Intelligent information technologies

27

UDC 004.94

doi: 10.32620/reks.2024.3.02

Olena TOLSTOLUZKA, Denys TELEZHENKO

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

DEVELOPMENT AND TRAINING OF LSTM MODELS FOR CONTROL
OF VIRTUAL DISTRIBUTED SYSTEMS USING TENSORFLOW AND KERAS

The subject of this paper is the optimization of resource management in virtual distributed systems (VDS) via
the application of machine learning algorithms, specifically Long Short-Term Memory (LSTM) networks. The
aim is to develop an effective model for managing VDS using contemporary machine-learning techniques. Ob-
jectivesare as follows: 1) to describe the problem of resource management challengesin VDS and the architec-
ture of LSTM network.; 2) to collect and normalize historical data on resource usage, such as CPU, memory,
disk,and network usage; 3) to develop a detailed architecture for the LSTM model, including input layers, mul-
tiple LSTM layers with dropout regularization, dense layers, and an output layer; 3) to train the LSTM model
using TensorFlow and Keras, ensuring the training process includes at least 50 epochs, early stopping, and
cross-validation techniques; 4) to evaluate the performance of the trained LSTM model using a test set, with
MSE as the primary metric; 5) to conduct a thorough analysis ofthe training and validationoutcomes, including
the visualization of loss values over epochs. Methods involve designing an LSTM model to capture temporal
dependenciesand sequential patternsin resource usage data, including input layers, multiple LSTM layers with
dropout regularization, dense layers, and an output layer. The normalized dataset was split into training and
test sets, and the model was compiled using the Adam optimizer with a learning rate of 0.01 and mean squared
error (MSE) as the loss function. The model was trained for 50 epochswith early stopping and cross-validation
to prevent overfitting, and its performance was evaluated using MSE on a test set. The following results were
obtained: 1) the historical data on resource usage, including CPU, memory, disk, and network usage; 2) the
LSTM model demonstrated significant potential in managing VDS by efficiently analyzing and predicting opti-
mal resource configurations; 2) visualization of the training process and revelations on how the model's loss
values changed over epochs; 3) A comprehensive LSTM model architecture, including input layers, multiple
LSTM layers with dropout regularization, dense layers, and an output layer. Conclusions. The primary contri-
bution of this research is the development and training of LSTM models to optimize resource management in
VDS using TensorFlow and Keras. This study presents a comprehensive methodology that includes collecting
and normalizing historical resource usage data, designing the LSTM model architecture, training the model,
and evaluating its performance. The results demonstrate the significant potential of LSTM models in effectively
managing VDS by analyzing temporal dependencies and predicting optimal resource configurations. Specifi-
cally, the trained model achieved a mean squared error (MSE) below the target threshold, indicating robust
predictive performance. The visualization ofthe training process revealed insights into overfitting and underfit-
ting, with strategies like early stopping and cross-validation enhancing the model's generalizability. This study
highlightsthe practical applicability of LSTM models, offering automated and optimized solutionsfor complex
IT infrastructures, and laying the groundwork for future improvements in handling diverse and unforeseen data
patternsin VDS.

Keywords: virtual distributed systems (VDS); resource optimization; LSTM (Long Short-Term Memory); Ten-
sorFlow; Keras; machine learning, neural networks.

these resources to minimize costs while
Maximizing productivity; therefore, the use of LSTM

1. Introduction

1.1. Motivation

Effective resource management in virtual distrib-
uted systems (VDS) is becoming increasingly critical in
today's rapidly evolving technological landscape. VDS
offers flexibility, scalability, and efficient resource utili-
zation, which are essential for developing cloud compu-
ting, big data, and other modern IT infrastructures. The
challenge lies in ensuring optimal allocation and use of

systems can solve this problem for the following reasons:
Reducing operational costs. The surge in technolog-
ical advancements necessitates robust management strat-
egies for VDS, which are pivotal for supporting the ex-
pansive growth of cloud services and big data analytics.
Inefficient resource management in VDS can lead to in-
creased operational costs and reduced performance, un-
dermining the potential benefits of such systems.

Creative Commons_Attribution
NonCommercial 4.0 International

https://creativecommons.org/licenses/by-nc/4.0/deed.uk
https://creativecommons.org/licenses/by-nc/4.0/deed.uk

28

Radioelectronic and Computer Systems, 2024, no. 3(111)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Enhancing resource allocation. Long Short-Term
Memory (LSTM) network can learn from sequential data
and remember long-term dependencies, making them
particularly suitable for predicting and optimizing re-
source allocation. Unlike traditional management ap-
proaches, LSTM systems can adapt to changing work-
loads and forecast future resource demands, ensuring
more efficient and dynamic management.

The ability to predict and adjust. These systems are
capable of real-time monitoring and adjustment, which is
crucial for maintaining optimal resource utilization. Prac-
tical applications include enhanced performance in cloud
computing environments, where LSTM networks can
predict resource needs and allocate them accordingly,
and improved efficiency in handling large-scale data pro-
cessing tasks by anticipating workload fluctuations.

Providing sustainable solution. Optimizing re-
source management using LSTM systems not only re-
duces operational costs but also boosts overall productiv-
ity. This efficiency translates into significant economic
benefits, as businesses can reinvest saved resources into
further innovation and development. Moreover, the use
of LSTM systems promotes a more sustainable IT eco-
systemby minimizing energy consumption and resource
wastage through precise predictions and timely adjust-
ments.

The pressing need for efficient VDS resource man-
agement underscores the relevance of LSTM systems. By
leveraging advanced LSTM algorithms, we address cur-
rent challenges and pave the way for more robust, cost-
effective, and sustainable IT infrastructures. Our research
is crucial for the continued growth and efficiency of
cloud computing and big data industries, ensuring that
they can meet future demands with optimal resource
management.

1.2. State ofthe Art

Previous studies have demonstrated the significant
potential of LSTM in addressing resource management
issues across various systems. For example, the work of
Yilmaz and Biiyiiktahtakin (2022) highlighted the effec-
tiveness of LSTM in optimizing solutions [1]. Similarly,
Zhu et al. (2019) employed LSTM for workload predic-
tionin cloud environments, and they demonstrated its ap-
plicability to VDS [2]. Despite these advancements, chal-
lenges such as overfitting and the enhancement of the
model’s ability to generalize to new dataremain and war-
rant further investigation.

The architecture of LSTM networks has evolved to
address specific challenges in distributed systems. For in-
stance, hybrid models combining LSTM with other neu-
ral network structures, such as Transformer models, have
been developed to improve prediction accuracy and com-

putational efficiency. These advanced architectures ena-
ble real-time multitask learning and are particularly ef-
fective in environments with high variability and com-
plexity.

The authors of [3] compared six machine learning
methods to accurately estimate software development ef-
fort, among which long short-term memory was consid-
ered. According to a previous study [3], the performance
of LSTM networks is highly dependent on various hy-
perparameters, including the number of hidden layer
nodes, the duration of training (epochs), the initial learn-
ing rate, momentum, and the dropout rate, which signifi-
cantly increase software effort estimation performance.

The paper [4] presented a method for dynamic ob-
stacle avoidance using an LSTM neural network imple-
mented on a TurtleBot3 robot equipped with a LIDAR
sensor. The robot navigates through various scenarios
with static and dynamic obstacles, collecting data on its
position, velocity, and LIDAR readings. This data is used
to train the LSTM network and predict the robot's trajec-
tory. The physical experiments showed that the model
successfully avoided obstacles and reached its target with
a validation accuracy of 98.02%. The results ofthis study
highlight the effectiveness of LSTM networks in real-
time dynamic obstacle avoidance, paving the way for
more advanced applications in autonomous navigation.

The article [5] explored the enhancement of tradi-
tional stockmarket trading strategies through the integra-
tion of LSTM neural networks. Traditional strategies of-
ten rely on analyzing historical-closing prices and tech-
nical indicators to make trading decisions. By incorporat-
ing LSTM models, this study predicts closing prices
more accurately and improve the performance of these
strategies. The results demonstrate that hybrid strategies,
which combine traditional methods with LSTM models,
outperform traditional strategies in terms of prediction
accuracy and trading profitability. The findings empha-
size the potential of LSTM models to offer significant ad-
vantages in market prediction and decision-making, sug-
gesting that traders should tailor their strategies based on
thorough testing and analysis to suit varying market con-
ditions.

The paper [6] provided a comprehensive overview
of the integration of machine learning (ML) with edge
computing, focusing on techniques, frameworks, appli-
cations, issues, and future research directions. The au-
thors highlight the significant growth of Internet of
Things (loT) devices, which generate vast amounts of
dataand often operate with limited resources. Traditional
cloud-based data processing is becoming inefficient due
to high latency, bandwidth saturation, and privacy con-
cerns. Edge computing, where data are processed closer
to their source, addresses these issues by reducing la-
tency, preserving privacy, and saving bandwidth. This
paper discusses various 10T devices and Al frameworks,

Intelligent information technologies

29

such as TensorFlow Lite, OpenEl, and Core ML, that
support ML tasks on edge devices. The study also exam-
ines challenges in deploying ML on resource-constrained
devices, including data encryptionto realize privacy, ef-
ficient resource management, and energy limitations.
The study concludes by identifying key research direc-
tions for optimizing ML in edge computing environ-
ments.

As described in the study of Yanli Xing [7], ahybrid
model combining LSTM networks and Deep Q-learning
(DQL) to optimize work scheduling in cloud networks.
The model leverages LSTM for workload prediction and
DQL for decision-making, thereby enhancing resource
utilization and task completion rates. LSTM captures
temporal dependencies, and DQL optimizes scheduling
decisions based on areward system. Trained on historical
data, the model significantly improves task completion
and resource efficiency. The comparative analysis
demonstrated that it outperformed standalone LSTM and
traditional algorithms, emphasizing the potential of com-
bining predictive and reinforcement learning techniques
for complex resource management tasks. The results also
highlight the model's robustness in handling diverse and
fluctuating workloads, which makes it adaptable to vari-
ous operational scenarios. This hybrid approach applies
e to virtual distributed systems (VDS) and provides a ba-
sis for integrating advanced machine learning methods to
enhance VDS management. In the future, we plan to ex-
plore additional machine learning integration for further
improvements. This analysis supports the relevance and
effectiveness of LSTM-DQL models in optimizing re-
source management in VDS. This analysis supports the
relevance and effectiveness of LSTM-DQL models in
optimizing resource management in VDS, paving the
way for more sophisticated and automated solutions in
this field.

Theanalyzed articles provide a robust foundation to
leverage LSTM models in VDS. They offer insights into
optimizing resource management, fine-tuning model hy-
perparameters, real-time dynamic applications, enhanc-
ing decision-making processes, and integrating edge
computing to realize improved efficiency and security.
These findings support the development of advanced
LSTM-based solutions to effectively control and opti-
mize virtual distributed systems.

1.3. Objective and Approach

This paper is aimed at applying machine learning
algorithms, particularly LSTM, to optimize the architec-
ture of VRS. LSTMs are a type of recurrent neural net-
works (RNNs) that can detect dependencies in time series
data and efficiently process sequential data, making them
ideal for predicting the behavior of complex systens
suchas VRS. It is necessary to develop amodel based on

LSTM algorithm to make VDS work more efficiently.
This study applied LSTM networks to optimize VDS by
reducing operational costs, enhancing resource alloca-
tion, and providing real-time prediction and adjustment
capabilities. Specifically, the objectives are to describe
the problem of resource management in VDS, review ex-
isting solutions, and define research objectives and meth-
odology; develop methods and algorithms for efficient
resource allocation, formulating quantitative metrics for
performance optimization; create and train LSTM mod-
els using collected datawith a target mean squared error
(MSE) of less than 0.05; and present performance results,
including MSE and training/validation loss visualiza-
tions, aiming to reduce overfitting by at least 15%. The
model development process involves designing LSTM
architecture to capture temporal dependencies using in-
put layers, multiple LSTM layers with dropout regulari-
zation, dense layers, and an output layer. The data prep-
aration phase involves collecting and normalizing com-
prehensive historical resource usage data, ensuring ho-
mogeneity with MinMaxScaler, and splitting the dataset
into training and test sets. Model training included com-
piling the model using the Adam optimizer with a learn-
ing rate of 0.01 and training for 50 epochs with early
stopping and cross-validation to prevent overfitting. Ad-
ditionally, the study aims to discuss results, develop rec-
ommendations fora 10% improvement in systemperfor-
mance, and summarize findings to identify future re-
search directions for further enhancing resource manage-
ment by 5-10%. Ultimately, this study aims to demon-
strate the practical applicability of LSTM models in
providing automated and optimized solutions for manag-
ing complex IT infrastructures, thereby contributing to a
more sustainable and efficient IT ecosystem.

The main objectives and stages of this research are
as follows:

- stage 1. The problem of resource management
in VDS is described by reviewing existing solutions and
defining the research objectives and methodology (Sec-
tion 1).

- stage2. Developing a method and algorithms to
solve the problem of resource management in VDS con-
sidering the requirements, assumptions, and practical
limitations (Section 2).

- stage 3. Bxploring the LSTM model by devel-
oping and training it using the collected data, and evalu-
ating its performance (Section 3). Model training pro-
cess, which describes the training process, including data
splitting, model compilation, training parameters, and
evaluation metrics to ensure robustness and accuracy
(Section 3.1). Performance Evaluation and Visualization.
The results, including performance metrics such as MSE
on the testset, and the visualizations of training and val-
idation loss values over epochs are presented to identify

30

Radioelectronic and Computer Systems, 2024, no. 3(111)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

and address issues of overfitting or underfitting (Section
3.2).

- stage4. Discuss theresults and develop recom-
mendations based on the findings (Section 4). This in-
cludes qualitative insights and observed quantitative im-
provements.

- stage 5. Summarizing the results obtained and
describing further research steps and development direc-
tions (Section 5). The summary highlights the key quan-
titative achievements and qualitative insights for future
work.

2. Materials and methods of research

Data Collection and Normalization were used to de-
velop an effective LSTM model for managing VDS, and
comprehensive historical data on resource usage were
collected. These data included parameters such as CPU,
memory, disk, network, hardware specifications, hyper-
visor settings, virtual machine configurations, and man-
agement strategies. Data were sourced from systemlogs
and monitoring tools in the VDS environment.

Normalization ensures data homogeneity, which is
critical for efficient LSTM model training. All values
were scaled to fall within a specific range, typically be-
tween 0 and 1. The MinMaxScaler model from the sci-
kit-learn library facilitated better convergence during
model training by standardizing the dataset.

The LSTM model was designed to capture temporal
dependencies and sequential patterns in resource usage
data. The architecture included:

1. Input layer: configured to receive normalized
and reshaped data.

2. LSTM layers: multiple LSTM layers with drop-
out regularization were used to process sequential data
and learn dependencies overtime to prevent overfitting.

3. Denselayers: The output from the LSTM layers
was processed and prepared for final prediction.

4. Output layer: This layer provides the final pre-
diction of resource usage or system behavior.

The model training process was designed to ensure
robustness and accuracy:

1. Data Splitting. The normalized datasetwas split
into training and test sets using an 80/20 ratio. The train-
ing set was further divided into training and validation
subsets for performance monitoring.

2. Model Compilation. The model was compiled
using the Adam optimizer with alearning rate of 0.01 and
MSE as the loss function.

3. Training. The model was trained for 50 epochs
with a batchsize of 16. Early stoppingand cross-valida-
tion strategies were employed to prevent overfitting and
improve the generalizability.

4. Evaluation. The model's performance was eval-
uated on the test set, which was not used during training.

The mean squared error provides a quantitative measure
of prediction accuracy.

The training process was visualized by plotting the
training and validation loss values over epochs. This
helped identify potential overfitting or underfitting issues
and allowed adjustments to the model architecture and
training parameters.

These research methods are structured for replica-
tion, enabling other researchers to follow the same steps
to achieve similar results. Key aspects, such as data nor-
malization, model architecture design, training parame-
ters,and evaluation metrics, are detailed for transparency
and reproducibility. The proposed Python code, imple-
mented using TensorFlow and Keras, serves as a practi-
cal guide for replicating the study and verifying the find-
ings.

3. Researchon algorithms
3.1. Model description

Optimizing server load management is crucial for
maintaining optimal performance and resource use. Ad-
vanced predictive models play a significant role in
achieving these goals by analyzing historical data and
forecasting future demand. To handle these complex
tasks, various components are integrated to form a com-
prehensive architecture designed to handle these com-
plex tasks.

Figure 1 shows the architecture for predicting server
load in virtual distributed systems, presenting a unigque
method of server load forecasting in VDS.

Here, we considerthe purpose ofthe different com-
ponents of the architecture for servers in virtual distrib-
uted systems:

Symbol 1 (Fig. 1) contains the input dataset, which
contains information aboutthe load on the servers of vir-
tual distributed systems (time, hardware data, load, tem-
perature, etc.).

Symbol 2 (Fig. 1), the process normalizes or scales
the datain such a way thatall values fall within a certain
range (usually from 0 to 1). This facilitates model train-
ing because scaled data usually contribute to better con-
vergence.

Symbol 3 (Fig. 1), SMOTE (Synthetic Minority
Over-sampling Technique): this method is used to com-
bat class imbalance in the dataset. It creates synthetic ex-
amples of the minority class to balance the number of ex-
amples between classes and prevents model bias toward
the dominant class.

Symbol 4 (Fig. 1), transformation, where data are
reshaped for feeding into LSTM layers. LSTM networks
require input data in the form of a three-dimensional ar-
ray (usually [samples, time steps, and features]); thus, the
data must be reformatted accordingly.

Intelligent information technologies

31

Symbol 5 (Fig. 1), training set (Train Dataset) is the
portion of data used to train the model. The model goes
through LSTM layers to learn dependencies over time
and identify patterns.

Symbol 6 (Fig. 1), denotes the LSTM model.

Symbol 7 (Fig. 1) denotes the forget gatein LSTM,
which decides which information from the previous state
should be discarded.

Symbol 8 (Fig. 1) denotes the input modulation gate
of LSTM, which regulates the contribution of new infor-
mation to the cell state.

Symbol 9 (Fig. 1) denotes the input gate in LSTM,
which controls which information is added to the cell
state.

Symbol 10 (Fig. 1), denotes the cell statein LSTM,
which stores information throughout the training period.

Symbol 11 (Fig. 1) denotes the output gate of
LSTM, which determines which information is transmit-
ted to the output from the cell state.

Symbol 12 (Fig. 1) denotes the dropout layer, which
prevents overfitting by randomly disabling some neurons
during training.

Symbol 13 (Fig. 1) denotes the flattening layer,
which transforms the output data from LSTM layers into
a one-dimensional array for further processing.

Symbol 14 (Fig. 1) denotes thedense layer for fur-
ther processing of the information before it is passed to
the output layer.

Symbol 15 (Fig. 1) represents the layer used to out-
putthe final prediction or classification result.

Normalized
MinMax data

Input
Dataset

The serverload forecasting architecture in VDS was
created to address the challenge of efficiently managing
resources in complex IT infrastructures. VDSs are
essential for cloud computing and big data applications;
thus, ensuring optimal resource allocation and use is
crucial for minimizing costs and maximizing
productivity. The proposed architecture architecture
leverages LSTM models to predict server load based on
historical data, which realizes proactive resource
management.

Let’s discuss in detail the process of server load
forecasting in Virtual Distributed Systems. The dataset
named “VDS_data” was collected to provide comprehen-
sive historical data on resource usage in the VDS. These
datainclude crucial metrics, suchas CPU, memory, disk,
and network usage, which are essential for understanding
resource demands and patterns overtime.

The collected data is then normalized using Min-
Max Scaling. This step transforms all feature valuesto a
specific range between 0 and 1.

After normalization, SMOTE is applied to balance
the dataset by oversampling the minority class. SMOTE
helps address class imbalance issues by generating syn-
thetic samples for the minority class, which improves the
model's ability to learn and predict the minority class ef-
fectively. This is crucial in VDS scenarios where certain
resource usage patterns are underrepresented, which
leads to biased predictions.

The normalized data are input to the input layer of
the LSTM model. The input layer is designed to receive
normalized dataand prepare it for subsequentprocessing.

Scaling

Combating
imbalance

Transformation

Data in the form

of a
three-dimensiona
array

i Input signal

Dataset
“Train”

Prediction

LSTM.

Optimized Data

Preventing
overfilting

Dropout layer 12

Flatten Layer 43

.: A
s J Output Layer 15

Full
integration

[~ oemetmer

result

Transformation inta
a one-dimensional
amay

Fig. 1. Architecture for server load forecasting in Virtual Distributed Systems

32

Radioelectronic and Computer Systems, 2024, no. 3(111)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

The data first passes through an LSTM layer designed to
capture temporal dependencies in sequential data. LSTM
layers are specifically designed to handle sequential data
and can retain information over long periods; thus, they
are ideal for time series forecasting. This capability is
particularly beneficial for VDS, where resource usage
patterns can be highly temporal.

Dropout regularization is applied within the LSTM
layers to prevent overfitting by randomly disabling a
fraction of neurons during training. Dropout helps gener-
alize the model by ensuring that it does not become
overly reliant on specific neurons, thereby improving its
performance onunseen data.

The data were processed through additional LSTM
layers to further capture and refine the temporal pattems
in the dataset. The Multiple LSTM layers allow the
model to learn more complex patterns and dependencies,
which enhances its predictive ability.

After the LSTM layers, the data is fed into dense
layers for further processing and refinement. Dense lay-
ers help transform the output from the LSTM layers into
a suitable form for making final predictions. They apply
non-linear transformations that capture intricate relation-
ships in the data, which are crucial for accurate resource
usage forecasting in VDS.

The final processed data are passed to the output
layer, which generates a forecast of server load. The
output layer provides predicted values for future resource
usage, which are critical for planning and optimizing
resource allocation in the VDS. Accurate predictions
help in preemptively adjusting resource allocations to
meet demand and ensure efficiency and cost-
effectiveness.

The normalized dataset was split into training and
testing sets. Splitting the data ensures that the model can
be trained on one portion of the data and tested on an-
other, which provides a measure of the model’s perfor-
mance and ability to generalize to new data.

The trained model's performance was evaluated on
the test setusing MSE as the primary metric. Evaluating
the model on a separate test set provides an unbiased
measure of its predictive performance, ensuring that it
can generalize well to new, unseen data.

3.2. Experiment

Using the TensorFlow and Keras libraries, an
LSTM model was developed thatis capable of analyzing
and predicting optimal HRS configurations based on his-
torical resource usage data. TensorFlow provides a pow-
erful deep learning environment with various tools for
developing, training, and validating models, while Keras
simplifies the implementation process with its high-level
API.

This paper describes the development process of the
LSTM model, including data preparation and processing,
model architecture, training, and performance evaluation
methods. The obtained results were also analyzed, poten-
tial problems such as overtraining were identified, and
strategies for their elimination were discussed.

The aim of this work is not only to develop an ef-
fective model for the management of VRS but also to
demonstrate the capabilities of modern machine learning
technologies in solving practical problems in the field of
information technology.

To implement the process of training an LSTM
model in Python, which optimizes the architecture of vir-
tual distributed systems, we use the TensorFlow library
and Keras to simplify the process of developing and
training a neural network. Below is a code example that
demonstrates the key steps in the training process: data
preparation, building the LSTM model, setting up the
training process, and training the model itself [7].

The initial training stage involves collecting and
preparing input data that reflect the state and configura-
tion of the VRS. The data cover several parameters, in-
cluding hardware specifications, hypervisorsettings, vir-
tual machine configurations, and management strategies.
A key aspect of training is the normalization of data to
ensure theirhomogeneity, which helps increase the effec-
tiveness of the training [8].

import numpy as np

import tensorflow as tf

import pandas as pd

from tensorflow.keras.models im-
port Sequential

from tensorflow.keras.layers im-
port LSTM, Dense,

from tensorflow.keras.optimizers

Dropout

import Adam

from sklearn.model selection im-
port train test split

from sklearn.preprocessing import
MinMaxScaler

Downloading system data from a
CSV file

data = pd.read csv('vds data.csv')

The data have features and a
target variable to predict
data[['cpu usage',
'disc _usage', 'net-

features =
'memory usage',
work usage']]

target =
ty']

Data normalization for effective

data['system prodactivi-

LSTM training
scaler = MinMaxScaler /()

Intelligent information technologies

33

features scaled =
scaler.fit transform(features)

target scaled = scaler.fit trans-
form(target.values.reshape (-1, 1))

Separation of data into training
and test sets

X train, X test, Y train, Y test =
train test split(features scaled,
target scaled, test size=0.2, ran-
dom state=42)

Data transformation for LSTM
(time series generation if needed)

Adapt the code to create the
time series that suits your task

X train = np.reshape (X train,
(X train.shape[0], 1,
X train.shape(1]))

X test = np.reshape (X test,
(X test.shape[0], 1,
X test.shape([1]))

X train and Y train can now be
used to train an LSTM model

X test and Y test are used to
test the model

Defining an LSTM model

model = Sequential ([

LSTM (64,

input shape=(10, 4),

activation='relu',
return se-
quences=True),
Dropout (0.2),
LSTM (32,
return sequences=False),
Dropout (0.2),
Dense (3)

activation='relu',

1)

Compilation of the model

model.compile (opti-
mizer=Adam(learning rate=0.01),
loss='mean squared error')

Model architecture derivation

model.summary ()

Model training

history = model.fit (X train,
Y train, epochs=50, batch size=16,
validation split=0.2)

Evaluation of the model on test
data

test loss = model.evaluate (X test,
Y test)

Save the model

model.save ('lstm vrs model.h5")

This code presents an approach to training an
LSTM model for a problem that can be analogous to op-
timizing thearchitecture of virtual distributed systems.

The performance of the trained LSTM model was
evaluated using a separate test dataset that did not partic-
ipate in the training process. This allows you to objec-
tively assess the model's ability to generalize learning to
new data, minimizing the impact of overtraining. Using
the evaluate function of the TensorFlow library, a quan-
titative indicator of model error was obtained, which in
this case was represented by the mean squared error
(MSE) [9].

The analysis of LSTM model training and valida-
tion results in the context of virtual distributed systens
includes several key aspects that are discussed in detail
to evaluate the performance and generalization ability of
the model:

Visualization of training history: The changes in
loss values and accuracy metrics for the training and val-
idation data were plotted over epochs. This helps detect
overtraining or undertraining of the model.

import matplotlib.pyplot as plt

Construction of a schedule of
losses

Create a new window for graphs

plt.figure(figsize=(12, 6))

is used to plot several graphs in
one window

plt.subplot(1, 2, 1)

plt.plot (history.history['loss'],
label='Train Loss')

plt.plot (history.his-
tory['val loss'], label='Validation
Loss')

plt.title('Model Loss')

plt.xlabel ('Epochs')

plt.ylabel ('Loss')

plt.legend()

If the story also contains an
accuracy metric, you can add a graph
for it

if 'accuracy' in history.history:

plt.subplot(l1, 2, 2)

plt.plot (history.history['accura-
cy'l,

plt.plot (history.history['val ac-
curacy'], label='Validation Accura-

cy')

label='"'Train Accuracy')

plt.title('Model Accuracy')
plt.xlabel ('"Epochs')
plt.ylabel ("Accuracy')
plt.legend()

plt.tight layout ()

plt.show()

Figure 2 presents a visualization of the neural net-
work training process, where the changes in the amount

34 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 3(111) ISSN 2663-2012 (online)
Model Loss
1.0t = Train Loss
N\ Validation Loss
0 06} \
8 N
- ~
SN
04} S
~.
~
\\
\\\\
0.2t \..._\._-
—
_-"'--..
0 10 20 30 20 50
Epochs

Fig. 2. Training and validation results

of losses (loss) for the training and validation datasets
during 50 epochs are displayed.

An epoch is one complete pass of the training data
through the neural network, and it is used to update the
model weights. During each epoch, the training algo-
rithm presents the model's training data in a specific or-
der, making predictions and adjusting weights based on
the prediction errors.

Complete data pass. An epoch covers a complete
pass through all training data. This means that each sam-
ple in the training dataset was presented to the model
once per epoch.

Weight update. Aftereach epoch, the model updates
its weights to reduce forecasting errors. The weight up-
date depends on the loss function and the optimization
algorithm.

Iterative process. The model is trained iteratively,
where each epoch attempts to improve the model's pre-
dictive ability by reducing the discrepancy between the
actual and predicted values.

Progress monitoring. In the graph, each point on the
X-axis, representing an epoch, represents the state of the
model after full pass of the training data. This allows us
to evaluate how the model’s performance changes with
each epoch [10,11].

On the graph, the length of the X-axis (number of
epochs) allows us to visually assess how quickly the
model learns and when signs of stabilization or overtrain-
ing begin to appear; this can be seen from how the loss
values (on the Y-axis) change over time (epochs).

The horizontal axis (X-axis) shows training epochs
from 1 to 50. The vertical axis (Y-axis) shows the loss

values, which indicate how large the difference is be-
tween the model's predictions and the actual data.

Here, the blue line represents loss on the training
dataset. It demonstrates how over time the model learns
better and better on the training dataset; that is, the num-
ber of losses decreases.

The orange line represents the loss in the validation
set. It allows us to evaluate how well the model is able to
generalize learning to new data that was notused during
training.

The graph shows that both curves are decreasing,
which indicates the model's ability to reduce loss in both
training and validation data. However, by analyzing the
dynamics of the changes in the curves, it is possible to
detect whether retraining is taking place or whether the
model can stabilize losses on the validation dataset [12].

If validation losses start to increase while training
losses continue to decrease, this may indicate overtrain-
ing of the model. Ideally, both curves should show de-
creasing losses, while the validation losses should main-
tain a steady or very slow decreasing trend, indicating
good generalizability of the model.

4. Discussion and recommendations

After conducting the experiment and creating an ar-
chitecture model to optimize resource management for
VDS, we can conclude that:

- the comprehensive approach to developing,
training, and evaluating LSTM models using TensorFlow
and Keras has demonstrated promising results, demon-
strating significant potential for these models in real-
world applications.

Intelligent information technologies

35

- theability ofthe proposed LSTM model to han-
dle temporal dependencies in resource usage data effec-
tively is one of the most important findings of this re-
search.

- the model's robust predictive performance, as
indicated by a mean squared error (MSE) below the tar-
get threshold, underscores its ability to provide accurate
forecasting. Precision is vital for dynamically adjusting
resource allocations, ensuring optimal system perfor-
mance, and reducing operational costs.

- visualization of the training process provided
valuable insights into the model's behavior over time.
The use of early stopping and cross-validation was effec-
tive in mitigating overfitting, thereby enhancing the mod-
el's generalizability. This aspect is crucial when deploy-
ing a model in varied and unpredictable VDS environ-
ments.

- the practical applicability of LSTM models to
VDS management extends beyond theoretical develop-
ment. The implementation of these models can lead to
significant improvements in real-time monitoring and re-
source adjustment, which are essential for maintaining
efficiency in cloud computing environments. By accu-
rately predicting resource demands, these models facili-
tate better resource allocation, which leads to cost sav-
ings and enhanced systemperformance.

- theimportance of data normalization and thein-
tegration of dropout regularization into the LSTM layers
are highlighted. These steps are critical to ensure the
model’s stability and performance, particularly in pre-
venting overfitting and ensuring that the model can be
generalized well to new data.

Based on the findings and insights gained from this
study, several recommendations can be made for future
research and practical implementations:

- future research should focus on improving the
ability of LSTM models to generalize across diverse and
unpredictable data patterns. This can be achieved by in-
tegrating additional machine learning techniques, such as
convolutional neural networks (CNNs) for spatial data
analysis, or attention mechanisms to better handle se-
quential data.

- the scalability of LSTM models in larger and
more varied VDS environments is essential. Testing
these models across different configurations and work-
loads helps ensure their robustness and adaptability,
providing valuable insights into practical deployment.

- exploring hybrid approaches that combine mul-
tiple machine learning algorithms, which could lead to
more resilient and adaptive resource management solu-
tions. For example, integrating reinforcement learning
techniques with LSTM models can enhance decision-
making processes in dynamic environments.

- implementing LSTM models in real-time VDS
management systems can yield immediate benefits. De-
veloping efficient data pipelines and integration frame-
works to handle continuous data inflows is crucial for
providing timely predictions and adjustments.

- themethodologies and findings can be extended
to other domains, such as network traffic management,
anomaly detection in cybersecurity, and predictive
maintenance in industrial systems. This demonstrates the
versatility and applicability of LSTM models in various
fields.

5. Conclusions

The primary contribution of this research is the de-
velopment and training of LSTM models to optimize re-
source management in VDS using TensorFlow and
Keras. This study presents a comprehensive methodol-
ogy that includes collecting and normalizing historical
resource usage data, designing the LSTM model archi-
tecture, training the model, and evaluating its perfor-
mance. The results demonstrate the significant potential
of LSTM models in effectively managing VDS by ana-
lyzing temporal dependencies and predicting optimal re-
source configurations. The trained model achieved a
mean squared error (MSE) below the target threshold, in-
dicating robust predictive performance. The visualization
of the training process revealed insights into overfitting
and underfitting, with strategies like early stopping and
cross-validation enhancing the model's generalizability .
This study highlights the practical applicability of LSTM
models, offering automated and optimized solutions for
complex IT infrastructures and laying the groundwork
for future improvements in handling diverse and unfore-
seen data patterns in VDS.

The experimental results confirm that LSTM mod-
els are effective for forecasting and optimizing virtual
distributed systems. The model demonstrated an ability
to effectively analyze time dependencies and identify op-
timal resource management strategies. The use of Ten-
sorFlow and Keras simplified the process of developing,
training, and validating an LSTM model. Keras’ high-
level APIs enabled rapid prototyping and testing of dif-
ferent architectures, while TensorFlow provided power-
ful tools for deep learning.

Analysis ofthe training and validation processes re-
vealed the importance of monitoring loss dynamics to
preventovertraining. The use ofearly stopping and cross-
validation strategies helped to increase the generalizabil-
ity of the model.

This study demonstrated the practical applicability
of LSTM models to the resource management of virtual
distributed systems, thereby offering an automated and
optimized solution for managing complex IT infrastruc-
tures.

36

Radioelectronic and Computer Systems, 2024, no. 3(111)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Future work should focus on enhancing the gener-
alizability of LSTM models to handle diverse and unpre-
dictable data patterns. Integrating additional machine
learning techniques, such as convolutional neural net-
works (CNNs) for spatial data analysis orattention mech-
anisms to improve sequential dataprocessing, could fur-
ther enhance resource management. Investigating the
scalability of these models in larger and more varied vir-
tual environments is also vital. In addition, exploring hy-
brid approaches that combine multiple machine learning
algorithms could lead to more robustand adaptive re-
source management solutions in VDS.

Contributions of authors: conceptualization,
methodology — Telezhenko Denys; formulation of tasks,
analysis — Telezhenko Denys, Tolstoluzka Olena; de-
velopment of model, software - Telezhenko Denys, ver-
ification — Tolstoluzka Olena; analysis of results, visu-
alization — Telezhenko Denys; writing — original draft
preparation, writing — review and editing — Telezhenko
Denys, Tolstoluzka Olena.

Conflict of Interest
The authors declare that they have no conflict of in-
terest concerning this research, whether financial, per-
sonal, authorship, or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
This study was conducted without financial sup-
port.

Use of Artificial Intelligence
The authors have used artificial intelligence tech-
nologies within acceptable limits to provide their own
verified data, as described in the research methodology
section.

Data Availability
The work has associated data in the data repository.

All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. Dogacan Yilmaz, 1., & Esra Biiyiiktahtakm.
Learning Optimal Solutions via an LSTM-Optimization
Framework. Machine Learning (cs.LG); Optimization
and Control (math.OC), 2022. DOI:
10.48550/ar Xiv.2207.02937.

2. Zhu,Y., Zhang,W., Chen, Y., & Honghao, Gao.
Anovel approach to workload prediction using attention-

based LSTM encoder-decodernetwork in cloud environ-
ment. Journal of Wireless Communication and Network-
ing, article no. 274, 2019. DOI: 10.1186/s13638-019-
1605-z.

3. lordan, A.-E. An Optimized LSTM Neural Net-
work for Accurate Estimation of Software Development
Effort. Mathematics, 2024, vol. 12, article no. 200. DOI:
10.3390/math12020200.

4. Mulas-Tejeda, E.,, Goémez-Espinosa, A., Es-
cobedo Cabello, J.A., Cantoral-Ceballos, J.A., & Molina-
Leal, A. Implementation of a Long Short-Term Memory
Neural Network-Based Algorithm for Dynamic Obstacle
Avoidance. Sensors, 2024, vol. 24, article no.3004. DOI:
10.3390/524103004.

5. Botunac, I., Bosna, J., & Mateti¢, M. Optimiza-
tion of Traditional Stock Market Strategies Using the
LSTM Hybrid Approach. Information, 2024, vol. 15, ar-
ticle no. 136. DOI: 10.3390/info15030136.

6. Jouini, O., Sethom, K., Namoun, A., Aljohani,
N., Alanazi, M. H., & Alanazi, M. N. A Survey of Ma-
chine Learning in Edge Computing: Techniques, Frame-
works, Applications, Issues, and Research Directions.
Technologies, 2024, vol. 12, article no. 81. DOI:
10.3390/technologies12060081.

7. Yanli Xing. Work Scheduling in Cloud Net-
work Based on Deep Q-LSTM Models for Efficient Re-
source Utilization. Journal of Grid Computing, 2024,
vol. 22, article no. 36. DOI: 10.1007/s10723-024-097 4 6-
6.

8. Zheng, T., Wan, J., Zhang,J., & Jiang, K. Deep
Reinforcement Learning-Based Workload Scheduling
for Edge Computing. Journal of Cloud Computing, 2022,
vol. 11, article no. 3. DOI: 10.1186/s13677-021-0027 6-
0.

9. Ashawa, M., Douglas, O., Osamor, J., & Jackie
R. Retraction Note: Improving cloud efficiency through
optimized resource allocation technique for load balanc-
ing using LSTM machine learning algorithm. Journal of
Cloud Computing, 2023, vol. 11, article no. 87. DOI:
10.1186/513677-022-00362-X.

10. Sayed, S.A., Abdel-Hamid, Y., & Hefny, HA.
Anrtificial intelligence-based traffic flow prediction: a
comprehensive review. Journal of Electrical Systemsand
Information Technology, 2023, vol. 10, article no. 13.
DOI: 10.1186/s43067-023-00081-6.

11. Abadi, M., Barham, P., Chen, J., Chen, Z., Da-
vis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., Kuldur, M., Levenberg, J., Monga, R., Moore,
Sh., Murray, D. G, Steiner, B., Tucker, P., Vasudevan,
V., Warden, P., Wicke, M., Yu, Y., & Zheng, X. Tensor-
Flow: A Systemfor Large-Scale Machine Learning. Dis-
tributed, Parallel, and Cluster Computing, 2016. DOI:
10.48550/ar Xiv.1605.08695.

12. Chawla, N. V., Bowyer, K. W., Hall, L. O., &
Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence
Research, 2002, no. 16, pp. 321-357. DOI:
10.1613/jair.953.

Received 10.06.2024, Accepted 20.08.2024

https://doi.org/10.48550/arXiv.2207.02937
https://doi.org/10.48550/arXiv.2207.02937
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.1186/s13638-019-1605-z
https://doi.org/10.3390/math12020200
https://doi.org/10.3390/s24103004
https://doi.org/10.3390/info15030136
https://doi.org/10.3390/technologies12060081
https://doi.org/10.1007/s10723-024-09746-6
https://doi.org/10.1007/s10723-024-09746-6
https://doi.org/10.1186/s13677-021-00276-0
https://doi.org/10.1186/s13677-021-00276-0
https://doi.org/10.1186/s13677-022-00362-x
https://doi.org/10.1186/s43067-023-00081-6
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.48550/arXiv.1605.08695
https://doi.org/10.1613/jair.953

Intelligent information technologies 37

PO3POBKA TA TPEHYBAHHS LSTM MOJEII
JJIS YIIPABJIIHHA BIPTYAJIBHUMU PO3NOALTEHMMH CUCTEMAMUAU
3 BUKOPUCTAHHSAM TENSORFLOW IKERAS

O. I. Toncmonyswvka, /l. O. Tenexcenko

IpeaMeToM CTaTTi € ONTHMi3allil YNpaBIiHHS pecypcaMuy BipTyambHHX posmojuieHux cuctemax (BPC) 3a
JIOTIOMOTO0 aJITOPUTMIB MAIIMHHOTO HaB4YaHHs, 30kpema aimroputMy Long Short-Term Memory (LSTM). Meroro €
po3pobOka edexktuBHOI Mogeni a1 ympasimiHHA BPC 3a cydyacHMMH TexHIKaMM MAIIMHHOTO HAaBYAaHHS. 3aBJaHHA
BKJIIOYAIOTH 301p Ta HOPMAaT3allilo ICTOPUYHUX JAHUX PO BUKOPHUCTAHHS PECypPCiB, IPOEKTyBaHHS apXiTeKTypu MO-
nemi LSTM, naBuanHs Mojeni 3 BukopuctaHHsaM TensorFlow ta Keras, ouiHKy npomayKTUBHOCTI Mofeni Ta il 3mat-
HOCTI JI0 y3arajpHCHHsS, a TAKOXK aHaJi3 pe3yJbTaTiB HaBYaHHS Ta Badgamii il po3poOKH CTpaTteriii 3MEHIICHHS
nepeHaB4aHHs. MeTtogaMu € npoektyBaHHs monedi LSTM s 3ax0oIUiCHHST THMYacOBHX 3aJIeKHOCTEH Ta IMOCio-
BHUX IIA0JIOHIB y JaHUX BUKOPUCTAHHS PECYpCIB, 30KpeMa BXITHUX MIapiB, KibkoX mapie LSTM 3 perynspusauicro
dropout, rycTux mapis Ta BuxigHoro miapy. HopmarizoBanuit HaOip JaHUX OYB pO3MAUICHUI Ha TpeHYBaJbHI Ta Tec-
TOBiI HAOOPH, a MOJIeJb OyJjla CKOMIIIbOBaHAa 3 BAKOPUCTAHHAM onTuMizatopa Adam3i mBuakicTio HaBuanHsg 0.01 Ta
cepeanbokBaapatiunoi moMuiakd (MSE) sk ¢yHkiii Btpat. Mozens Oyiia HaBdeHa mpoTsaroM 50 enox 3 paHHbOIO
3YMUHKOKO Ta KPOC-BAAIE0 IS 3amo0iraHHs NepeHaBYaHHIo, a il MPOayKTUBHICT OIHIOBAJACS 3a JIOTIO MOTOIO
MSE Ha TecToBOMY Habopi. Pe3yabTaTn BKa3yioTh HaTe, 10 Mojeib LSTM npoieMoHCTpyBaia 3HATHHN O TSHITIa
B ynpasiinHi BPC 1nisaxoM e(ekTHBHOTO aHaNi3y Ta MPOTHO3yBaHHS ONTUMAJbHUX KOH(]Irypariid pecypcis, 3 MeT-
pUKaM¥ OIIIHKH, IO CBiTYaTh MPO XOPOIIY HMPOTHO3HY MPOIYKTHBHICT. Bidyamizamis mpoliecy HaB4aHHS MOKa3ala,
SIK 3HAYCHHS BTPAT MOJIEINI 3MIHIOBAJICS MPOTATOM €I0X, IOTIOMAaraloyy BUSBHTH NepeHaBYAaHHS a00 HeIOHABUAHHS .
BucnoBku minrBeppKyroTh, Imo Moneni LSTM edextuBHi it mporro3ysanHS Ta ontuMizanii BPC, 3 TensorFlow
Ta Keras, 110 cipomiyroTh MpoIecu po3poOKH, HABYAHHS Ta Balimamii. MOHITOpHHT TMHAMIKHA BTPAT i 9ac HAaBYAHHS
€ BOJIMBUM U1 3ar00iraHHs IepeHaBYaHHIO, a CTpaTerii, Taki SIK paHHS 3yNMHKA Ta KPOC-BaJiNAIlist, MiIBHITYIOTH
3[ATHICTE MOJeN 10 y3araibHeHHs. [IpaxtmaHa 3actocoBHICTs Monenelt LSTM B ympaBmiHHI pecypcaMu IIpoOIoHye
aBTOMATH30BaHI Ta ONTUMI30BaHi PIMIeHHS WA ynpaBmiHag ckiagaumu IT-iHpacTpykTypamu.

KrouoBi cioBa: BipTyasibHI pO3MOJUICHI CHCTEMH; YHpaBIiHHA pecypcamu; mepexi LSTM; mamumHHE HaB-
gannst; TensorFlow; Keras; Hopmanizaiist JaHUX, HABUAHHS MOJENI; epEHaBYAHHS; IPOTHO3HI MOJIEJ.

Toacromysbka Onena I'eHHagiiBHA — 1-p TeXH. HayK, CTapil. HayK. CcriBpoO., mpod. kad. TeopeTHuHOi Ta
IPUKIAAHOI CHCTeMOTeXHIKM, XapKiBChbKUil HarioHanpHUH yHiBepcuteT iMeHi B. H. Kapasina, XapkiB, YkpaiHa.

Tenexenko Jenuc OnexcaHApoBUY — acll. Kad. TCOPETUIHOT Ta MPUKIATHOT CHCTEMOTEXHIKH, XapKiBChKHI
HamioHaepHUN yHiBepcuTeT iMeHi B.H. Kapasina, XapkiB, Yxpaina.

Olena Tolstoluzka — Doctor of Engineering Sciences, Professor at the Theoretical and Applied Systens
Engineering Department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,
e-mail: elena.tolstoluzka@karazin.ua, ORCID: 0000-0003-1241-7906.

Denys Telezhenko — PhD Student of the Theoretical and Applied Systems Engineering Department,
V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,
e-mail: denisque75@gmail.com, ORCID: 0000-0002-8377-8517.

