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METHODOLOGY FOR ASSESSING THE IMPACT OF EMERGENCIES ON THE
SPREAD OF INFECTIOUS DISEASES

The spread of infectious diseasesis significantly influenced by emergencies, particularly military conflicts, which
disrupt healthcare systems and increase the risks of epidemics. The full-scale Russian invasion of Ukraine has

exacerbated these challenges, causing environmental damage, mass displacement, and the breakdown of
healthcare services, all of which contribute to the spread of infectious diseases. This study aims to develop a

comprehensive methodology for assessing the impact of emergencies on the spread of infectious diseases, focus-
ing on the full-scale invasion of Ukraine. The object of this study is to address epidemic threats posed by emer-
gencies, particularly the increased spread of infectious diseases due to war-related disruptions. The subject of
thisstudy is methodsand models of infectious disease transmission under conditions ofemergencies, emphasizing
the Russian full-scale invasion of Ukraine. The tasks of this study are to provide an analysis of the current state
of research and develop a methodology for assessing the impact of emergencies on the spread of infectiousdis-
eases. The proposed methodology includes several key components. Comprehensive data from public health
organizationsincludesinfectious disease statistics, demographic shifts, healthcare disruptions, and environmen-
tal factors exacerbated by emergencies. Data preprocessing removes inconsistencies, standardization offormats,
and normalization for population size differences. Machine learning models, including convolutional neural net-
works and recurrent neural networks, have been developed to simulate the spread of diseases based on demo-
graphic, environmental, and healthcare-related variables. Deep learning models analyze spatial and temporal
patterns, whereas compartmental models such as SIR estimate changes in reproductive numbers (R, and Re).
Additionally, models of excess mortality incorporate mixed effects to account for regional and time -based vari-
ations. The methodology incorporates real-time monitoring of epidemic threatsusing real-time data from multi-
ple sources, enabling dynamic assessments of disease spread and facilitating predictive modeling. The models
were trained on historical data and validated using cross-validation techniquesto ensure robustness and relia-
bility, with a specific focus on the pre- and post-invasion phases in Ukraine. Results: The study provides a com-
prehensive framework for collecting and processing data on infectious diseases and epidemic threats in emer-
gencies. The proposed model introduces advanced machine learningand epidemiological modelstrained on pre-
and post-invasion data to analyze disease transmission patterns and forecast future epidemic dynamics. Conclu-
sion: The proposed methodology addressescurrentgapsininfectious disease during emergencies by integrating
real-time data and machine learning techniques. This research improves decision-making in public health man-
agement and biosafety during crises, particularly in war-affected regionslike Ukraine.

Keywords: epidemic model; emergency; war; epidemic process; simulation;infectious disease.

and infection outbreaks, with diseases often resulting in
higher mortality rates than combat-related injuries.

1. Introduction

The spread of infectious diseases is heavily influ-
enced by various factors, including environmental dis-
ruptions and social upheavals caused by emergencies [1].
Among the most impactful emergencies are wars and
military conflicts, which notonly disrupt healthcare sys-
tems but also create conditions that foster the rapid
spread of infectious diseases [2]. Historically, wars have
demonstrated a significant correlation between conflict

The ongoing war in Ukraine, resulting from Rus-
sia’s full-scale invasion, has triggered a complex emer-
gency that affects not only public health butalso the en-
vironment [3]. This emergency has given rise to addi-
tional crises, including the risk of chemical contamina-
tion, wildfires, and damage to critical infrastructure, all
of which contribute to deteriorating public health. Under
such conditions, the risk of infectious disease outbreaks
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dramatically increases, compounded by mass displace-
ment, shelter overcrowding, and the collapse of essential
services like water supply and sanitation [4]. The health
risks are further exacerbated by environmental degrada-
tion, such as pollution and biodiversity loss, which can
facilitate the spread of zoonotic diseases.

Epidemiological diagnostics, which include retro-
spective and real-time epidemiological analyses and field
investigations, play a leading role in assessing the risks
of deteriorating epidemic conditions and the spread of in-
fectious diseases.

Advances in epidemiology and healthcare have en-
hanced the ability to respond to infectious diseases; how-
ever, the complexities of large-scale emergencies require
more dynamic and flexible analysis methods. Traditional
epidemic models, such as compartmental models, are in-
sufficient for addressing heterogeneous populations and
rapidly changing conditions typical of emergencies [5].
In particular, there is a need for real-time data integration
and adaptive models that can account for the unpredicta-
ble factors that arise during such crises.

The scientific application of mathematical models
and simulation techniques in healthcare has been well es-
tablished [6]. The COVID-19 pandemic has spurred the
development of methods for modeling epidemic pro-
cesses. However, compartmental modeling remains the
most popularmethod. Existing methods for modeling ep-
idemic processes have several drawbacks, including low
flexibility, difficulty accounting for heterogeneous popu-
lations, high computational complexity, and the inability
to adapt models to new epidemic processes [7-8]. These
shortcomings make it impossible to use existing ap-
proaches during emergencies and analyze dynamic pro-
cesses caused by emergencies. This is due to the need for
rapid analysis of influencing factors and environmental
changes and an adequate assessment of the situation. The
multidisciplinary approach proposed in this project over-
comes these limitations and achieves results that could
lead to global leadership.

In recent years, the “Big Safety” concept has
emerged as aframework for addressing multidimensional
risks that extend across various critical domains, includ-
ing infection control and disaster response [9]. This re-
search explores how infection safety and disaster-related
health risks can be integrated into public health policies,
particularly in conflict zones. By recognizing the inter-
connectedness of these safety dimensions, a holistic ap-
proach can be developed to safeguard vulnerable popula-
tions during times of crisis.

This paper aims to develop a comprehensive meth-
odology for assessing the impact of emergencies on the
spread of infectious diseases, focusing on modern con-
flicts like the full-scale Russian invasion of Ukraine. Us-
ing a multidisciplinary approach that integrates epidemi-
ological analysis, machine learning, and real-time data

analytics, this study sought to overcome the limitations
of existing models. This paper is the study protocolofthe
project “Multidisciplinary study of the impact of emer-
gency situations on infectious diseases spreading to sup-
port management decision-making in the field of popula-
tion biosafety”. It proposes a preliminary study for that
project. Through this work, we contribute to the growing
field of predictive epidemiology and provide essential
tools for mitigating the public health impacts of large-
scale emergencies.

In this paper, section 2, namely, Background, dis-
cusses the impact of emergencies, particularly military
conflicts, on epidemic process dynamics. Section 3, titled
Current Research Analysis, discusses the current state of
research in emergent disease simulation, estimation of
excess morbidity and mortality, and basic and effective
reproductive number evaluation. Section 4, Methodol-
ogy, presents the methodology for assessing the impact
of emergencies on the spread of infectious diseases. Sec-
tion 5, namely Discussion, discusses the proposed meth-
odology and highlights its novelty, applicability, and lim-
itations. Conclusions describe the outcomes of the re-
search.

2. Background

Wars and military conflicts have a particularly neg-
ative impact on human health during emergencies. Wars
are always accompanied by outbreaks of infectious dis-
eases, increased morbidity, and mortality [10]. The his-
tory of wars has revealed that deaths from infections of-
ten exceed those from combat injuries [11]. Despite ad-
vancements in modern medicine, infections continue to
accompany wars in the 21st century. For instance, in
Syria, after no measles cases were recorded since 1999,
outbreaks occurred in 2017-2018 due to the civil war
caused by disruptions in immunization programs [12].
Thecivil war in Yemen led to a cholera outbreakin 2017,
resulting in 2.5 million suspected casesand 3,868 deaths,
despite no cases having been recorded in the country be-
fore the war [13]. Research indicates that living condi-
tions during wartime (stress, limited access to safe water
and food, lack of environmental and personal hygiene,
etc.) contribute to the spread of numerous infections. Ex-
amples of diseases spreading during military conflicts in-
clude COVID-19, tuberculosis, viral hepatitis A, diar-
rheal diseases, respiratory infections, HIV, leishmaniasis,
and dengue fever, among others, in Turkey [14], Libya,
Yemen [15], and Syria [16]. In the scientific literature,
many examples exist of how conditions for spreading in-
fections are created during war [17, 18].

Russia’s full-scale aggression in Ukraine has
caused a large-scale emergency that has affected all
aspects ofpeople’s lives and is creating additional emer-
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gencies, such as floods and droughts (caused by the de-
struction of the Kakhovka Hydroelectric Power Plant)
[19], therisk of radionuclide contamination (events at the
Chornobyl and Zaporizhzhia nuclear power plants) [20],
wildfires (fires on the Kinburn Spit that destroyed over
1,500 hectares of forest) [21], chemical leaks (chlorine,
ammonia, etc.) [22], and more.

The full-scale Russianinvasion of Ukraine has had
a profound impact on public health, worsening the spread
of infectious diseases and further challenging the coun-
try’s healthcare system. The war has caused widespread
displacement, with millions of Ukrainians becoming in-
ternally displaced persons or fleeing to neighboring
countries, increasing the risk of disease outbreaks in
overcrowded and unsanitary conditions [23]. The disrup-
tion of vaccination programs, particularly in regions like
Transcarpathia, has led to decreased immunization rates,
increasing the likelihood of outbreaks of diseases such as
polio and measles [24]. The war has also intensified the
spread of antimicrobial-resistant bacteria, a growing
global health threat. The overuse of antibiotics, espe-
cially for treating war-related injuries, combined with in-
adequate healthcare infrastructure has contributed to the
rise of resistant pathogens, posing significant challenges
for medical treatment [25]. Environmental degradation,
including contamination of water sources and damaged
sanitation systems, has also created further public health
risks, particularly the spread of waterborne diseases [26].
The ongoing war highlights the need for coordinated in-
ternational efforts to address both immediate health chal-
lenges and the long-term impacts on Ukraine’s healthcare
system.

During emergencies, the dynamics and manifesta-
tions of epidemic processes may differ from the natural
course of events. Key risk factors influencing epidemic
conditions in cascading emergencies triggered by war in-
clude intense population migration, overcrowding in
bomb shelters and migration routes, stress and increased
susceptibility to infections, disruption of water and en-
ergy supplies, mass rodent proliferation and outbreaks of
diseases among them, food contamination, chemical run-
off into water bodies, flooding of natural biocenoses, ac-
tivation of infection transmission mechanisms, an in-
crease in stray animals and their contact with wild ani-
mals, and environmental pollution caused by missile and
artillery strikes, as well as landmines. Consuming large
amounts of fuel during wars leads to significant carbon
dioxide (CO2) emissions, contributing to climate change
and the expansion of animal habitats that are sources of
infections and vectors of pathogens [27]. At the same
time, the environmental consequences of military actions
reduce biodiversity, which increases the risk of spreading
infectious diseases [28].

The destruction of healthcare infrastructure, medi-
cal facilities, and equipment and the loss of healthcare

workers lead to a significant mismatch between
healthcare services’ needs and their ability to assist vic-
tims [29]. This results in disruptions to the operations of
healthcare institutions and the Disease Control and Pre-
vention, as well as an inability to conduct timely sanitary,
hygienic, epidemiological, and preventive measures.

The Russian full-scale invasion of Ukraine funda-
mentally differs from other wars, making it essential to
study the conditions and risks of infectious disease spread
and the unique characteristics of epidemic processes.
This can form the basis for developing effective tools for
making informed and rational management decisions to
ensure population epidemiological welfare and biosecu-
rity.

3. Current Research Analysis

The analysis of current infectious disease research
focuses on key methodologies developed to understand,
predict, and mitigate the spread of emerging pathogens.
Simulation models play a crucial role in forecasting out-
breaks and informing public health strategies. These
models, ranging from compartmental frameworks like
SIR to more advanced agent-based and network-based
models, allow for detailed examination of disease trans-
mission dynamics. Additionally, methods for estimating
excess mortality provide a clearer understanding of the
broader impact of outbreaks by comparing observed
deaths with expected baselines. Evaluation of the basic
reproductive number (R, ), a critical parameter in infec-
tious disease modeling, is essential for determining the
potential spread of a pathogen. This section reviews the
methodologies employed in these areas and highlights
their importance in modern epidemiological research and
public health decision-making.

3.1. Modern Approaches to Emerging
Diseases Simulation

The study [30] explores a novelapproach for detect-
ing emerging infectious diseases using a two-layer
model. Based on the TextCNN-Attention model, the first
layer classifies cases as infectious or non-infectious, and
the second layer, using LightGBM, identifies whether in-
fectious cases represent emerging diseases. The study uti-
lised medical records from five institutions in Beijing,
providing a robustreal-world dataset for analysis. A key
strength of this study is the high accuracy and low false-
positive rate achieved by the model, which makes it suit-
able for real-time monitoring in clinical settings. How-
ever, the study’s limitation lies in its inability to fully ac-
count for the complexity of real-world scenarios in which
emerging infectious diseases may evolve in unpredicta-
ble ways, and the model’s reliance on retrospective data
may not fully capture these dynamics.
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The study [31] evaluated the performance of 16
forecasting models during the 2015-2016 Zika epidemic
in Colombia. This study explores how varying assump-
tions about human mobility, transmission potential, and
virus introduction affect model accuracy. The authors
found that individual models sometimes outperform en-
semble forecasts early in the epidemic, but ensemble
models provide more robust forecasts overall. A limita-
tion of this study is its retrospective nature, which may
not fully account for real-time uncertainties or delays in
data reporting.

The paper [32] presents a compartmental SEIR
(Susceptible-Exposed-Infectious-Recovered) model that
investigates the role of asymptomatic infections in
emerging infectious disease dynamics. The model ex-
plores the possibility that some pathogens maintain stable
and endemic circulation in populations through asympto-
matic carriers, potentially affecting future outbreaks. A
notable study strength is its flexibility, as the model can
be applied to a range of diseases in which asymptomatic
carriers play a critical role. However, the model’s as-
sumptions, such as the absence of pathogen mutations
and the focus on viral infections, may not fully capture
the complexity ofdisease dynamics across different path-
ogens.

The study [33] used an SEIR compartmental model
to examine how vaccine hesitancy influences the spread
of infectious diseases. The model includes differential
morbidity with separate compartments for mild, moder-
ate, and severe symptoms and incorporates vaccine effi-
cacy and hesitancy as key variables. This study found that
vaccine hesitancy significantly reduced the effectiveness
of vaccination programs, requiring highly effective vac-
cines to controloutbreaks, especially when hesitancy lev-
els were high. A notable limitation of this study is its re-
liance on a hypothetical population, which limits the
practical applicability of its findings.

The study [34] explores the dynamics of emerging
infectious diseases using an age-structured SEIR model,
focusing on the effectiveness ofvaccination and physical
distancing interventions across different age groups. This
study uses mathematical modeling to calculate the basic
reproductive number and evaluate the cost-effectiveness
of control strategies. A notable strength of this paper is
its comprehensive approach, which combines optimal
control theory with age-heterogeneous transmission dy-
namics to identify the most efficient interventions. How-
ever, the study’s limitation lies in its reliance on idealized
conditions, such as homogeneous population behavior
within age groups and fixed intervention parameters,
which may not fully reflect the complexities of real-
world disease transmission and response variability.

The study [35] investigated how variations in host
community structure, particularly the presence of inter-
mediate hosts, influence the spread of zoonotic diseases.

Using a stochastic Susceptible-Infectious-Recovered
(SIR) model, the authors compare three community
structures with increasing complexity, analyzing how
they affect the incidence and prevalence of infections in
target populations. The results show that intermediate
hosts can eitheramplify or dilute epidemic outcomes, de-
pending on their role as a bridge or secondary source of
infection. One limitation of this study is the assumption
of fixxd community structures and uniform host behav-
iors, which may not fully capture the dynamic nature of
real-world ecosystems and host interactions.

The study [36] presented a mathematical model that
incorporates travel between two regions (patches) and the
influence of disease surveillance on the infection force.
This study analyzes how changes in human movement
and delayed behavior changes due to past disease surveik
lance dataimpact the dynamics ofan emerging infectious
disease. A significant contribution of this work is the in-
corporation of surveillance-mediated infection forces,
which provide a more realistic view of how public health
data influence the spread of diseases. However, one lim-
itation of this study is its assumption of homogeneous
populations within each patch, which may not accurately
represent the diverse social and behavioral factors affect-
ing disease transmission in real-world scenarios.

In the study [37] a differential equation model was
employed to examine the impact of quarantining close
contacts on infectious disease transmission dynamics.
The study found that the timing of quarantine measures
is crucial, with early interventions significantly reducing
the cumulative number of cases and deaths. The model
reveals a phase-transition structure, indicating that imple-
menting quarantine measures before a critical moment
can stabilize the epidemic at lower levels. However, one
limitation of this study is its reliance on idealized popu-
lation structures and assumptions about uniform quaran-
tine compliance, which may not accurately reflect the
complexities of real-world epidemics.

Research [38] presented anoveloutbreak prediction
approach using the Mamdani fuzzy inference system.
The study integrates five input variables—change in
landscape, gateway of travel, hygiene, sanitation, hous-
ing, regularity of surveillance — Change in Landscape,
Gateway of Travel, Hygiene, Sanitation, and Housing,
Regularity of Surveillance, and Health Infrastructure — to
assess the probability of disease outbreaks. This model
emphasizes how complex environmental and human fac-
tors contribute to the emergence of infectious diseases
and how fuzzy logic can be used to simulate such dynam-
ics. A notable strength of this method is the flexibility of
the fuzzy inference system, which effectively models un-
certainties in epidemiological predictions. However, one
limitation of this study is its reliance on theoretical inputs
and lack of real-world data validation, which may limit
its immediate applicability to public health planning.
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The paper [39] explores the role of environmental
pollution and time delays due to disease incubation peri-
ods in the spread of infectious diseases. By developing a
delayed SIS model, the authors demonstrated that pollu-
tion increases the susceptibility of populations and am-
plifies disease transmission, particularly when combined
with incubation periods that obscure early detection and
control efforts. The model identifies the basic reproduc-
tion number and investigates its stability through Hopf

bifurcation analysis, revealing that pollution intensifies
disease dynamics by extending the time during which in-
fections remain undetected. A limitation of this study is
its focus on theoretical simulations, which lack real-
world data validation, making it harder to directly apply
the results to specific disease outbreaks.

Table 1 presents an overview of emerging disease
simulation methods.

Table 1

The overview of the emerging diseases simulation methods

Findings

The proposed hierarchical diagnosis model, which
combines TextCNN-Attention and LightGBM,
demonstrated high accuracy and efficiency in real-
time detection of emerging infectious diseases with
significant potential for clinical application.

Ensemble forecasting models, which incorporate
multiple assumptions, consistently outperformed
individual models in predicting the course of the
Zika epidemic, especially as the outbreak pro-
gressed.

Asymptomatic infections can play a significant role
in the sustained, endemic circulation of certain path-
ogens, potentially influencing the dynamics of fu-
ture outbreaks.

Vaccine hesitancy drastically reduces the effective-
ness of vaccination for controlling infectious dis-
ease outbreaks, requiring vaccines with extremely
high efficacy to mitigate the impact, especially in
populations with high levels of hesitancy.

A combined strategy of vaccination and physical
distancing is the most cost effective approach for
controlling emerging infectious diseases, particu-
larly among the age groups most vulnerable to se-
vere outcomes.

The structure of the host community, particularly
the presence of intermediate hosts, can either am-
plify or dilute the spread of zoonotic diseases in the
target population, depending on the complexity of
the transmission route.

Paper Task Method
Wang M. Early detection ofemerging dis- | Deep
et al. [30] ease. learning
(CNN)
Oidtman RJ. | To assess the potential for un- | Stochas-
etal. [31] certainty regarding emerging | tic mod-
pathogens forecasting by exam- | els
ple of Zika epidemic.
Siewe N., | To explore the impact of | Compart-

Greening B., | asymptomatic infections on the | mental
Fefferman | spread and persistence of | model

N.H. [32] | emerging infectious diseases

Hewage I.LM., | To explore the effects of vac- | Compart-

Church cine hesitancy and efficacy on | mental
KEM., the spread ofan emerging infec- | model

Schwartz EJ. | tious disease.

[33]

Jia P., To evaluate the effectiveness | Compart-
Yang J., and cost-efficiency of vaccina- | mental
Li X. [34] tion and social distancing inter- | model

ventions in reducing the spread
of emerging infectious diseases.

Voinson M., | To investigate how different | Compart-
Smadi C,, host community structures, in- | mental
Billiard S. | cluding reservoirs and interme- | model

[35] diate hosts, impact the epidemi-
ological dynamics of emerging
infectious diseases in target
populations.

Sun G, To investigate the impact of | Compart-

Jin Z., travel between regions and dis- | mental

Mai A.[36] | ease surveillance-mediated in- | model

fection forces on the transmis-
sion dynamics of emerging in-
fectious diseases.

Inter-patch travel and surveillance-mediated infec-
tion forces significantly affect the spread of infec-
tious diseases, with disease persistence and equilib-
rium states being influenced by travel patterns and
the responsivenessofsusceptible individuals to past
surveillance data.
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Continuation of Table 1

Paper Task Method Findings
Pan Q., To study the effect of quaran- | Compart- | Early implementation of quarantine measures for
Song S., He | tine measures on the transmis- | mental close contacts reduces the spread of infectious dis-
M. [37] sion dynamics of infectious dis- | model eases and minimizes the cumulative number of
eases with infectivity during the cases and deaths.
incubation period.
AdakS., Kar | To predict the probability of | Fuzzy The fuzzy inference systemeffectively predicts the
T.K, Jana S. | disease outbreaks based on key | inference | likelihood of infectious disease outbreaks by incor-
[38] factors such as landscape | system porating environmental and health-related factors,
changes, travel patterns, hy- thus offering a flexible approach to outbreak mod-
giene, surveillance, and health elling.
infrastructure.

Gupta S., To analyze the combined ef- | Compart- | Environmental pollution and incubation signifi-
Bhatia S.K., | fects of pollution and disease in- | mental cantly delay the transmission and persistence of in-
AryaN. [39] | cubation periods on the trans- | model fectious diseases, making early detection and con-

mission dynamics of infectious trol more challenging.
diseases, with a focus on stabil-
ity and bifurcation behavior.

The studies reviewed in this subsection collectively
highlight various innovative approaches to modeling and
predicting emerging infectious diseases, each with
unique strengths and limitations. These approaches, rang-
ing from machine learning techniques to compartmental
and stochastic models, emphasize the importance of real-
time data integration, population dynamics, and environ-
mental factors in understanding disease spread, particu-
larly in emergent contexts. The ongoing Russian full-
scale invasion of Ukraine serves as a crucial example of
how emergencies such as wars significantly alter disease
dynamics by disrupting healthcare systems, causing pop-
ulation displacement, and degrading environmental con-
ditions. In such settings, existing models face challenges
in capturing the full complexity of disease transmission
because they often rely on assumptions like homogene-
ous populations or idealized conditions, which do not re-
flect the chaotic and rapidly evolving nature of real-world
epidemics in conflict zones. Furthermore, although sev-
eral models have excelled in theoretical simulation, the
lack ofreal-world datavalidation, particularly in conflict-
affected regions, limits their immediate applicability to
public health planning. These limitations underscore the
need for further research to refine these models, better
account forunpredictable factors in emergencies, and im-
prove their effectiveness in crises like the Russian inva-
sion of Ukraine.

3.2. Methods of Excess Morbidity
and Mortality Estimation

The paper [40] proposed a linear mixed model for
estimating excess mortality caused by the COVID-19
pandemic in Belgium and the Netherlands. This model

improves upon the traditional 5-year weekly average ap-
proach by incorporating year-specific predictions and
down-weighting the influence of historical excess mor-
tality events such as heatwaves and influenza outbreaks.
The proposed method enhances forecasting accuracy and
provides more reliable estimates of excess mortality.
However, one limitation of the study is its focus on high-
mortality events, which may not generalize well to set-
tings with more moderate fluctuations in mortality, and
the reliance on retrospective data limits its real-time ap-
plicability.

The study [41] introduced a novel approach for es-
timating excess mortality during the COVID-19 pan-
demic using principal component analysis combined
with a Lee-Carter mortality model. This method ad-
dresses the limitations of the previous model by consid-
ering long-term mortality trends and correlations among
demographic groups and countries. This study provides
insights into excess mortality patterns across 19 coun-
tries, emphasizing the heterogeneous impact of the pan-
demic ondifferent age and sex groups. A key strength of
this study is its use of a comprehensive dataset and sto-
chastic modeling techniques to account for variability
and uncertainty in mortality trends.However, one limita-
tion is the lack of real-time applicability because the
model relies heavily on historical data, which may not
fully reflect immediate or rapidly changing conditions
during a pandemic.

Sirag and Gissler [42] presented a methodology for
estimating excess mortality in Canada during the
COVID-19 pandemic. To estimate baseline mortality, the
authors used an overdispersed Poisson generalized linear
model with seasonal adjustments based on a rolling ref-
erence period from 2016 to 2020. The model was further
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enhanced to adjust for provisional death counts and to ac-
count for reporting delays due to the pandemic. Although
the study provides timely and reliable estimates of excess
mortality, a significant limitation is its reliance on provi-
sional death data, which are subject to delays and un-
derreporting, particularly in the early stages of the pan-
demic. This limitation may affect the accuracy of real-
time mortality estimates and hinder the ability to capture
the full impact of the pandemic on mortality.

Research [43] investigated the spatial heterogeneity
of excess mortality in Mexico during the COVID-19 pan-
demic. Using Serfling regression models, the authors es-
timated all-cause excess mortality across 32 states, find-
ing significant variations influenced by sociodemo-
graphic factors, such as aging, household size, and mar-
ginalization. Central states had higher mortality rates,
whereas southern states, with higher indigenous popula-
tions, exhibited lower mortality rates. A notable strength
of this study is its use of a comprehensive set of demo-
graphic and environmental variables to explain these var-
iations. However, this approach is limited by reliance on
aggregated state-level data, which may obscure individ-
ual-level risk factors and lead to potential ecological fal-
lacy.

The study [44] compared five approaches to esti-
mating excess mortality during the pandemic, including
quasi-Poisson models, the European Monitoring of Ex-
cess Mortality algorithm, and a 5-year average model.
Each method captures varying aspects of mortality
trends, such as seasonalfluctuations and registration de-
lays, and adjusts for factors like the reduced circulation
of other infections during lockdowns. A key strength of
this paper is its comprehensive comparison of different
methodologies, which enhances ourunderstanding of ex-
cess mortality estimation during health crises. However,
one limitation is the inconsistency in adjusting for factors
like mortality displacement and differences between
models using date of occurrence versus registration,
which can affect the comparability of results.

The paper [45] introduced a method for assessing
hospital performance by calculating the excess cumula-
tive incidence of cause-specific outcomes, such as cere-
brovasculardeaths, in stroke patients. This approach con-
trasts a hospital’s observed outcomes with the expected
outcomes if the same patients were treated at anotherhos-
pital. The proposed method offers a practical interpreta-
tion that can guide improvements in healthcare delivery.
However, one limitation of this study is its reliance on the
assumption of proportional cause-specific hazards,
which may not hold in all real-world settings.

Delbrouck and Alonso-Garcia [46] integrated epi-
demiological and actuarial models to estimate the excess
mortality caused by COVID-19 in Belgium in 2020.
These findings are applied to assess the financial impact
on life insurance products. By combining a SIRD

(Susceptible-Infectious-Recovered-Death) epidemiolog -
ical model with an actuarial mortality model, the authors
provide detailed insights into how the pandemic has af-
fected mortality rates across different age groups and its
implications for the insurance industry. A key strength of
this study is its ability to provide acomprehensive frame-
work that bridges epidemiological forecasting with actu-
arial risk assessments. However, this study has a limita-
tion in that it focuses on short-term excess mortality dur-
ing the first year of the pandemic, which may not capture
the long-term effects on mortality trends or fully account
for potential waves of future infections.

Research [47] has examined the impact of COVID-
19 on excess mortality among different age groups in
Malaysia. Using various parametric models, such as the
Heligman-Pollard model for men and the Rogers—Planck
model for women, the study forecasts mortality rates un-
der both normal and COVID-19 conditions. The analysis
highlights that excess mortality was observed primarily
among individuals aged 60 years, with men’s mortality
rates showing a delayed but prolonged increase com-
pared with women’s. A limitation of this study is its reli-
ance on historical data up to 2020, which may not fully
capture the long-term effects of the pandemic or account
for future variants and waves of infection.

The study [48] applies generalized linear mixed
models to estimate excess all-cause and pneumonia mor-
tality during the COVID-19 outbreak in Thailand from
April to October 2021. The study found that cumulative
excess deaths were significantly higher during this pe-
riod, with most increases observed in older age groups
and in males. Approximately 75% of the excess deaths
were directly attributed to COVID-19, while the remain-
ing 25% were likely due to indirect effects, such as
healthcare disruptions. A notable strength ofthis study is
its incorporation of detailed age- and sex-specific mortal-
ity data, which provides a clearer understanding of the
pandemic's demographic impact. However, one limita-
tion is the lack of data on other contributing factors, such
as influenza and pollution, which could influence the ac-
curacy of mortality estimates.

The study [49] estimates excess mortality across
Italian regions during the initial stages of the Omicron
variant wave in early 2022. Using a generalized linear
mixed model trained on pre-pandemic mortality data
from 2011 to 2019, this study captures excess deaths by
adjusting for seasonal patterns and regional variations.
The findings reveal that 14 of 20 Italian regions experi-
enced significant excess mortality during January, with a
marked decline in February. A key study strength is its
ability to model regional-specific mortality patterns dur-
ing the Omicron wave. However, one limitation of this
study is its reliance on aggregated regional data, which
might obscure localized factors, such as hospital capaciy
or vaccination coverage, influencing mortality outcomes.
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Table 2 presents an overview of excess morbidity
and mortality methods.

The analysis of these studies collectively highlights
the diversity of methodologies used to estimate the ex-
cess mortality and morbidity of different infectious dis-
eases, each offering unique insights and contributing to a
more nuanced understanding of the pandemic’s impact.
While some approaches, such as generalized linear mixed
models and principal component analysis, provide robust
frameworks for estimating mortality by incorporating de-
mographic, seasonal, and geographic variables, their re-

liance on historical data and assumptions about popula-
tion behaviour can limit their applicability in rapidly
evolving real-world conditions. This challenge is espe-
cially evidentin emergent contexts, such as the full-scale
Russian invasion of Ukraine, where war-induced disrup-
tions to healthcare, infrastructure, and population stabil-
ity likely have exacerbated public health crises, including
infectious disease outbreaks and increased mortality. The
impact of conflict on public health introduces unique
complexities that many existing models may not fully ac-
count for, such as mass displacement, interruptions in
healthcare services, and environmental degradation.

Table 2
The overview of the excess morbidity and mortality methods
Paper Task Method Findings
Verbeeck J. | To estimate excess mortality dur- Linear The proposed linear mixed model provides
et al. [40] ing the COVID-19 pandemic, im- mixed more accurate and reliable estimates of ex-
prove existing methods by address- model cess COVID-19 mortality than the tradi-
ing limitations such as historical tional 5-year weekly average method by ac-
mortality biases and forecasting counting for year-specific trends and reduc-
precision. ing the impact of past mortality spikes.
Vanella P., To estimate excess mortality dur- Principal Principal component analysis combined
Basellini U., | ing pandemics, focusing on captur- | component | with the Lee-Carter mortality model pro-
Lange B. [41] | ing long-term mortality trends and analysis vides a more accurate estimation of excess
cross-country correlations. mortality during the COVID-19 pandemic
by accounting for long-term trends and de-
mographic correlations across countries.
Sirag E., To estimate excess mortality dur- Poisson The adapted statistical model effectively es-
Gissler G. ing the COVID-19 pandemic, ad- | generalized | timates excess mortality duringthe COVID-
[42] justing for undercoverage and re- | linear model | 19 pandemic in Canada despite challenges
porting delays. in reporting data and provisional death
counts.
Dahal S. To estimate the spatial distribution Serfling Excess mortality during the COVID-19
etal. [43] of excess mortality in Mexico dur- | regression | pandemic in Mexico showed significant
ing the COVID-19 pandemic and model spatial variation, with higher mortality rates
analyze how socio-demographic, in central states and lower rates in southem
climate, and population health regions, influenced by socio-demographic
characteristics contribute to this and environmental factors.
geospatial variability.
Barnard S. To evaluate and compare multiple Poisson Different models for estimating excess mor-
et al. [44] statistical approaches for modeling model, tality during the COVID-19 pandemic in
excess mortality across England | 5-year aver- | England yielded varying results, with meth-
during the COVID-19 pandemic, | age model | ods like quasi-Poisson models providing
aiming to identify the most reliable more accurate adjustments for seasonal ef-
method for estimating mortality fects and reporting delays than simpler ap-
under fluctuating public health proaches.
conditions.

Van Rompaye | To assess hospital performance by | Statistical | The proposed method for evaluating hospi-
B., Eriksson | comparing observed cause-specific model tal performance based on excess cause-spe-
M., Goetghe- | outcomes with expected outcomes, cific incidence provides a detailed assess-
beur E. [45] | aiming to identify areas where hos- ment of hospital outcomes and highlights

pitals can improve their care qual- performance gaps in specific disease treat-
ity. ment areas.
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Continuation of Table 2
Paper Task Method Findings
Delbrouck C., | To estimate excess mortality due to | Actuarial | Integrating epidemiological and actuarial
Alonso-Garcia | COVID-19 in Belgium and assessits | mortality | models provides a more accurate estimation
J. [46] implications for life insurance liabili- model of excess COVID-19 mortality and its finan-
ties and risk management. cial impact on life insurance products.
Erdus RA. et | To compare forecasted mortality Helig- COVID-19 has led to significant excess mor-
al. [47] rates under normal conditions with | man-Pol- | tality in Malaysia, particularly among indi-
the excess mortality caused by the lard viduals aged 60 and over, with men experi-
COVID-19 pandemic in Malaysia, model, | encinga delayed but more prolonged increase
using parametric models toassessthe | Rogers in mortality compared to women.
pandemic’s age-specific impacts. Planck
model
Wilasang C | To estimate excess all-cause and Linear | The COVID-19 pandemic has significantly
et al. [48] pneumonia mortality in Thailand dur- mixed increased all-cause mortality in Thailand,
ing the COVID-19 outbreak, using model with most excess deaths occurring among
generalized linear mixed models to older males and 75% directly attributable to
assess the direct and indirect impacts COVID-19.
of the pandemic on mortality rates.
Maruotti A., | To estimate COVID-19-induced ex- Linear | The Omicron variant caused significant ex-
Ciccozzi M., | cess mortality during the Omicron mixed cess mortality in several Italian regions dur-
Jona-Lasinio | wave in ltaly using a generalized lin- model ing early 2022 although the impact was nota-
G. [49] ear mixed model thataccounts for bly less severe than in previous COVID-19
regional variations and seasonal waves.
mortality patterns.

3.3. Methods of Basic and Effective
Reproductive Number Evaluation

Sisk and Fefferman [50] introduced a novel ap-
proach for calculating the basic reproductive number (Ro)
using network theory, specifically, the Max-Flow Min-
Cut (MFMC) theorem. The proposed method simplifies
the traditionally complex next-generation matrix ap-
proach, making it more accessible to a broader scientific
community by reducing the mathematical burden. The re-
sults demonstrate that the MFMC method is equivalent
to the next-generation matrix method and can be applied
to simple and complex epidemiological models. A key
strength of this approach is its accessibility and intuitive
nature, particularly for non-mathematicians, which can
accelerate real-time responses during outbreaks. How-
ever, a limitation is that the MFMC method may require
additional adjustments for models with non-closed sys-
tems or more complex dynamics, potentially reintroduc-
ing some of the computational difficulties it was designed
to avoid.

The study [51] presented a comprehensive frame-
work for comparing and combining different early esti-
mates of the basic reproductive number during the initial
phase of COVID-19. By decomposing R, into three key
components — exponential growth rate, mean generation
interval, and generation — interval dispersion — the study

enables a more consistent evaluation of disparate esti-
mates. This paperhighlights that many early Ro estimates
were overly confident because uncertainties in these
components. A key limitation of this study is its reliance
on early outbreak data from a narrow window in January
2020, which may not have captured the full scope of un-
certainties as the pandemic progressed.

Research [52] employs the Next Generation
Method approach to estimate the basic number of women
who have contracted COVID-19 in Ghana. The authors
used a SEIAHR (Susceptible, BExposed, Infectious,
Asymptomatic, Symptomatic, and Recovered) compart-
mental model and parameter estimates from real-world
data to determine that the Ro for Ghana was approxi-
mately 2.52. This study provides valuable insights into
the transmission dynamics of COVID-19 in Ghana, em-
phasizing how a small increase in transmission rates sig-
nificantly affects Ro. However, one limitation of this
study is its reliance on data up to July 2020, which may
not reflect the impact of subsequent pandemic waves or
the introduction of vaccines, potentially limiting the
long-term applicability of the results.

The study [53] outlined a framework for estimating
Ro during infectious disease outbreaks using case notifi-
cation data. This study explores various statistical meth-
ods, including the sequential Bayesian approach and
maximum likelihood estimation, and highlights the
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importance of the generation or serial interval in calcu-
lating Ro. This work's practical application is a key
strength because it allows real-time monitoring and as-
sessment of intervention effectiveness during outbreaks.
However, one limitation of this study is its reliance on
complete and accurate case notification data, which may
be unavailable or incomplete in real-world situations, po-
tentially affecting the accuracy of Ro estimates.

Al-Raeei M. [54] applies the SIRD (Susceptible, In-
fected, Recovered, Deceased) model to estimate Ro for
COVID-19 in multiple countries using real-world dataup
to July 2020. The study finds that the Ro values across
these countries range between 1.0011 and 2.7936, with
the Syrian Arab Republic having the highest Ro, indicat-
ing a higher transmission rate. A strength of this study is
its application of a consistent model across diverse geo-
graphical contexts, offering comparative insights into the
pandemic’s spread. However, one limitation is the use of
early pandemic data, which may not fully account for
later waves of infection or the effects of interventions
such as vaccination campaigns.

The paper [55] investigated the discrepancies in the
estimated effective reproductive number (Re) for
COVID-19 across various research groups in Germany
during 2020 and 2021. The authors assessed within- and
between-method variations by comparing the results of
the eight methods. They identified that differences in the
analytical choices, such as the data source, preprocessing,
generation time distribution,and delay assumptions, play
a significant role in shaping the results, sometimes more
than the statistical method. This paper's systematic ap-
proach to standardizing these analytical choices is a
strength that helps understand the sources of disagree-
ment between Re estimates. However, one limitation of
the study is that it focuses on retrospective analysis,
which may not fully capture the real-time challenges of
updating estimates during an evolving outbreak.

The study [56] presented a detailed analysis of the
transmission dynamics and reproductive numbers (Ro
and Re) of hypervirulent Neisseria meningitidis strains
circulating in Italy between 2012 and 2017, including a
major outbreak in Tuscany. Using a Bayesian method
and whole-genome sequencing, the study estimates Ro
to be between 1.22 and 1.4 for different subsets of the
data, with a peak R of 3.22 during the 2015 outbreak. A
significant strength of this study is its use of molecular
epidemiology to track population changes and transmis-
sion dynamics. However, this approach is limited by re-
liance on historical data, which may not fully account for
emerging strains or new public health interventions that
could influence transmission.

The paper [57] analyzes the effectiveness of lock-
down strategies in controlling the spread of COVID-19
by calculating Ro across different phases of lockdown

implementation. Using data from the Saudi Ministry of
Health and Google Mobility Reports, the study divided
the outbreak timeline into three intervals: pre-lockdown,
partial lockdown, and full lockdown. The results indicate
that Ro values slightly increased during the full lockdown
period, which the authors attribute to enhanced active
surveillance and improved healthcare accessibility, in-
cluding free medical care for all residents regardless of
their legal status. A limitation of this study is its reliance
on shorttime intervals for analysis, which may not fully
capture the long-term effectiveness of lockdown
measures. In addition, using mobility data from Google
does not represent the entire population because it is lim-
ited to individuals with GPS-enabled devices.

The study [58] estimated Ro of monkeypox during
the initial outbreak phase in three countries: England,
Portugal, and Spain. Using a branching process with
Poisson likelihood and gamma-distributed serial inter-
vals, the study found that Ro ranges from 1.4 in Portugal
to 1.8 in Spain, indicating sustained transmission in these
populations. A key strength of this study is its early esti-
mation of transmissibility, which provides valuable data
for informing public health responses. However, a limi-
tation of this research is its focus on ahomogeneous mix-
ing assumption and its reliance on early outbreak data,
which may not fully represent ongoing transmission dy-
namics, particularly in more diverse populations oras the
outbreak evolves.

The study [59] presented a novel approach using
network theory to estimate Ro for infectious diseases. By
applying graph-based models, this study demonstrates
how Ro can be accurately determined based on the struc-
ture of contact networks rather than relying solely on
compartmental models. This method accounts for heter-
ogeneous contact patterns within populations, which can
significantly impact disease spread. A key strength ofthis
approach is its flexibility in capturing complex transmis-
sion dynamics, especially when traditional models are in-
sufficient. However, this method has the limitation that it
requires detailed contact pattern data, which may notal-
ways be available in real-world settings.

Table 3 presents the overview of the Ry and Re.

Thereviewed papers illustrate a diverse range of ap-
proaches to estimating and analyzing Ro across various
infectious diseases, each of which contributes valuable
insights into the complexities of disease transmission and
the effectiveness of public health interventions. From
network-based models that account for heterogeneous
contact patterns to traditional compartmental models and
molecular epidemiology, these methods offer robust
tools for understanding disease spread. However, many
of these studies reveal limitations associated with early
outbreak data, population homogeneity assumptions, and
the availability of real-world contact patterns.
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Table 3
The overview of the basic and effective reproductive number evaluation methods
Paper Task Method Findings
Sisk A., To calculate the basic reproductive | MaxFlow | The Max-Flow Min-Cut (MFMC) theorem is
Fefferman | number that simplifies the complex | Min-Cut an accessible and computationally efficient
N.H. [50] mathematical processes of tradi- method alternative to the traditional next-generation
tional approaches, making it more matrix method for calculating the basic re-
accessible for real-time application productive number in epidemiological mod-
in infectious disease modeling. els.

Park SW. | To reconcile and combine early out- | Determinis- | Early estimates of the basic reproductive

etal. [51] break estimates of Ro while account- | tic andsto- | number for COVID-19 were often overly
ing for uncertainties in growth rates chastic confident due to underestimating uncertain-
and generation intervals, focusingon | branching | ties in key components like the exponential
the initial phase of the COVID-19 process growth rate and generation interval.
pandemic. model

Otoo D., To estimate Ro of COVID-19 in | Next Gen- | R, for COVID-19 in Ghana was 2.52, indi-

Donkoh EKK., [ Ghana using the Next Generation eration cating that each infected person was likely to
Kessie J.A. | Method and a SEIAHR compart- Method spread the virus to more thantwo other indi-
[52] mental model based on real-world viduals during the early stages of the pan-
data from March to July 2020. demic.
White L.F. | To estimate Ro from the case notifi- | Sequential | Real-time estimation of Ro using case notifi-
etal. [53] cation data to enable real-time mon- | Bayes esti- | cation data can provide timely insights into
itoring during infectious disease out- | mator and | outbreak dynamics, but its accuracy depends
breaks. maximum | on the completeness and reliability of the
likelihood | data.
method
Al-Raeei M. | To estimate Ro for COVID-19 in Runge- Ro for COVID-19 across eight countries
[54] eight countries using the SIRD Kutta ranged from 1.0011 to 2.7936, with the high-
model, analyzing differences in method est Ro observed in the Syrian Arab Republic,
transmission rates and providing in- indicating widespread transmission in that
sights into the pandemic's progres- region.
sion up to July 2020.
Brockhaus | To estimate the effective reproduc- Cori Discrepancies in estimates of the effective
EK. etal. [55]| tive number (Re) for COVID-19, method reproductive number (Re) for COVID-19 in
identify the sources of variation, and Germany are largely due to differences in
propose ways to standardize analyti- datasources, preprocessing methods, and as-
cal choices to improve consistency sumptions about generation time and delays
in real-time outbreak monitoring. rather than the statistical methods them-
selves.
Lo Presti A. | To estimate the reproductive num- | Bayesian Ro for hypervirulent Neisseria meningitidis
et al. [56] bers and analyze the demographic method strains circulating in Italy ranged from 1.22
dynamics of Neisseria meningitidis to 1.4, with a peak Rt of 3.22 during the 2015
strains in Italy, using Bayesian meth- outbreak, indicating significant transmission
ods and genomic data to track trans- potential.
mission during outbreaks.

Ahmad To evaluate the effectiveness of var- | Compart- | While the early implementation of lockdown
Alajlan S. | ious lockdown phases in Saudi Ara- mental strategies in Saudi Arabia helped contain the
et al. [57] bia by calculating Ro for COVID-19 model COVID-19 outbreak, Ro slightly increased

during different stages of the out- during the full lockdown period due to en-
break using mobility data and gov- hanced active surveillance and broader
ernment-reported infection rates. healthcare access.
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Continuation of Table 3

Paper Task Method Findings
Kwok K.O. | To estimate Ro for monkeypox in Poisson Ro values for monkeypox during the early 2022
et al. [58] the early phase of the 2022 out- | likelihood | outbreak ranged from 1.4 to 1.8 across Eng-
break using daily case data from method land, Portugal, and Spain, indicating sustained
three high-incidence populations transmission in immunologically naive popula-
to inform public health strategies tions.
for outbreak control.
Huisman To calculate Ry in infectious dis- Cori A network-theoretic approach offers a more
J.S. etal eases, and demonstrate its ad- method precise estimation of Ro by accounting for het-
[59] vantages over traditional compart- erogeneous contact patterns within popula-
mental models in capturing com- tions, improving the understanding of disease
plex transmission patterns. transmission dynamics.

The research on effective reproductive numbers further
underscores the impact of methodological choices on the
variability of estimates and highlights the need for stand-
ardized approaches to ensure consistency.

These limitations become more pronounced in the
context of emergent crises, particularly the full-scale
Russian invasion of Ukraine. The war has created condi-
tions where infectious disease outbreaks are more likely
due to overcrowding, limited medical access,and deteri-
orating sanitary conditions, further complicating the cal-
culation of Ro and the design of effective interventions.
These emergent contexts underscore the need for flexi-
ble, real-time models that incorporate rapidly changing
conditions and provide actionable insights for public
health responses in conflict zones and other crises.

4. Methodology

The proposed methodology is illustrated in Figure

The first step of the proposed methodology is data
preparation aimed at classifying and analyzing epidemic
threats caused by emergencies. This research also in-
volves conducting a retrospective and real-time epidemi-
ological analysis of infectious disease morbidity in the
context of changes in the dynamics and manifestations of
epidemic processes dueto Russia’s full-scale invasion of
Ukraine.

The methodology involves comprehensive data col-
lection, which focuses on gathering information on emer-
gencies-related epidemic threats through collaboration
with public health organizations. Specifically, for the
analysis related to Russia’s full-scale invasion of
Ukraine, data on infectious diseases, demographic shifts,
and other factors that may influence disease spread will
be collected. The next step is data preprocessing, which
includes cleaning to remove inconsistencies, duplicates,
and missing values and standardizing important variable
formats, such as dates, geographic identifiers, and disease

classifications, to ensure smooth integration and
compatibility of various datasets. Data normalization to
facilitate comparative analysis by adjusting for differ-
ences in population size, reporting standards, and diag-
nostic criteria over time is also part of this stage.

Epidemiological analysis forms the methodology’s
core, encompassing both retrospective and real-time as-
pects. The retrospective analysis focuses on identifying
trends in infectious disease dynamics before and after
emergencies, with particular emphasis on Russia’s inva-
sion of Ukraine, and assesseschanges in morbidity rates,
transmission patterns, and population vulnerability. Real-
time analysis focuses on monitoring the epidemiological
situation using near real-time data from various sources
to assess the current spread of infectious diseases and the
factors driving their dynamics. It also uses predictive
modeling to forecast the Russian war’s short-and long-
term impacts oninfectious disease dynamics.

The results of this comprehensive methodology in-
clude a detailed database of epidemic threats and infec-
tious disease data related to emergencies, with a specific
focus on the effects of Russia’s invasion of Ukraine. The
methodology also includes a set of classification schemes
for epidemic threats and epidemiological analyses de-
signed to support informed decision-making in public
health and biosecurity.

The development of machine learning models to as-
sess the impact of emergencies oninfectious diseases be-
gins with feature selection and design to identify key var-
iables affecting disease transmission, such as changes in
population density, healthcare availability, and environ-
mental factors. Statistical machine learning methods pro-
cess nonlinear relationships and interactions between
these variables. To ensure reliability and generalizability,
these models will be trained and validated on historical
datasets using cross-validation techniques. To assess the
impact of Russia’s full-scale war on Ukraine, the models
will be trained on data before the military invasion of
February 24, 2022, and applied to subsequent data.
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For deep learning, convolutional neural networks  be trained using backpropagation to minimize prediction
(CNN) will be designed to analyze spatial patterns ofdis-  errors and using dropout and batch normalization to pre-
ease spread based on incidence data. In contrast, recur-  ventoverfitting.
rent neural networks (RNN), particularly long short-term The framework for estimating the changes in epi-
memory (LSTM) networks, will be deployed to analyze  demic process dynamics caused by emergencies through
temporal dependencies and predict future epidemic dy-  simulation is presented in Figure 2.
namics based on past trends. Deep learning models will
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Mixed-effects models will be developed to assess
excess mortality from infectious diseases caused by
emergencies. These models incorporate random effects
that account for differences across regions and periods.
The proposed model compares observed mortality levels
during emergencies with those predicted by the model
under normal conditions, adjusting for factors such as
age, gender, and underlying health conditions.

To assess changes in the reproductive number (Ro
and Re) of infectious diseases, this methodology proposes
developing compartmental epidemiological models, such
as the SIR model, enhanced with additional states, inter-
action rules between states, and Bayesian inference meth-
ods for parameter estimation under uncertainty. These
models will be adapted to incorporate mobility data, vac-
cination rates, and non-pharmaceutical interventions to
dynamically assess howRo and Re evolve in response to
emergencies.

Experimental studies and the implementation of
technologies to support biosecurity decision-making dur-
ing emergencies include the creation of an information
system prototype based on the developed architecture
and specifications. A series of experimental studies is
planned during which the prototype will be tested under
simulated conditions mimicking real emergency scenar-
ios. The developed models, methods, and information
technologies will be implemented in Ukraine’s
healthcare system.

5. Discussion

This study introduces an innovative methodology
designed to assess the impact of emergencies on the
spread of infectious diseases, with a particular focus on
the complexities of large-scale conflicts like the full-
scale Russian invasion of Ukraine. The urgency of devel-
oping such a methodology is underscored by the pro-
found disruptions that emergencies impose on social
structures, healthcare systems, and environmental condi-
tions, significantly altering the dynamics of epidemic
processes.

The scientific novelty of our approach lies in its in-
tegrated use of advanced data analytics, machine learn-
ing, deep learning, and systems modeling to address com-
plex biosecurity and epidemiological challenges in the
context of emergencies. Unlike traditional models, our
methodology accounts for many factors that are often
overlooked but crucial during emergencies. These in-
clude biobehavioral changes, social disruptions, and en-
vironmental alterations that emerge as risk factors and
drivers of infectious disease spread during conflicts.

Technically, the methodology begins with a com-
prehensive data preparation phase that involves classify-
ing and analyzing epidemic threats specific to emergen-
cies. This includes collecting extensive data on infectious
diseases, demographic  changes, environmental

conditions, and healthcare disruptions. The data were
subjected to rigorous preprocessing to ensure accuracy
and consistency, involving cleaning to remove inconsist-
encies and standardization of variables to facilitate inte-
gration from diverse sources.

A core component of the proposed methodology is
the integration of machine learning and deep learning
models to consider how emergencies affect infectious
disease dynamics. By identifying key variables influenc-
ing disease transmission, such as population displace-
ment, healthcare accessibility, and environmental degra-
dation, we employ statistical machine learning methods
to process complex, nonlinear relationships between
these factors. For example, CNNs are used to analyze
spatial patterns of disease spread. At the same time,
RNNSs, particularly LSTM networks, capture temporal
dependencies and forecast future epidemic trends based
on historical data.

A significant innovation is the development of an
information systemarchitecture specifically designed for
analyzing epidemic threats in real-time. The proposed
system leverages the latest advances in data processing
and artificial intelligence to handle and analyze large vol-
umes of heterogeneous data. The ability to dynamically
adapt analytical models in response to the evolving na-
ture of emergencies ensures that decision-makers receive
relevant and up-to-date information. This dynamic adapt-
ability is achieved through the system’s capacity to in-
corporate new data streams and adjust model parameters
as conditions change, providing a more accurate and
timely assessmentofepidemic threats.

Our methodology includes developing sophisti-
cated models for assessing excess mortality and evaluat-
ing changes in key epidemiological parameters, such as
the basic reproductive number (Ro) and effective repro-
ductive number (Re), during emergencies. By incorporat-
ing complex variables affected by emergencies, such as
healthcare systemdisruptions and behavioral changes in
the population, we can offer a more precise and dynamic
evaluation of the impact on public health. For example,
mixed-effects models are employed to assess excess mor-
tality, accounting for variations across regions and peri-
ods, while enhanced compartmental models are adapted
to reflect altered transmission dynamics during emergen-
cies.

The practical implications of this methodology are
substantial. Providing a comprehensive and nuanced
analysis of the factors influencing disease spread during
emergencies enables policymakers and public health of-
ficials to make informed decisions regarding resource al-
location, intervention strategies, and preventive
measures. The ability to predict disease spread and iden-
tify high-risk areas facilitates targeted actions that are
crucial for mitigating the impact of infectious diseases
during crises.
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One of the key advantages of this methodology over
existing models is its holistic risk assessment approach.
Integrating biobehavioral, social, and environmental fac-
tors generated by emergencies captures the multifaceted
nature of epidemic threats in a way that traditional mod-
els, which often assume homogeneous populations and
static conditions, cannot. The methodology's flexibility
and adaptability are also significant strengths. It is de-
signed to adjustdynamically as new databecome availa-
ble and conditions evolve, ensuring that it remains rele-
vantand effective during an emergency.

The urgency of implementing such a methodology
in the modern world is evident. The increasing frequency
and complexity of emergencies demand advanced took
capable of handling their multifaceted challenges. Socie-
ties’ interconnectedness means that local emergencies
can have global repercussions, making it imperative to
enhance our capacity to assess and respond to epidemic
threats swiftly and effectively.

Despite the strengths and innovations of the pro-
posed methodology, several limitations must be
acknowledged. The primary limitation is the dependency
on data quality and availability during emergencies.
Emergencies, particularly large-scale conflicts, often dis-
rupt data collection processes, leading to incomplete, in-
consistent, or delayed datasets. This can adversely affect
the accuracy and reliability of machine learning models
and simulations, potentially limiting their predictive abil-
ity. To address these challenges, future research could ex-
plore integrating alternative data sources, such as satellite
imagery, remote sensing, and mobile data. These meth-
ods can provide valuable insights in environments where
traditional data collection is hindered or incomplete.

Additionally, integrating diverse data sources, in-
cluding epidemiological, demographic, environmental,
and social data, poses challenges in harmonization and
standardization. The computational demands of ad-
vanced machine learning and deep learning models are
also limited because they require substantial computa-
tional resources and technical expertise that may not be
readily available in all settings, especially in low-re-
source environments or during acute phases of emergen-
cies. To mitigate the computational demands, future ef-
forts could involve partnerships with international organ-
izations or leverage cloud-based platforms to ensure ac-
cess to scalable computational resources in low-resource
or conflict-affected environments.

This study significantly contributes to biosecurity,
public health preparedness, and emergency response by
presenting a methodology that advances our ability to
control epidemic threats during emergencies. Integrating
advanced analytics, machine learning, deep learning, and
systemmodeling provides amore accurate, dynamic, and
comprehensive assessment of the impact on public
health. This methodology not only fills current research

and application gaps but also sets the stage for more ef-
fective epidemic threat management in an increasingly
uncertain world.

These findings align with the principles of Big
Safety, which emphasize the integration of diverse safety
concerns, such as infection control and disaster mitiga-
tion. This multidimensional approach is essential for for-
mulating effective responses to public health emergen-
cies, particularly in conflict zones where disaster effects
and infectious disease outbreaks are often intertwined.
Addressing these interconnected risks through a Big
Safety lens enhances the resilience and preparedness of
healthcare systems in such environments.

Conclusions

This study presents a comprehensive methodology
for assessing the impact of emergencies on the spread of
infectious diseases, using the full-scale Russianinvasion
of Ukraine as a case study. This research has introduced
significant advancements in biosecurity and epidemiol-
ogy by integrating advanced data analytics, machine
learning, deep learning, and systemmodeling.

The novelty of our approach lies in its integrated
methodology, which combines cutting-edge data analyt-
ics with machine learning and deep learning models to
tackle complex biosecurity and epidemiological chal-
lenges in the context of emergencies. For the first time,
we have identified the driving forces, developmental
characteristics, and manifestations of the epidemic pro-
cesses of current infectious diseases during a large-scale
war in a European country. This includes accounting for
the complex interplay between social and natural factors.
Unlike existing models, our methodology incorporates
biobehavioral, social, and environmental components
generated by the conflict, recognizing their roles as risk
factors and drivers of epidemic processes. This compre-
hensive perspective enables the development of strate-
gies to mitigate or eliminate the negative impact of infec-
tious disease morbidity.

A key contribution of this study is the development
of an information system architecture specifically de-
signed for analyzing epidemic threats. This new structure
integrates real-time data collection, advanced analytics,
and ergonomic information visualization. The proposed
systemcan handle and analyze large volumes of hetero-
geneous data by leveraging the latest advances in data
processing and artificial intelligence. Its ability to dy-
namically adapt analytical models in response to the
evolving nature of emergencies provides decision-mak-
ers with relevant and timely information, enhancing their
capacity to implement effective interventions.

Integrating machine learning and deep learning
models allows to explore more deeply how emergencies
influence the dynamics of infectious diseases. We have
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developed new models and methods capable of rapidly
adapting to emergencies by considering new factors that
affect epidemic processes. This represents a significant
advancement in predictive epidemiology, providing de-
tailed and comprehensive insights into disease dynamics
in crisis contexts.

The study contributes to the field by developing so-
phisticated models for assessing excess mortality and
evaluating changes in key epidemiological parameters,
such as the basic reproductive number (R, ) and effective
reproductive number (Re), during emergencies. By incor-
porating complex variables affected by emergencies,
such as healthcare systemdisruptions and changes in hu-
man behavior, our approach provides a more accurate
and dynamic assessment oftheir impact on public health.

In future research, it will be essentialto validate and
refine the proposed methodology across different types
of emergencies and regions to enhance its generalizabil-
ity and effectiveness. Improving data collection methods
during emergencies is crucial, potentially through remote
sensing technologies, mobile data collection platforms,
or international collaborations to ensure reliable and
timely data. Optimizing the computational efficiency of
models will also make advanced modeling techniques
more accessible in various settings, including low-re-
source environments.
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METOJIOJIOI' ISl OLIHKU BIUIMBY HAJI3BBUMANHUX CHUTY AL
HA MOIIUPEHHS IHO®EKI[IHHUX XBOPOB

/. 1. Yymauenko, K. O. bazinesuu, M. B. Bymxkeeuu, €. C. Mensiinos,
10. JI. Hapgenmox, €. B. Cioenko,
T. O. Yymauenxo

Ha nmommpenns iH}eKmiifHNX 3aXBOPIOBaHb 3HAYHO BIUIMBAIOTH HA3BHYAMHI CHTyalil, 30KpeMa BifiCbKOBI KOH-
GIIKTH, SKi TOPYIIYIOTh (YHKIIOHYBAaHHS CHCTEM OXOPOHHM 3I0POB'S Ta MIIBHINYIOT PU3HKH emineMiit. [ToBHOMac-
mrabHe pocifichke BTOPTHEHHS B YKpaiHy Ie OUbIie 3arOCTPWIO IIi MPOOJIEMH, CIPUIHHHUBIIM €KOJOTIYHI MOIIKO-
JDKCHHSI, MacOBI IIEPEMIIlICHHS HACCJICHHS Ta PyWHYBaHHsS CHCTEMH OXOPOHH 3/I0POB’sl, IO CIPUsIE MOMIUPEHHIO iH-
¢dexuiiiHnx 3axBoproBaHb. MeTOI0 IOCTiHKEHHS € po3p0o0Ka KOMIUIEKCHOT METOOJIOTIl /I OLIHKU BIJIUBY HaJ3BH-
JaifHUX CUTyallil Ha MOMMPEHHS iH(eKIIHHIX 3aXBOPIOBAHb, 30CEPEPKYIOUNCH HAa TOBHOMACIITAOHOMY BTOPTHEHH
Pocii B Ykpainy. O0'€KkToM IOCIMKEHHS € eMigeMidHi 3arpo3u, M0 BHHUKAIOTh Y 3B'I3Ky 3 Ha3BUYaHHUMH CHTya-
IiIMH, 30KpeMa 301IbIIeHe TTOMMPEeHHS H(EeKIiifHNX 3aXBOpIOBaHb depe3 paxropy, BUKIHKaHI BiffHOI0. IlpenmeTomM
JOCHIDKEHHST € METOM 1 MOt Iiepeadi iH( eKIiHHNX 3aXBOPIOBaHb B YMOBaX Ha/BBHYANHNX CUTYaIlii, 3 aKIEHTOM
Ha MOBHOMACIITA0HE pOCiiickke BTOPTHEHHs B YKpaiHy. 3agadi JOCIiHKEHHs MMOJSraloTh B aHAII3I MOTOYHOTO CTAaHY
JIOCTIDKEHb 1 p03p0o011i METOA0JIOTIi OLIHKY BIUIMBY HaI3BHYAWHUX CUTyallill Ha MOMIMPEHHS iH(EKIIHHUX 3aXBOPIO-
BaHb. 3alPOIIOHOBAHA METO0JIOTisl BKIIOYAE KiTbKa KIFOUOBHX KOMIIOHEHTIB. KoMIUeKkcHI NMaHi Bill yCTaHOB 0OXO-
POHU 30POB'SI MICTATh CTATHCTHKY iH(EKIIHHUX 3aXBOPIOBaHb, JeMOoTpaQiuHi 3MiHHU, TOPYIICHHS B OXOPOHIi 3710pO-
B'Sl Ta €KOJIOTIUHI (paKTOpH, 3aroCTpeHI Ha/BBUYAHUMHE cHTyalisMu. [lonepenas o6poOka maHux 3abesmneuye ycy-
HEHHS HEBIIMOBITHOCTEH, CTaHmapTH3aImilo (opMatiB i HOpMai3alilo Il BpaxyBaHHS PIi3HHIN B po3Mipax Hace-
JIeHHs. MoJen MallMHHOTO HaBYaHHS, BKIFOYAI0YH 3rOPTKOBI HEHPOHHI MEpexXi Ta peKypeHTHI HEUPOHHI Mepexi,
PO3pOOIIIOTECS sl MOJICIIIOBAaHHS MOIIMPEHHS 3aXBOPIOBaHb HA OCHOBI AeMOTpa(iuyHUX, SKOJOTIYHUX i MEIUYHUX
3MiHHMX. Mogeni rmmOoKOTOo HABYAHHA aHAN3YIOTh MPOCTOPOBI Ta YaCOBi 3aKOHOMIPHOCTI, TOAI IK KOMIApTMEHTHI
Mozem, Taki sk SIR, omiHIOIOTs 3MiHK B penpoaykruBHEX udnciax (Ro i Re). Kpim Toro, Mmozeni HammmkoBoi cmep-
THOCTI BKJIFOYAIOTh 3MiMIaHi e(eKTH Ui BpaxXyBaHHS pPETIOHAIBHMX Ta YaCOBHX Bapiamiil. MeTomosorisi BKIOYae
MOHITOPHHT €MiIEMITHAX 3arpo3 y PEKUMI peabHOTO Yacy 3 BUKOPUCTAHHAM JaHUX 3 PI3HUX DKEped, IO Ja€ 3MOTyY
JIMHAM 9HO OIIIHIOBATH TOIIHPCHHS 3aXBOPIOBAHD 1 CIPHSE NMPOTHO3HOMY MOJICIIIOBAaHHIO. MoJemi TpeHYIThCS Ha
ICTOpMYHUX JAHUX 1 BEpUQIKYIOTHCS 32 IOMOMOIOI0 METOIB MEpPeXpecHOl MepeBipky, Moo 3a0e3MeYnuTH HaIiiHIC Th
1 MOXIIMBICTh y3arajbHEHHs, 3 OCOOJMBUM aKIIEHTOM Ha Mepioad JO i micis BTOpTHEHHA B YKpaiHy. PesyasTaTm:
JlocTivkeHHS MPOMOHY€ KOMIIIEKCHUN (hpeMBOpK mist 300py Ta 00poOKH maHUX MO iH(EKIiHHI 3aXBOPIOBAHHS Ta
eMineMiuHi 3arpo3u B yMOBaxX Ha/BBUYAHNX cuTyaliil. Po3pobieHi Moeni MalIMHHOTO HABYAHHS Ta CMifeMioyori-
9HI MOJeN, SKi TPeHyBaCA Ha JAHWX O Ta IICII BTOPTHEHHS, O3BOJIITH AHANI3YyBAaTH 3aKOHOMIPHOCTI Iepemadi
3aXBOPIOBaHb Ta MPOTHO3YBATH JMHAMIKY MaiOyTHIX emigeMiii. BuCHOBOK: 3ampomoHOBaHAa METOJNOJIOTIS yCyBae
MOTOYHI MPOTAJMHU B MOJICJTIOBAHHI 1H( eKIIHUX 3aXBOPIOBAHb B YMOBAax HaI3BUYAMHUX CUTYyAaIlild, IHTETPYIOUH JaHi
B peaJbHOMY Yaci Ta TeXHIKA MaIlIMHHOTO HaB4YaHH. [le JOCimKEeHHs TMOKpaIlye Ipouec MPURHATTA pilieHb y cdepi
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YIIPaBIiHHSA OXOPOHOIO 3M0POB’s Ta 6i00e3MeKH i Yac Kpu3, 0COOIMBO B peTiOHAX, MOCTPAKAAIUX Bill BIHHH, TAKHAX
sK YKpaiHa.
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