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THE METHOD OF DETERMINING OPTIMAL CONTROL
OF THE THERMOELASTIC STATE OF PIECE-HOMOGENEOUS BODY
USING A STATIONARY TEMPERATURE FIELD

This paper proposes a new highly effective method for determining the optimal control of the stress-strain state
of spatially multi-connected composite bodies using a stationary temperature field. The proposed method is con-
sidered based on the example of a stationary axisymmetric thermoelastic problem for a space with a spherical
inclusion and cavity. The proposed method is based on the generalized Fourier method and reducesthe original
problem to an equivalent problemof optimal control, in which the state of the object is determined by an infinite
system of linear algebraic equations, the right-hand side of which parametrically dependson the control. At the
same time, the functional of the cost of the initial problemis transformed into a quadratic functional, which
dependson the state of the equivalent system and parametrically on the control. The limitation on the tempera-
turedistribution isreplaced by the value of the control norm in the space of square summable sequences. In fact,
this paper considers for the first time the problem of optimal control of an infinite system of linear algebraic
equationsand develops a method for its solution. The proposed method is based on presenting the solutions of
infinite systems in a parametric form, which makes it possible to reduce equivalent problem to the problem of
conditional extremum of a quadratic functional, which explicitly depends on the control. A further solution to
thisproblemA further solution to this problemisfound by the Lagrange method using the spectral decomposition
of the quadratic functional matrix. found by the Lagrange method using the spectral decomposition of the quad-
ratic functional matrix. The method developed in this paper is strictly justified. For all infinite systems, the
Fredholm property of their operatorsis proved. As an important result necessary for substantiation, for the first
time, an estimate from below of the module of the multi-parameter determinant of the resolving system of the
boundary value problemof conjugation —space with a spherical inclusion —was obtained when solving it using
the Fourier method. The theorem that establishes the conditions for the existence and uniqueness of the solution
of equivalent problem or optimal control problem without restrictions in the space of square summable se-
quences is proved. The numerical algorithmis based on a reduction method for infinite systems of linearalge-
braic equations. Estimates of the practical accuracy ofthe numerical algorithmdemo nstrated the stability ofthe
method and sufficiently high accuracy even with close location of the boundary surfaces. Graphs showing the
optimal temperature distribution for various geometric parameters of the problem and their analysis are pro-
vided. The proposed method extends to boundary value problemswith different geometries.

Keywords: optimal control; thermoelastic state; stationary temperature field ; multi-connected piecewise homoge-

neousbody; generalized Fourier method; infinite systemof linear algebraic equations; Fredholmoperator; quad-
ratic functional; spectral expansion; reduction method.

The mathematical theory of optimal control began
to take shape in the 1950s. Its basis was the maximum
principle, which was formulated by L. S. Pontryagin and
proved for linear systems by R. V. Gamkrelidze, and for
nonlinear systems by V. G. Boltyanski. These results

1. Introduction

1.1. Motivation

The theory of optimal control today is the key to

solving many practically important engineering problems
in all areas of human activity. Let's list only some of
them, which are not quite traditional: management and
economics [1], construction design [2], biology [3], in-
surance [4], and finance [5]. Separately, the problems of
designing mechanical objects that are planned to be op-
erated under temperature fields should be addressed.
Here, the temperature can act as a control in minimizing
stresses in the zones of their possible concentration, par-
ticularly at the interphase boundaries in composite bod-
ies.

were first announced at the Edinburgh Mathematical
Congress in 1958 and were printed in the Westin the ar-
ticle [6] and monograph [7]. Around the same time, R.
Bellman made an important contribution to theory [8, 9]
by using the dynamic programming method he created to
solve some optimal processes problems. The next quali-
tative step in this area was connected to the development
of the optimal control theory for systems with distributed
parameters. At the first stage, when control was consid-
ered as the right-hand parts or coefficients of the minor
derivatives in differential equations that described the
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state of a certain class of physical and technical systens,
the necessary optimality conditions were obtained by di-
rect generalization of the classical principle of maxima.
Many printed works from this period can be found in
monograph bibliographies [10]. Atthesame time, studies
have described optimal systems by linear differential op-
erators of elliptic, parabolic, and hyperbolic types. In the
monograph [11], similar problems are considered when
the cost functional is quadratic. The necessary extremity
condition was obtained in the form of variational inequal-
ities, which were further reduced to so-called one-sided
boundary value problems. The authorrelied on the results
of the article [12], which proved the theorem of existence
and uniqueness of the solution of variational inequalities
for bilinear functionals in an abstract equipped Hilbert
space. Note that for the first time, the technique of varia-
tional inequalities and one-sided boundary value prob-
lems was proposed by G. Fichera [13] when solving the
Signorini problem in the theory of elasticity. In further
studies, optimal problems were considered in which con-
trol was included in the main parts of linear differential
operators, which specified the state equations of the sys-
tem. The monograph [14] showed that the necessary op-
timality conditions for such problems depend on the
shape of the small region in which control variation oc-
curs. In addition, the author showed that writing the dif-
ferential equation of the problem in a certain form (anal-
ogous to the normal Cauchy form for systems of ordinary
differential equations) makes it possible to obtain the
same derivation of optimality conditions for different
types of differential equations. It must be said that L. S.
Pontryagin's formulation of an optimization problem
with control constraints, for which it was impossible to
directly apply the classical calculus of variations, and the
appearance of the maximum principle led to a large num-
ber of theoretical and applied studies in the field of opti-
mal control. For more than 60 years of research in this
field, thousands of scientific articles have been pub-
lished. It is impossible to give them a superficial review.
However, even today, many problems have notyet been
solved and require the creation of new methods for re-
search. The following is an analysis of some publications
in recent years on key areas of the development of the
theory of optimal control of systems with distributed pa-
rameters.

1.2. State of the art

All research was aimed at generalizing the results
obtained from the classics of theory in the first decades
of its formation. First, this concerns the expansion of the
classes of differential equations that control optimal sys-
tems dueto the consideration of equations with a certain
type of nonlinearity: semi-linear or quasi-linear, with the

presence of degeneracy in the higher terms or singulari-
ties in the coefficients or in the control, with different
types of inclusion control in the differential equation: on
the right-hand side or in the coefficients of the derivatives
and even in the senior terms. This led to the development
of the differential equation theory. In practical terms, all
studies have proved theorems of the existence and
uniqueness of solutions to boundary value problems,
which act as constraints on the state of the systemin op-
timization problems. The existence of optimal controk
and the necessary conditions for them are also estab-
lished. Usually, a mathematical apparatus based on Sob-
olev spaces, embedding theorems, a priori estimates, and
weak or soft solutions of differential equations is used.
Optimization problems with controlincluded in the equa-
tions and boundary conditions are considered, with dif-
ferent types of cost functionals and pure or mixed con-
straints on the state and control of the systemin the pres-
ence of concentrated or distributed delay. A separate re-
search direction is devoted to the development of numer-
ical methods for solving optimal control problems. A
characteristic feature of such works is the establishment
of various types of convergence of the approximate solu-
tions to exact ones.

We now provide an overview of individual works
that characterize the indicated areas of research. One of
the pioneering works devoted to the extension of
Pontryagin's maximum principle to differential equations
in partial derivatives is [15]. It considers the optimal con-
trol of a semi-linear elliptic equation in the case of dis-
tributed control in the domain and at its boundary with
additional restrictions on the state of the system. This
study constructs a conjugate boundary value problem in
which penalty functions are included as additional terms
on the right-hand side of the differential equation and
boundary condition. The Hamiltonian function is sepa-
rately formed for the control domain and its boundary.
The necessary condition forthe existence of optimal con-
trol is obtained, where both Hamiltonian functions reach
a minimum. In [16], a class of optimal control problems
for quasi-linear elliptic equations, in which the coeffi-
cients of the elliptic differential operator depend on the
state function, is considered. The conditions of the first
and second order of optimality were found. For this pur-
pose, the solutions of the system state equation and its
linearization were studied in detail. An analogue of
Pontryagin's maximum principle and sufficient optimal-
ity conditions are derived. In [17], a strong convergence
of numerical discretization of the problem of optimal
control for a quasi-linear elliptic equation was proved us-
ing the method of finite elements for the state and differ-
ent types of discretization for control. For this purpose,
the authors estimated the errors in the discretization of
the equation of state and the associated conjugate equa-
tion. The regular solutions of these equations, which are
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required for this analysis, are found from the necessary
optimality conditions of the first order obtained in the ar-
ticle [16]. The work [18] considers the problem of opti-
mal control for one class of nonlinear elliptic equations
of the Reynolds equation type. The existence and unique-
ness theoremof the weak solution of the equation of state
of the systemis proved. The existence of optimal control
is also proved. The proposed method is based on Sobolev
embedding theorems. Numerical results were obtained
by discretization using the characteristic functions of par-
tition intervals. The application is described to determine
the optimal distance of the recording head from the mag-
netic disk. The article [19] considers the problem of op-
timal control for the stationary Stokes equation. The
speed limit is given by the L, -norm. The optimality con-
ditions of the first order for continuous and discretized
systems are derived from the Karush-Kuhn-Tucker con-
ditions for the Lagrange functional after replacing them
with weak differential conditions. When discretizing the
system, Galerkin spectral approximations are used to ob-
tain a priori error estimates. Numerical solutions to the
problem were obtained with the help of Yuzawa's itera-
tive algorithm and projection scheme. New problems re-
lated to the optimal control of distributed systems are
considered in [20], and they are described by boundary
value problems for an elliptic equation in the union of
two bounded strictly Lipschitz domains Q =0, UQ, .

The domains Q; have a common boundary section on

which the conjugation conditions are set in the form of
the heat conduction equation. Control is included on the
right-hand side of the differential equation. The existence
and uniqueness of the solution to the boundary value
problem is demonstrated using the Lax-Milgram theo-
rem. A similar theorem for optimal control, which be-
longs to the convex closed set of the equipped Hilbert
space, is proved using the generalized solution ofthe con-
jugate equation and the quadratic cost functional. For all
described cases, theorems of existence and uniqueness of
optimal controls are proved. The article [21] considers
the problem of optimal control in two- and three-dimen-
sional Lipschitz polytope domains using a semi-linear el-
liptic equation with boundary conditions of the first kind
and additional control restrictions. For the computational
scheme proposed by the authors, which discretized the
state equations and conjugate equations with piecewise
linear functions and the control variable with piecewise
constant functions, an estimate of the accuracy of the ap-
proximate solution was obtained. The error estimate is
decomposed into the sum of three components related to
the discretization of the state and conjugate state equa-
tions, as well as the control variable. Such estimation is
important for error control in adaptive finite element
method. A new approach to error control and adaptation

of the finite element method for the discretization of op-
timization problems governed by partial differential
equations was developed in [22]. The Lagrange formal-
ism is used to calculate the stationary points of the nec-
essary first-order optimality conditions. Grid adaptation
is driven by a posteriori error estimates based on grid cell
residuals. A feature of the considered problem is the nat-
ural selection of the error control functional, which coin-
cides with the cost functional of the optimization prob-
lem. The Lagrange multiplier is used to weight the cell
residuals in the error estimation. In [23] considers an op-
timization problem for a linear parabolic equation with
control, which is included on the right-hand side of the
equation and in the boundary condition. The primary re-
sult of this work is the application of the gradient projec-
tion method to find optimal control. The formula for the
gradient of the cost functional was obtained by solving
the conjugate boundary value problem. The theorem on
different types of convergence of the control sequence
that minimizes the cost functionalis also proved. The pa-
per [24] considers the optimization problem for a quasi-
linear parabolic equation, in which the controlis included
as a vector parameter in the coefficients (including the
senior one) and in the boundary conditions. The peculi-
arity of the formulation of the problem is that control is
not considered a process but a point on the sphere in a
finite-dimensional Euclidean space. This study imple-
ments a classical approach according to which the neces-
sary optimality condition is found from the maximum
principle, which is formulated for the Hamiltonian func-
tion constructed using the solutions of the original and
conjugate boundary value problems. The numerical algo-
rithm for solving the problem uses an iterative scheme
and conjugate gradient method. Optimization problems
governed by semi-linear parabolic equations with control
under boundary conditions were studied in [25]. A fea-
ture of these problems is the pointwise mixed constraints
on the control and state ofthe system. The necessary con-
ditions for the existence of optimal control in certain
functional spaces are studied, as well as the conditions
for the regularity of Lagrange multipliers, which are used
in the construction of conjugate equations. The paper
[26] considers a linear parabolic equation in the domain
(0,T)x(-1,1) with bilinear control, which acts on a subset

of the interval (—1,1) . The diffusion coefficient degener-

ates at the endpoints of the interval. The authors proved
the existence and uniqueness of a weak solution to the
boundary value problem for the original equation, the ex-
istence of an optimal control for a quadratic functional
with a regularizing term. The necessary condition for the
first order in the optimal control problem is obtained in
the form of a variational inequality with respect to the
Frechet derivative of the cost functional. A sufficient
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condition for the existence of optimal control is also de-
rived. In work [27] mixed integer optimization with con-
straints in the form of a partial differential equation of
evolutionary type was considered. The operator of the
equation is an infinitesimal generator of a uniformly con-
tinuous semigroup of linear bounded operators. Discreti-
zation of the problem is carried out in time after rotation
of the evolutionary operator using a convolution opera-
tion. Discretization by spatial variables is based on the
grid method. The proposed method solves the problem of
optimal placement of heat sources in the domain while
limiting their number. In [28], the problem of optimal
control of the heat conduction equation with non-convex
constraints was considered. The problem is related to the
practical process of additive layer production, which is
used to manufacture three-dimensional details from
metal powders by layer-by-layer melting of the material.
The laser beam scans the surface of a detail covered with
powder, heating it to the required level. A quadratic func-
tional with components that depend on the deviation of
the temperature of the detail from the nominal value, the
gradient of the temperature field, and the control: the tra-
jectory of the laser beam along the scanning area is min-
imized. Trajectory conditions lead to non-convexcontrol
constraints. The result of this work is the necessary opti-
mality condition obtained in the form of a variational in-
equality. In [29] considers the optimization problem for
a semi-linear parabolic equation, in the right-hand part of
which the control and state are included in the form of a
bilinear form. The control constraints are given by two

boundary functions from space L”((0,T)xQ). Under

certain conditions of monotonicity of the integral func-
tional, it is proved in this work that any solution of the
optimization problem is given by a bang-bang function,
which is constructed in the form of a linear combination
of the characteristic functions of a measurable set
E < ((0,T)xQ2) and its complement. The coefficients of

characteristic functions are boundary functions that spec-
ify the admissible control set. In this problem, optimiza-
tion is actually carried out in domains thatare carriers of
characteristic functions. Similar problems refer to form
optimization problems. In the article [30], an abstract
evolutionary equation of the parabolic type with delay
was studied, in which the operator was a generator of an
exponentially stable semigroup. The delay is considered
to be distributed on the segment of the real axis and is
included in the state of the system, on which the addi-
tional term of the equation depends. The cost functional
is formed in a similar manner. The necessary optimality
condition is expressed in the form of the maximum prin-
ciple of the Pontryagin type. Similar problems arise, for
example, when controlling heat flow in bodies made of
materials with memory, where the generalized (not local)
Fourier law is already fulfilled. In [31], the problem of

optimal control for asemilinear vectorparabolic equation
in partial derivatives was considered. The control varia-
ble is included in the matrix of coefficients for higher de-
rivatives. The necessary condition of optimality leads to
the maximum principle, which is expressed analogously
to the classic case. The proof is based on the use of the
method of needle variations, which is chosen in such a
way as to obtain the necessary differentiability of the
state of the system with respect to control. The article
[32] investigated a systemdescribed by an implicit dif-
ferential operator equation of the parabolic type, which is
insoluble with respectto the higher derivative. Control is
included on the right-hand side of the equation in both
conventional and pulsed forms. Optimization is carried
out according to two types of control, where pulses are
considered at fixxd moments in time and are controlled
using their intensities. The problem of optimizing the
time points of impulses is separately considered. The re-
search method is based on the solution of the differential
equation constructed using the operator semigroup,
which is represented by the integral of the pseudo-resok
vent of the operatorbundle. The article [33] examines the
issues of optimal control of the non-stationary tempera-
ture state of homogeneous and layered plates with simul-
taneous control of the temperature and power of the heat
flow in separate areas of the plate. A quadratic functional
given in a certain Hilbert space is selected as the cost
functional. The existence and uniqueness of optimal con-
trol in a convex closed domain of the space of functions
that are square-integrable on the segment of the time axis
are proved. For a folded plate, in addition to the boundary
conditions, conjugation conditions for non-ideal thermal
contact between layers are added. An approximate solu-
tion to the problem is obtained using the gradient method
after obtaining an explicit form of the functional residu-
als.

Separately, we consider some problems related to
the optimal control of the thermoelastic states of bodies.
A study [34] analyzed a coupled stationary optimization
thermoelastic problem for an arbitrary finite body with
mixed boundary conditions for the temperature and dis-
placement fields and boundary control. The necessary
conditions for optimality are first derived by classical
variational calculus methods with the help of Lagrange
multipliers. These conditions include a system of differ-
ential equations with respect for temperature, displace-
ments, and conjugate functions. For the numerical solu-
tion of the problem, a method is proposed in which the
spatial discretization of differential equations is achieved
using the finite element method, and the conjugate gradi-
ent method is used to minimize the cost function. For the
numerical solution of the problem, a method is proposed
in which the spatial discretization of differential equa-
tions is achieved using the finite element method, and the
conjugate gradient method is used to minimize the cost
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function. In [35], the setting and construction ofanumer-
ical solution to the problem of optimal control (in the
sense of speed) of heating the plate by internal heat
sources in the presence of control restrictions and the
maximum absolute thermal stress is investigated. The
method for solving the inverse thermal conductivity
problem was combined with the finite difference method
for the analysis of the direct problem. The purpose of the
work [36] was to control the deformation and tempera-
ture of a thermoelastic body by influencing it via an ex-
ternal force acting on its part. The formulation of the
problem differs from the classical one because it lacks
information about the initial data - movement and tem-
perature distribution in the body. The incompleteness of
the data led to the need to usethe developed J.-L. Lions
concept of win-win control (Pareto control). For its im-
plementation, the authors introduced a sequence of cost
functional that depend on an additional parameter. At
each value of parameter, the cost functional corresponds
to the control with minimal loss. It is shown that lossless
control can be obtained from the control with minimal
loss via the passage to limit, provided that the specified
parameter tends to zero. In work [37], on the basis of the
inverse problem of thermomechanics, a mathematical
statement of the problem of optimal (in terms of speed)
control of heating of thermosensitive canonical bodies
(infinite layer, hollow cylinder or sphere) with re-
strictions on control and maximum tangential thermal
stress, taking into account plastic deformation of the ma-
terial, was developed; an algorithm for numerical con-
struction of the solution was also developed. In [38], a
method of the quasi-static inverse problem of thermoe-
lasticity was developed for solving the problem of opti-
mal (in terms of speed) control ofa two-dimensional non-
axisymmetric non-stationary thermal regime in a long
hollow cylinder with restrictions on thermoelastic
stresses. With the help of this method, the problem was
reduced to a Fredholm integral equation of the first kind,
and a method for its stable regularized solution was de-
veloped. The paper [39] solves the problem of optimal
control of a stationary two-dimensional thermoelastic
state in a given section of a plane-deformed half-space.
The power of the internal heat sources is determined by
the control function. The quality functional is determined
by the uniform deviation of the components of the dis-
placement vector or stress tensoron a certain half-space
plane. Assuming the existence of optimal control in the
space of continuous functions, the initial problems are re-
duced to integral Fredholm equations of the first kind,
which are solved by using the integral Fourier transform
and applying the method of the inverse problem of ther-
moelasticity. The paper [40] considered the problem of
determining the optimal stress regime for heating a piece-
homogeneous cylindrical glass shell with a constant
thickness, provided there is no external load. The shell is

heated convectively by continuously distributed external
heat sources. The inner surface of the shell is thermally
insulating. The goal of this problem is to find the heating
mode of the outersurface of the shell from its initial tem-
perature to a given one at a fixed moment of time under
certain restrictions on the parameters of thermal stress
state and heating rate. The optimality criterion is the min-
imum condition of meridional and circular normal
stresses. A method based on the principle of stepwise par-
ametric optimization with varying values of the control
function and discretization step refinement is proposed.
After averaging the shell thickness, the problem becomes
a one-dimensional one in the spatial variable. A study
[41] considered the problem of optimal control of the ax-
isymmetric thermal stress state ofasolid cylindrical body
by changing the distribution of volumetric heat sources.
To solve this problem, an approach based on the varia-
tional method of homogeneous solutions, which was de-
veloped earlier for solving axisymmetric problems in the
theory of elasticity, is used. The article [42] investigates
the two-dimensional stationary problem of optimal con-
trol of the temperature stresses of a plane-strained half-
space. The temperature of the environment at which con-
vective heat exchange occurs through the boundary sur-
face of the half-space is selected as the control function.
The quality functional is given by the norm of the devia-
tion of the individual components of the stress tensor
from the specified value. The optimal control in the class
of continuous functions was found by the method of the
inverse problem of thermoelasticity and the Fourier co-
sine transformation technique. A similar problem was
considered for vertical displacements [43]. We also note
that with a broader interpretation of optimality, the theory
of optimal control intersects with the theories of auto-
matic and adaptive control [44].

1.3. Objective and Approach

Based on the above bibliographic review, among
the published scientific works, there are actually no stud-
ies on the optimal controlof distributed systems in multi-
connected spatial domains.

This work presents anew effective method for solv-
ing the problem of optimal controlof mathematical phys-
ics equations for spatially multi-connected canonical do-
mains. The proposed method is considered on the exam-
ple of the problem of optimal control of the temperature
field of the thermo-stressed state of space with a spherical
inclusion and cavity. The method is based on the gener-
alized Fourier method (GFM) [45], which was developed
by one of the authors of the article and its development
[46]. It makes it possible to reduce the original problem
toan equivalent problem of optimal control, in which the
state of the object is determined by an infinite systemof
linear algebraic equations. The existence and uniqueness
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theorem of the optimal solution ofthe equivalent problem
in the class 1,, as well as an effective and stable algo-

rithm for its numerical solution, were obtained.

2. Formulation of the problem

The problem of optimal control of the stress-strain
state of a piecewise homogeneous elastic space using a
stationary temperature field is considered. We consider
that the space Q) contains a spherical inclusion €, and

a spherical cavity Q,, the centers of which are located at
points O, and O, (] 0,0, |=2,,). Theradii oftheinclu-
sion and the cavity are equal to R, and R,, respectively
(R +R; <z;,), and we denote their boundaries I"; and

r,. The (©Q0.)
(Qy =0\, UQ,) has thermomechanical characteris-
tics (Gj, vy, aj Kj) (j=0;1), where G is the shear

two-phase system

modulus, V is Poisson's ratio, O is the coefficient of
linear temperature expansion, k is the thermal conduc-
tivity coefficient.

It is necessary to determine the temperature field in

thedomains Q; (j=0;1) (actually the temperature distri-

bution T, onthesurface T", ), which satisfies the follow-
ing conditions:

20 VU)o, TIGT xea: ()
.+ )=0; . X e ,
) 1—2vj ) Jl—2vj ) )
VAT, =0, XxeQy; o)
aT, aT,
Tor, = Ty, (ko 8_0] Z( 1a—lj N )
M, M,

(Do)u_l :(Ul)u"1 ' (FUO)W1 :(Fol)m; )
(FUO)H-Z :ﬁrz ' ()
|F—1|I|FU0 ? ds — min, 6)
1lE
|r1|jT§ds:T2. @
21y

Here T;, Uj (j=0;1) denote the temperature field and
the field of displacements in the domain Qj, FUJ- —vector

of stresses on the surfaces of the inclusion or cavity, cor-
responding to the vector of displacements UJ-, f —given

vector function, V — nabla operator, ﬁl — unit vector

normal to the surface I, |I'j| — surface area I},

il
T - given positive constant.
Let's introduce two equally directed spherical coor-

dinate systems (I},0;,¢;) (j=12), the beginnings of
which coincide with the points OJ- , and theaxis Oz has

the direction of the vector O,0, . Their coordinates are
connected by the following formulas

r,Sin®, =r,sin0,; r,cos6; =r, 080, +7;,.

In the entered coordinates, the surface Fj has an equation

= Rj . Weassume thatthe vectorfunction ¥ has axial

symmetry and is represented by an absolutely and uni-
formly convergentseries of the form

f(6,) =

=26, ) [P, (c0s0,)é, +F PP, (c0s0,)éy, 1,
n=0

where P"(x) are the Legendre functions of the first
kind, {€, ,€, } are unit vectors of the spherical coordi-
J J

nate systemwith origin O;.

Due to the axial symmetry of the problem, we will
find the temperature on the surface in the form

Tor, = Zgg) Py (c0s0;). ®)
n=0

Therefore, the solution of problem (1) — (7) is a set of
coefficients {g'?}7_,. Condition (7) shows that the

function T,(6,) must belong to theclass L,(I",) .

First, we assume that temperature (8) is given, and
it is necessary to find the temperature field and thermoe-
lastic displacements in the domains (€,,€;) in the prob-

lem (1) — (5).
3. Solving the heat conduction problem

Let's solve problem (2), (3), (8) for the thermal con-
ductivity equation. We seek a solution to this problem in
the form

2 o
To(R) =D D tIRIW} (r;,0;), XxeQqy; (9)
j=1n

=0
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T,(X) = Zg(”R;”w;(rl,el), XeQ (10

with unknown coefficients 132 . {g" v Here,

the basic axisymmetric solutions of the Laplace equation

for the exterior and interior of the sphere
QO ={(r,0,9) :r;5} are denoted
w (r,0) = " 2Y2p (cosp) (11)

where P, (x) are Legendre polynomials, and the sign +

(+) corresponds to the outer (inner) solution.
Let's use the addition theorems of functions (11)

[45]
o (J)
9) Z n+k+l Wk(r3 1’93 J) (12
k=0 212
n=0-+o0, f3_j <Zi, j=12,
where

(n+k)!

() _ (_qyik+G-Dn
Mok =D nik!

to write the solution (9) in the coordinate systemwith the
origin at the point O; (j=1,2)

n+1
© (R,
To(®) =Yt {—’] P, (cos0;) +
n=0 rj
+Z{R_JJ P, (cosej)Zuf]‘)kt(k3 U
n=0 J k=0

(13)

where

n k
u(J') h(J o o =(RJ] (R?’—JJ
n,k Kk n k+11 n,k .
235 2y

Satisfying the conjugation conditions of the thermal

fields To(X) and T;(X), and the boundary condition (8),
we obtain

n=0+o0; (14)

n

1 1) +(2 1
@+ > uBt? = g

~(n+DtP +n> uPt? = ng(l) (15)
k=0

N=0+o0;

2+ S0 =g n=0+0.
k=0

(16)

After removing the unknowns {g(l)}n:0 from the system
(14), (15) and relative to the coefficients {th};ﬁ,’j:l , the

resolving systemfollows

(0 _y Zt(l)zu(l) u@ = ynzua @ (17
s=0 k=0

n=0+o0;

2 2 2 1 2
0 -34Sl o

s=0
n=0+oo,

(18)

(ky —ko)n
kin+ko(n+1)
Theorem 1. Under the condition z;, >R; +R, the

operators of the systems (17) and (18) are Fredholm op-
erators in the space |, .

where vy, =

Proof. To prove the theorem, it is enough to show
the convergence of the double series

2
@ ,,2 2) . (L
z[ynzunkuksJ , [zykuaa az] |
n,s=0 n,s=0\ k=0

Since |y, [<1, then applying Holder's inequality, we ob-
tain

WL APNITAR
k=0

n=0 k=0 s=0

When the condition of the theorem is satisfied, the con-
vergence of the series on the right-hand side of the ine-
quality follows from the existence of the exact sum of the
series

(+Kk)!(R R;Y
S g

n.K=0 Z12 Z12

2
z,-R;-R,
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Similarly, the convergence ofthe second dualseries
is proved.

It also follows from the condition {g®@}7, <1,
that

1 2
(Ynzuﬁ,)kg(k)J €|2,
k=0

n=0

and the previous theorem together with the equivalence
of problem (2), (3), (8) to solvable systems (17), (18) (can
be proved) justify the existence of a correct solution of
systems (17), (18) in space I, . Then formulas (9), (10),
(14) restore the temperature field (T, (X), T(X)) in a

two-phase body (€25,€).

4 Solving the direct thermoelasticity prob-
lem

Now consider the thermoelastic problem (1), (4),
(5), which corresponds to the temperature field con-
structed above in the domains (€2,€). For this pur-
pose, we use the results presented in [49]. Consider in
domains O* the systemof basic axisymmetric solutions
of the Lamé equation (homogeneous equation (1))

(W, (r 0037y, W

b (1.0}, (the definition of basicity is
given in [45]), where

W, (r,0) = Vw, (r,0), (19)
W, (r,0) = 4, OV (r,0) - GOV, (r,6),  (20)
VE(r,0) = V[rPwi(r, 0)], (21)

10 =n(dv;-3)+2v;-2, ;¥ =(2n-1)(2v;-2),
W =n(av;-3)+2v;-1, ;¥ = (2n+3)(2v;-2).

For these vectorfunctions in coordinate systems with or-
igins Oj , the following addition theorems were proved

in [46] (13 j <Zyp, J=12):

(J)

W, (. 6)) = Z LW (1, 054) , n=04c0; (22)
k=0 12

0 (@)

h
WS, (r;,6;) = ZWY" Wik (735,05 )) —
=0 212

© h(])k
2)\i— 0
-2, nfk+1 YW, (13, 05_5) » N=0+:(23)

105
© (J)k n
n
V‘*’(Jv ]) Z ) ()Wlk(r3 J’e3 J)
k=0 212
© h(J)k ,
n
_Z n+k+1}‘()Vk(r3 103j), n=0+w; (24)
k=0 212
where
@ _ n(@nk—n-k—4v,+4)
D Y
@ __n@n-1)
kT ok+3)(k+D)
@ _ 2nk-n-K @ _2n-1
7\‘n K = i x/Al. A\ nk = .
(n+K)(2k-1)’ 2k +3
Remark. When n=0 the  coefficient

@ _NE@nk—n-k-4v,+4)
kT (n+k)(2k-1)

is considered equal to

zero, and A§} = forall Kk .

1
(k-1
As is known, the general solution of the inhomoge-
neous equation (1) in the domain QJ- (j=0;1) can be
written as follows:

U;(%) = U5 ()+U] (%) , (25)

where 0?()?) is the general solution ofthe corresponding

homogeneous equation, and UJ-T (X) is the partial solu-

tion of the inhomogeneous equation (hereinafter referred
to as the vector of thermal displacements). Due to the ba-

sicity of solutions (19) and (20) in the domains Q*, the
general solution of the homogeneous equation in the do-

mains (€,,€) can be written as follows:

US(x) = ZZa(J)R"+3W1n(J, 0;) +

j=1 n=0

Ty
+ZZa§”nRT* Vi3, (17.07), X€Qq; (26)

j=1 n=0

UF (%)= > bOR: "V, (1,0,) +

+ BIRWG, (5,0,), Xe Q|

n=0

@7)
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Here {a(J)}n 0,i,j {b(l) ff_%l_l unknown coefficients.

It was shown [46] that the vector of thermal dis-
placements

2 o
Ug (X) = —ag? Z (r;,6;), X€Qq, (28)
j=1n =2
1
where o =% Vo corresponds to the temperature

field T, (x). It is also possible to prove the following
vector of thermal displacements

U7 (%) = oy Z g

R1”V (r.0,), Xely, (29)

_ oy l+vy

where oy = corresponds to the temperature

1-v;
field T,(X) -
Formulas (22) —(24) make it possible to write a vec-

tor function UO(Y() in a spherical coordinate system

with the origin at a point O;

Uy (1;.0,) = Za(‘)R”+3W1n(J, 0,)+

IV & h k+3, (3-J)
+ZW1'”( 9 )Z n+k+l R 8.1 +
n=0 k=0 12

+Za“) RI™W;, (r;,0,) +

© LU
nk (D) pk+1,(3-) _
+ZW1H(J' j Z k! TknR3j85k

k=0 12
ST . n k /AR k+l (3—1)
_ZWZ” i JZ n+k+1 kn a
n=0 k=0 4y,
©  4() -
Y n n+1\ 7+
—OLOO ZMRJ Vn (rj,ej)—
n=0
w (J) (1)k k )
_ n +1:(3-]
OLO Zwln(rl’el)z n+k -1 on t +
k=0 12
o h@
V (r]yej)z n.k k+1t(3 ) (30)
0 k+1 :
o 2n+3 T

By passing displacements (27), (29), (30) to the stress
vector on the surface FJ— and fulfilling the conjugation

conditions (4) and the boundary condition (5), we arrive
at an infinite system of linear algebraic equations with

respect to the unknowns {a“)}n 0ij {b(l)}n )

nb® +p0bD, = —(n+1ad +pr0ad) +

+nzu(11)a(2) +z[nu(21> BrOUED T +

-1 ® v. N+2 (1)
— 1 oyt
2n-1" ez

n+2

vo 4G _nud ;@
o —nu 7,
0 0[2n+3 n.k n.k :| K

+ou°

(1)

b® +p;0b%, =a® +

0) (@ 11),(2
o+ 3 el

i @
@) g OyED1@) gk
+§ u ay) —o +
LU cJazic =g 2n-1

(5.1) @
u
+oup° na "'k3 ulid 112 —ay —29n . (32)
~| 2n+ n+3

(n+2)(n+Daf) +p;Paf) +n(n- 1)Zu<n1&)a£2£

-0 (3 1) ]a(Z)

+Z[n(n ~DuZd —prOu
o[, n00=D)
%o { 2n— 1}

(n+D)(n+2) 46D
Z{[ 2n+3 2} nk

-n(n-Dul’p }t(z)
ke

——1n(n-1)b§1g +
; ,
+ial,l*:(n+1)(n+2)_2}gs[) ' (33)

Gy 2n+3

1 -(Op(
Prn Don +

~(n+2)al +p;PaP) +(n —1)2 ulPaly) +

+Z[(n 1)u(21) pz(r?) (31)]&1(2k+

n
+ogt ——tO +

2n-1
Z|: n+1

k=0

5D - 0-uls? 2 -
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G w,G o060 + | | S S
- oL -00f) + gLl APl 0+ S i)+ S i e
Gl v, N+1 o) ©
+—=0' ——0;’, 34 DT i2) T(2 i) =0
G, Znra™ ) =m0 - A0 el @)
k=0
(2) 0),(2) 1.2) 5@
(n+2)(n+D)ayy +py a5, +n(n— 1)2” i ,Y%jl)a(Z)_Fyng)a(Z) +zy(112)a(1) +zy(122)a(1)
+¥ [n(n-Dul? —p; Pu21ad), ) G2+ i+
20D A SO ST @
k=0
—otg? [2+n(n _1)}%2) +
2n-1
» @ _ gD, 4 g2 (1) LD ,(2) @ (2)
+a§°2{(n+l)(n+2)—2}u(52 —n(n- 1)u42)} (O _ bin =952y, + 9578 +Zunka1k+z\lf a;
pry 2n+3
—_f@®
=f (39 +o 70 +Z‘V(l) P+olg®,  (39)
k=0
0202 002 + 0D el +
b9 = 5@0a) 1 §220) +z\l,a) 2@ +
+Z:[(n 1)u(22) pz(0) (32)]a(1) k=0
, +c‘2)tn(1)+z\|/‘2) 1P +cAg®,  (40)
+ag ——t@ +
2n-1
- 1 j=12, n=0=+o,
Z[ U —(n —1)uﬁ‘,‘f)}‘£’ =1, (36)
k=0 where
where dg’k) (| k) &(I k), m(ljl) YE]IIJ<1) é(ly,d,l)’
] ik K) ik 2 ) (2
:0 —_n(n+3-4v)), B0 = (n+1)(n+4v;-2), ) =40 -l miA =02 -ela
y& = (n+2)(n+1 a1 =n(n-Huly,
s —nsav,—4, B0 =n+5-sv;, =2+, i =n(=)
19—, 20 n(n-u) 0.
piD =n(n®+3n-2v)), pi¥ =(n+)(n’ -n-2v;-2), i1
Y'Elnj) |:2 ( ):l
2n-1
;Y =—(n?+2v;-2), p) =n®+2n+2v; -1, (n4D(22)
i n+h(n+ i i
y&D, = [—Zn - 2} ud —n(n-ulty,

T
un =hos s

20D _ kG 1
UG = Do .

30D _ G 2
uSP =By @efn.

i i i
ufnkj) = hgj,)kkn,kmgjzz,kJrl )

() _ 2nk—n—-k
kel Tk k) (2k-1)(2n-1)

o
U =hPo

After excluding the unknowns {b(l)}n “0,i—1 from equa-

tions (31) — (34), we obtain the systemfrom {a }n 044

YED = (n+2), 722 =@ 4 @LD — (n -1,

1529~ (-9 -0

n i n+l i
15 = g ik =g~ DuiY
gy —ﬂ[n(n ~1)+(2n+Dpy , |
n - Go “1,n ’
g =L [(n ~DB;Y + (20 -Dyy, |,

G
& =gt [n-1r @+ .
0

£ _ [(n 1)[3+(0) +n(2n —1)H2,nJ ,
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G 5. Analysis of the resolving system
g = Stn(n-nuld, ek = 2L nn-1u® - y 95y
[ =B 13,8, U2}

(ll) il:—n(n _1)+H1ni|.

In the Hilbert space |2, we consider linear opera-

tors defined by infinite matrices

t,n
o DY = liag(el*)7 o, DP) = liag (1), ik =1.2:
ok =~ {”m ~Duffe - MY = (SN0 ME = (e )i ST=12;
0 )
11 . A)yo0 2.2 2
L e M = diag(mii?)o » MG = diag(ri:)7.
- n(n-1)—2u, Un,k}’ 12 1) \eo 2, 2) yoo :
2n+3 M = (m3 o, MG Z(Yﬂh,)k)n,mol =1z,
w _ 2 —(j) _ A; j) yoo
é G 2n+3|:“l,n _2j|’ ‘:‘g) _dlag(ééj,)n)n:O'
G
iy _ 1 Ly (221 _ .
Enk G (n—l)un,k Gk = Let us denote |‘2l =1, x1, x1, x1, the Cartesian product

of four exemplars of space |, . The space 13 is a Hilbert
{00 0980 e O D). pars ofspace I The space I

Go space with elements x:(xl,xz,xs,x4)T, X; €ly, (here
(1 _ Gy [n 1 , } the symbol T stands for transposition operation, that is,
WGy Lan- 1 i the vector X is a symbolic column composed of four in-
finite sequences)and a scalar product
22 _ Gy J|n-1-2p,, (51) (41 a ) P
Sk == ) "o a -(n-Dug i
Gy 2n+3
2 _ Gl 2 |: M :| (X y) Z(Xl’yl) VX = (X )| a4 Y= (yl
o" TG, 2n+3L AN
-(0-DB,Y .
Hyp = IeC tn(J) =a8’ot$]1)’ Let
n
- ) A0 A2 JON\T
" Plgl) n(n— 1)32(1) g9 = aig® a= (a() a( ai)’a(z)) ,
in = o) ! - L) £(21) £(12) £2\T
A, f:(ft( )’ft( )1ft( )'ft( ))
ALY =2[(3—4v;)n+1-2v))]
on 460 o160 where
S(l'l) -1 ( n+ )Bzyn 9(1'2) +(0) n( n- )52,n
N AL 2 T Cm
A, A, a(l) (a(J))n=0, ij=12;
-(0) . _ .
Y 2D | s A 31 £0D — _MADTO _ \@2T@ L =0g® 4.
Wn,)k:un,k)_|: 2,(n)_ 2,(? %}un,k)v t L) t L) t 9 g J L2
n £02 —£0) _M@ITO _MERATA 4 5.
A 1 [ og® t o Y
O L 2n T _ 7y 0 — gy 50 — gy
Stn La) Zn_l},cg,n 2n+3{H A0 } tY =(t" ), T =)o, 0% =005 o -
o 232(1) Uy Consider the symbolic matrix
Vink = " Unk»
(2n+3)
d=D+M,
-0
g2y _2n+1 oy n@n-0) o =_An( ) LG
nTA@ A® VRTT@ T where
@___ 1 _o_ 2
(e} = , O, = 0 M
M AT TN o4 3)A @ D =diag(D,,D,), M:[M 01],
2

5
=2 _ q@ 2u - ~ - -
no =00 sy = _(pf b)) o (MP MY
(2n+3)A, o I T o I N
D21 D22 M21 M22
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Now, systems (37), (38) in the previous notations can be
written in the following form

da=f,. (41)

Theorem 2. If the conditions R;+R, <z,
v;j€(0,0.5), G;>0 are satisfied, the operator @ of

system(41) in space |;‘ is a Fredholm operator.

An important and fundamental fact for the proof of
Theorem 2 is the following new result.
Theorem 3. Determinant

11 1,2
2,1 2,2

c

n

at any N=0+o0, Vj €(0,0.5), Gj >0. Moreover, an

evaluation is carried out
| A [> (n+2)(2n? +1) . (42)

Proof of Theorem 2. Let us show thatthe operator
D is continuously invertible in the space I‘Z‘.The formal
inverse of the operator D is the operator

D™ =diag(D;*,D3%),
Where
o)
vip vy
Vi = (Di‘i” -0, [D®,,] DY, ] i-12,
w2, =-[of ] DR v, =12

Due to the diagonality of matrices D{), matrices v{) can
be written explicitly

(3-i,3-i) (i,3-)
Vi :diag(dn_}vi(ls)_i — _diag dy J,izl,z,
AC y Cc
n n
(3-i,3-i) (i,3-i)
V@ :diag[yn ],v.(g). - _diag Y”—j,izl,z,
i AT i3+ ATO
) 12
+0) _|n Yoo | _
Nl 22)|
Y& 3

=2(n+2)[n% +(1-2vy)n+1-v,]. (43)

Note that the determinant A’® =0 forany n =0+,
vy €(0,0.5), and estimate (42) is performed for it.

Therefore, based on the previous result and Theo-
rem 3, the inverse of the matrix D exists. Let us prove

that it defines a bounded operatoracting in the space I‘21 .

For any vector x = (x,x®,x@ xT eI}, the
estimate

2
107 x1P= IV Vi D I <
i,j=1
<22 (VOO I + VA, 17,
i

=1

is correct and each term in the sumcan be evaluated from
above by one of the sums

2 2

o0 ik 0 i,k )
Zd(nl )Xf}) ZY(n' )X(k2> k=12,
nl 0 n
n=0 A?] n=0 A;( )
Here  x{ = (x(k{)n)fzo. Since  the  sequences

@R 1Ay, (1A @)~ | are bounded, there
exists a positive constant C,suchthat

2
D7 xIP<CY” (1P I +11x; 1P) = ClIxIP -

i1

The last inequality proves the continuous invertibility of
the operator D .

The linear operator defined by the symbolic matrix
M is a compact operator in the space I‘21 which follows

from the convergence of the series

>k ul) <o, =145, j=1,2,
n,k=0

where S,I — fixed non-negative integers. This result is
proved in the same way as in Theorem 1.

The final result of Theorem 2 now follows from the
well-known theorem of S. M. Nikolskyi.

We note that under the condition f,g? el, itis
not difficult to verify the belongingness of the vector of

the right parts of the system (41) to the space Ig . Then

the correct solvability of system (41) is a consequence of
Theorem 2 and the equivalence of system (41) and the
original problem (1), (4), (5).

Remark. The result of Theorem 3 is more signifi-
cant than just a tool to prove Theorem 2. In fact, for the
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first time, it has been rigorously proven that the axisym-
metric conjugation problem for a two-phase system- an
elastic space with a spherical inclusion of another mate-
rial - has a correct solution by the usual Fourier method.

6. Reducing the problem of the optimal
control to an equivalent problem

Let's proceed to solving the problem of optimal con-
trol (1) — (8). First, let's transform the functional (6). To
do this, let's write down the stress vector on the surface

Iy

FU, = ZGlz{bfr)] (n-n+b$)p; P +
n=0

+( (n +1)(n+2)

2n+3 Jgn }Pn(cosel)é,ﬁ

+ZGlz{b(1)(n -1 +b$) ;0 + tor s gr(]l)}Pr%(cosel)é91
n=0

For such a vector, the functional (6) has the quadratic
form in the infinite dimensional space of numerical se-

quences {bil(.ln 2 n' gn )}n =0

1 _
Jg@1=—[|FU, [ ds =
mii ’

2

2 o 2

_ zefzziznawbsg +r<n»agl>i @
=1 n=0| i1

where

ay _ (-1 1) Nl = pry

n )
! \/n+1/ «/n+1/
(21) ) 2n(n+1) (22)_ _(1) 2n(n+l)
\on+1 2“\} 2n+1

’C(l) =((n +1)(n + 2) _ j
Jn+1/2

" 2n+3

@ _ n+l 2n(n+) _2 _ =@
T S onea\ znar 9 O o

The controlconstraint (7) can be written as follows:

i Y2 +1/2)" = (ag?)° T2,

n=0

(45)

Thus, the original problem of optimal controlis re-
duced to an equivalent problem in which the state of the
object is determined by an infinite systemof linear alge-
braic equations (14), (17), (18), (37) — (40), and optimal
control (g?)7_, sets the coefficients of the temperature
field (8) on the surface T",, gives the minimum of the

quality functional (44) and satisfies the constraint (45).

7. The method for solving
the equivalent problem

Bearing in mind that the sequences

{0, b giY, satisfy the linear relationship (14), (17),

(18), (37)
on the parameters {g\}. FP¥7,

— (40), we can assert their linear dependence

as follows

(46)

and the unknown coefficients {c{ k}nk 0 {snk}nk 0

{UnkInko OF the previous series can be found using these

formulas:
1) @ —(1
o = abin s = abi,.n Gy = agy . @1
v o oyt og?

Substituting formulas (46) into the functional (44)

2 o © 2
I®1= 26522{2 BUI + Fn“’} . (@9

j=1 n=0| k=0

where

2
B0, = )+ fa, @

i=1

F(J) - Zn(J I)ZZS(I r)f(l')

r=1 k=0

(50)

After reducing the functional to a physically dimen-
sionless form, we have:

w 2
%22:2{2 B, g? + F(J)} Smin, (51

j=1 n=0| k=0
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o0 @) @ (1) ® (2
2)) (n _,_1/2)* = (o) 2712, (52) ab| n (i, aa1n (i,2) aa Ly aal,k
0 2 =" — 2 82 ) Unk —r T
— g( ag( ) ag( ) = ’ agr(n)
o (2) © = -
We solve problem (51), (52) for the conditional extre- Z 0a; +G| tn(l) ZWI atk(Z) ol 5gr(11)
mum by the Lagrange method and reduce it to the prob- — a (2) a—(z) — (2) Fgn ag’
lem for the unconditional minimum of the functional (61)
2 0 ) ) 2 1 () @ © (2)
LE®1=) > > Ba? +FP | + Din g Bin g Ban 5 v B
i1 n=0| k=0 of ) ofd) ofd) n 0)
m m m m
N (D12 1 =
+5) (@) (n+1/2)~. (53) (i Y2k
; Zo\ljn,k afrg]j) ' (62)
Here ¢ is the Lagrange multiplier. The existence and 1=12 n=0+o
uniqueness of the solution to problem (53), (52) are fur- h
ther proved in Theorem 5. The necessary minimum con- where
dition of the functional (53) leads to the following sys- - )" - @
ten (53) g sy Uy, _(Ynun,k)n’k=o —((1 Yo )Up ) Koo
- 2) @
(D+B)g? =-F, G4 Yz ={ZYKU( )kuf<)sJ ,
k=0 k,s=0
where =@y m)nzo:  Bik Kronecker's delta symbol,
T A7 450
w ot , ot , g — matrices of first derivatives,
2 > g’ 553 " 452
0 gl g o g
= BB
;; n,m~n,k ’ (55) aa aa aft 8ft - _
n,k=0 ) () =0 () are block matrices of first de-
og” ofYY og of
, rivatives.
OF=0) T oa
D= dlag( ) [ZZB Fa J - (56) Remark. To find the derivatives at— 0
j=1 n=0 m=0 ag,(nz) 69

The Lagrange multiplier can be found from the additional
condition (52).

Before examining the operator of system (54), we
present a practical method for calculating the elements of
the matrices B and F. Based on formulas (14), (17),

(18), (39) — (41), (47), we obtain
at(z)
(- Uzz) =1, (57)
i) V1 T(2)
ag _ o . ot 7 (58)
ag? oy ?ag?®
af(l) aT(Z)
w® g
da of; oa of,

¢ G2 @ Y0 goo  ©

j=12; m=0+o;

oa
=0 it is necessary to solve the same systems (17), (18),

m
(41), with other right-hand parts. Thus, the solvability of
systems (57), (60) is substantiated in Theorems 1 and 2.
For further, we will enter the notation
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In the new notation, system (54) can be written in the fol-
lowing form:

(cl+B)§? =-F. (63)

with a constraint

Z (2)

n=0

=2(ay?)?T2. (64)

Theorem 4. When the conditions of Theorem 2 are
met, the matrix B of system (63) defines a symmetric,
positive, compact operator in space |2 .

Proof. The symmetry of the matrix B is obvious.
In addition, it is positive because for any vector

X = (X, ) €l, quadratic form

(Bx,x) = Z X XKZZB(D BY) =

m,k=0 j=1 n=0
- - 2
j=1 n=0\ k=0

Let us prove thatthe matrix B defines a compact opera-
tor in the Hilbert space |2. First, we prove the compact-
ness of the operator defined by a matrix with elements
B§1J,)m
matrix coefficients of this matrix, we apply the following

artificial technique. For simplicity, we show it by exam-
ining one of the constituent elements of this matrix,

1)
«/m+1/2}

5
namely [ o 9?2)
G

. Because it is impossible to strictly estimate the

o0

. It follows from formu-
n,m=0

las (57) and (58) that

Uy,) ™, (65)

- og® - »
) —69"2 Jm+1/2 =00 1-
oG

n,m=0

where

09 = (@-r)Pufk1r2)”

" S Yk u@ o
uU,, = E ut Js+1/2
2 [k:o Jn+1/2 Un ks J

n,s=0

Matrices U, U,, define the compact operators, and

(1-0,,)™* is a bounded operator in the space l,. The

latter is a consequence of the convergence of any series
of the species

Z k" [udy) | <o,

n,k=0

where S,r are fixed non-negative integers. Then, ac-
cording to the properties of compact operators, the matrix

(65) defines a compact operator.
In the same manner, the theorem is proved for other

constituent components of matrices (BY, )" . The fi-

nal result follows from the fact that the matrix B is the
sum of products of matrices that define compact opera-

torsin |, .
Remark. 1. Using these ideas, it is possible to prove

thatif T9 €1, the column Fe I, .

2. In addition to the properties of the matrix B
listed in Theorem 4, it can also be proved thatit is a
nondegenerate matrix, thatis, (Bx,x)=0 only if Xx=0.

The further solution to the problem is based on the
spectral method. It follows from the properties of the op-
erator that its spectrum consists ofa counted sequence of
positive eigenvalues

MZhy =z zhy 2o

n ’

that converges to zero. Let {¢,},_; be a complete or-
thonormal system of eigenvectors of the operator B in
the space |2 corresponding to the eigenvalues of {o }~
. Let us denote by f, = (F,¢,) the Fourier coefficients
of the development of the vector F according to the sys-

tem {@n};o:l'
Theorem 5. Let the conditions of Theorem 2 are
held. If

fnz Vo\2T2
Z < 2o )’ T2, (66)
n—l}“
then there is a solution to equation (63) at ¢=0
@ _ N
g _Zx ¢y €ly, (67)
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and constraint (64) was not considered. If

iﬁ > 2(a ) T?
A2 °or

n=1“*n

(68)

then under ¢ >0 there is a unique solution to problem

(63), (64) in space |,.

Proof. The first conclusion of the theorem is di-
rectly verified. Let's prove the second statement. In the
new notation introduced above in this paragraph, prob-
lem (53), (52) can be written as follows:

Lg®1=6.6",6)+2(F.6“)+
2
+ IFP | - min,
j=L

162 1= 2(0*)* T,

(69)
(70)

where S =cl+B. An operator S, is a symmetric posi-

tive definite bounded operatorgiven in space |2 .The last
statement follows from an obvious inequality for any
g(2) el,

sllg® |P<(8.§?.8¥) < (c+2) 139 I

The last inequality allows us to introduce another norm

in space |,

159 lls=(5.8”.,59) ,

which is equivalent to the main one and is induced by the
scalar product

(fvg)S :(ngig) f!QEIZ'

Now, the existence of a unique § l,, which sets the

minimum of the functional (69) for each fixed value of
the parameter ¢>0, follows from the fact that the scalar

product (F,§®) is abounded functionalalso in the norm

|I-1ls, and therefore, according to the Riesz theorem, is
equal to

(F.3?) = (R,59);

for some unique element F, €l,. Then

2
L[g®1=@®,0%)s +2(F.6®)s + D JIFV | =
j=1

2
NG+ R 1§ - lIR I8+ I FO I
j=1

Hence, the minimum of the functional (69) is reached on
the element §® = —F,.

The necessary condition (63) for the minimum of
the functional (69) makes it possible to explicitly con-

struct the optimal control g(2> using the spectral expan-

sion of the operator S_

o f
52 — _ n
g E ey On . (71)

n=1

It remains to satisfy condition (70). For this, the parame-
ter ¢ must be selected as the positive root of the equation

o0 f2 y
Ligoy T @

n=1

The left-hand side of equation (72) on the semiaxis
ce(0,00) is a continuous, monotonically decreasing

function with the domain of

0 3 f”Z
25k
n=1""n

(the right limit of the interval can be equal to «, if the
series diverges). Then, based on condition (68), there is a
unique value of the parameter ¢ >0 for which equality

(70) holds. Thus, problem (69), (70) has aunique solution
g‘z) el,.
Remark. When condition (66) is fulfilled, optimal

control (67) is a solution of the original problem (1) — (6)
without restriction (7).

8. Computer experiment

We divide the numerical solution of the equivalent
problem into two stages. In the first stage, we will form

the matrix B and the column F of the right-hand parts
of the system (63). For this purpose, it is necessary to
solve the systems (57), (60) and find the derivatives
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_ 1) ) In  Figure 1 shows graphs of temperature
ag(l) abiyn abiyn A

—; according to formulas (59), (61),  T,(0)-102 at a given relative  distance

g ag " o)

(62). As demonstrated in points 3, 5, the specified sys-
tems have Fredholm operators and are uniquely solvable.
It is known that such systems can be correctly solved by
the reduction method. At the second stage, system (63)
also with a Fredholm operator is solved. Here again, the
reduction method is used. A spectral decomposition is
applied to the reduced matrix of system(63), as a result
of which the rational equation (72) is obtained with re-
spectto the parameter ¢ from condition (64).

7,10°A R,-1.8 R ,=2.5 R ,=1.33

1.0¢

Fig. 1. Graphs of temperature distribution Tz(e)-lo’2
on thesurface I', with the relative distance between
the surfaces d;, = 0.3 and theratio of their radii Ry,

,1072A

R;,=0.56 R,,=0.75

1.01

% vlis ' E
1.0f
2.04

Fig. 2. Graphs of temperature distribution T2(6)~10_2
on thesurface T", with therelative distance d;, =0.3

between the surfaces and the ratio of their radii Ry,

Calculations were carried out for materials in the
following areas: Q, —steel, €; —aluminum, for which

G, /Gy =0.317, oy /oy =171, k,/ky =4.61,
vg =028, v; =0.34. It was assumed that hydrostatic
pressure acts on the surface I', with stresses

6, 1(2Gy) =-10"2%, 1,,/(2G,)=0. The results of the

computer experiment are shown in Figures 1-5 and Ta-
ble 1.

dy, =1-R, /7, —-R, /2y, =0.3 and different ratios of
surface radii R, =R;:R, =5:2, 9:5, 4:3. It follows
from the graphs that the optimal temperature distribution
under R;, €[1.33;2.5] depends little on the ratio of sur-
face radii in almost the entire segment 0 €[0; ], except

for the areas around its ends. A similar behavior of the
optimal  control curves is  observed under
R,, €[0.56;1.0] (Fig. 2) with the difference that the tem-
perature distribution around the poles of the spherical
surfaces had the opposite sign.

7,104
1.01

-1.04

Fig. 3. Graphs of temperature distribution T2((9)-10’2
on thesurface T", with the relative distance d,,

between the surfaces and the ratio of their radii Ry, =2

2
7,10

4,025

d,,-0.3
1.04 12

Fig. 4. Graphs of temperature distribution T2((9)-10_2

on thesurface I", with therelative distance d;,

between the surfaces and the ratio of their radii

In Figures 3-5, the graphs show the dependence of
the optimal temperature distribution on the relative dis-
tance d;, between the surfaces at a fixed ratio of their
(Fig. 5). As expected, when the surfaces approach each

other, the greatest temperature effects occur in regions
located around the axis of the problem. At the same time,

radii:
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the character of the distribution of the optimal tempera-
ture on the surface T', on the segment 0 [n/4;3r/4]

is practically the same for different geometric parameters
of the problem.

A
51077}

1.04

-1.0

Fig. 5. Graphs of temperature distribution T2(6)~10’2
on thesurface T', with therelative distance d,,

between the surfaces and the ratio of their radii R,, =1

Since the reduction method is used many times
when solving the equivalent problem, in addition to its
theoretical convergence, proved in Theorems 1, 2, 4, it is
necessary to determine its practical convergence. Such a
study was carried out in the work. His results are pre-
sented in Table 1. In this table, the value € specifies in
percent the relative error of calculating the optimal con-
trol values at the points 6, :%k, k=0+6 of the seg-

ment [0;]. The error is calculated by the formula
e T2,40 (©) —Tz,so ©)]/] T5.40 (6)|-100,

where T, ,(0) is approximate solution to the equivalent

problem and corresponds to the reduction parameter n.
The reduction parameter n specifies n+1 unknowns of
each type, which is retained in systems (54), (57), (60)
after their reduction to finite systems.

Table 1

Relative error &-10° (%)in the temperature calculation
T,(0) for various geometric parameters

O0\Ryp | 5/2 | 95 | 4/3 1 3/4 | 5/9 | 2/5

0 97 (72| 44 | 05 | 08 | 33 | 36
/6 16 | 23| 08 | 01 | 04 | 63| 53

n/3 0102|007 )|002f02]12(73
/2 18 |02 (008|001 01 | 08| 45
2n/3 24 103001001 01| 02(06
51/6 14 102|008 |003| 02 | 12| 6.2

T 21 [ 25| 16 05 | 23 | 12 | 64

The convergence speed of the reduction method de-
creases as the surfaces approach. In the table, the percent-

age error £-10° is calculated for the relative distance
dy, =0.3. Naturally, its value is different at different
points ofthe segment [0; =] , and the worst results are ob-

served at its ends. However, a computer experiment
showed that even when the surfaces approach the dis-
tance d;, =0.2+0.25 in the most problematic points, the

accuracy remains, which is determined by two correct
significant figures after the pointin the 10-year record of
the result.

Discussions

Let's summarize the obtained results. The initial
problem is reduced to an equivalent problem by the gen-
eralized Fourier method, in which the state of the object
is determined by an infinite system of linear algebraic
equations, the right-hand side of which parametrically
depends on the control (§(?)7_ 1, . In this case, the cost
functional becomes a quadratic functional in the space |,

of numerical sequences linearly dependent on the state of
the object and temperature field, and the control satisfies
a certain quadratic constraint. To the best of our
knowledge, this paper is the first to consider an optimi-
zation problem in which an object is controlled by an in-
finite system of linear algebraic equations. The main
problem in solving an equivalent problem is the impossi-
bility of an explicit solution to an infinite system. There-
fore, this paper proposes a method of presenting the so-
lutions of infinite systems in parametric form through the
components of the derivatives of the state of the object.
This method reduces the equivalent problem to the prob-
lem of the conditional extremum of the quadratic func-
tional, which already clearly depends onthe control. The
last problem was solved using the Lagrange method. The
necessary extremum condition leads to finding the opti-
mal control from an infinite system of linear algebraic
equations with a numerical parameter satisfying the ad-
ditional quadratic equation. Theorem 5 establishes the fi-
nal theoretical result of this study, which consists in the
conditions for the existence and unigqueness of optimal

control §® in space I,. Two possibilities are formally

obtained, depending on which of the constraints (66) or
(68) are fulfilled for the given problem. In the first case,
there is a solution to the unconditional optimization prob-
lem (1) —(6), in the second —to the optimal control prob-
lem with constraints (1) — (7). In fact, a computer exper-
iment conducted with different data showed that the se-
ries (66) diverges, thatis, only the second case is realized.
Thus far, the authors have failed to prove this fact theo-
retically due to insurmountable analytical difficulties in
finding matrix elements of inverse operators of infinite
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systems. In the future, this problem may become an area
of additional research.

Note that the additional condition (7) in the formu-
lation of the optimal control problem plays the role of a
regularizing procedure when solving an incorrect prob-
lem.

The computer experiment showed good stability
and convergence of the proposed method.

Thus, for the first time, a practical highly efficient
method for solving the optimal control problem of a lin-
ear stationary systemof differential equations ofthermo-
elasticity with a quadratic constraint in a multi-connected
spatial domain based on the generalized Fourier method
is developed. The obtained results provide further possi
bilities for the application of the proposed method to
boundary value problems for various differential equa-
tions in multi-connected spatial domains of different ge-
ometries.

It should be noted that one of the possible directions
of practical application of the proposed technique may be
the modeling of optimal control of the temperature field
during crystal growth in order to reduce the zones and
level of concentration of residual stresses near macro-
scopic pores and foreign inclusions.

Conclusions

This paper proposes a highly effective method for
determining the optimal control of the stress-strain state
of spatially multi-connected composite bodies using a
stationary temperature field. The proposed method is
considered based on the example of a stationary axisym-
metric thermoelastic problem for aspace with aspherical
inclusion and a cavity. The proposed method is based on
the generalized Fourier method and makes it possibleto
reduce the original problem to an equivalent problem of
optimal control, in which the state of the object is deter-
mined by an infinite systemof linear algebraic equations,
the right part of which parametrically depends on the
control. Inthis case, the cost functional ofthe initial prob-
lem is transformed into a quadratic functional that de-
pends on the state of the equivalent systemand paramet-
rically on the control. The limitation on the temperature
distribution is replaced by the value of the control norm
in space |,. The proposed method also solves the main

problem of the equivalent problem-the impossibility of
obtaining a clear dependence of the system state on con-
trol. In this study, it is proposed to present the solutions
of non-finite systems in a parametric form through the
components of the derivatives of the state of the object,
due to which the equivalent problem was reduced to the
problem of the conditional extremum of the quadratic
functional, which already clearly depends on the control.
The above representation is based on the solutions of

some infinite systems of linear algebraic equations that
differ only in their right-hand sides. A further solution of
the problem to the conditional extremum of the cost func-
tional is found by the Lagrange method, which reduces
this problem to an infinite system of linear algebraic
equations with a parameter and a constraint in the form
of an additional quadratic equation. The last problem was
investigated using the spectral method.

The method developed in this paper is strictly justi-
fied. For all infinite systems, the Fredholm properties of
their operators have been proved, and for a systemwith a
parameter, the properties of the system operator have
been established, which allow us to use its spectral ex-
pansion. As an important result, without which it would
be impossible to justify the proposed method, for the first
time an estimate from below of the module of the multi-
parameter determinant of the resolving system of the
boundary value problem of the conjugation — a space
with a spherical inclusion —was obtained when solving it
using the Fourier method. The main result of this study is
a theoremthat establishes the conditions of existence and
uniqueness in the space |, the solution of equivalent or

optimal control problems without restrictions.

The numerical algorithm is based on a reduction
method for solving infinite systems of linear algebraic
equations. Itis known that this is correct for systems with
Fredholm operators, that is, the approximate solution
converges to the exact solution as the reduction parame-
ter increases. The practical accuracy of the numerical al-
gorithm was investigated by comparing the optimal con-
trol obtained using different reduction parameters. The
calculations demonstrated the stability of the method and
a fairly high accuracy even when the boundary surfaces
were approached by a relative distance of 0.2. Graphs of
the optimal temperature distribution for various geomet-
ric parameters of the problem and their analysis are pre-
sented in this paper.

The proposed method extends to boundary value
problems with different geometries.
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METOJl BUBHAYEHHS OINTUMAJIBHOI'O KEPYBAHHSA TEPMOIIPY )KHUM CTAHOM
KYCKOBO-OJHOPIJHOI'O TLIA 3A JOIIOMOI'OIO
CTAOIOHAPHOI'O TEMIIEPATYPHOI'O IIOJIA

O. I'. Hixonaes, M. B. Cxiuka

VY cTaTTi 3ampoNOHOBAaHO HOBUH BUCOKOE() eKTUBHHN METOJ BU3HAYEHHS ONTUMAIFHOTO KePYBAaHHS HAIIPY KEHO -
e opMOBaHIM CTAHOM MPOCTOPOBOTO OAraTo3B’sI3HOTO CKJIAJICHOTO TUIA 3a JOTIOMOTOIO CTAI[IOHAPHOTO TeMIepaTy-
pHoOTrO moy. MeTox po3NIHYTO HA MPUKIA CTAliOHAPHOT 0CECHMETPUIHOI TePMOMIPYKHOI 3a1a4i I MPOCTOPY 31
c(hepUUHUMH BKIIOYCHHSAM 1 HOPOKHIHOIO. BiH 6a3yeThcst Ha y3aranpHeHOMY Metoni Pyp’e i 3B0MTh BUXIIHY 3a-
Jlady 10 eKBIBAJICHTHOI 3a/Jadi ONTUMANbHOTO KEePYyBaHHS, B AKi CTaH 00’€KTy BU3HAYAETHCS HECKIHUCHHOIO CHCTeE-
MOIO JHIHHUX anreOpaldHUX PIBHSAHB, NpaBa YUCTUHA SKUX MapaMETPHYHO 3aJIeKHUTh Bifl kKepyBaHHS. [Ipu mpomy
(G yHKIIOHAN BapTOCTI BUXIAHOI 3ajJadi MEPEeTBOPIOETHCS HA KBAAPATHYHHN (hyHKLIOHAN, SKUH 3aleXuTh BiI CTaHY
€KBIBAJICHTHOI CHCTEMU 1 MapaMeTPUYHO Bil KepyBaHHS, a 00MEeKEeHHS Ha PO3MOJUT TeMIEpaTypHu 3aMiHIOETHCS 3HA-
YEHHSIM HOPMH KEPYBAaHHS B MPOCTOPi CYMOBHHUX 3 KBaAPaTOM MOCHIINOBHOCTEH. B po6oTi (akTHyHO BHepIie po3r-
JSIHYTO 3aJlady ONTUMAaJbHOTO KepyBaHHsS HECKIHUEHHOIO CUCTEMOIO JiHIMHUX anredpaiyHuX piBHSAHB 1 po3poOIeHo
MeTox 1l po3B's3aHHsA. BiH 3acHOBaHHMI Ha MOJAaHHI PO3B'A3KIB HECKIHUCHHHUX CHUCTEM Y MapaMeTpHuHii (popMi, 1o
JI03BOJIMJIO 3BECTH CKBIBAJCHTHY 3aZady [0 3a/iadi Ha yMOBHHUH €KCTPEMYM KBaAPAaTUYHOTO (yHKIIOHANA, IKUH SBHO
3aJIeKUTh Bifl KepyBaHHs. [lonmansmmii po3B'si30k miel 3agadi 3HaX0IUThC MeTonoM Jlarpamxka i3 3aCTOCYBaHHAM
CIIEKTPATLHOTO PO3KIaay MAaTpHIll KBaApaTHYHOTO (YHKIIOHANA. Po3poOneHuid y cTaTTi METOa CTPOTO OOIPYHTO-
BaHO. /[ BCIX HECKIHUCHHUX CHUCTEM JIOBEICHO (DpEeIrobMOBICTh iX omepatopiB. Sk BaIMBHUA, HEOOXITHHN s
0OTpYHTYBaHHS pe3yJIbTaT, BIEpIle OTPUMAaHO OLIHKY 3HH3Y MOJyJist GararornapamMeTpHYHOTO BU3HAYHHUKA PO3B’sA3Y-
BaJILHOT CHCTEMH KpaifoBo1 3a1adi CIIpsDKEHHS — MPOCTIP 31 CepUYHUM BKIIOYSHHSM — IIPH PO3B'sI3aHHI il MeTo0M
®yp’e. JloBeneHO TeopeMy, ika BCTAHOBIIOE YMOBH iCHYBaHHS Ta €JMHOCTI B MIPOCTOPi CYMOBHUX 3 KBQAPATOM IIOC-
JIIOBHOCTEW PO3B'A3KY €KBIBAJICHTHOI 3aja4i abo0 3a7a4i ONTUMANbHOTO KepyBaHHsS 0e3 oOMekeHHs. UucenbHui a-
TOPHUTM 3aCHOBAaHO Ha METOJi peAyKIil /I HECKIHUEHHUX CHUCTEM JIHIMHUX anreOpaidHnx piBHSAHB. OIHKH NMPaKTH-
9HOT TOYHOCTI YHCEIHHOTO ATOPUTMY TOKA3IM CTIMKICTh METOJy i JOCTATHHO BHUCOKY TOYHICTh HABITh TPH OJIH3b-
KOMY pO3TalllyBaHHI TPaHHYHUX ITOBepXoHb. HaBeneHo rpadiki onmrMaibHOTO PO3MOUTY TeMIIepaTypH MPH Pi3HUX
TeOMETPUYHUX IapaMeTpax 3a/adi Ta X aHali3. MeToa NpHUITyckae po3MOBCIO/DKEHHS Ha iHINI KpaloBi 3amadi 3 pi3-
HOIO TEOMETPIETO.

KnrouoBi ciioBa: ommmMmansHe KepyBaHHS; TepMOIPYKCHHH CTaH, CTalliOHApHE TeMIIepaTypHe moise; Oara-
TO3B’SI3HE KYCKOBO-OJHODIHE TiNO; y3araibHeHHH Meton Pyp’e; HeCKIHUEHHA CHCTEMa JHIfHMX anreOpaidHux pi-
BHSHB; ()PEATOIBMIB OIEepaTop; KBaAPATHYHUH ()yHKIIOHAN, CIEKTPAIBHAN PO3KIAA;, METOJ PeayKIIil.
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