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The subject of this paper is the optimization of resource management in virtual distributed systems (VDS) via 

the application of machine learning algorithms, specifically Long Short -Term Memory (LSTM) networks. The 

aim is to develop an effective model for managing VDS using contemporary machine -learning techniques. Ob-

jectives are as follows: 1) to describe the problem of resource management challenges in VDS and the architec-

ture of LSTM network.; 2) to collect and normalize historical data on resource usage, such as CPU, memory, 

disk, and network usage; 3) to develop a detailed architecture for the LSTM model, including input layers, mul-

tiple LSTM layers with dropout regularization, dense layers, and an output layer; 3) to train the LSTM model 

using TensorFlow and Keras, ensuring the training process includes at least 50 epochs, early stopping, and 

cross-validation techniques; 4) to evaluate the performance of the trained LSTM model using a test set, with 

MSE as the primary metric; 5) to conduct a thorough analysis of the training and validation outcomes, including 
the visualization of loss values over epochs. Methods involve designing an LSTM model to capture temporal 

dependencies and sequential patterns in resource usage data, including input layers, multiple LSTM layers with 

dropout regularization, dense layers, and an output layer. The normalized dataset was split into training and 

test sets, and the model was compiled using the Adam optimizer with a learning rate of 0.01 and mean squared 

error (MSE) as the loss function. The model was trained for 50 epochs with early stopping and cross -validation 
to prevent overfitting, and its performance was evaluated using MSE on a test set. The following results were 

obtained: 1) the historical data on resource usage, including CPU, memory, disk, and network usage; 2) the 

LSTM model demonstrated significant potential in managing  VDS by efficiently analyzing and predicting opti-

mal resource configurations; 2) visualization of the training process and revelations on how the model's loss 

values changed over epochs; 3) A comprehensive LSTM model architecture, including input layers, multiple 
LSTM layers with dropout regularization, dense layers, and an output layer. Conclusions. The primary contri-

bution of this research is the development and training of LSTM models to optimize resource management in 

VDS using TensorFlow and Keras. This study presents a comprehensive methodology that includes collecting 

and normalizing historical resource usage data, designing the LSTM model architecture, training the model, 

and evaluating its performance. The results demonstrate the significant po tential of LSTM models in effectively 

managing VDS by analyzing temporal dependencies and predicting optimal resource configurations. Specifi-

cally, the trained model achieved a mean squared error (MSE) below the target threshold, indicating robust 

predictive performance. The visualization of the training process revealed insights into overfitting and underfit-

ting, with strategies like early stopping and cross-validation enhancing the model's generalizability. This study 

highlights the practical applicability of LSTM models, offering automated and optimized solutions for complex 

IT infrastructures, and laying the groundwork for future improvements in handling diverse and unforeseen data 

patterns in VDS. 
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1. Introduction 
 

1.1. Motivation 
 

Effective resource management in virtual distrib-

uted systems (VDS) is becoming increasingly critical in 

today's rapidly evolving technological landscape. VDS 

offers flexibility, scalability, and efficient resource utili-

zation, which are essential for developing cloud compu-

ting, big data, and other modern IT infrastructures. The 

challenge lies in ensuring optimal allocation and use of 

these resources to minimize costs while  

Maximizing productivity; therefore, the use of LSTM 

systems can solve this problem for the following reasons:  

Reducing operational costs. The surge in technolog-

ical advancements necessitates robust management strat-

egies for VDS, which are pivotal for supporting the ex-

pansive growth of cloud services and big data analytics. 

Inefficient resource management in VDS can lead to in-

creased operational costs and reduced performance, un-

dermining the potential benefits of such systems.  
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Enhancing resource allocation. Long Short-Term 

Memory (LSTM) network can learn from sequential data 

and remember long-term dependencies, making them 

particularly suitable for predicting and optimizing re-

source allocation. Unlike traditional management ap-

proaches, LSTM systems can adapt to changing work-

loads and forecast future resource demands, ensuring 

more efficient and dynamic management. 

The ability to predict and adjust. These systems are 

capable of real-time monitoring and adjustment, which is 

crucial for maintaining optimal resource utilization. Prac-

tical applications include enhanced performance in cloud 

computing environments, where LSTM networks can 

predict resource needs and allocate them accordingly, 

and improved efficiency in handling large-scale data pro-

cessing tasks by anticipating workload fluctuations. 

Providing sustainable solution. Optimizing re-

source management using LSTM systems not only re-

duces operational costs but also boosts overall productiv-

ity. This efficiency translates into significant economic 

benefits, as businesses can reinvest saved resources into 

further innovation and development. Moreover, the use 

of LSTM systems promotes a more sustainable IT eco-

system by minimizing energy consumption and resource 

wastage through precise predictions and timely adjust-

ments. 

The pressing need for efficient VDS resource man-

agement underscores the relevance of LSTM systems. By 

leveraging advanced LSTM algorithms, we address cur-

rent challenges and pave the way for more robust, cost-

effective, and sustainable IT infrastructures. Our research 

is crucial for the continued growth and efficiency of 

cloud computing and big data industries, ensuring that 

they can meet future demands with optimal resource 

management. 

 

1.2. State of the Art 
 

Previous studies have demonstrated the significant 

potential of LSTM in addressing resource management  

issues across various systems. For example, the work of 

Yilmaz and Büyüktahtakın (2022) highlighted the effec-

tiveness of LSTM in optimizing solutions [1]. Similarly , 

Zhu et al. (2019) employed LSTM for workload predic-

tion in cloud environments, and they demonstrated its ap-

plicability to VDS [2]. Despite these advancements, chal-

lenges such as overfitting and the enhancement of the 

model’s ability to generalize to new data remain and war-

rant further investigation. 

The architecture of LSTM networks has evolved to 

address specific challenges in distributed systems. For in-

stance, hybrid models combining LSTM with other neu-

ral network structures, such as Transformer models, have 

been developed to improve prediction accuracy and com-

putational efficiency. These advanced architectures ena-

ble real-time multitask learning and are particularly ef-

fective in environments with high variability and com-

plexity. 

The authors of [3] compared six machine learning  

methods to accurately estimate software development ef-

fort, among which long short-term memory was consid-

ered. According to a previous study [3], the performance 

of LSTM networks is highly dependent on various hy-

perparameters, including the number of hidden layer 

nodes, the duration of training (epochs), the initial learn-

ing rate, momentum, and the dropout rate, which signifi-

cantly increase software effort estimation performance. 

The paper [4] presented a method for dynamic ob-

stacle avoidance using an LSTM neural network imple-

mented on a TurtleBot3 robot equipped with a LiDAR 

sensor. The robot navigates through various scenarios 

with static and dynamic obstacles, collecting data on its 

position, velocity, and LiDAR readings. This data is used 

to train the LSTM network and predict the robot's trajec-

tory. The physical experiments showed that the model 

successfully avoided obstacles and reached its target with 

a validation accuracy of 98.02%. The results of this study 

highlight the effectiveness of LSTM networks in real-

time dynamic obstacle avoidance, paving the way for 

more advanced applications in autonomous navigation. 

The article [5] explored the enhancement of tradi-

tional stock market trading strategies through the integra-

tion of LSTM neural networks. Traditional strategies of-

ten rely on analyzing historical-closing prices and tech-

nical indicators to make trading decisions. By incorporat-

ing LSTM models, this study predicts closing prices 

more accurately and improve the performance of these 

strategies. The results demonstrate that hybrid strategies, 

which combine traditional methods with LSTM models, 

outperform traditional strategies in terms of prediction 

accuracy and trading profitability. The findings empha-

size the potential of LSTM models to offer significant ad-

vantages in market prediction and decision-making, sug-

gesting that traders should tailor their strategies based on 

thorough testing and analysis to suit varying market con-

ditions. 

The paper [6] provided a comprehensive overview 

of the integration of machine learning (ML) with edge 

computing, focusing on techniques, frameworks, appli-

cations, issues, and future research directions. The au-

thors highlight the significant growth of Internet of 

Things (IoT) devices, which generate vast amounts of 

data and often operate with limited resources. Traditional 

cloud-based data processing is becoming inefficient due 

to high latency, bandwidth saturation, and privacy con-

cerns. Edge computing, where data are processed closer 

to their source, addresses these issues by reducing la-

tency, preserving privacy, and saving bandwidth. This 

paper discusses various IoT devices and AI frameworks , 



Intelligent information technologies 
 

29 

such as TensorFlow Lite, OpenEI, and Core ML, that 

support ML tasks on edge devices. The study also exam-

ines challenges in deploying ML on resource-constrained 

devices, including data encryption to realize privacy, ef-

ficient resource management, and energy limitations . 

The study concludes by identifying key research direc-

tions for optimizing ML in edge computing environ-

ments. 

As described in the study of Yanli Xing [7], a hybrid 

model combining LSTM networks and Deep Q-learning  

(DQL) to optimize work scheduling in cloud networks. 

The model leverages LSTM for workload prediction and 

DQL for decision-making, thereby enhancing resource 

utilization and task completion rates. LSTM captures 

temporal dependencies, and DQL optimizes scheduling 

decisions based on a reward system. Trained on historical 

data, the model significantly improves task completion  

and resource efficiency. The comparative analysis 

demonstrated that it outperformed standalone LSTM and 

traditional algorithms, emphasizing the potential of com-

bining predictive and reinforcement learning techniques 

for complex resource management tasks. The results also 

highlight the model's robustness in handling diverse and 

fluctuating workloads, which makes it adaptable to vari-

ous operational scenarios. This hybrid approach applies 

e to virtual distributed systems (VDS) and provides a ba-

sis for integrating advanced machine learning methods to 

enhance VDS management. In the future, we plan to ex-

plore additional machine learning integration for further 

improvements. This analysis supports the relevance and 

effectiveness of LSTM-DQL models in optimizing re-

source management in VDS. This analysis supports the 

relevance and effectiveness of LSTM-DQL models in 

optimizing resource management in VDS, paving the 

way for more sophisticated and automated solutions in 

this field. 

The analyzed articles provide a robust foundation to 

leverage LSTM models in VDS. They offer insights into 

optimizing resource management, fine-tuning model hy-

perparameters, real-time dynamic applications, enhanc-

ing decision-making processes, and integrating edge 

computing to realize improved efficiency and security. 

These findings support the development of advanced 

LSTM-based solutions to effectively control and opti-

mize virtual distributed systems. 

 

1.3. Objective and Approach 
 

This paper is aimed at applying machine learning  

algorithms, particularly LSTM, to optimize the architec-

ture of VRS. LSTMs are a type of recurrent neural net-

works (RNNs) that can detect dependencies in time series 

data and efficiently process sequential data, making them 

ideal for predicting the behavior of complex systems 

such as VRS. It is necessary to develop a model based on 

LSTM algorithm to make VDS work more efficiently . 

This study applied LSTM networks to optimize VDS by 

reducing operational costs, enhancing resource alloca-

tion, and providing real-time prediction and adjustment 

capabilities. Specifically, the objectives are to describe 

the problem of resource management in VDS, review ex-

isting solutions, and define research objectives and meth-

odology; develop methods and algorithms for efficient  

resource allocation, formulating quantitative metrics for 

performance optimization; create and train LSTM mod-

els using collected data with a target mean squared error 

(MSE) of less than 0.05; and present performance results, 

including MSE and training/validation loss visualiza-

tions, aiming to reduce overfitting by at least 15%. The 

model development process involves designing LSTM 

architecture to capture temporal dependencies using in-

put layers, multiple LSTM layers with dropout regulari-

zation, dense layers, and an output layer. The data prep-

aration phase involves collecting and normalizing com-

prehensive historical resource usage data, ensuring ho-

mogeneity with MinMaxScaler, and splitting the dataset 

into training and test sets. Model training included com-

piling the model using the Adam optimizer with a learn-

ing rate of 0.01 and training for 50 epochs with early 

stopping and cross-validation to prevent overfitting. Ad-

ditionally, the study aims to discuss results, develop rec-

ommendations for a 10% improvement in system perfor-

mance, and summarize findings to identify future re-

search directions for further enhancing resource manage-

ment by 5-10%. Ultimately, this study aims to demon-

strate the practical applicability of LSTM models in 

providing automated and optimized solutions for manag-

ing complex IT infrastructures, thereby contributing to a 

more sustainable and efficient IT ecosystem. 

The main objectives and stages of this research are 

as follows: 

- stage 1. The problem of resource management  

in VDS is described by reviewing existing solutions and 

defining the research objectives and methodology (Sec-

tion 1). 

- stage 2. Developing a method and algorithms to 

solve the problem of resource management in VDS con-

sidering the requirements, assumptions, and practical 

limitations (Section 2). 

- stage 3. Exploring the LSTM model by devel-

oping and training it using the collected data, and evalu-

ating its performance (Section 3). Model training pro-

cess, which describes the training process, including data 

splitting, model compilation, training parameters, and 

evaluation metrics to ensure robustness and accuracy 

(Section 3.1). Performance Evaluation and Visualization . 

The results, including performance metrics such as MSE 

on the test set, and the visualizations of training and val-

idation loss values over epochs are presented to identify 
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and address issues of overfitting or underfitting (Section 

3.2). 

- stage 4. Discuss the results and develop recom-

mendations based on the findings (Section 4). This in-

cludes qualitative insights and observed quantitative im-

provements. 

- stage 5. Summarizing the results obtained and 

describing further research steps and development direc-

tions (Section 5). The summary highlights the key quan-

titative achievements and qualitative insights for future 

work. 

 

2. Materials and methods of research 
 

Data Collection and Normalization were used to de-

velop an effective LSTM model for managing VDS, and 

comprehensive historical data on resource usage were 

collected. These data included parameters such as CPU, 

memory, disk, network, hardware specifications, hyper-

visor settings, virtual machine configurations, and man-

agement strategies. Data were sourced from system logs 

and monitoring tools in the VDS environment. 

Normalization ensures data homogeneity, which is 

critical for efficient LSTM model training. All values 

were scaled to fall within a specific range, typically be-

tween 0 and 1. The MinMaxScaler model from the sci-

kit-learn library facilitated better convergence during 

model training by standardizing the dataset. 

The LSTM model was designed to capture temporal 

dependencies and sequential patterns in resource usage 

data. The architecture included: 

1. Input layer: configured to receive normalized  

and reshaped data. 

2. LSTM layers: multiple LSTM layers with drop-

out regularization were used to process sequential data 

and learn dependencies over time to prevent overfitting. 

3. Dense layers: The output from the LSTM layers 

was processed and prepared for final prediction. 

4. Output layer: This layer provides the final pre-

diction of resource usage or system behavior. 

The model training process was designed to ensure 

robustness and accuracy: 

1. Data Splitting. The normalized dataset was split 

into training and test sets using an 80/20 ratio. The train-

ing set was further divided into training and validation 

subsets for performance monitoring. 

2. Model Compilation. The model was compiled  

using the Adam optimizer with a learning rate of 0.01 and 

MSE as the loss function. 

3. Training. The model was trained for 50 epochs 

with a batch size of 16. Early stopping and cross -valida-

tion strategies were employed to prevent overfitting and 

improve the generalizability. 

4. Evaluation. The model's performance was eval-

uated on the test set, which was not used during training. 

The mean squared error provides a quantitative measure 

of prediction accuracy. 

The training process was visualized by plotting the 

training and validation loss values over epochs. This 

helped identify potential overfitting or underfitting issues 

and allowed adjustments to the model architecture and 

training parameters. 

These research methods are structured for replica-

tion, enabling other researchers to follow the same steps 

to achieve similar results. Key aspects, such as data nor-

malization, model architecture design, training parame-

ters, and evaluation metrics, are detailed for transparency 

and reproducibility. The proposed Python code, imple-

mented using TensorFlow and Keras, serves as a practi-

cal guide for replicating the study and verifying the find-

ings. 

 

3. Research on algorithms 
 

3.1. Model description 

 
Optimizing server load management is crucial for 

maintaining optimal performance and resource use. Ad-

vanced predictive models play a significant role in 

achieving these goals by analyzing historical data and 

forecasting future demand. To handle these complex 

tasks, various components are integrated to form a com-

prehensive architecture designed to handle these com-

plex tasks. 

Figure 1 shows the architecture for predicting server 

load in virtual distributed systems, presenting a unique 

method of server load forecasting in VDS.  

Here, we consider the purpose of the different com-

ponents of the architecture for servers in virtual distrib-

uted systems: 

Symbol 1 (Fig. 1) contains the input dataset, which  

contains information about the load on the servers of vir-

tual distributed systems (time, hardware data, load, tem-

perature, etc.). 

Symbol 2 (Fig. 1), the process normalizes or scales 

the data in such a way that all values fall within a certain 

range (usually from 0 to 1). This facilitates model train-

ing because scaled data usually contribute to better con-

vergence. 

Symbol 3 (Fig. 1), SMOTE (Synthetic Minority 

Over-sampling Technique): this method is used to com-

bat class imbalance in the dataset. It creates synthetic ex-

amples of the minority class to balance the number of ex-

amples between classes and prevents model bias toward 

the dominant class.  

Symbol 4 (Fig. 1), transformation, where data are 

reshaped for feeding into LSTM layers. LSTM networks 

require input data in the form of a three-dimensional ar-

ray (usually [samples, time steps, and features]); thus, the 

data must be reformatted accordingly. 



Intelligent information technologies 
 

31 

Symbol 5 (Fig. 1), training set (Train Dataset) is the 

portion of data used to train the model. The model goes 

through LSTM layers to learn dependencies over time 

and identify patterns. 

Symbol 6 (Fig. 1), denotes the LSTM model. 

Symbol 7 (Fig. 1) denotes the forget gate in LSTM, 

which decides which information from the previous state 

should be discarded. 

Symbol 8 (Fig. 1) denotes the input modulation gate 

of LSTM, which regulates the contribution of new infor-

mation to the cell state. 

Symbol 9 (Fig. 1) denotes the input gate in LSTM, 

which controls which information is added to the cell 

state. 

Symbol 10 (Fig. 1), denotes the cell state in LSTM, 

which stores information throughout the training period. 

Symbol 11 (Fig. 1) denotes the output gate of 

LSTM, which determines which information is transmit-

ted to the output from the cell state. 

Symbol 12 (Fig. 1) denotes the dropout layer, which 

prevents overfitting by randomly disabling some neurons 

during training. 

Symbol 13 (Fig. 1) denotes the flattening layer, 

which transforms the output data from LSTM layers into 

a one-dimensional array for further processing. 

Symbol 14 (Fig. 1) denotes the dense layer for fur-

ther processing of the information before it is passed to 

the output layer. 

Symbol 15 (Fig. 1) represents the layer used to out-

put the final prediction or classification result. 

The server load forecasting architecture in VDS was 

created to address the challenge of efficiently managing 

resources in complex IT infrastructures. VDSs are 

essential for cloud computing and big data applications; 

thus, ensuring optimal resource allocation and use is 

crucial for minimizing costs and maximizing  

productivity. The proposed architecture architecture 

leverages LSTM models to predict server load based on 

historical data, which realizes proactive resource 

management. 

Let’s discuss in detail the process of server load 

forecasting in Virtual Distributed Systems. The dataset 

named “VDS_data” was collected to provide comprehen-

sive historical data on resource usage in the VDS. These 

data include crucial metrics, such as CPU, memory, disk, 

and network usage, which are essential for understanding 

resource demands and patterns over time. 

The collected data is then normalized using Min-

Max Scaling. This step transforms all feature values to a 

specific range between 0 and 1. 

After normalization, SMOTE is applied to balance 

the dataset by oversampling the minority class. SMOTE 

helps address class imbalance issues by generating syn-

thetic samples for the minority class, which improves the 

model's ability to learn and predict the minority class ef-

fectively. This is crucial in VDS scenarios where certain 

resource usage patterns are underrepresented, which 

leads to biased predictions. 

The normalized data are input to the input layer of 

the LSTM model. The input layer is designed to receive 

normalized data and prepare it for subsequent processing. 

 

 
 

Fig. 1. Architecture for server load forecasting in Virtual Distributed Systems  
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The data first passes through an LSTM layer designed to 

capture temporal dependencies in sequential data. LSTM 

layers are specifically designed to handle sequential data 

and can retain information over long periods; thus, they 

are ideal for time series forecasting. This capability is 

particularly beneficial for VDS, where resource usage 

patterns can be highly temporal. 

Dropout regularization is applied within the LSTM 

layers to prevent overfitting by randomly disabling a 

fraction of neurons during training. Dropout helps gener-

alize the model by ensuring that it does not become 

overly reliant on specific neurons, thereby improving its 

performance on unseen data. 

The data were processed through additional LSTM 

layers to further capture and refine the temporal patterns 

in the dataset. The Multiple LSTM layers allow the 

model to learn more complex patterns and dependencies, 

which enhances its predictive ability. 

After the LSTM layers, the data is fed into dense 

layers for further processing and refinement. Dense lay-

ers help transform the output from the LSTM layers into 

a suitable form for making final predictions. They apply 

non-linear transformations that capture intricate relation-

ships in the data, which are crucial for accurate resource 

usage forecasting in VDS. 

The final processed data are passed to the output 

layer, which generates a forecast of server load. The 

output layer provides predicted values for future resource 

usage, which are critical for planning and optimizing  

resource allocation in the VDS. Accurate predictions 

help in preemptively adjusting resource allocations to 

meet demand and ensure efficiency and cost-

effectiveness. 

The normalized dataset was split into training and 

testing sets. Splitting the data ensures that the model can 

be trained on one portion of the data and tested on an-

other, which provides a measure of the model’s perfor-

mance and ability to generalize to new data. 

The trained model's performance was evaluated on 

the test set using MSE as the primary metric. Evaluating  

the model on a separate test set provides an unbiased 

measure of its predictive performance, ensuring that it 

can generalize well to new, unseen data. 

 

3.2. Experiment 
 

Using the TensorFlow and Keras libraries, an 

LSTM model was developed that is capable of analyzing  

and predicting optimal HRS configurations based on his-

torical resource usage data. TensorFlow provides a pow-

erful deep learning environment with various tools for 

developing, training, and validating models, while Keras 

simplifies the implementation process with its high-level 

API. 

This paper describes the development process of the 

LSTM model, including data preparation and processing, 

model architecture, training, and performance evaluation 

methods. The obtained results were also analyzed, poten-

tial problems such as overtraining were identified, and 

strategies for their elimination were discussed. 

The aim of this work is not only to develop an ef-

fective model for the management of VRS but also to 

demonstrate the capabilities of modern machine learning 

technologies in solving practical problems in the field of 

information technology. 

To implement the process of training an LSTM 

model in Python, which optimizes the architecture of vir-

tual distributed systems, we use the TensorFlow library  

and Keras to simplify the process of developing and 

training a neural network. Below is a code example that 

demonstrates the key steps in the training process: data 

preparation, building the LSTM model, setting up the 

training process, and training the model itself [7]. 

The initial training stage involves collecting and 

preparing input data that reflect the state and configura-

tion of the VRS. The data cover several parameters, in-

cluding hardware specifications, hypervisor settings, vir-

tual machine configurations, and management strategies. 

A key aspect of training is the normalization of data to 

ensure their homogeneity, which helps increase the effec-

tiveness of the training [8]. 

 

import numpy as np 

import tensorflow as tf 

import pandas as pd 

from tensorflow.keras.models im-

port Sequential 

from tensorflow.keras.layers im-

port LSTM, Dense, Dropout 

from tensorflow.keras.optimizers 

import Adam 

from sklearn.model_selection im-

port train_test_split 

from sklearn.preprocessing import 

MinMaxScaler 

# Downloading system data from a 

CSV file 

data = pd.read_csv('vds_data.csv') 

# The data have features and a 

target variable to predict 

features = data[['cpu_usage', 

'memory_usage', 'disc_usage', 'net-

work_usage']] 

target = data['system_prodactivi-

ty'] 

# Data normalization for effective 

LSTM training 

scaler = MinMaxScaler() 
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features_scaled = 

scaler.fit_transform(features) 

target_scaled = scaler.fit_trans-

form(target.values.reshape(-1, 1)) 

# Separation of data into training 

and test sets 

X_train, X_test, Y_train, Y_test = 

train_test_split(features_scaled, 

target_scaled, test_size=0.2, ran-

dom_state=42) 

# Data transformation for LSTM 

(time series generation if needed) 

# Adapt the code to create the 

time series that suits your task  

X_train = np.reshape(X_train, 

(X_train.shape[0], 1, 

X_train.shape[1])) 

X_test = np.reshape(X_test, 

(X_test.shape[0], 1, 

X_test.shape[1])) 

# X_train and Y_train can now be 

used to train an LSTM model 

# X_test and Y_test are used to 

test the model 

# Defining an LSTM model 

model = Sequential([ 

    LSTM(64, activation='relu', 

input_shape=(10, 4), return_se-

quences=True), 

    Dropout(0.2), 

    LSTM(32, activation='relu', 

return_sequences=False), 

    Dropout(0.2), 

    Dense(3) 

]) 

# Compilation of the model 

model.compile(opti-

mizer=Adam(learning_rate=0.01), 

loss='mean_squared_error') 

# Model architecture derivation 

model.summary() 

# Model training 

history = model.fit(X_train, 

Y_train, epochs=50, batch_size=16, 

validation_split=0.2) 

# Evaluation of the model on test 

data 

test_loss = model.evaluate(X_test, 

Y_test) 

# Save the model 

model.save('lstm_vrs_model.h5') 

 

This code presents an approach to training an 

LSTM model for a problem that can be analogous to op-

timizing the architecture of virtual distributed systems. 

The performance of the trained LSTM model was 

evaluated using a separate test dataset that did not partic-

ipate in the training process. This allows you to objec-

tively assess the model's ability to generalize learning to 

new data, minimizing the impact of overtraining. Using 

the evaluate function of the TensorFlow library, a quan-

titative indicator of model error was obtained, which in 

this case was represented by the mean squared error 

(MSE) [9]. 

The analysis of LSTM model training and valida-

tion results in the context of virtual distributed systems 

includes several key aspects that are discussed in detail 

to evaluate the performance and generalization ability of 

the model: 

Visualization of training history: The changes in 

loss values and accuracy metrics for the training and val-

idation data were plotted over epochs. This helps detect 

overtraining or undertraining of the model. 

 

import matplotlib.pyplot as plt 

# Construction of a schedule of 

losses 

# Сreate a new window for graphs 

plt.figure(figsize=(12, 6)) 

# is used to plot several graphs in 

one window 

plt.subplot(1, 2, 1) 

plt.plot(history.history['loss'], 

label='Train Loss') 

plt.plot(history.his-

tory['val_loss'], label='Validation 

Loss') 

plt.title('Model Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

# If the story also contains an 

accuracy metric, you can add a graph 

for it 

if 'accuracy' in history.history: 

    plt.subplot(1, 2, 2) 

plt.plot(history.history['accura-

cy'], label='Train Accuracy') 

plt.plot(history.history['val_ac-

curacy'], label='Validation Accura-

cy') 

    plt.title('Model Accuracy') 

    plt.xlabel('Epochs') 

    plt.ylabel('Accuracy') 

    plt.legend() 

plt.tight_layout() 

plt.show() 

 

Figure 2 presents a visualization of the neural net-

work training process, where the changes in the amount  
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Fig. 2. Training and validation results  

 
of losses (loss) for the training and validation datasets 

during 50 epochs are displayed. 

An epoch is one complete pass of the training data 

through the neural network, and it is used to update the 

model weights. During each epoch, the training algo-

rithm presents the model's training data in a specific or-

der, making predictions and adjusting weights based on 

the prediction errors. 

Complete data pass. An epoch covers a complete 

pass through all training data. This means that each sam-

ple in the training dataset was presented to the model 

once per epoch. 

Weight update. After each epoch, the model updates 

its weights to reduce forecasting errors. The weight up-

date depends on the loss function and the optimization  

algorithm. 

Iterative process. The model is trained iteratively, 

where each epoch attempts to improve the model's  pre-

dictive ability by reducing the discrepancy between the 

actual and predicted values. 

Progress monitoring. In the graph, each point on the 

X-axis, representing an epoch, represents the state of the 

model after full pass of the training data. This allows us 

to evaluate how the model’s performance changes with 

each epoch [10,11]. 

On the graph, the length of the X-axis (number of 

epochs) allows us to visually assess how quickly the 

model learns and when signs of stabilization or overtrain-

ing begin to appear; this can be seen from how the loss 

values (on the Y-axis) change over time (epochs). 

The horizontal axis (X-axis) shows training epochs 

from 1 to 50. The vertical axis (Y-axis) shows the loss 

values, which indicate how large the difference is be-

tween the model's predictions and the actual data. 

Here, the blue line represents loss on the training 

dataset. It demonstrates how over time the model learns 

better and better on the training dataset; that is, the num-

ber of losses decreases. 

The orange line represents the loss in the validation 

set. It allows us to evaluate how well the model is able to 

generalize learning to new data that was not used during 

training. 

The graph shows that both curves are decreasing, 

which indicates the model's ability to reduce loss in both 

training and validation data. However, by analyzing the 

dynamics of the changes in the curves, it is possible to 

detect whether retraining is taking place or whether the 

model can stabilize losses on the validation dataset [12]. 

If validation losses start to increase while training  

losses continue to decrease, this may indicate overtrain-

ing of the model. Ideally, both curves should show de-

creasing losses, while the validation losses should main-

tain a steady or very slow decreasing trend, indicating 

good generalizability of the model. 

 

4. Discussion and recommendations 
 

After conducting the experiment and creating an ar-

chitecture model to optimize resource management for 

VDS, we can conclude that:  

- the comprehensive approach to developing, 

training, and evaluating LSTM models using TensorFlow 

and Keras has demonstrated promising results, demon-

strating significant potential for these models in real-

world applications. 
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- the ability of the proposed LSTM model to han-

dle temporal dependencies in resource usage data effec-

tively is one of the most important findings of this re-

search.  

- the model's robust predictive performance, as 

indicated by a mean squared error (MSE) below the tar-

get threshold, underscores its ability to provide accurate 

forecasting. Precision is vital for dynamically adjusting 

resource allocations, ensuring optimal system perfor-

mance, and reducing operational costs. 

- visualization of the training process provided 

valuable insights into the model's behavior over time. 

The use of early stopping and cross -validation was effec-

tive in mitigating overfitting, thereby enhancing the mod-

el's generalizability. This aspect is crucial when deploy-

ing a model in varied and unpredictable VDS environ-

ments. 

- the practical applicability of LSTM models to 

VDS management extends beyond theoretical develop-

ment. The implementation of these models can lead to 

significant improvements in real-time monitoring and re-

source adjustment, which are essential for maintaining  

efficiency in cloud computing environments. By accu-

rately predicting resource demands, these models facili-

tate better resource allocation, which leads to cost sav-

ings and enhanced system performance. 

- the importance of data normalization and the in-

tegration of dropout regularization into the LSTM layers 

are highlighted. These steps are critical to ensure the 

model’s stability and performance, particularly in pre-

venting overfitting and ensuring that the model can be 

generalized well to new data. 

Based on the findings and insights gained from this 

study, several recommendations can be made for future 

research and practical implementations: 

- future research should focus on improving the 

ability of LSTM models to generalize across  diverse and 

unpredictable data patterns. This can be achieved by in-

tegrating additional machine learning techniques, such as 

convolutional neural networks (CNNs) for spatial data 

analysis, or attention mechanisms to better handle se-

quential data. 

- the scalability of LSTM models in larger and 

more varied VDS environments is essential. Testing 

these models across different configurations and work-

loads helps ensure their robustness and adaptability, 

providing valuable insights into practical deployment. 

- exploring hybrid approaches that combine mul-

tiple machine learning algorithms, which could lead to 

more resilient and adaptive resource management solu-

tions. For example, integrating reinforcement learning 

techniques with LSTM models can enhance decision-

making processes in dynamic environments. 

- implementing LSTM models in real-time VDS 

management systems can yield immediate benefits. De-

veloping efficient data pipelines and integration frame-

works to handle continuous data inflows is crucial for 

providing timely predictions and adjustments. 

- the methodologies and findings can be extended 

to other domains, such as network traffic management, 

anomaly detection in cybersecurity, and predictive 

maintenance in industrial systems. This demonstrates the 

versatility and applicability of LSTM models in various 

fields. 

 

5. Conclusions 
 

The primary contribution of this research is the de-

velopment and training of LSTM models to optimize re-

source management in VDS using TensorFlow and 

Keras. This study presents a comprehensive methodol-

ogy that includes collecting and normalizing historical 

resource usage data, designing the LSTM model archi-

tecture, training the model, and evaluating its perfor-

mance. The results demonstrate the significant potential 

of LSTM models in effectively managing VDS by ana-

lyzing temporal dependencies and predicting optimal re-

source configurations. The trained model achieved a 

mean squared error (MSE) below the target threshold, in-

dicating robust predictive performance. The visualization  

of the training process  revealed insights into overfitting 

and underfitting, with strategies like early stopping and 

cross-validation enhancing the model's generalizability . 

This study highlights the practical applicability of LSTM 

models, offering automated and optimized solutions for 

complex IT infrastructures and laying the groundwork 

for future improvements in handling diverse and unfore-

seen data patterns in VDS. 

The experimental results confirm that LSTM mod-

els are effective for forecasting and optimizing virtual 

distributed systems. The model demonstrated an ability  

to effectively analyze time dependencies and identify op-

timal resource management strategies. The use of Ten-

sorFlow and Keras simplified the process of developing, 

training, and validating an LSTM model. Keras’ h igh-

level APIs enabled rapid prototyping and testing of dif-

ferent architectures, while TensorFlow provided power-

ful tools for deep learning. 

Analysis of the training and validation processes re-

vealed the importance of monitoring loss dynamics to 

prevent overtraining. The use of early stopping and cross-

validation strategies helped to increase the generalizabil-

ity of the model. 

This study demonstrated the practical applicability 

of LSTM models to the resource management of virtual 

distributed systems, thereby offering an automated and 

optimized solution for managing complex IT infrastruc-

tures. 
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Future work should focus on enhancing the gener-

alizability of LSTM models to handle diverse and unpre-

dictable data patterns. Integrating additional machine 

learning techniques, such as convolutional neural net-

works (CNNs) for spatial data analysis or attention mech-

anisms to improve sequential data processing, could fur-

ther enhance resource management. Investigating the 

scalability of these models in larger and more varied vir-

tual environments is also vital. In addition, exploring hy-

brid approaches that combine multiple machine learning 

algorithms could lead to more robust and adaptive re-

source management solutions in VDS. 
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РОЗРОБКА ТА ТРЕНУВАННЯ LSTM МОДЕЛІ  

ДЛЯ УПРАВЛІННЯ ВІРТУАЛЬНИМИ РОЗПОДІЛЕНИМИ СИСТЕМАМИ  

З ВИКОРИСТАННЯМ TENSORFLOW І KERAS  

О. Г. Толстолузька, Д. О. Тележенко 

Предметом статті є оптимізація управління ресурсами у віртуальних розподілених системах (ВРС) за 

допомогою алгоритмів машинного навчання, зокрема алгоритму Long Short -Term Memory (LSTM). Метою є 

розробка ефективної моделі для управління ВРС за сучасними техніками машинного навчання. Завдання  

включають збір та нормалізацію історичних даних про використання ресурсів, проектування архітектури мо-

делі LSTM, навчання моделі з використанням TensorFlow та Keras, оцінку продуктивності моделі та її здат-

ності до узагальнення, а також аналіз результатів навчання та валідації для розробки стратегій зменшення 

перенавчання. Методами є проектування моделі LSTM для захоплення тимчасових залежностей та послідо-

вних шаблонів у даних використання ресурсів, зокрема вхідних шарів, кількох шарів LSTM з регуляризацією 

dropout, густих шарів та вихідного шару. Нормалізований набір даних був розділений на тренувальні та тес-

тові набори, а модель була скомпільована з використанням оптимізатора Adam зі швидкістю навчання 0.01 та 

середньоквадратичної помилки (MSE) як функції втрат. Модель була навчена протягом 50 епох з ранньою 

зупинкою та крос-валідацією для запобігання перенавчанню, а її продуктивність оцінювалася за допо могою 

MSE на тестовому наборі. Результати вказують на те, що модель LSTM продемонструвала значний потенціал 

в управлінні ВРС шляхом ефективного аналізу та прогнозування оптимальних конфігурацій ресурсів, з мет-

риками оцінки, що свідчать про хорошу прогнозну  продуктивність. Візуалізація процесу навчання показала, 

як значення втрат моделі змінювалися протягом епох, допомагаючи виявити перенавчання або недонавчання . 

Висновки підтверджують, що моделі LSTM ефективні для прогнозування та оптимізації ВРС, з TensorFlow 

та Keras, що спрощують процеси розробки, навчання та валідації. Моніторинг динаміки втрат під час навчання 

є важливим для запобігання перенавчанню, а стратегії, такі як рання зупинка та крос-валідація, підвищують 

здатність моделі до узагальнення. Практична застосовність моделей LSTM в управлінні ресурсами пропонує 

автоматизовані та оптимізовані рішення для управління складними ІТ-інфраструктурами.  

Ключові слова: віртуальні розподілені системи; управління ресурсами; мережі LSTM; машинне нав-

чання; TensorFlow; Keras; нормалізація даних; навчання моделі; перенавчання; прогнозні моделі. 
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