
Intelligent information technologies

27

UDC 004.94 doi: 10.32620/reks.2024.3.02

Olena TOLSTOLUZKA, Denys TELEZHENKO

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

DEVELOPMENT AND TRAINING OF LSTM MODELS FOR CONTROL

OF VIRTUAL DISTRIBUTED SYSTEMS USING TENSORFLOW AND KERAS

The subject of this paper is the optimization of resource management in virtual distributed systems (VDS) via

the application of machine learning algorithms, specifically Long Short -Term Memory (LSTM) networks. The

aim is to develop an effective model for managing VDS using contemporary machine -learning techniques. Ob-

jectives are as follows: 1) to describe the problem of resource management challenges in VDS and the architec-

ture of LSTM network.; 2) to collect and normalize historical data on resource usage, such as CPU, memory,

disk, and network usage; 3) to develop a detailed architecture for the LSTM model, including input layers, mul-

tiple LSTM layers with dropout regularization, dense layers, and an output layer; 3) to train the LSTM model

using TensorFlow and Keras, ensuring the training process includes at least 50 epochs, early stopping, and

cross-validation techniques; 4) to evaluate the performance of the trained LSTM model using a test set, with

MSE as the primary metric; 5) to conduct a thorough analysis of the training and validation outcomes, including
the visualization of loss values over epochs. Methods involve designing an LSTM model to capture temporal

dependencies and sequential patterns in resource usage data, including input layers, multiple LSTM layers with

dropout regularization, dense layers, and an output layer. The normalized dataset was split into training and

test sets, and the model was compiled using the Adam optimizer with a learning rate of 0.01 and mean squared

error (MSE) as the loss function. The model was trained for 50 epochs with early stopping and cross -validation
to prevent overfitting, and its performance was evaluated using MSE on a test set. The following results were

obtained: 1) the historical data on resource usage, including CPU, memory, disk, and network usage; 2) the

LSTM model demonstrated significant potential in managing VDS by efficiently analyzing and predicting opti-

mal resource configurations; 2) visualization of the training process and revelations on how the model's loss

values changed over epochs; 3) A comprehensive LSTM model architecture, including input layers, multiple
LSTM layers with dropout regularization, dense layers, and an output layer. Conclusions. The primary contri-

bution of this research is the development and training of LSTM models to optimize resource management in

VDS using TensorFlow and Keras. This study presents a comprehensive methodology that includes collecting

and normalizing historical resource usage data, designing the LSTM model architecture, training the model,

and evaluating its performance. The results demonstrate the significant po tential of LSTM models in effectively

managing VDS by analyzing temporal dependencies and predicting optimal resource configurations. Specifi-

cally, the trained model achieved a mean squared error (MSE) below the target threshold, indicating robust

predictive performance. The visualization of the training process revealed insights into overfitting and underfit-

ting, with strategies like early stopping and cross-validation enhancing the model's generalizability. This study

highlights the practical applicability of LSTM models, offering automated and optimized solutions for complex

IT infrastructures, and laying the groundwork for future improvements in handling diverse and unforeseen data

patterns in VDS.

Keywords: virtual distributed systems (VDS); resource optimization; LSTM (Long Short-Term Memory); Ten-

sorFlow; Keras; machine learning, neural networks.

1. Introduction

1.1. Motivation

Effective resource management in virtual distrib-

uted systems (VDS) is becoming increasingly critical in

today's rapidly evolving technological landscape. VDS

offers flexibility, scalability, and efficient resource utili-

zation, which are essential for developing cloud compu-

ting, big data, and other modern IT infrastructures. The

challenge lies in ensuring optimal allocation and use of

these resources to minimize costs while

Maximizing productivity; therefore, the use of LSTM

systems can solve this problem for the following reasons:

Reducing operational costs. The surge in technolog-

ical advancements necessitates robust management strat-

egies for VDS, which are pivotal for supporting the ex-

pansive growth of cloud services and big data analytics.

Inefficient resource management in VDS can lead to in-

creased operational costs and reduced performance, un-

dermining the potential benefits of such systems.

 Creative Commons Attribution

NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
28

Enhancing resource allocation. Long Short-Term

Memory (LSTM) network can learn from sequential data

and remember long-term dependencies, making them

particularly suitable for predicting and optimizing re-

source allocation. Unlike traditional management ap-

proaches, LSTM systems can adapt to changing work-

loads and forecast future resource demands, ensuring

more efficient and dynamic management.

The ability to predict and adjust. These systems are

capable of real-time monitoring and adjustment, which is

crucial for maintaining optimal resource utilization. Prac-

tical applications include enhanced performance in cloud

computing environments, where LSTM networks can

predict resource needs and allocate them accordingly,

and improved efficiency in handling large-scale data pro-

cessing tasks by anticipating workload fluctuations.

Providing sustainable solution. Optimizing re-

source management using LSTM systems not only re-

duces operational costs but also boosts overall productiv-

ity. This efficiency translates into significant economic

benefits, as businesses can reinvest saved resources into

further innovation and development. Moreover, the use

of LSTM systems promotes a more sustainable IT eco-

system by minimizing energy consumption and resource

wastage through precise predictions and timely adjust-

ments.

The pressing need for efficient VDS resource man-

agement underscores the relevance of LSTM systems. By

leveraging advanced LSTM algorithms, we address cur-

rent challenges and pave the way for more robust, cost-

effective, and sustainable IT infrastructures. Our research

is crucial for the continued growth and efficiency of

cloud computing and big data industries, ensuring that

they can meet future demands with optimal resource

management.

1.2. State of the Art

Previous studies have demonstrated the significant

potential of LSTM in addressing resource management

issues across various systems. For example, the work of

Yilmaz and Büyüktahtakın (2022) highlighted the effec-

tiveness of LSTM in optimizing solutions [1]. Similarly ,

Zhu et al. (2019) employed LSTM for workload predic-

tion in cloud environments, and they demonstrated its ap-

plicability to VDS [2]. Despite these advancements, chal-

lenges such as overfitting and the enhancement of the

model’s ability to generalize to new data remain and war-

rant further investigation.

The architecture of LSTM networks has evolved to

address specific challenges in distributed systems. For in-

stance, hybrid models combining LSTM with other neu-

ral network structures, such as Transformer models, have

been developed to improve prediction accuracy and com-

putational efficiency. These advanced architectures ena-

ble real-time multitask learning and are particularly ef-

fective in environments with high variability and com-

plexity.

The authors of [3] compared six machine learning

methods to accurately estimate software development ef-

fort, among which long short-term memory was consid-

ered. According to a previous study [3], the performance

of LSTM networks is highly dependent on various hy-

perparameters, including the number of hidden layer

nodes, the duration of training (epochs), the initial learn-

ing rate, momentum, and the dropout rate, which signifi-

cantly increase software effort estimation performance.

The paper [4] presented a method for dynamic ob-

stacle avoidance using an LSTM neural network imple-

mented on a TurtleBot3 robot equipped with a LiDAR

sensor. The robot navigates through various scenarios

with static and dynamic obstacles, collecting data on its

position, velocity, and LiDAR readings. This data is used

to train the LSTM network and predict the robot's trajec-

tory. The physical experiments showed that the model

successfully avoided obstacles and reached its target with

a validation accuracy of 98.02%. The results of this study

highlight the effectiveness of LSTM networks in real-

time dynamic obstacle avoidance, paving the way for

more advanced applications in autonomous navigation.

The article [5] explored the enhancement of tradi-

tional stock market trading strategies through the integra-

tion of LSTM neural networks. Traditional strategies of-

ten rely on analyzing historical-closing prices and tech-

nical indicators to make trading decisions. By incorporat-

ing LSTM models, this study predicts closing prices

more accurately and improve the performance of these

strategies. The results demonstrate that hybrid strategies,

which combine traditional methods with LSTM models,

outperform traditional strategies in terms of prediction

accuracy and trading profitability. The findings empha-

size the potential of LSTM models to offer significant ad-

vantages in market prediction and decision-making, sug-

gesting that traders should tailor their strategies based on

thorough testing and analysis to suit varying market con-

ditions.

The paper [6] provided a comprehensive overview

of the integration of machine learning (ML) with edge

computing, focusing on techniques, frameworks, appli-

cations, issues, and future research directions. The au-

thors highlight the significant growth of Internet of

Things (IoT) devices, which generate vast amounts of

data and often operate with limited resources. Traditional

cloud-based data processing is becoming inefficient due

to high latency, bandwidth saturation, and privacy con-

cerns. Edge computing, where data are processed closer

to their source, addresses these issues by reducing la-

tency, preserving privacy, and saving bandwidth. This

paper discusses various IoT devices and AI frameworks ,

Intelligent information technologies

29

such as TensorFlow Lite, OpenEI, and Core ML, that

support ML tasks on edge devices. The study also exam-

ines challenges in deploying ML on resource-constrained

devices, including data encryption to realize privacy, ef-

ficient resource management, and energy limitations .

The study concludes by identifying key research direc-

tions for optimizing ML in edge computing environ-

ments.

As described in the study of Yanli Xing [7], a hybrid

model combining LSTM networks and Deep Q-learning

(DQL) to optimize work scheduling in cloud networks.

The model leverages LSTM for workload prediction and

DQL for decision-making, thereby enhancing resource

utilization and task completion rates. LSTM captures

temporal dependencies, and DQL optimizes scheduling

decisions based on a reward system. Trained on historical

data, the model significantly improves task completion

and resource efficiency. The comparative analysis

demonstrated that it outperformed standalone LSTM and

traditional algorithms, emphasizing the potential of com-

bining predictive and reinforcement learning techniques

for complex resource management tasks. The results also

highlight the model's robustness in handling diverse and

fluctuating workloads, which makes it adaptable to vari-

ous operational scenarios. This hybrid approach applies

e to virtual distributed systems (VDS) and provides a ba-

sis for integrating advanced machine learning methods to

enhance VDS management. In the future, we plan to ex-

plore additional machine learning integration for further

improvements. This analysis supports the relevance and

effectiveness of LSTM-DQL models in optimizing re-

source management in VDS. This analysis supports the

relevance and effectiveness of LSTM-DQL models in

optimizing resource management in VDS, paving the

way for more sophisticated and automated solutions in

this field.

The analyzed articles provide a robust foundation to

leverage LSTM models in VDS. They offer insights into

optimizing resource management, fine-tuning model hy-

perparameters, real-time dynamic applications, enhanc-

ing decision-making processes, and integrating edge

computing to realize improved efficiency and security.

These findings support the development of advanced

LSTM-based solutions to effectively control and opti-

mize virtual distributed systems.

1.3. Objective and Approach

This paper is aimed at applying machine learning

algorithms, particularly LSTM, to optimize the architec-

ture of VRS. LSTMs are a type of recurrent neural net-

works (RNNs) that can detect dependencies in time series

data and efficiently process sequential data, making them

ideal for predicting the behavior of complex systems

such as VRS. It is necessary to develop a model based on

LSTM algorithm to make VDS work more efficiently .

This study applied LSTM networks to optimize VDS by

reducing operational costs, enhancing resource alloca-

tion, and providing real-time prediction and adjustment

capabilities. Specifically, the objectives are to describe

the problem of resource management in VDS, review ex-

isting solutions, and define research objectives and meth-

odology; develop methods and algorithms for efficient

resource allocation, formulating quantitative metrics for

performance optimization; create and train LSTM mod-

els using collected data with a target mean squared error

(MSE) of less than 0.05; and present performance results,

including MSE and training/validation loss visualiza-

tions, aiming to reduce overfitting by at least 15%. The

model development process involves designing LSTM

architecture to capture temporal dependencies using in-

put layers, multiple LSTM layers with dropout regulari-

zation, dense layers, and an output layer. The data prep-

aration phase involves collecting and normalizing com-

prehensive historical resource usage data, ensuring ho-

mogeneity with MinMaxScaler, and splitting the dataset

into training and test sets. Model training included com-

piling the model using the Adam optimizer with a learn-

ing rate of 0.01 and training for 50 epochs with early

stopping and cross-validation to prevent overfitting. Ad-

ditionally, the study aims to discuss results, develop rec-

ommendations for a 10% improvement in system perfor-

mance, and summarize findings to identify future re-

search directions for further enhancing resource manage-

ment by 5-10%. Ultimately, this study aims to demon-

strate the practical applicability of LSTM models in

providing automated and optimized solutions for manag-

ing complex IT infrastructures, thereby contributing to a

more sustainable and efficient IT ecosystem.

The main objectives and stages of this research are

as follows:

- stage 1. The problem of resource management

in VDS is described by reviewing existing solutions and

defining the research objectives and methodology (Sec-

tion 1).

- stage 2. Developing a method and algorithms to

solve the problem of resource management in VDS con-

sidering the requirements, assumptions, and practical

limitations (Section 2).

- stage 3. Exploring the LSTM model by devel-

oping and training it using the collected data, and evalu-

ating its performance (Section 3). Model training pro-

cess, which describes the training process, including data

splitting, model compilation, training parameters, and

evaluation metrics to ensure robustness and accuracy

(Section 3.1). Performance Evaluation and Visualization .

The results, including performance metrics such as MSE

on the test set, and the visualizations of training and val-

idation loss values over epochs are presented to identify

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
30

and address issues of overfitting or underfitting (Section

3.2).

- stage 4. Discuss the results and develop recom-

mendations based on the findings (Section 4). This in-

cludes qualitative insights and observed quantitative im-

provements.

- stage 5. Summarizing the results obtained and

describing further research steps and development direc-

tions (Section 5). The summary highlights the key quan-

titative achievements and qualitative insights for future

work.

2. Materials and methods of research

Data Collection and Normalization were used to de-

velop an effective LSTM model for managing VDS, and

comprehensive historical data on resource usage were

collected. These data included parameters such as CPU,

memory, disk, network, hardware specifications, hyper-

visor settings, virtual machine configurations, and man-

agement strategies. Data were sourced from system logs

and monitoring tools in the VDS environment.

Normalization ensures data homogeneity, which is

critical for efficient LSTM model training. All values

were scaled to fall within a specific range, typically be-

tween 0 and 1. The MinMaxScaler model from the sci-

kit-learn library facilitated better convergence during

model training by standardizing the dataset.

The LSTM model was designed to capture temporal

dependencies and sequential patterns in resource usage

data. The architecture included:

1. Input layer: configured to receive normalized

and reshaped data.

2. LSTM layers: multiple LSTM layers with drop-

out regularization were used to process sequential data

and learn dependencies over time to prevent overfitting.

3. Dense layers: The output from the LSTM layers

was processed and prepared for final prediction.

4. Output layer: This layer provides the final pre-

diction of resource usage or system behavior.

The model training process was designed to ensure

robustness and accuracy:

1. Data Splitting. The normalized dataset was split

into training and test sets using an 80/20 ratio. The train-

ing set was further divided into training and validation

subsets for performance monitoring.

2. Model Compilation. The model was compiled

using the Adam optimizer with a learning rate of 0.01 and

MSE as the loss function.

3. Training. The model was trained for 50 epochs

with a batch size of 16. Early stopping and cross -valida-

tion strategies were employed to prevent overfitting and

improve the generalizability.

4. Evaluation. The model's performance was eval-

uated on the test set, which was not used during training.

The mean squared error provides a quantitative measure

of prediction accuracy.

The training process was visualized by plotting the

training and validation loss values over epochs. This

helped identify potential overfitting or underfitting issues

and allowed adjustments to the model architecture and

training parameters.

These research methods are structured for replica-

tion, enabling other researchers to follow the same steps

to achieve similar results. Key aspects, such as data nor-

malization, model architecture design, training parame-

ters, and evaluation metrics, are detailed for transparency

and reproducibility. The proposed Python code, imple-

mented using TensorFlow and Keras, serves as a practi-

cal guide for replicating the study and verifying the find-

ings.

3. Research on algorithms

3.1. Model description

Optimizing server load management is crucial for

maintaining optimal performance and resource use. Ad-

vanced predictive models play a significant role in

achieving these goals by analyzing historical data and

forecasting future demand. To handle these complex

tasks, various components are integrated to form a com-

prehensive architecture designed to handle these com-

plex tasks.

Figure 1 shows the architecture for predicting server

load in virtual distributed systems, presenting a unique

method of server load forecasting in VDS.

Here, we consider the purpose of the different com-

ponents of the architecture for servers in virtual distrib-

uted systems:

Symbol 1 (Fig. 1) contains the input dataset, which

contains information about the load on the servers of vir-

tual distributed systems (time, hardware data, load, tem-

perature, etc.).

Symbol 2 (Fig. 1), the process normalizes or scales

the data in such a way that all values fall within a certain

range (usually from 0 to 1). This facilitates model train-

ing because scaled data usually contribute to better con-

vergence.

Symbol 3 (Fig. 1), SMOTE (Synthetic Minority

Over-sampling Technique): this method is used to com-

bat class imbalance in the dataset. It creates synthetic ex-

amples of the minority class to balance the number of ex-

amples between classes and prevents model bias toward

the dominant class.

Symbol 4 (Fig. 1), transformation, where data are

reshaped for feeding into LSTM layers. LSTM networks

require input data in the form of a three-dimensional ar-

ray (usually [samples, time steps, and features]); thus, the

data must be reformatted accordingly.

Intelligent information technologies

31

Symbol 5 (Fig. 1), training set (Train Dataset) is the

portion of data used to train the model. The model goes

through LSTM layers to learn dependencies over time

and identify patterns.

Symbol 6 (Fig. 1), denotes the LSTM model.

Symbol 7 (Fig. 1) denotes the forget gate in LSTM,

which decides which information from the previous state

should be discarded.

Symbol 8 (Fig. 1) denotes the input modulation gate

of LSTM, which regulates the contribution of new infor-

mation to the cell state.

Symbol 9 (Fig. 1) denotes the input gate in LSTM,

which controls which information is added to the cell

state.

Symbol 10 (Fig. 1), denotes the cell state in LSTM,

which stores information throughout the training period.

Symbol 11 (Fig. 1) denotes the output gate of

LSTM, which determines which information is transmit-

ted to the output from the cell state.

Symbol 12 (Fig. 1) denotes the dropout layer, which

prevents overfitting by randomly disabling some neurons

during training.

Symbol 13 (Fig. 1) denotes the flattening layer,

which transforms the output data from LSTM layers into

a one-dimensional array for further processing.

Symbol 14 (Fig. 1) denotes the dense layer for fur-

ther processing of the information before it is passed to

the output layer.

Symbol 15 (Fig. 1) represents the layer used to out-

put the final prediction or classification result.

The server load forecasting architecture in VDS was

created to address the challenge of efficiently managing

resources in complex IT infrastructures. VDSs are

essential for cloud computing and big data applications;

thus, ensuring optimal resource allocation and use is

crucial for minimizing costs and maximizing

productivity. The proposed architecture architecture

leverages LSTM models to predict server load based on

historical data, which realizes proactive resource

management.

Let’s discuss in detail the process of server load

forecasting in Virtual Distributed Systems. The dataset

named “VDS_data” was collected to provide comprehen-

sive historical data on resource usage in the VDS. These

data include crucial metrics, such as CPU, memory, disk,

and network usage, which are essential for understanding

resource demands and patterns over time.

The collected data is then normalized using Min-

Max Scaling. This step transforms all feature values to a

specific range between 0 and 1.

After normalization, SMOTE is applied to balance

the dataset by oversampling the minority class. SMOTE

helps address class imbalance issues by generating syn-

thetic samples for the minority class, which improves the

model's ability to learn and predict the minority class ef-

fectively. This is crucial in VDS scenarios where certain

resource usage patterns are underrepresented, which

leads to biased predictions.

The normalized data are input to the input layer of

the LSTM model. The input layer is designed to receive

normalized data and prepare it for subsequent processing.

Fig. 1. Architecture for server load forecasting in Virtual Distributed Systems

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
32

The data first passes through an LSTM layer designed to

capture temporal dependencies in sequential data. LSTM

layers are specifically designed to handle sequential data

and can retain information over long periods; thus, they

are ideal for time series forecasting. This capability is

particularly beneficial for VDS, where resource usage

patterns can be highly temporal.

Dropout regularization is applied within the LSTM

layers to prevent overfitting by randomly disabling a

fraction of neurons during training. Dropout helps gener-

alize the model by ensuring that it does not become

overly reliant on specific neurons, thereby improving its

performance on unseen data.

The data were processed through additional LSTM

layers to further capture and refine the temporal patterns

in the dataset. The Multiple LSTM layers allow the

model to learn more complex patterns and dependencies,

which enhances its predictive ability.

After the LSTM layers, the data is fed into dense

layers for further processing and refinement. Dense lay-

ers help transform the output from the LSTM layers into

a suitable form for making final predictions. They apply

non-linear transformations that capture intricate relation-

ships in the data, which are crucial for accurate resource

usage forecasting in VDS.

The final processed data are passed to the output

layer, which generates a forecast of server load. The

output layer provides predicted values for future resource

usage, which are critical for planning and optimizing

resource allocation in the VDS. Accurate predictions

help in preemptively adjusting resource allocations to

meet demand and ensure efficiency and cost-

effectiveness.

The normalized dataset was split into training and

testing sets. Splitting the data ensures that the model can

be trained on one portion of the data and tested on an-

other, which provides a measure of the model’s perfor-

mance and ability to generalize to new data.

The trained model's performance was evaluated on

the test set using MSE as the primary metric. Evaluating

the model on a separate test set provides an unbiased

measure of its predictive performance, ensuring that it

can generalize well to new, unseen data.

3.2. Experiment

Using the TensorFlow and Keras libraries, an

LSTM model was developed that is capable of analyzing

and predicting optimal HRS configurations based on his-

torical resource usage data. TensorFlow provides a pow-

erful deep learning environment with various tools for

developing, training, and validating models, while Keras

simplifies the implementation process with its high-level

API.

This paper describes the development process of the

LSTM model, including data preparation and processing,

model architecture, training, and performance evaluation

methods. The obtained results were also analyzed, poten-

tial problems such as overtraining were identified, and

strategies for their elimination were discussed.

The aim of this work is not only to develop an ef-

fective model for the management of VRS but also to

demonstrate the capabilities of modern machine learning

technologies in solving practical problems in the field of

information technology.

To implement the process of training an LSTM

model in Python, which optimizes the architecture of vir-

tual distributed systems, we use the TensorFlow library

and Keras to simplify the process of developing and

training a neural network. Below is a code example that

demonstrates the key steps in the training process: data

preparation, building the LSTM model, setting up the

training process, and training the model itself [7].

The initial training stage involves collecting and

preparing input data that reflect the state and configura-

tion of the VRS. The data cover several parameters, in-

cluding hardware specifications, hypervisor settings, vir-

tual machine configurations, and management strategies.

A key aspect of training is the normalization of data to

ensure their homogeneity, which helps increase the effec-

tiveness of the training [8].

import numpy as np

import tensorflow as tf

import pandas as pd

from tensorflow.keras.models im-

port Sequential

from tensorflow.keras.layers im-

port LSTM, Dense, Dropout

from tensorflow.keras.optimizers

import Adam

from sklearn.model_selection im-

port train_test_split

from sklearn.preprocessing import

MinMaxScaler

Downloading system data from a

CSV file

data = pd.read_csv('vds_data.csv')

The data have features and a

target variable to predict

features = data[['cpu_usage',

'memory_usage', 'disc_usage', 'net-

work_usage']]

target = data['system_prodactivi-

ty']

Data normalization for effective

LSTM training

scaler = MinMaxScaler()

Intelligent information technologies

33

features_scaled =

scaler.fit_transform(features)

target_scaled = scaler.fit_trans-

form(target.values.reshape(-1, 1))

Separation of data into training

and test sets

X_train, X_test, Y_train, Y_test =

train_test_split(features_scaled,

target_scaled, test_size=0.2, ran-

dom_state=42)

Data transformation for LSTM

(time series generation if needed)

Adapt the code to create the

time series that suits your task

X_train = np.reshape(X_train,

(X_train.shape[0], 1,

X_train.shape[1]))

X_test = np.reshape(X_test,

(X_test.shape[0], 1,

X_test.shape[1]))

X_train and Y_train can now be

used to train an LSTM model

X_test and Y_test are used to

test the model

Defining an LSTM model

model = Sequential([

 LSTM(64, activation='relu',

input_shape=(10, 4), return_se-

quences=True),

 Dropout(0.2),

 LSTM(32, activation='relu',

return_sequences=False),

 Dropout(0.2),

 Dense(3)

])

Compilation of the model

model.compile(opti-

mizer=Adam(learning_rate=0.01),

loss='mean_squared_error')

Model architecture derivation

model.summary()

Model training

history = model.fit(X_train,

Y_train, epochs=50, batch_size=16,

validation_split=0.2)

Evaluation of the model on test

data

test_loss = model.evaluate(X_test,

Y_test)

Save the model

model.save('lstm_vrs_model.h5')

This code presents an approach to training an

LSTM model for a problem that can be analogous to op-

timizing the architecture of virtual distributed systems.

The performance of the trained LSTM model was

evaluated using a separate test dataset that did not partic-

ipate in the training process. This allows you to objec-

tively assess the model's ability to generalize learning to

new data, minimizing the impact of overtraining. Using

the evaluate function of the TensorFlow library, a quan-

titative indicator of model error was obtained, which in

this case was represented by the mean squared error

(MSE) [9].

The analysis of LSTM model training and valida-

tion results in the context of virtual distributed systems

includes several key aspects that are discussed in detail

to evaluate the performance and generalization ability of

the model:

Visualization of training history: The changes in

loss values and accuracy metrics for the training and val-

idation data were plotted over epochs. This helps detect

overtraining or undertraining of the model.

import matplotlib.pyplot as plt

Construction of a schedule of

losses

Сreate a new window for graphs

plt.figure(figsize=(12, 6))

is used to plot several graphs in

one window

plt.subplot(1, 2, 1)

plt.plot(history.history['loss'],

label='Train Loss')

plt.plot(history.his-

tory['val_loss'], label='Validation

Loss')

plt.title('Model Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

If the story also contains an

accuracy metric, you can add a graph

for it

if 'accuracy' in history.history:

 plt.subplot(1, 2, 2)

plt.plot(history.history['accura-

cy'], label='Train Accuracy')

plt.plot(history.history['val_ac-

curacy'], label='Validation Accura-

cy')

 plt.title('Model Accuracy')

 plt.xlabel('Epochs')

 plt.ylabel('Accuracy')

 plt.legend()

plt.tight_layout()

plt.show()

Figure 2 presents a visualization of the neural net-

work training process, where the changes in the amount

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
34

Fig. 2. Training and validation results

of losses (loss) for the training and validation datasets

during 50 epochs are displayed.

An epoch is one complete pass of the training data

through the neural network, and it is used to update the

model weights. During each epoch, the training algo-

rithm presents the model's training data in a specific or-

der, making predictions and adjusting weights based on

the prediction errors.

Complete data pass. An epoch covers a complete

pass through all training data. This means that each sam-

ple in the training dataset was presented to the model

once per epoch.

Weight update. After each epoch, the model updates

its weights to reduce forecasting errors. The weight up-

date depends on the loss function and the optimization

algorithm.

Iterative process. The model is trained iteratively,

where each epoch attempts to improve the model's pre-

dictive ability by reducing the discrepancy between the

actual and predicted values.

Progress monitoring. In the graph, each point on the

X-axis, representing an epoch, represents the state of the

model after full pass of the training data. This allows us

to evaluate how the model’s performance changes with

each epoch [10,11].

On the graph, the length of the X-axis (number of

epochs) allows us to visually assess how quickly the

model learns and when signs of stabilization or overtrain-

ing begin to appear; this can be seen from how the loss

values (on the Y-axis) change over time (epochs).

The horizontal axis (X-axis) shows training epochs

from 1 to 50. The vertical axis (Y-axis) shows the loss

values, which indicate how large the difference is be-

tween the model's predictions and the actual data.

Here, the blue line represents loss on the training

dataset. It demonstrates how over time the model learns

better and better on the training dataset; that is, the num-

ber of losses decreases.

The orange line represents the loss in the validation

set. It allows us to evaluate how well the model is able to

generalize learning to new data that was not used during

training.

The graph shows that both curves are decreasing,

which indicates the model's ability to reduce loss in both

training and validation data. However, by analyzing the

dynamics of the changes in the curves, it is possible to

detect whether retraining is taking place or whether the

model can stabilize losses on the validation dataset [12].

If validation losses start to increase while training

losses continue to decrease, this may indicate overtrain-

ing of the model. Ideally, both curves should show de-

creasing losses, while the validation losses should main-

tain a steady or very slow decreasing trend, indicating

good generalizability of the model.

4. Discussion and recommendations

After conducting the experiment and creating an ar-

chitecture model to optimize resource management for

VDS, we can conclude that:

- the comprehensive approach to developing,

training, and evaluating LSTM models using TensorFlow

and Keras has demonstrated promising results, demon-

strating significant potential for these models in real-

world applications.

Intelligent information technologies

35

- the ability of the proposed LSTM model to han-

dle temporal dependencies in resource usage data effec-

tively is one of the most important findings of this re-

search.

- the model's robust predictive performance, as

indicated by a mean squared error (MSE) below the tar-

get threshold, underscores its ability to provide accurate

forecasting. Precision is vital for dynamically adjusting

resource allocations, ensuring optimal system perfor-

mance, and reducing operational costs.

- visualization of the training process provided

valuable insights into the model's behavior over time.

The use of early stopping and cross -validation was effec-

tive in mitigating overfitting, thereby enhancing the mod-

el's generalizability. This aspect is crucial when deploy-

ing a model in varied and unpredictable VDS environ-

ments.

- the practical applicability of LSTM models to

VDS management extends beyond theoretical develop-

ment. The implementation of these models can lead to

significant improvements in real-time monitoring and re-

source adjustment, which are essential for maintaining

efficiency in cloud computing environments. By accu-

rately predicting resource demands, these models facili-

tate better resource allocation, which leads to cost sav-

ings and enhanced system performance.

- the importance of data normalization and the in-

tegration of dropout regularization into the LSTM layers

are highlighted. These steps are critical to ensure the

model’s stability and performance, particularly in pre-

venting overfitting and ensuring that the model can be

generalized well to new data.

Based on the findings and insights gained from this

study, several recommendations can be made for future

research and practical implementations:

- future research should focus on improving the

ability of LSTM models to generalize across diverse and

unpredictable data patterns. This can be achieved by in-

tegrating additional machine learning techniques, such as

convolutional neural networks (CNNs) for spatial data

analysis, or attention mechanisms to better handle se-

quential data.

- the scalability of LSTM models in larger and

more varied VDS environments is essential. Testing

these models across different configurations and work-

loads helps ensure their robustness and adaptability,

providing valuable insights into practical deployment.

- exploring hybrid approaches that combine mul-

tiple machine learning algorithms, which could lead to

more resilient and adaptive resource management solu-

tions. For example, integrating reinforcement learning

techniques with LSTM models can enhance decision-

making processes in dynamic environments.

- implementing LSTM models in real-time VDS

management systems can yield immediate benefits. De-

veloping efficient data pipelines and integration frame-

works to handle continuous data inflows is crucial for

providing timely predictions and adjustments.

- the methodologies and findings can be extended

to other domains, such as network traffic management,

anomaly detection in cybersecurity, and predictive

maintenance in industrial systems. This demonstrates the

versatility and applicability of LSTM models in various

fields.

5. Conclusions

The primary contribution of this research is the de-

velopment and training of LSTM models to optimize re-

source management in VDS using TensorFlow and

Keras. This study presents a comprehensive methodol-

ogy that includes collecting and normalizing historical

resource usage data, designing the LSTM model archi-

tecture, training the model, and evaluating its perfor-

mance. The results demonstrate the significant potential

of LSTM models in effectively managing VDS by ana-

lyzing temporal dependencies and predicting optimal re-

source configurations. The trained model achieved a

mean squared error (MSE) below the target threshold, in-

dicating robust predictive performance. The visualization

of the training process revealed insights into overfitting

and underfitting, with strategies like early stopping and

cross-validation enhancing the model's generalizability .

This study highlights the practical applicability of LSTM

models, offering automated and optimized solutions for

complex IT infrastructures and laying the groundwork

for future improvements in handling diverse and unfore-

seen data patterns in VDS.

The experimental results confirm that LSTM mod-

els are effective for forecasting and optimizing virtual

distributed systems. The model demonstrated an ability

to effectively analyze time dependencies and identify op-

timal resource management strategies. The use of Ten-

sorFlow and Keras simplified the process of developing,

training, and validating an LSTM model. Keras’ h igh-

level APIs enabled rapid prototyping and testing of dif-

ferent architectures, while TensorFlow provided power-

ful tools for deep learning.

Analysis of the training and validation processes re-

vealed the importance of monitoring loss dynamics to

prevent overtraining. The use of early stopping and cross-

validation strategies helped to increase the generalizabil-

ity of the model.

This study demonstrated the practical applicability

of LSTM models to the resource management of virtual

distributed systems, thereby offering an automated and

optimized solution for managing complex IT infrastruc-

tures.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
36

Future work should focus on enhancing the gener-

alizability of LSTM models to handle diverse and unpre-

dictable data patterns. Integrating additional machine

learning techniques, such as convolutional neural net-

works (CNNs) for spatial data analysis or attention mech-

anisms to improve sequential data processing, could fur-

ther enhance resource management. Investigating the

scalability of these models in larger and more varied vir-

tual environments is also vital. In addition, exploring hy-

brid approaches that combine multiple machine learning

algorithms could lead to more robust and adaptive re-

source management solutions in VDS.

Contributions of authors: conceptualization,

methodology – Telezhenko Denys; formulation of tasks,

analysis – Telezhenko Denys, Tolstoluzka Olena; de-

velopment of model, software - Telezhenko Denys , ver-

ification – Tolstoluzka Olena; analysis of results, visu-

alization – Telezhenko Denys; writing – original draft

preparation, writing – review and editing – Telezhenko

Denys, Tolstoluzka Olena.

Conflict of Interest
The authors declare that they have no conflict of in-

terest concerning this research, whether financial, per-

sonal, authorship, or otherwise, that could affect the re-

search and its results presented in this paper.

Financing
This study was conducted without financial sup-

port.

Use of Artificial Intelligence

The authors have used artificial intelligence tech-

nologies within acceptable limits to provide their own

verified data, as described in the research methodology

section.

Data Availability

The work has associated data in the data repository.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Dogacan Yilmaz, İ., & Esra Büyüktahtakın.

Learning Optimal Solutions via an LSTM-Optimizat ion

Framework. Machine Learning (cs.LG); Optimization

and Control (math.OC) , 2022. DOI:

10.48550/arXiv.2207.02937.

2. Zhu, Y., Zhang, W., Chen, Y., & Honghao, Gao.

A novel approach to workload prediction using attention-

based LSTM encoder-decoder network in cloud environ-

ment. Journal of Wireless Communication and Network-

ing, article no. 274, 2019. DOI: 10.1186/s13638-019-

1605-z.

3. Iordan, A.-E. An Optimized LSTM Neural Net-

work for Accurate Estimation of Software Development

Effort. Mathematics, 2024, vol. 12, article no. 200. DOI:

10.3390/math12020200.

4. Mulás-Tejeda, E., Gómez-Espinosa, A., Es-

cobedo Cabello, J.A., Cantoral-Ceballos, J.A., & Molina-

Leal, A. Implementation of a Long Short-Term Memory

Neural Network-Based Algorithm for Dynamic Obstacle

Avoidance. Sensors, 2024, vol. 24, article no. 3004. DOI:

10.3390/s24103004.

5. Botunac, I., Bosna, J., & Matetić, M. Optimiza-

tion of Traditional Stock Market Strategies Using the

LSTM Hybrid Approach. Information, 2024, vol. 15, ar-

ticle no. 136. DOI: 10.3390/info15030136.

6. Jouini, O., Sethom, K., Namoun, A., Aljohani,

N., Alanazi, M. H., & Alanazi, M. N. A Survey of Ma-

chine Learning in Edge Computing: Techniques, Frame-

works, Applications, Issues, and Research Directions.

Technologies, 2024, vol. 12, article no. 81. DOI:

10.3390/technologies12060081.

7. Yanli Xing. Work Scheduling in Cloud Net-

work Based on Deep Q-LSTM Models for Efficient Re-

source Utilization. Journal of Grid Computing , 2024,

vol. 22, article no. 36. DOI: 10.1007/s10723-024-09746-

6.

8. Zheng, T., Wan, J., Zhang, J., & Jiang, K. Deep

Reinforcement Learning-Based Workload Scheduling

for Edge Computing. Journal of Cloud Computing, 2022,

vol. 11, article no. 3. DOI: 10.1186/s13677-021-00276-

0.

9. Ashawa, M., Douglas, O., Osamor, J., & Jackie

R. Retraction Note: Improving cloud efficiency through

optimized resource allocation technique for load balanc-

ing using LSTM machine learning algorithm. Journal of

Cloud Computing, 2023, vol. 11, article no. 87. DOI:

10.1186/s13677-022-00362-x.

10. Sayed, S.A., Abdel-Hamid, Y., & Hefny, H.A.

Artificial intelligence-based traffic flow prediction: a

comprehensive review. Journal of Electrical Systems and

Information Technology, 2023, vol. 10, article no. 13.

DOI: 10.1186/s43067-023-00081-6.

11. Abadi, M., Barham, P., Chen, J., Chen, Z., Da-

vis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kuldur, M., Levenberg, J., Monga, R., Moore,

Sh., Murray, D. G., Steiner, B., Tucker, P., Vasudevan,

V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. Tensor-

Flow: A System for Large-Scale Machine Learning. Dis-

tributed, Parallel, and Cluster Computing, 2016. DOI:

10.48550/arXiv.1605.08695.

12. Chawla, N. V., Bowyer, K. W., Hall, L. O., &

Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence

Research, 2002, no. 16, pp. 321-357. DOI:

10.1613/jair.953.

Received 10.06.2024, Accepted 20.08.2024

https://doi.org/10.48550/arXiv.2207.02937
https://doi.org/10.48550/arXiv.2207.02937
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.3390/math12020200
https://doi.org/10.3390/s24103004
https://doi.org/10.3390/info15030136
https://doi.org/10.3390/technologies12060081
https://doi.org/10.1007/s10723-024-09746-6
https://doi.org/10.1007/s10723-024-09746-6
https://doi.org/10.1186/s13677-021-00276-0
https://doi.org/10.1186/s13677-021-00276-0
https://doi.org/10.1186/s13677-022-00362-x
https://doi.org/10.1186/s43067-023-00081-6
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.1613/jair.953

Intelligent information technologies

37

РОЗРОБКА ТА ТРЕНУВАННЯ LSTM МОДЕЛІ

ДЛЯ УПРАВЛІННЯ ВІРТУАЛЬНИМИ РОЗПОДІЛЕНИМИ СИСТЕМАМИ

З ВИКОРИСТАННЯМ TENSORFLOW І KERAS

О. Г. Толстолузька, Д. О. Тележенко

Предметом статті є оптимізація управління ресурсами у віртуальних розподілених системах (ВРС) за

допомогою алгоритмів машинного навчання, зокрема алгоритму Long Short -Term Memory (LSTM). Метою є

розробка ефективної моделі для управління ВРС за сучасними техніками машинного навчання. Завдання

включають збір та нормалізацію історичних даних про використання ресурсів, проектування архітектури мо-

делі LSTM, навчання моделі з використанням TensorFlow та Keras, оцінку продуктивності моделі та її здат-

ності до узагальнення, а також аналіз результатів навчання та валідації для розробки стратегій зменшення

перенавчання. Методами є проектування моделі LSTM для захоплення тимчасових залежностей та послідо-

вних шаблонів у даних використання ресурсів, зокрема вхідних шарів, кількох шарів LSTM з регуляризацією

dropout, густих шарів та вихідного шару. Нормалізований набір даних був розділений на тренувальні та тес-

тові набори, а модель була скомпільована з використанням оптимізатора Adam зі швидкістю навчання 0.01 та

середньоквадратичної помилки (MSE) як функції втрат. Модель була навчена протягом 50 епох з ранньою

зупинкою та крос-валідацією для запобігання перенавчанню, а її продуктивність оцінювалася за допо могою

MSE на тестовому наборі. Результати вказують на те, що модель LSTM продемонструвала значний потенціал

в управлінні ВРС шляхом ефективного аналізу та прогнозування оптимальних конфігурацій ресурсів, з мет-

риками оцінки, що свідчать про хорошу прогнозну продуктивність. Візуалізація процесу навчання показала,

як значення втрат моделі змінювалися протягом епох, допомагаючи виявити перенавчання або недонавчання .

Висновки підтверджують, що моделі LSTM ефективні для прогнозування та оптимізації ВРС, з TensorFlow

та Keras, що спрощують процеси розробки, навчання та валідації. Моніторинг динаміки втрат під час навчання

є важливим для запобігання перенавчанню, а стратегії, такі як рання зупинка та крос-валідація, підвищують

здатність моделі до узагальнення. Практична застосовність моделей LSTM в управлінні ресурсами пропонує

автоматизовані та оптимізовані рішення для управління складними ІТ-інфраструктурами.

Ключові слова: віртуальні розподілені системи; управління ресурсами; мережі LSTM; машинне нав-

чання; TensorFlow; Keras; нормалізація даних; навчання моделі; перенавчання; прогнозні моделі.

Толстолузька Олена Геннадіївна – д-р техн. наук, старш. наук. співроб., проф. каф. теоретичної та

прикладної системотехніки, Харківський національний університет імені В. Н. Каразіна, Харків, Україна.

Тележенко Денис Олександрович – асп. каф. теоретичної та прикладної системотехніки, Харківський

національний університет імені В.Н. Каразіна, Харків, Україна.

Olena Tolstoluzka – Doctor of Engineering Sciences, Professor at the Theoretical and Applied Systems

Engineering Department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,

е-mail: elena.tolstoluzka@karazin.ua, ORCID: 0000-0003-1241-7906.

Denys Telezhenko – PhD Student of the Theoretical and Applied Systems Engineering Department,

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,

e-mail: denisque75@gmail.com, ORCID: 0000-0002-8377-8517.

