. The Average Precision
of each class was calculated as the area under the Preci-
sion-Recall curve [45]. Furthermore, mAP was defined
as mAP@0.5, which represents the mean Average Preci-
sion when the loU threshold was set to 0.5.

Considering the elements of randomization, it is
proposed to use the average values when evaluating mAP
and FLOPs. For this purpose, 100 instances of a specific
type of disturbance are generated and applied to the same
model or dataset.

5.2. Results

Table 1 shows the results of testing the ViT-B/16
model trained on imagenet-1k and aerial images under
the influence of Fault Injection (the proportion of modi-
fied weights is set by a fault rate of 0.1). Training on its
images was performed separately for each Dynamic
Compression Rate value to compare the results and select
the most compromise option.

Table 2 presents the test results of the ViT-B/16
model pretrained on ImageNet-1k and a set of aerial im-
ages on test images distorted by an Adversarial Attack
(perturbation level of 3/255 according to the L norm).

Training on aerial images was conducted separately for
each Dynamic Compression Rate value to compare the
results and select the optimal option. mAP is also used as
an evaluation metric for object detectors of aerial images.

An analysis of Tables 1 and 2 shows that reducing
the Dynamic Compression Rate, i.e., increasing compres-
sion) initially leads to an improvement in the evaluation
metric. However, further reduction in the Dynamic Com-
pression Rate results in a loss of the evaluation metric.
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Without training or meta-learning under perturbation
conditions, reducing the compression rate always de-
creases the evaluation metrics during testing under the in-
fluence of perturbations. However, training or meta-
learning under perturbation conditions allows for a slight
increase in the evaluation metrics even with reduced
compression rates. However, beyond a certain threshold,
the evaluation metric begins to decline.

Table 1
Averaged mAP and FLOPs values during testing
under fault injection, depending on the pretraining
method and the specified Dynamic Compression Rate

Dyr_1a Pretrained Pretrained .
-mic model under Meta-trained
. model under-
com- | normal condi- L model
. fault injection
pres- tion
sion
rate | FLOPs FLOPs FLOPs
(10%) mAP (10%) mAP (10%) mAP
1.0 109.2 | 0.69 109.2 | 0.72 109.2 | 0.75
0.8 94.6 0.68 92.3 0.73 91.8 0.76
0.6 84.9 0.68 83.7 0.73 83.5 0.76
0.4 70.4 0.67 68.9 0.72 68.0 0.74
0.2 60.7 0.65 58.8 0.71 57.9 0.72
Table 2

Averaged mAP and FLOPs values during testing under
adversarial attack, depending on the pretraining method
and the specified Dynamic Compression Rate

] Pretrained
Dy—_ Pretrained model under _
namic| model under . Meta-trained
com- | normal condi- adversarial model
pres- tion attack
sion
rate F(t(?g';s mAP Tngj)P S| mAP flLO?)PS mAP
1.0 | 109.0 | 0.67 | 109.0 | 0.69 | 109.0 | 0.74
0.8 95.1 0.66 91.8 0.70 91.1 0.75
0.6 85.2 0.66 82.9 0.69 84.5 0.76
0.4 71.0 0.65 67.8 0.67 67.1 0.74
0.2 61.2 0.63 59.1 0.65 57.2 0.72

Testing the ViT-B/16 model on the test set of VE-
DA\ data with two different perturbations showed that it
achieved an mAP of 0.76 and 84.5 GFLOPs. Thus, re-
ducing FLOPs by 23.5% led to a 1% increase in under-
weight mAP perturbations compared with the case with-
out compression (Dynamic Compression Rate equal to
1.0). Moreover, the reduction of FLOPs by 22.4% al-
lowed the mAP to be increased in the conditions of per-
turbed weights by 2% compared to the case without com-
pression (Dynamic compression rate is 1.0).

The analysis given in Table 1 shows that pre-train-
ing on modified data under fault injection with the opti-
mal compression rate increased mAP during testing by
7.3% under fault injection. In this case, meta-training
based on the results of adaptation to disturbances in-
creased mAP by 11.7% during testing under the influence
of fault injection.

The analysis presented in Table 2 shows that pre-
training under adversarial attack conditions with an opti-
mal compression rate increased mAP during testing un-
der adversarial attack by 4.5%. In addition, meta-training
based on the results of adaptation to disturbances pro-
vides a 15.1% increase in mAP during adversarial attack
testing.

6. Discussion

The results presented in Tables 1 and 2 confirm the
reduction of FLOPs of a large network during inference
to the level of smaller neural networks due to the dynamic
backbone. To implement the dynamic backbone, gate
units (2) are added to the network encoders, which add a
fixed overhead of 0.015% more floating point operations.
With a certain compression rate, the amount of computa-
tion in the inference mode decreases, and the mAP under
the influence of disturbances does not change signifi-
cantly or even increase.

In [46], the Yolo8x network on the VEDAI dataset
without perturbations provided a mAP of 76.2 and re-
quired 104 GFLOPs for inference on one image. In this
case, the proposed detector under the influence of fault
injection at a compression rate of 0.6 requires only 83.5
GFLOPs but provides a mAP of 0.76. Therefore, the re-
sults obtained under disturbance conditions are superior
to the known results obtained without disturbance condi-
tions. In addition, if MAP can be tolerated to decrease by
4%, FLOPs can be saved by 32%.

The optimal compression that saves resources and
even slightly increases mAP can be explained by the fact
that vulnerable and irrelevant parts of the neural network
are adaptively switched off. A similar ability of the early
exit mechanism to increase fault tolerance and robustness
against adversaries was considered in [22, 23].

The analysis presented in Tables 1 and 2 shows that
training under perturbation conditions significantly in-
creased mAP in the perturbed inference mode compared
to pretraining under normal conditions. Similarly, meta-
learning based on adaptation to perturbations allows for
an increase in mAP compared to simple pretraining under
perturbation conditions. This can be explained by the in-
creased efficiency of gate units. It is likely that with ap-
propriate training, gate units better recognize perturba-
tions that negatively affect the encoder performance.
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The primary advantage of methods based on weight
quantization, pruning, or knowledge distillation is that
the reduced model forms a static computational graph. A
static graph can be efficiently deployed on a wide variety
of computational devices and frameworks. In contrast,
dynamic neural networks are effectively deployed within
frameworks such as PyTorch and TensorFlow on CPUs
and GPUs. However, currently, commonly used NPUs do
not support dynamic computational graphs, which makes
it impossible to deploy dynamic inference on such
graphs.

Conclusions

A model of an object detector on aerial images with
dynamic inference and optimized robustness is devel-
oped for the first time. The proposed model comprises a
transformer-based backbone, gate units, and a simplified
feature pyramid network with a RetinaNet detection
head. Gate units are trained to deactivate transformer en-
coders that are irrelevant to input data and disturbances.
The proposed model reduced FLOPs by more than 22%
without loss of the evaluation metric by deactivating
some encoders.

For the first time, a training method for an object
detector has been developed that combines the RetinaNet
loss function with the gate unit loss function and applies
meta-learning based on the results of adaptation to vari-
ous types of synthetic perturbations. The analysis of ex-
perimental results showed that meta-training based on
adaptation to perturbations increased mAP compared to
using either pre-training on annotated data under fault in-
jection or adversarial attack individually.

The proposed model trained using the proposed
method under fault injection demonstrated mAP at the
Yolo8x level without fault injection. In addition, the pro-
posed model required 24% fewer FLOPs than Yolo8x,
indicating higher computational efficiency than other
popular approaches.
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JAETEKTYBAHHS OB’€KTIB 3 PAINIOHAJIBHOIO POBACTHICTIO /UIs1 AEPO3OBPAKEHbD:
MOJEJIb TA METO/I 3ABE3IIEYEHHS

B. B. Mockanenko, A. I'. Kopoboe, I0.B. Mockanenko

HeiipomepeskeBi merekTopu 00’€KTiB HAOYBAarOTh IIUPOKOTO 3aCTOCYBAHHS JJIS aHANI3y aepoBimeocrocTepe-
JKEHb. 3POCTa€e KUTBbKICTh MPAKTHYHO KOPHCHUX IMPHUKIIAIiB BUKOPUCTAHHS, 0 MOTPEOYIOTh 00pOOICHHS TaHUX Ha
60pTy OE3MUIOTHOrO JIITATHHOTO amapaTy 4u iHIIoi 0OMexxeHoi B pecypcax miaTdopmu. [Ipore Bpa3iuBicTs HEHpPOH-
HUX MEpEeX J0 IPOTHOOPUOro IIyMy, HOBHU3HH B JaHWX Ta iH €Ki MOMIJIOK Y BaroBi KoedimieHTH oOMexye (HyHK-
LiOHATBHI MOYUIMBOCTI 1 HAAIWHICTh MOAIOHNX pimeHs. Po3pobnenns Moieneil JeTeKTopiB 1 METONIB iX HaBYAHHS,
0 OJJHOYACHO 3a0e3MeuaTh 00UNCIIOBANBHY e(eKTHBHICTD Ta POOACTHOCTI 10 30ypeHb € aKTyaJIbHOK HAYKOBOIO
3amagero. [IpeqMeToM JOCITIIKEHHS Y CTaTTi € MOZIENb 1 METO/ 3a0e31eYeHHs pOOaCTHOCTI HEHPOMEPEIKEBUX CHCTEM
JIETeKTyBaHHS 00 €KTiB Ha a€POBIJEOCIIOCTEPEIKEHHAX B YMOBaX 00OMEKEHHX pecypciB. MeTor JOCTiKEHHS € PO3-
poOiteHHs MozIeNi 1 MeToxy 3a0e3IeUeHHs paIlioHaTFHOI 3 TOYKH 30pY OOUYHCITIOBAIEHIX PECYpCiB pOOACTHOCTI JieTe-
KTOpiB 00’€KTiB Ha aep0300pakeHHIX. BIKOPHCTOBYBAaHUMH METOAAMU €: METOAM JWHAMIYHIX HEHPOHHUX MEPEXK,
METOAM ONTUMIi3amii poOacTHOCTI 1 pe3iTbeHTHOCTI HelipoMepesk. OTprMaHO Taki pe3yabTaTH. Po3pobieHa Mmoxenb
JIETEKTOpA 3 TpaHC(HOPMATOPHUM eKCTpakTopoM o3Hak ViT-B/16, 1110 MoauGikoBaHHUii BEHTEIEHUMH MOYJISIMHE JIJIst
peanizamii TuHaMigHOT O iHpepeHcy. Mozaens Oyna HaBueHa Ha Habopi marnx VEDALI i MeTa-HaBueHa Ha pe3ybTaTax
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aJanTariii 10 pi3HOTUITHUX 30ypeHb. Byiio mpoTecToBaHO MOJIEINE 3 Pi3HUM CIIOCOOOM HAaBYaHHS HA CTIHKiCTh J0 BU-
aIkoBOI iHBepcii OiTiB y Barax, /e mponopiis MoaudikoBannx Bar craHoBuTh 10%. Kpim Toro, Oyio nporecroBano
MOJIETh 3 PI3HUM CIIOCOOOM HaBUaHHS Ha CTIMKICTH /IO MPOTHOOPYMX aTaK YOPHOTO SIIHKA 3 aMILTITYIOI0 30ypeHHs
10 3/255 BianorinHo 1o Loo Hopmu. BucHoBKH. Briepiire po3po0iieHo Monenb AeTeKTopa 00’ €KTiB Ha aepo300pakeH-
HSX 3 TUHAMIYHUM iH(EpPEHCOM Ta ONTHMi30BaHOIO pobacTHicTo. LI Mozmens ocHOBaHA Ha BUKOPHCTaHHI BEHTHIIb-
HHUX MOJYJIB, a TAKOX CIPOIIEHOT Mepexi mipamiau o3Hak 3 RetinaNet roloBkoro neTeKTyBaHHs. BeHTHIBHI MomyITi
HABYCHI JICAKTUBYBATH HEPEJICBAHTHI T BXIJIHUX JaHUX i 30ypeHb CHKOACPH TpaHChopMepa. 3aporoHOBaHa MO-
JIeTh 0e3 BTpaTh TOYHOCTI J03BOJISUIA 3MEHIIIUTH KUTBKICTh OIepalliii 3 IiaBarvor Kparkow Oiibiie Hixk Ha 22% 3a
paxyHOK JIeaKTHBAllii YaCTHHU €HKOJepiB. Briepie po3po0ieHo MeTos HaBUYaHHS AETEKTOpa, IO MOJSTae y MOE-
HaHHI QyHKUiT BTpaT RetinaNet 3 (hyHKIi€r0 BTpaT BEHTWIBHHX MOJYIIIB Ta Y 3aCTOCYBaHHI MeTa-HaBYaHHS Ha pe-
3yJabTaTax ajganramii g0 PI3HOTHITHUX CHHTETHYHUX 30ypeHb. AHaIi3 pe3yNnbTaTiB eKCIIepUMEHTIB MOKa3as, M0 3a-
[PONOHOBAHMH MiZXiJ J03BONSIE M Yac TECTyBaHHS B YMOBaX BIUTMBY 1H €KIii MOMHJIOK y Bard Mepexi IiIBUIIUTH
ycepenHeHy To4HicTh Ha 11,7%, a mij yac TecTyBaHHS B YMOBaX BIUTMBY NMPOTHOOPYHX aTak ITiABUIICHHS ycepeHe-
HOI ToyHOCTI Ha 15,1%.

Koarouosi ciioBa: nerekryBaHHs 00’ €KTiB; poOaCTHICT; MPOTHOOPHUI aTakH; iH €Kil HECIPaBHOCTEH; MeTa-Ha-
BYaHHSI.
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