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OPTIMIZING INFORMATION SUPPORT TECHNOLOGY
FOR NETWORK CONTROL: A PROBABILISTIC-TIME GRAPH APPROACH

In modern telecommunicationsand computer networks, efficient and reliable information collection is essential
for effective decision-making and control task resolution. Current methods, such as periodic data transmission,
event-driven data collection, and on-demand requests, have distinct advantages and limitations. The object of
the paper: The study focuses on developing a comprehensive model to optimize information collection processes
in network environments. Subject of the paper: This paper investigatesvariousinformation collection methods,
including periodic data transmission, event-driven data collection,and on-demand requests, and evaluates their
efficiency under different network conditions. Thisstudy proposes a flexible and accurate model that can optimize
information support technologies for network control tasks. The key tasksinclude 1. Developing a probabilistic-
time graph model to evaluate the efficiency of different information collection methods. 2. Analyzing model per-
formance through mathematical relationshipsand simulations. 3. Comparing the proposed model with existing
methodologies. Results. The proposed model demonstrated significant variations in the efficiency of the infor-
mation collection methods. Periodic data transmission increased network load, while event-driven data collec-
tion was more responsive but could miss infrequent changes. On-demand requests balanced timely data needs

with resource constraintsbut faced delaysdue to packetloss. The probabilistic time graph effectively captured
these dynamics, providing a detailed understanding ofthe trade-offs. Conclusions. This study developed a flexi-
ble and accurate model for optimizing information supporttechnologies during network control tasks. The mod-
el's adaptability to varying network conditions hassignificant practical implications for improving network effi-
ciency and performance. Future research should explore the integration of machine learning techniques and
extend the model to more complex network environments.

Keywords: information support technology; network control; probabilistic-time graph; telecommunications;

computer networks.
1. Introduction

1.1. Motivation

In telecommunications and computer networks, ef-
ficient and reliable information collection is essential for
effective decision-making and control processes [1]. The
increasing complexity and scale of modern networks
make it increasingly challenging to ensuretimely and ac-
curate datatransmission [2]. This research was motivated
by the need to address the limitations of existing infor-
mation collection methods and improve network sys-
tems’ overall performances.

Current techniques such as periodic data transmis-
sion, event-driven data collection, and on-demand re-
quests have advantages and disadvantages [3]. Periodic
data transmission ensures regular updates; however, it
can cause network congestion due to the high volume of
data [4]. Event-driven data collection responds quickly to
changes, enhancing real-time decision-making, however,

it may miss infrequent yet important events [5]. On-de-
mand requests allow for data retrieval as needed, balanc-
ing the need for timely information while maintaining
network resource constraints; however, such requestscan
be delayed by packet losses and other network issues [6].

The variability and unpredictability of network con-
ditions further complicate these challenges. Factors such
as traffic load, node availability, and error rates can
change significantly, requiring a flexible and robust ap-
proach to information collection that can adapt to differ-
ent conditions and maintain high performance [7].

Improving information collection methods has sig-
nificant practical implications. Enhanced efficiency and
reliability in datatransmission can lead to better decision-
making, more effective network management, and im-
proved service quality [8]. For businesses and industries
that depend on network infrastructure, such improve-
ments can result in cost savings, increased productivity,
and a competitive edge [9].
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The increasing importance of applications like the
Internet of Things (IoT), smart cities, and autonomous
systems underscores the need forreliable and timely data.
Failures in information collection for such applications
can cause major disruptions, safety risks, and financial
losses. Thus, developing a model that optimizes infor-
mation support technologies is crucial for advancing
these fields and ensuring their success.

1.2. State ofthe Art

Network control and information collection have
seen significant advancements in recent years. Various
methodologies have been developed to address the chal-
lenges of efficient and reliable data transmission in dy-
namic network environments. These methodologies can
be broadly classified as periodic data transmission, event-
driven data collection, and on-demand requests.

Periodic data transmission is a widely used method
for regularly collecting data..This approach ensures that
the control centre receives consistently updated infor-
mation, which is critical for maintaining up-to-date
knowledge of the network's state. However, this method
can lead to network congestion and increased load be-
cause data are transmitted regardless of whether there are
significant changes in the network. This can result in in-
efficiencies and delays in responding to critical network
state changes [10].

Event-driven data collection triggers datatransmis-
sion based on specific changes in the network state. The
proposed method is more efficient in responding to real-
time events because itonly sends datawhen a predefined
eventoccurs. This can reduce unnecessary data transmis-
sion and network load. However, event-driven methods
can miss infrequent but important changes, leading to
gaps in the information available to the control centre
[11]. A recentstudy by Surentheretal. [12] demonstrated
that integrating machine learning can enhance the re-
sponsiveness and accuracy of event-driven data collec-
tion in wireless sensornetworks.

On-demand requests involve the control centre re-
trieving information as required. This method balances
the need for timely data with network resource con-
straints,, where data are only requested when necessary.
While this approach can reduce network load compared
to periodic transmission, it is susceptible to delays if the
request or response packets are lost or corrupt during
transmission [13]. Urooj et al. [14] proposed advanced
techniques for improving the reliability and efficiency of
on-demand data requests in 5G networks, highlighting
the benefits of heuristic-assisted multi-objective optimi-
zation.

Several studies have compared these methods to
identify their strengths and weaknesses. For example, Li
[15] explored improving network controllability

processes and emphasized the importance of selecting
appropriate data collection methods based on network
conditions. Similarly, Surenther et al. [12] examined the
data transmission efficiency of wireless sensornetworks
and highlighting therole of machine learning in optimiz-
ing energy consumption and dataaccuracy.

Recent advancements have also seen integration of
emerging technologies such as machine learning and ar-
tificial intelligence integration into information collec-
tion methods. These technologies can enhance the adapt-
ability and efficiency of data transmission by predicting
network conditions and optimizing data collection strat-
egies. For example, Rachakonda et al. [16] demonstrated
that machine learning techniques can dynamically adjust
data collection strategies in loT environments, signifi-
cantly improving efficiency and reliability.

Moreover, new research by Li etal. [17] has high-
lighted the importance of addressing privacy and security
challenges in information collection for next-generation
networks, emphasizing the need for robust and secure
data transmission methods. Another study by Tso et al.
[13] reviewed serverresource management strategies for
data centres and provided insights into optimizing infor-
mation collection and transmission in large-scale net-
work environments.

The increasing complexity of network environ-
ments and increasing demand for reliable and efficient
data collection have driven research towards developing
more sophisticated models. These models provide a nu-
anced understanding of the trade-offs involved in differ-
ent information collection strategies, which will lead to
more resilient and responsive network systems.

This research seeks to contribute to the ongoing ef-
forts to enhance network control and information collec-
tion processes by synthesising these methodologies and
integrating modern technological advancements. The
proposed model addresses the limitations of existing
methods and provides a flexible, robust framework for
optimizing information supporttechnologies in dynamic
network environments.

1.3. Objectives and Structure

The model proposed in this paper addresses these
challenges by integrating probabilistic and time-based
analyses to evaluate the efficiency of different infor-
mation collection strategies. By considering factors such
as packet loss probability, availability of network nodes,
and likelihood of conflicts during data transmission, the
proposed model provides a comprehensive framework
for optimizing information supporttechnologies.

Previous studies have highlighted the importance of
timely and reliable data collection for network control
[9]. However, existing models often lack the flexibility
to adapt to varying network conditions and do not
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adequately account for the probabilistic nature of data
transmission errors and conflicts [10]. This study aims to
fill this gap by presenting a detailed probabilistic-time
graph model that can adjust dynamically to different in-
formation collection methods and network states.

The primary contributions of this paper include:

1. A detailed probabilistic-time graph model for
collecting information in network control tasks.

2. Ananalysis ofthe impact of different information
collection methods on network efficiency and data col-
lection time.

3. Comparison of the proposed model with existing
methodologies, demonstrating its advantages in terms of
flexibility and accuracy.

The methodology section ofthis paperdescribes the
mathematical foundation of the model, including the der-
ivation of key probabilistic functions and construction of
probabilistic time graphs. The results section presents a
series of simulations and comparative analyses that illus-
trate the model's effectiveness under various network
conditions. Finally, this section explores the implications
of the findings for network control strategies and sug-
gests potentialareas for future research.

By providing a robust and adaptable model for in-
formation-support technology, this study contributes to
ongoing efforts to enhance the efficiency and reliability
of network control processes, ultimately leading to more
resilient and responsive network environments.

In this paper, Section 2, Materials and Methods,
outlines the methodologies employed in this study, in-
cluding the probabilistic-time graph model and its appli-
cation to various information collection methods. This
section also details the mathematical foundations and
probabilistic functions used in the analysis. Section 3,
Results and Discussion, presents the results of the simu-
lations and comparative analyses, highlighting the per-
formance of the proposed model under different network
conditions. This section interprets these results, examines
their implications for network control strategies, and
compares them with existing methodologies. Finally, the
Conclusions section summarizes the key outcomes of the
study, highlighting practical applications and suggesting
directions for future research.

2. Materials and Methods

2.1. System Overview

The information support stage is the first stage of
control. To reduce the time required to collect infor-
mation about the state of network elements, performing
this process in parallel for all controlled objects is prefer-
able. The time interval required to obtain data from the
most remote object determines the total time required for
information collection.

Information about the network state can be col-
lected either at the initiative of the switching centre,
which handles network controltasks periodically accord-
ing to asetschedule, orat the initiative of all nodes whose
state changes may affect the network’s performance. In
the first case, information was collected via a special re-
quest from the control centre. In other cases, the request
is not transmitted, and the information is provided at the
initiative of the switching nodes. In this scenario, infor-
mation about a switching node's state change should be
transmitted when this change is detected. With periodic
transmission, there may be a delay in providing updated
data equal to half the information transmission period.

Upon request, information is collected by sending a
call packet fea(2) to the requested node. The controlled
node responds with reply packet fans(z), which includes,
in addition to the address of the control centre, all neces-
sary information required to assess the node's state. This
information is crucial, so its receipt must be acknowl-
edged. When transmitting a call packet, it may be lost
(function £t (2)), received with a distorted address of
the called or calling subscriber (functions £%4* (z) and

call

ffad”rz (z) respectively), correctly received (function
f7t,(2)), and recognized with probability Pget. The packet
can be accepted if the subscriber is free (probability Pree).
If acall packet is lost or received with a distorted address,
no acknowledgement is sent,and the message is retrans-
mitted after interval Tra. If the subscriberwas busy orthe
call packet was not recognized (probability Pundet), the
call is repeated after the interval Tra. If the call packet is
received by another subscriber (distorted address of call-
ing subscriber A1) and the subscriber is free, a reply
packet will besent. Network error detection causes atime
interval AT upon correct receipt of a packet, and the call
packet is lost.

Upon correct receipt of the call packet (function
f7t,(2)), areply packet will be issued, which may be cor-
rectly received (function 2% (z)), lost (function
flost (z)), received with a distorted address (function
£2972 (7)), detected error (function f£2¢,(z)), received
with distorted information field (function 2% (z)), out-
dated data (function £2%.(z)), or incomplete data (func-
tion fi4_(z)).

If the call and reply packets are received correctly,
and the subscriber is free (Psee), the control task is re-
solved. In the case of lost reply packets (f9¢), detected
errors (f2<,), or address distortion (£%2), the call packet
is retransmitted after an interval Tra.

When information about the network state is trans-
mitted at the initiative of the controlling switching node,
a call packet is not issued. The information collection
process proceeds similarly to the process described
above.
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2.2. Probabilistic-Time Graph Model In Figure 1, the following designations are intro-
duced:
Let the probabilities of using information collection foq = £ 18,2 £y, = £ - £210(2);
methods via call packets, state changes, and periodic fog = f, - £29(2); fpy = £, - £19.(2)
schedules be denoted as P1, P2, and Ps, respectively, foo=f f54ff+F-f,

where these probabilities can take values of 1 or 0. The
generalized probabilistic-time graph characterizing the _ BTeyelen . perr (..
information collection process for the three indicated fir = (1 —R)-( + B ZAT Y ) fz‘:(z)j
methods is shown in Figure 1. This graph also indicates foe = (1 —PR)- (B, + Py ZATCY ) 'fz}ns(z)*
the waiting time for data issuance in the network state foo = (1 —P.) - (B, + Py -z ovele) - i (2);
during periodic transmission ATcycle.

foe = 1 —P)- (P, + B - ZATCyC]e) “fans: @

z T4

Y
faa(z) Ty

P det

losty

ot (@)

Prree| [(1= Pro - 277
fom () lost

fﬂ ns ':z}

fane (2)
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Fig. 1. The probabilistic-time graph of the information collection stage
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The graph shown in Figure 1, through equivalent
transformations, is presented in the form shown in Fig-
ure 2.

In Figure 2, the following expressions are indicated:

f,(z) = flost  £29%2 prt L [(1 Py ) + Py -

call call call

(1 - Pfree) + fadrl (1 - Pdet)]!

call
f,(z) = ffﬁfl Fiets
f,(z) = z7T4;
£,(2) = (1 — Pree) - 2"TA + B - 105 -
+Pree - f:r?sl "z
fs (z) = Bost - z"TA, e Bost = fa{gsst + f:frflsr2 + f;jnes;
fe (@) = fcr;u “faet " frree
fins(@) = fifs - (1= Pyq — By
fi18(2) = fiis - Punder 2"

falgs(z) = farris' id ZT

zTTA 4+

Tq-
— Bost — I:’undet) AN

The graph shown in Figure 2, through equivalent
transformations, is presented in the form shown in Fig-
ure 3.

The graph shown in Figure 3 was transformed into
the form shown in Figure 4.

The arc functions in this graph are denoted in the
same manner as in Figure 4. The functions of the infor-
mation-collection stage arcs are determined by the fol-
lowing formulas:

Pifsu fste

@) = [Bu g

1 l_fStS 1—f5t5'P1 1 (P2+P3 ZAT) ZTd
Pifso fsty

f (Z) — [ 17s + . 2

2 I-fas | 1-fgPqd 1- (pz+P3zAT) zTd’ @
Pifst3 fstg

(@) = [Py :

3 1- fStS 1—f5t5'P1 1 (P2+P3 ZAT) ZTd

£, (2) = [P1 fsta + fsto ]
1-fgs  1—fgsPq 1—(pz+P3-zAT)-sz'

The generating function of this graph is given by

Fz) = £, + £,@) + £,(2) + £,(2). ©)

Fig. 2. The transformed probabilistic-time graph
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Fig. 3. The transitional probabilistic-time graph

Z /J
£ (2) =®'/1

£5(z) 071
= 2rr

f5(2) ]

f4(z:] =@71

Fig. 4. The transformed probabilistic-time graph

The average time required to collect information
about the network state is

dF(z)
Tavgc011= dz |Z=1' (4)

The probabilities of correct collection, collection
with error, outdated information, and incomplete infor-
mation are respectively given as follows

Pcollrt = fl (Z)|Z:1;Pcollerr = fZ(Z)|Z:1;

Peoioa = f3(@)|z=1:Peonia = f2(2) z=1-

BExpressions (2-4) and their data represent the model
for collecting information about the network state for
control tasks. In this model, depending on the values of
P1, P2, and P3, which can be either 1 or 0, methods for
information collection by request, by state changes of el-
ements, or periodically are implemented.

2.3. Methodology of Determining
the Arc Functions of Probabilistic-Time Graphs
in Information Collection Technology

A call packet is transmitted in multi-object control
based on the “point-to-multipoint” principle. This multi-
route transmission method sends the same message sim-
ultaneously to subordinate switching nodes. The users
usethereceived messages to solve various tasks simulta-
neously. The length of the transmitted message should
ensure a short delivery time. Response packets in multi-
object control are transmitted based on the “multipoint-
to-point” principle.

The characteristic of the “multipoint-to-point”
transmission method is thata message from M sources is
transmitted through M channels to a single user. The
transmitted messages are different, and their transmission
times into the channel are generally not synchronized.
The userprocesses the received messages simultaneously
in parallel or uses them to solve a specific control task.
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From the described features of the two information
exchange methods, it is clear that they share much in
common, differing only in the process of using the re-
ceived results. Therefore, the mathematical models of
these methods are practically identical but have some pe-
culiarities.

As discussed previously, the network structure
model is represented as an undirected graph. It is as-
sumed that the network includes multiple switching
nodes N connected by arcs. Each arc is characterized by
its length lij and capacity Cij. All of these data are pre-
sented as length matrix h=[lijl and capacity matrix
C=ICijl.

A node is characterized by the buffer storage capac-
ity (BSC) Wij, the service rate for incoming requests Lj,
the incoming request rate Ai, and the reliability coeffi-
cient Krj (readiness coefficient).

The message stream is transmitted along several
(M) routes to M users (“point-to-multipoint™) or toa sin-
gle user (“multipoint-to-point”). Each message follows
its route, differing from others according to channelchar-
acteristics and the number of transit nodes. There are fa
network sections on the a-th route. Accordingly, the traf-
fic distribution and control problem can be solved by
considering the following indicators:

- message delivery time Td;

- probability of delivery within a specified time
P(Td < Tdt);

- efficiency of channel resource usage Kuse; =

CaouT

, where CoaOUT is the data transmission rate over
o

channel a;
- ensuring the equality of the output flow intensity
ALOUT] and the input flow intensity ofthe node Ay IN; with

the constraint Perr<Pacpt err, where Pacpt err is the al-
lowable error probability in message delivery.

In the control process, it is necessary to ensure min-
imal delivery time and maximum delivery probability
within the specified time, the maximum value of the net-
work resource usage coefficient, and 7\0UT,— =y INj -

Due to possible buffer storage overflow, some mes-
sages at the switching node may be lost (intensity 7\10st,- ).

The output flow intensity of node j is then determined by
the following expression:

}‘OUT]' =2 INj }\lostj' ©)

In multi-route transmission, each message must
have its own header. The redundancy due to these head-
ers is denoted as

ki
Trdn = 1+ THI (6)

where kH is the header length, and n is the message
length.

The packet transmission time along the chosen path
TTRFa includes the transmission time along the track
sections TTRFa, the delay time at the switching node
TDELai, and signal propagation time TPROPAGai. The
track contains 3 sections, we get:

p-1 B
TrRFa = ITRFa " I'rdn +Z ToELai + Z TeroPAGai
i=1 =1

The transmission time TTRFa is determined by the
message duration n and the modulation rate in the chan-
nel (data transmission rate over channel Ba), i.e.

T’ITRF(X = Bn_a ()

The distance between the transit nodes and the sig-
nal propagation speed determines the propagation time.

A computer network represents a queuing system
According to this theory, the delay time at switching
nodes dependson the arrival flow law. It is often assuned
that the flow is stationary and follows the Poisson distri-
bution. In this case, the delay time at the node is deter-
mined as follows:
Pj Pj

M4

)

Tpey

A
where p; = u—]

The probability of packet loss at the j-th switching
node due to BSC overflow in a simple flow is determined

by the following formula:

1-pj .
—r P; i )

Plostj = 1-p; "
Individual fragments and entire messages may be
lost during transmission due to BSC overflow at transit
switching nodes. Consequently, the loss probability over
the entire route will be:
B
I:’lostotl =1- Hi:l(l - l:)losti)' (10)
The message delivery time to M users is equalto the
maximum transmission time of one message along route
a
Td - maX(TTRFa). (11)
As a result, the arc functions during the transmis-
sion of a call packet will be:

£l (2) = Rosta * z'd, f;;ll @) = B +z7d;

call
fadr1 (Z) — fadrz (Z) =P =1- (1 _ p)nadr; (]_2)

call call €ITadr
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Prt = (1 - p)n’ Perradr =1- (1 - p)nadr’

where nagr is the length of the address field, and p is the
probability of single-bit error.

Response packets in multi-route control are trans-
mitted based on the “multipoint-to-point” principle.
Therefore, at the control centre, overloads may occurdur-
ing the reception of these packets, leading to conflicts be-
tween the received response packets. Upon detecting
such conflicts, response packets are retransmitted. It can
be assumed that the incoming response packets follow
the Poisson distribution. In this case, the probability of
conflict occurrence is determined by the following for-
mula:

P.=1—e 2P, (13)
where p1 is the channel load coefficient; p, = XN, A -
Tans; + 2ie1An; - Tans;s Ano A 1S the intensity of the trans-
mitted and retransmitted packets; N is the number of
switching nodes that transmit response packets.

The transmission method's efficiency, defined by
the relative number of response packets delivered in the
first attempt, is expressed as follows:

p=pg e, (14)

In this case, pmax=0.18.

In the graph in Figure 1, the possibility of conflict
occurrence and resolution is taken into account by the
following function:

(1-Po)

fe(@) = —-(1-PR). (15)

When receiving response packets, the message is
used only after its preparation for simultaneous control
tasksolving. Denote the data preparation time for control
tasks as Tprep.

Therefore, the message delivery time can be deter-
mined by the expression:

Ty = mO?X{TTRFj "Tran +

-1
+ Zis=1 ToeLai T ZiB=1 TPROPAGM} *+ Tprep - (16)

Thus, the arc functions during the transmission of
the response packet are expressed as follows:

Pundet(Z) = [1 - (1 - p)n] : zKlsd; Pdet(Z) =
=l-a-pl-A-5:;
f;gsst = Piost AL f:#sr = Perradr 214, fins =

=1 -p"-z'y

ZTd;fdet —

Tq-fod _ gid _
ans_Pdet'Z 4;f =f

err _
I:ans - Pundet ans ans —

=1 -p)Q-z'a
3. Results

Graphs were constructed based on the relationships
derived to compare the information support options.
These graphs show the dependency of the relative aver-
age information collection time on the state of the com-
munication channel (probability of a single-bit error), the
probability of subscriberavailability, and the probability
of a potential conflict.

An informed choice of the information supportop-
tion can be made using the developed model and obtained
mathematical relationships.

Figures 5and 6 showthe dependency ofthe relative
information collection time on the error probability in the
channel for the three information support options, con-
structed according to expressions (2) — (4), with the sub-
scriber availability probabilities Pfree=0.8 and Pfree=1,
respectively.

kﬂ 10 0
Tree |[1 — opt.1 JII
2 ... opt. 2 ﬁ
83 ——opt.3 ;
f
s
6| 1 /
3| 4
Eanniiiited
1073 1x107* 1x1077 0.01
T Vi -
Fig. 5. The dependanceTa £ = f(p) with Pgee=0.8
TRF

Tavg 10
Trge ||1— opt1
o2 .. opt. 2
3——opt3
5
4 3
D -
11073 1x107* 0.01

P

Tavg

Fig. 6. The dependance = f(p) with Pgee=1

TTRF

These graphs demonstrate that the information col-
lection time increased significantly with probability
p > 104 when using any of the analyzed options. The in-
formation collection time on requestwas more than twice
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that ofthe other options. The subscriberavailability prob-
ability significantly affects the collection time (Fig-
ure 7, 8). For Psee=0.8 and p=1073, the information col-
lection time for the second and third options was almost
comparable to the same characteristic of the first option
with Pree=1 (Figures 5, 6).

hﬂ 4
Tre / 1 — opt1
S 2 ...opt2
A Sl3——opt3
3 P
L =
do1 01 03 1
Pc
Tav .
Fig. 7. The dependance —= = f(P.) with p=103
TTRF
T
TTRFlD 1 — opt.1

Tavg

Fig. 8. The dependance = f(Pryee) With p=1073

TTRF

There is a similar dependency between the infor-
mation collection time and the probability of service
packet recognition Pget. Because many service packets
are in the network, measures must be taken to distinguish
and recognize them with a probability of no less than 0.9.

The probability of conflict occurrence significantly
influences the time required for information collection
(P¢), which depends on the network load. As shown in
Figure 7, when P¢>0.1, the information support time for
the second and third options began to increase rapidly
and exceeded the characteristics of the first option (Fig-
ure 7).

When selecting an information support method, it is
essentialto considerthe time and network resources con-
sumed in the information collection process. Network re-
sources are used only during information exchange be-
tween control and control centres. In the first data collec-
tion option, the need for information exchange arises at
the initiative of the control centre. In contrast, in the sec-
ond option, it is at the initiative of the controlled centres.

The third option involves periodic transmission of up-
dated data. Since the probability of adjusting the network
control process under normal operating conditions is not
very high, we assume that the network resources con-
sumed for information collection in the third option will
be greater than those in the first and second options.

In the second information support option, the infor-
mation collection time, and consequently the consumed
network resources, is slightly less than that in the first
option. However, the control centre determines the ne-
cessity of using the first option. Therefore, for infor-
mation support, it is necessary to provide the possibility
of collecting information both on request and when the
state of network elements changes.

4. Discussion

The proposed probabilistic-time graph model for
optimizing information support technologies in network
control tasks demonstrated notable variability in the effi-
ciency of different information collection methods. This
study analyzes periodic data transmission, event-driven
data collection, and on-demand requests, each of which
exhibits distinctadvantages and limitations undervarious
network conditions.

Periodic data transmission ensures regular updates
however, it can cause network congestion due to the high
volume of data. This finding is consistent with existing
literature and highlights the challenge of increased net-
work load associated with periodic transmission meth-
ods. For instance, a recent study by Al-Fugaha et al. [18]
discussed the significant network load caused by periodic
data transmission, emphasizing the need to balance data
timeliness and network efficiency. Our study demon-
strates illustrates that the information collection time in-
creases significantly when the error probability in the
channel exceeds 10*.

Event-driven data collection responds more to real-
time changes, thereby reducing unnecessary data trans-
mission. However, it may miss infrequent but significant
state changes. This aligns with the observations in recent
studies, where event-driven methods are praised for their
responsiveness but are noted for their potential to over-
look rare events. Research by Akkaya and Younis [19]
highlighted the efficiency of event-driven data collection
in wireless sensor networks but pointed out the risk of
missing sporadic but crucial data changes. The proposed
model demonstrates that event-driven methods maintain
lower average information collection times undervarious
network conditions, particularly when subscriberavaila-
bility is high.

On-demand requests balance the need for timely
data while maintaining network resource constraints.
They are effective in minimizing network load but are
susceptible to delays due to packet loss or corruption. The
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effectiveness of this method in balancing timely infor-
mation retrieval with resource constraints is supportedby
studies on dynamic network environments. Zhang et al.
[20] discussed the benefits and challenges of on-demand
data collection in 10T networks, particularly focusingon
packet loss and delay issues. The findings of this study
indicate that on-demand requests exhibit increased col-
lection times when the probability of subscriber availa-
bility is less than 1.

The study by Inzillo et al. [21] reveals significant
improvements in energy efficiency and network perfor-
mance through adaptive array technologies. Implement-
ing adaptive beamforming techniques reduces energy
consumption and enhances packet delivery ratios, which
is critical for maintaining efficient and reliable network
control. This aligns with the current study's findings that
adaptive methods can optimize network performance by
dynamically adjusting to network conditions.

GrofBwindhager et al's [22] research on dependable
IoT systems for networked cars underscores the im-
portance of reliability and security in loT applications.
The study emphasizes the need for dependable wireless
communication and localization, achieved through adap-
tive algorithms and robust protocol testing. These in-
sights are relevant to the current study, highlighting the
necessity of reliable and timely information collection
methods for efficient network control.

The model’s flexibility in adapting to varying net-
work conditions has significant practical implications for
improving network efficiency and performance. By ena-
bling dynamic selection among different information col-
lection methods, the model can optimize resource utiliza-
tion and enhance decision-making processes in network
management. This adaptability is particularly relevant in
modern telecommunications and computer networks,
where conditions can change rapidly and unpredictably.

Network administrators can use the proposed model
to evaluate the trade-offs of each information collection
method based on real-time network conditions. The pro-
posed approach can lead to more efficient use of network
resources, reduced data collection times, and improved
overall network performance. The insights provided by
the probabilistic-time graph model can inform network
control strategies and help mitigate the limitations of cur-
rent methodologies.

Future research should explore integrating machine
learning techniques to predict network conditions and dy-
namically adjust information collection strategies. Ma-
chine learning can enhance a model's ability to adapt to
real-time changes, which improves its efficiency and re-
liability. In addition, extending the model to accommo-
date more complex network topologies and heterogene-
ous environments would provide a broader understand-
ing of its applicability. Understanding how the model
performs undervarious conditions is crucial as networks

become increasingly diverse. Research on the impact of
emerging technologies,such as 6G networks and the In-
ternet of Things, on information collection methods is
also crucial for future advancements. A recent paper by
Dang et al. [23] discussed the challenges and opportuni-
ties of 6G networks, emphasizing the need for advanced
information-collection models.

The proposed model must develop robust security
and privacy mechanisms. As network environments in-
crease in complexity, ensuring the security and privacy
of data transmission is critical. Future studies could in-
vestigate methods to integrate these considerations into
the model to enhance its practical utility and reliability .
Ziegeldorf etal. [24] highlighted the importance of incor-
porating security and privacy features into 1oT networks
and provided insights that could be applied to the current
model.

This study presents acomprehensive and adaptable
model for optimizing information support technologies
for network control tasks. By incorporating probabilistic
and time-based analyses, the proposed model provides a
detailed understanding of the trade-offs involved in dif-
ferent information collection methods. The results high-
light the model's potential to improve network efficiency
and performance, and they have significant practical im-
plications for network control strategies. Future research
directions include integrating machine learning tech-
niques, extending the model to more complex environ-
ments, and developing robust security mechanisms.

Conclusions

This study presents a comprehensive model for in-
formation support technology aimed at optimizing con-
trol task resolution in network environments. The model
integrates probabilistic and time-based analyses to eval-
uate the efficiency of various information collection
methods, including periodic data transmission, event-
driven data collection, and on-demand requests.

The proposed model demonstrates that the effi-
ciency of information collection significantly varies de-
pending on the method employed. Periodic data transmis-
sionwhile ensuring regular updates can increase network
load and reduce unnecessary data transmission. Event-
driven data collection responds more to real-time
changes but may miss infrequent yet significant state
changes. On-demand data requests balance the need for
up-to-date information with network resource constraints
but are susceptible to delays if packets are lost or cor-
rupted.

The probabilistic-time graph model effectively cap-
tures the dynamic nature of network conditions and pro-
vides a robust framework to evaluate different infor-
mation collection strategies. By considering factors such
as packet loss probability, node availability, and conflict
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likelihood, the proposed model provides a detailed un-
derstanding of the trade-offs involved in each method.
This study highlights that network conditions, such as the
probability of single-bit errors, subscriber availability,
and potential conflicts, significantly impact the infor-
mation collection time and the overall network effi-
ciency. For example, high error probabilities and low
subscriber availability can drastically increase the time
required to collect data, thereby affecting the timeliness
and reliability of the control task resolution.

The proposed model offers greater flexibility and
accuracy when adapting to varying network conditions
than existing methodologies. Traditional models often
cannotdynamically adjustto real-time changes and prob-
abilistic transmission errors. Integrating probabilistic-
time graphs into the proposed model addresses these lim-
itations, providing a more comprehensive and adaptable
network control approach.

The findings of this study have significant practical
implications for network control strategies. Network ad-
ministrators and engineers can use the proposed model to
make informed decisions about the most suitable infor-
mation collection methods based on current network con-
ditions. This can lead to more efficient use of network
resources, reduced data collection times, and improved
overall network performance.

Although the proposed model provides a robust
framework for optimizing information supporttechnolo-
gies, further research is required to refine and expand its
applicability. Future studies could explore the integration
of machine learning techniques to predict network condi-
tions and dynamically adjust information collection strat-
egies. In addition, the proposed model can be extended to
consider more complex network topologies and hetero-
geneous network environments.

This study has developed a novel and effective
model for providing information support technology for
network controltasks. By incorporating probabilistic and
time-based analyses, the proposed model offers a detailed
and adaptable framework for optimizing information col-
lection methods, ultimately enhancing the efficiency and
reliability of network control processes. The insights
gained from this research can guide the development of
more resilient and responsive network environments,
thereby contributing to the advancement of telecommu-
nications and computer network technologies.
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ONTUMBAIIISA TEXHOJOI'TI ITHOOPMAIIMHOI NMIITPUMKHU YIIPABJIIHHA MEPEXKEIO:
MIIXIT HA OCHOBI ¥MOBIPHICHO-YACOBHUX T'PA®IB

K. M. Pykkac, A. I. Mopo3osa,/l. IO. ¥Y3noe,
B. O. Ky3neuoea, /. I. Yymauenko

VY cydJacHHX TeIeKOMYHIKAI[IfHUX Ta KOMIT'IOTEPHHUX Mepexax e eKTHBHUH Ta HamiiHMI 30ip iHpopMmamii € Ba-
XKJIMBUM JUI1 NPUAHATTI pillleHb Ta PO3B'SI3aHHSA 337ad YIPaBIiHHA. MeToy, o iCHyI0Th, TaKi SK IepioudHa mepe-
Jlada aHux, 30ip JAaHUX HA OCHOBI MOJiH Ta 3alUTH HA BUMOTY, MarOTh CBOi mepeBarn Ta oOMexeHHs . O0'€eKkTom
CTATTi € po3poOKa KOMIUIEKCHOT MOJIET Il OMTUMIi3allii mporeciB 300py iHpopMalii B MEpEKEBUX CEPEIOBUIIAX.
IpeameTom cTatTi € MeTomu 300py iH(pOpMaIllii, BKIOYAIOUN MepioJUYHy Nepenady JaHUX, 30ip JaHUX Ha OCHOBI
MOJiH Ta 3aIMTH Ha BUMOTY, Ta OLHIOETHCS X e(DEeKTHBHICTH 3a Pi3HUX yMOB Mepexi. MeTolW I[b0T0 JOCHIDKEHHS €
po3poOKa THYUYKOI Ta TOYHOI MOJENi, fKa MOKe ONTHMI3yBaTH TEXHOJIOTi iH(popManiifHOTO 3a0e3medeHHs Wit 3a-
BIAHb YIPaBIiHHA Mepexxero. OCHOBHI 3agavi JOCIikeHHA BKIIOYaroTh: 1. Po3pobka iiMoBipHICHO-4acoBoi rpado-
BOT MoOJei i OLIHKK e(eKTUBHOCTI PI3HUX MeToMiB 300py iHdopMarii. 2. AHani3 OpOayKTUBHOCTI MOJEN 3a JI0-
MIOMOT0I0 MaTeMaTUYHHUX CHIBBIMHOIIEHbh Ta cuMyJisiuiil. 3. [IopiBHAHHS 3alpONOHOBAHOI MOJEN 3 iCHYIOUUMH Me-
TonoJoriiMu. Pe3ynbTaTH: 3ampornoHoBaHa MOJIeNb MOKa3aja 3HAUHi Bapiallii B €()eKTUBHOCTI METOIiB 300Dy iH}O-
pmauii. IlepioguuHa nepenayda JaHUX 301UIbLIyBajia HaBaHTAXKEHHS HAa MEPEXY, TOAl K 30ip JaHMX Ha OCHOBI MO
OyB OUIBbLI ONEPAaTHBHUM, ajie Mil IPOIMYCKAaTH PiAKICHI 3MiHHM. 3allMTH Ha BUMOTY OajaHCyBalu MK HEOOXIHICTIO
CBOE€YACHHX JIAHUX Ta 0GMEXEHHAMU PECypCiB, ajle CTUKAIMCS i3 3aTPMMKAMH Yepes BTpaty maketis. MMoBipHicHO -
qacoBuii rpad) epeKTHBHO BimoOpa)ap Il MMHAMIKH, 3a0e3MeuyIoUu IeTajlbHe PO3yMIiHHI KOMIIPOM iciB. BUCHOBKH:
B pamkax mocmimpKeHHsS po3p0o0JeHO THYUYKY Ta TOYHY MOJENb IS ONTUMI3alil TeXHOJIOTIH iHdopmaliiHoTo 3a0e3-
MICYCHHS B 3aBJ@HHAX YNPABIIHHA MepexaMu. 3JaTHICTb MOJEN aJaNTyBaTHCS O PI3HHX YMOB MEpEKi Mae€ 3Ha4Hi
MPaKTAYHI HACHIOKA I MOKPANIEeHHs ¢(EeKTUBHOCTI Ta MPOJYKTHBHOCTI Mepex. MaiOyTHI MOCi/DKSHHST TOBHHHI
JOCHIIUTH IHTETPAIil0 METOAIB MAIIMHHOTO HAaBYAHHS Ta PO3MIMPUTH MOJEIb U OUIBIN CKIATHUX MEPEKEBHX Ce-
PeIOBHIIL.

KimrouoBi csioBa: texsoumoris iHGopManiiHOTO 3a0€3MeUeHHs; YIPaBIiHHI Mepekero; HMOBIPHICHO-4acoBHit
rpad; TeleKoMyHIKaIlil; KOMITIOTCpHI Mepexi.
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