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IMPROVEMENT OF LAND COVER CLASSIFICATION ACCURACY  

BY TRAINING SAMPLE CLUSTERING 
 

The subject of this article is land cover classification based on geospatial data. The supervised classification 

methods are appropriate for most of the thematic tasks of remote sensing because they provide the opportunity 

to set the characteristics of the initial classes in the form of a training sample set, in contrast to unsupervised 

methods. There are many approaches to processing such a set; however, their common disadvantage is that they 

do not consider the factor of training sample separability. This characteristic ind icates the extent to which sig-

natures representing different classes do not overlap. A low degree of separability is inherent in high -level train-

ing sample mixing. Thus, separability affects classification accuracy. One possible ways to increase separability 

is training sample clustering. Considering the above, the goal of this study is to develop a training sample clus-

tering technique to improve land cover classification accuracy by increasing the separability of training samples. 
The tasks of this work are as follows: 1) develop a method for training sample separability assessment; 2) de-

velop a training sample clustering technique based on training sample separability; 3) test the effectiveness of 

the developed technique by applying it to experimental land  cover classification. In the experiments, two land 

cover classifications were obtained for each of the two selected study areas (i.e., one before and another after 

training sample clustering. Six land cover classes were defined for each experiment. The training samples were 
selected for each class. Conclusions. After the application of the developed technique, an increase in the sepa-

rability of the training samples was evidenced by the developed separability index. In turn, this approach led to 

an improvement in land cover classification. For the first experiment, this was evidenced by an increase in the 

overall accuracy and kappa coefficient by 20% (from 63 to 83%) and 21% (from 60% to 81%) , respectively. In 

the second experiment, the increase was 4% (from 77% to 81%) and 5% (from 66% to 71%), respectively.  
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1. Introduction 

 

1.1. Motivation 
 
Land cover classification has a broad range of ap-

plications in remote sensing [1]. It provides spatially ex-

plicit categorized information for environmental moni-

toring [2,3], land cover change detection [4], analysis of 

urban development [5,6], landmine detection [7], and 

fossil fuel exploration [8]. Moreover, land cover classifi-

cation techniques play a crucial role in complex interdis-

ciplinary problems in achieving sustainable development 

goals [9, 10], primarily combating climate change and its 

impacts [11], reversing land degradation [12], halting bi-

odiversity loss [13], protecting water-related ecosystems 

for safe water supply [14], and conducting geoenviron-

mental hazard assessments [15]. 
 

1.2. State-of-the-art 
 

Currently, many classification techniques have 

been developed, and they are mainly divided into two 

groups:  

supervised and unsupervised [16]. Supervised classifica-

tion and, however, is most suitable for a large number of 

thematic tasks because it allows setting the characteris-

tics of the original classes, unlike unsupervised classifi-

cation. Such characteristics are provided by the training 

sample set. 

The training sample set comprises each class sam-

ple. In turn, such a sample is presented in the form of cor-

responding signatures defined in each layer of the input 

geospatial data. Among the approaches to training sam-

ple preprocessing, the following can be distinguished: 

cluster sampling [17], approaches to reduce the size of 

the input data [18], noisy image processing [19, 20], and 

approaches that define mislabeled training data [21]. 

Along with the above approaches, we highlight the ones 

that aim to change the data structure, namely, image con-

tour segmentation [22], synthesis of neural network 

structure [23], ranking and selection of different sam-

pling strategies [24] and iterative clustering for training 

sample refinement [25]. 

However, most existing approaches do not consider 

the factor of training sample separability, which  
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affects classification accuracy. This characteristic indi-

cates the extent to which signatures representing different 

classes do not overlap. A low degree of separability is 

inherent in high-level training sample mixing. In turn, 

this leads to a significant number of misclassified objects 

in the classification. Thus, the training sample separabil-

ity directly affects the classification accuracy [26]. 

 

1.3. Objective and Approach 

 
The aim of the present study is to improve land 

cover classification accuracy. This can be achieved by in-

creasing the separability of training samples. Thus, a 

method for training sample separability assessment was 

developed. This method is the basis of the proposed tech-

nique, which implies that training sample separability in-

creases via training sample clustering. 

Considering the above, the paper structure consists 

of the following sections.  

In the section "Methods", we describe the method 

of training sample separability assessment. This method 

is the basis of the proposed training sample clustering 

technique, which is also presented in this section.  

The section "Experiments" implies performing two 

land cover classifications before and after applying the 

developed technique to each of the two selected study ar-

eas. 

Finally, the section "Conclusions" briefly describes 

the developed methods, obtained experiment results and 

further research aims. 

 

2. Methods 

 

Training sample separability assessment. Because 

this technique is the optimization based on training sam-

ple separability, the object function is the developed sep-

arability index of the training sample (SITS).  

SITS is the result of the training sample separability 

assessment, and its stepwise algorithm is described in 

Figure 1. 

The first step involves classifier training on the in-

put training sample set. Notably, the supervised classifi-

cation method must be the same as that selected for fur-

ther land-cover classification. This is because the separa-

bility depends not only on the training sample structure 

but also on the supervised classification method. 

In the second step, each signature in the training 

sample set is classified by the obtained classifier. 

The third step is the formation of a confus ion matrix 

[27] for the classification obtained in the previous step.  

The fourth and final step is the SITS calculation. 

This index can be calculated for the entire training sam-

ple and two separate classes.  

The SITS of the two classes (SITSpair) is the average 

arithmetic value of the sensitivity and specificity indica-

tors [28]. Sensitivity was calculated using the following  

formula: 

 

, 

 

where xji  is the number of class j signatures classified as 

class i. 

The following formula corresponds to the specific-

ity calculation: 

 

. 

 

 

 
 

Fig. 1. The algorithm of the training sample separability assessment  
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Thus, the SITSpair calculation formula has the fol-

lowing formula: 

 

 pair
sensitivity specificity

SITS
2


 . (1) 

 

SITS of the entire training sample set (SITSoverall) 

was calculated using the following formula:  

 

 , (2) 

 

where K is the number of classes. 

This index quantifies the separability of the training 

sample set by measuring the ratio of correctly classified 

signatures to the total number of signatures. In other 

words, the SITSoverall equals the overall accuracy (OA) 

[27] based on the confusion matrix obtained in the previ-

ous step. 

The values of the considered indices range from 0 

to 1. At the same time, value 0 indicates that the training 

sample is entirely mixed (minimum separability), and 

value 1 corresponds to the training sample, which is en-

tirely separable (maximum separability). 

Training sample clustering technique. The devel-

oped technique assumes that only centroid methods of 

unsupervised classification (i.e. K-means, K-medians, 

along with others) [29] are considered. Thus, the goal of 

the proposed technique can be defined as finding the op-

timal number of clusters for each class of the training 

sample. The optimal number of clusters is one that pro-

vides the corresponding clustered set of the training sam-

ple with the highest value of the SITSoverall among all 

other options. This index is calculated using equation (2). 

The algorithm of the developed technique is illustrated in 

a flowchart (Figure 2). 

This algorithm is an iterative procedure. In turn, 

each iteration contains two steps.  

The first step of the iteration is to calculate SITSpair 

for each pair of classes of the training sample using the 

formula (1). Then, the pair with the lowest value of this 

indicator is selected. 

The second step involves finding the optimal num-

ber of clusters for pairs of classes selected in the previous 

step. For this reason, the number of clusters of these two 

classes increases from 1 to that number, at which the 

SITSoverall value increase stops. 

The iterations are then repeated without considering 

the pair selected for each iteration. 

Such two-step iterations continue until at least one 

of the following stopping criteria is met: 

1) if the SITSoverall value equals 1; 

2) searching for the optimal number of clusters for 

all consecutive pairs of classes indicates no increase in 

the SITSoverall. 

This procedure results in the optimal structure of the 

training sample with the highest separability among all 

considered options. The obtained training sample set was 

used for further classification.  
 

 

 
 

Fig. 2. The algorithm of the training the sample clustering technique 
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3. Experiments 
 

Two experiments were conducted to test the effec-

tiveness of the developed technique. Each stage consisted 

of performing two land cover classifications before and 

after applying the obtained technique. The first experi-

ment’s study area was the Ivano-Frankivsk region's test 

site (Figure 3, b), and the second experiment's study area 

was Shatsk National Natural Park (Figure 3, e). 

Six broad land cover classes were defined for the 

first experiment: artificial surfaces, crops, grasslands, 

tree-covered areas, water bodies, and bare rocks. The fol-

lowing six classes were selected for the second experi-

ment: artificial surfaces, crops, grasslands, tree-covered 

areas, water bodies, and wetlands. The training samples 

were selected for each of the aforementioned classes . 

Input data. The data set for the first experiment in-

cluded seven bands of Landsat-OLI8 satellite image (ac-

quired on August 9, 2018) and three spectral indices 

(namely Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Build-up Index (NDBI) 

and Build-Up Index (BUI) [30]). The second experiment  

data set contained ten spectral bands of the Sentinel-2 sat-

ellite image acquired on June 1, 2018. 

Technique application. The maximum likelihood  

and Mahalanobis distance [31] were selected for the first 

and second experiments, respectively. In addition, K-

means [29] was selected as an unsupervised classification 

method for training sample clustering in both experi-

ments.  

First, the initial training sample separability was as-

sessed in each experiment. The SITSoverall values equal 

0.91 and 0.92, respectively. 

Second, the training sample was clustered. The op-

timal number of clusters for each input class was deter-

mined for the first experiment to be 2, 5, 4, 2, 1, 2; for the 

second experiment to be 10, 3, 1, 4, 4, and 6. The SITSover-

all values of the obtained training samples were 0.95 and 

0.99, respectively. 

Finally, the corresponding classifications were per-

formed. The initial and final classification maps for the 

first experiment are shown in Figures 3, a and 3, c, re-

spectively. The classification maps for the second exper-

iment are shown in Figures 3, d and 3, f, respectively.  

Accuracy assessment. The assessment of classification 

accuracy involved independent verification of the initial 

and final land cover maps. For this purpose, the test sam-

ple set for the first experiment contained 60 pixels for 

each land cover map and 355 pixels for the second exper-

iment. Satellite images (QuickBird) of high spatial reso-

lution were used as reference data. 

Metrics such as OA and kappa coefficient were se-

lected for the classification accuracy assessment [25]. 

The accuracy assessment results and the SITS values are 

listed in Table 1. 
 

Table 1 

SITS, OA and kappa coefficients  

# SITS initial SITS final OA initial OA final Kappa initial Kappa final 

1 0.91 0.94 63 83 60 81 

2 0.92 0.99 77 81 66 71 
 

 

Fig. 3. First experiment: initial classification (a), Landast-OLI8 image of the study area (b),  

final classification (c); Second experiment: initial classification (d),  

Sentinel-2 image of the study area (e) and final classification (f) 
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4. Discussion 

 
The aim of the developed optimization technique is 

to improve land cover classification accuracy. This goal 

is proposed to be achieved by increasing the separability 

of the training sample. Thus, the experimental result 

should be considered in terms of classification accuracy 

and training sample separability. 

Two experiments confirmed the improved land 

cover classification accuracy after applying the proposed 

technique along with increased training sample separa-

bility. The SITS increased by 3% (from 91% to 94%) in 

the first experiment and by 7% (from 92% to 99%) in the 

second experiment. The OA and kappa coefficient val-

ues. For the first experiment, by 20% (from 63 to 83%) 

and 21% (from 60% to 81%); for the second experiment , 

by 4% (from 77% to 81%) and 5%(from 66% to 71%). 

An increase in the OA and kappa coefficients indicated 

an improvement in the land cover classification. For the 

first experiment, by 20% (from 63 to 83%) and 21% 

(from 60% to 81%); for the second experiment, by 4% 

(from 77% to 81%) and 5% (from 66% to 71%). 

 

5. Conclusions 
 

In this paper, we have presented a training sample 

clustering technique. The purpose of this technique was 

to increase the separability of the training sample set. Be-

cause separability directly affects classification accuracy, 

the technique increases the accuracy along with the sep-

arability.  

In order to assess separability, an appropriate 

method for training sample separability assessment was 

developed and presented.  

Further research should aim at applying the pro-

posed technique to other classification methods. 
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ПІДВИЩЕННЯ ТОЧНОСТІ КЛАСИФІКАЦІЇ ЗЕМНИХ ПОКРИВІВ  

ШЛЯХОМ КЛАСТЕРИЗАЦІЇ НАВЧАЛЬНОЇ ВИБІРКИ 

А. А. Андреєв, Л. М. Артюшин  

Предметом вивчення в статті є класифікація земних покривів. Як відомо, cаме керовані методи класифі-

кації є актуальними для більшості тематичних задач дистанційного зондування Землі, оскільки вони дають 

можливість задати характеристики вихідних класів у вигляді навчальної вибірки на відміну від некерованих 

методів. Існує значна кількість підходів до обробки набору навчальної вибірки, але їхнім спільним недоліком  

є те, що вони не враховують фактор розділимості навчальної вибірки. Дана характеристика показує, наскільки 

сигнатури різних класів не перетинаються між собою. Низький рівень розділимості властивий змішаній на-

вчальній вибірці. Таким чином, розділимість суттєво впливає на точність класифікації. Одним з варіантів під-

вищення розділимості є кластеризація навчальної вибірки. Отже, метою даного дослідження була розробка 

методики кластеризації навчальної вибірки, яка дозволяє підвищити точність класифікації земного покриву 

безпосередньо за рахунок підвищення розділимості навчальної вибірки. Таким чином завдання цього дослі-

дження наступні: 1) розробити метод оцінювання розділимості навчальної вибірки; 2) розробити методику  

кластеризації навчальної вибірки; 3) перевірити ефективність розробленої методики, виконавши експеримен-

тальну класифікацію земних покривів із застосуванням розробленої методики. В якості експерименту  було 

отримано по дві класифікації для кожної з двох обраних територій дослідження: одна класифікація до засто-

сування методики, а друга – після. Було залучено шість класів в кожному з експериментів. Навчальну вибірку  

було відібрано для кожного з класів. Висновки. Після застосування розробленої методики було зафіксовано  

підвищення розділимості навчальної вибірки, яке зафіксовано розрбленим індексом розділимості. В свою 

чергу, це призвело до підвищення точності класифікації. Для першого експерименту це засвідчено підвищен-

ням загальної точності класифікації та капа-коефіцієнта на 20% (з 63% до 83%) та 21% (з 60% до 81%) відпо-

відно. А для другого експеримента підвищення загальної точності класифікації та капа -коефіцієнта становило  

4% (з 77 до 81%) та 5% (з 66% до 71%) відповідно. 

Ключові слова: класифікація; керована класифікація; некерована класифікація; кластеризація; ДЗЗ; на-

вчальна вибірка; розділимість навчальної вибірки. 
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