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IMPROVING SPATIAL RESOLUTION OF CHLOROPHYLL-A  

IN THE MEDITERRANEAN SEA BASED ON MACHINE LEARNING 
 

The objective of this study is to increase the spatial resolution of data on the level of chlorophyll-a in the Med-

iterranean Sea using satellite images and ground measurements. The goal of this study is to develop an infor-

mation technology based on machine learning to create chlorophyll-a concentration maps with high spatial 

resolution for the pilot areas of the Mediterranean Sea. Traditional ground-based methods for measuring chlo-

rophyll-a are time-consuming, expensive, and have limited spatial and temporal coverage. Therefore, satellite 

observations have become an effective tool for monitoring chlorophyll-a over large areas. Low spatial resolution 

satellite data such as GCOM-C/SGLI and Sentinel-3 OLCI allow measurements of chlorophyll-a concentration 

at the sea surface. However, these data have limited accuracy and spatial resolution, which creates challenges 

for monitoring local changes in coastal zones and small water areas. Tasks: to analyze available satellite data 

and ground-based measurements of chlorophyll-a for the Mediterranean Sea; to investigate the correlation be-

tween satellite data of different spatial resolutions and ground measurements; to select informative features from 

satellite data for building machine learning models; and to develop models for increasing the spatial resolution 

of chlorophyll-a based on regression and machine learning algorithms. Obtained results: information technol-

ogy combining satellite data with ground measurements in the Google Earth Engine cloud platform is proposed; 

correlations between satellite measurements of chlorophyll-a and ground data are investigated; models based 

on Random Forest and Multilayer Perceptron with coefficients of determination up to 0.36 and correlation of 

0.6 with test data are built; chlorophyll-a maps with a spatial resolution of 10 m are created for the pilot area 

near Cyprus. Conclusions. The developed information technology allows the effective combination of satellite 

data of different spatial resolutions and ground measurements to increase the accuracy and detail of chlorophyll-

a maps in the Mediterranean Sea. Further research involves improving the preprocessing of satellite data, using 

more features, involving data from other regions, and applying more sophisticated machine learning models. 

 

Keywords: machine learning; satellite data; chlorophyll-a; cloud technologies, information technology;  

iMERMAID. 

 

1. Introduction 

 

1.1. Motivation 

 

Measuring chlorophyll-a is an important way to as-

sess water quality because it reflects the photosynthetic 

activity of phytoplankton, which is the main product of 

organic matter in aquatic ecosystems [1]. Chlorophyll-a 

concentration is also linked to biological productivity, bi-

odiversity, the carbon cycle, and global climate change. 

However, measuring chlorophyll-a using traditional 

methods, such as water sample collection and laboratory 

analysis, is time-consuming, expensive, and limited in 

spatial and temporal coverage. Therefore, satellite obser-

vations have become an alternative and effective tool for 

monitoring chlorophyll-a in large areas. 

Satellite monitoring of chlorophyll-a is based on the 

measurement of sunlight reflected from the water surface 

in various spectral ranges [2]. Chlorophyll-a absorbs light 

in the blue and red ranges and reflects light in the green 

range. Thus, the concentration of chlorophyll-a can be 

determined using special algorithms that use signal ratios 

in different ranges. However, using satellite data to esti-

mate chlorophyll-a concentration also presents chal-

lenges and limitations. In particular, the influence of the 

atmosphere, which scatters and absorbs light, leads to er-

rors in the estimation of chlorophyll-a. To correct this ef-

fect, atmospheric correction is needed, the algorithms of 

which can be complex and unreliable, especially for 

coastal waters with high aerosol concentrations. Another 

problem is the influence of the sea surface, which reflects 

light and creates noise in the signals picked up by satel-

lites. To reduce this effect, data corrections for the sea 

surface are necessary, which may not be of sufficient 

quality or unsuitable for various conditions of the sea sur-

face, such as waves, foam, and reflection. The higher the 
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spatial resolution of the data, the stronger the effect of 

internal scattering, which depends on the optical proper-

ties of water, such as transparency, color, turbidity, and 

concentration of dissolved and suspended substances. 

These factors affect the spectral shape of the signal com-

ing from the water and can mask or alter the chlorophyll-

a signal. To take these factors into account, complex op-

tical water models are required, which may be unavaila-

ble or inaccurate for different types of water. Another im-

portant factor is the effect of seasonal and spatial changes 

in the concentration of chlorophyll-a, which require fre-

quent and regular validation of satellite data using ground 

measurements. However, ground-based measurements of 

chlorophyll-a may be scarce or absent in many regions, 

especially in remote or inaccessible locations. In addi-

tion, ground-based measurements of chlorophyll-a may 

be inconsistent with satellite data due to differences in 

time, space, and measurement depth. 

Given these challenges and limitations, many re-

searchers have attempted to improve the accuracy and re-

liability of chlorophyll-a measurements from satellite and 

ground-based water data, particularly for the Mediterra-

nean Sea.  

 

1.2. State of the Art 

 

There are many satellites that do not measure the 

value of chlorophyll-a directly, but have a wide set of 

spectral bands that make it possible to calculate it using 

various algorithms and approaches. In particular, in [3], 

the authors investigated the effectiveness of algorithms 

for calculating chlorophyll-a indicators based on Senti-

nel-3 data (Ocean Color 4 for MERIS [OC4Me]) in com-

parison with neural network approaches and concluded 

that the OC4Me algorithm showed better results in com-

parison with in situ measurements than neural networks. 

The authors of the article [4] compared three more algo-

rithms for calculating the concentration of chlorophyll-a: 

OC4, OC5 and OC6, using data from stations to validate 

their accuracy and reliability. 

In [5], a new methodology is proposed for automat-

ically combining surface reflectance values using multi-

sensor satellite observations (Landsat, Sentinel-2, Terra 

ASTER) with ground samples of water quality in time 

and space in the Google Earth Engine cloud platform. In 

[6], the authors developed a model for remote estimation 

of chlorophyll-a concentration in Lake Dianshan, China, 

based on Landsat-8 satellite data. Based on the data of the 

MODIS device, an algorithm was developed [7], which 

returns the concentration of chlorophyll-a near the water 

surface in mg/m3, calculated using the empirical relation-

ship obtained from ground measurements of chlorophyll-

a and the ratios of the blue-green bands of the ground re-

mote reflection. 

Another promising direction is the application of 

the latest technologies and methods of machine learning 

to improve the accuracy and spatial resolution of satellite 

data. In article [8], the authors propose a new algorithm 

for restoring gaps in data on the concentration of chloro-

phyll-a on the sea surface based on data from the Chinese 

HY-1C satellite, which considers the influence of the at-

mosphere, sea surface, and internal scattering. In the 

study [9], the authors used multi-time OLCI data and the 

Light Gradient Boosting Machine (LightGBM) machine-

learning model together with four spectral indices based 

on the characteristic ranges of OLCI as additional input 

characteristics to estimate the concentration of chloro-

phyll-a in Fujian coastal waters. In the article [10], the 

authors used Sentinel-2 data to determine chlorophyll-a 

levels in Marmaris Bay, Turkey, integrating satellite data 

with a geographic information system (GIS) to improve 

the spatial resolution and accuracy of chlorophyll-a 

measurements. 

The comparison and validation of different chloro-

phyll-a recovery algorithm for different regions and con-

ditions is also an important stage of research. For exam-

ple, work [11] analyzed the relationship between chloro-

phyll-a and sea surface temperature in the Mediterranean 

Sea using Landsat-8, Sentinel-2 data, and temperature 

data from the sea and land surface temperature radiome-

ter (Sea and Land Surface Temperature Radiometer - 

SLSTR. 

In [12], the authors analyzed the financial compo-

nent of land-based measurements of water quality in seas 

and lakes. They emphasize the importance of supporting 

both ground-based and satellite monitoring of marine 

pollution indicators, which provide complementary in-

formation for water quality management. 

The Mediterranean Sea is one of the most bio-

diverses and ecologically valuable regions in the world 

but it is also one of the most polluted. The level of chlo-

rophyll-a is an important indicator of the productivity of 

marine ecosystems and the impact of pollution. To in-

crease the spatial resolution of chlorophyll-a, this paper 

proposes information technology in the Google Earth En-

gine cloud platform [13]. The use of cloud platforms 

makes it possible to increase the efficiency of training 

models and their application to data [14, 15]. To imple-

ment technology for increasing the spatial resolution of 

chlorophyll-a data, the possibilities of using satellite data 

to analyze the level of chlorophyll-a in the Mediterranean 

Sea were investigated. For this purpose, free satellite data 

measuring chlorophyll-a in the Mediterranean Sea and 

their characteristics, such as spatial, temporal, and spec-

tral resolution, availability, etc., were investigated. A re-

view of available ground-based data measuring chloro-

phyll-a in the Mediterranean Sea, such as buoys, ships, 

etc., and their characteristics, such as spatial and tem-

poral coverage, availability, etc., has also been reviewed. 
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To obtain information about the concentration of chloro-

phyll-a at each point on the sea surface, a comparative 

correlation analysis of the values of different spectral 

bands of satellite data (Sentinel-2,3) with indicators from 

marine stations measuring chlorophyll-a was performed. 

Spectral bands with the highest level of correlation with 

data from marine stations were used as informative fea-

tures in building a model to obtain chlorophyll-a maps 

with a spatial resolution higher than that of existing prod-

ucts.  

 

1.3. Objective and Approach 

 

Within the scope of this work, it is proposed to 

achieve an increase in the spatial resolution of chloro-

phyll-a concentration by applying regression methods of 

machine learning [16]. The use of regression algorithms 

of machine learning allows us to consider the complex 

nonlinear relationships between the spectral characteris-

tics of water surfaces and the level of chlorophyll-a, as 

well as to effectively generalize the acquired knowledge 

to new satellite data, ensuring an increase in the spatial 

detail of the resulting maps. 

 

1.4. Content of the Paper 

 

The structure of the remaining sections in this paper 

is as follows: Data used and Materials are elaborated in 

Sections 2 and 3. Section 3.1 introduces the satellite data 

used, and Section 3.2 describes the in situ dataset and pre-

processing steps. The proposed information technology 

and the process of training and testing the models are de-

scribed in Section 4. Section 5 describes the metrics used 

in the article, and Sections 6 and 7 describe some prelim-

inary data analysis results. Section 8 outlines the results 

of the conducted experiments, followed by the conclu-

sions and discussions. 

 

2. Case Study 
 

In this study, the Mediterranean Sea, which is of 

great importance for the ecology, economy, and culture 

of many countries, was chosen as the research area. This 

sea is also heavily influenced by anthropogenic activities, 

which lead to water pollution with chemicals that pose a 

threat to marine ecosystems and biodiversity. To solve 

this problem, the Horizon Europe iMERMAID project 

was launched, which aims to integrate innovative solu-

tions for the prevention, monitoring, and restoration of 

chemical pollution in the Mediterranean Sea. 

Within the framework of this project, five pilot ar-

eas were selected, which represent different types of ma-

rine environments and require special attention and  

protection. On Fig. 1 shows the location of these territo-

ries on the map of the Mediterranean Sea. 

 
 

Fig. 1. Pilot territories of the iMERMAID project 

 

Available data from chlorophyll-a measurements 

were used to analyze the state and dynamics of these ter-

ritories. Data on chlorophyll-a were obtained from two 

sources: measurements made at various stations and 

depths and satellite data obtained from remote monitor-

ing of the Earth. All available chlorophyll-a data were 

used to train the model. One of the test pilot territories 

located near Cyprus was chosen for the construction of a 

high spatial resolution map. 

 

3. Data and Preprocessing 
 

3.1. Satellite Data 

 

In this study, satellite data with different spatial res-

olutions were used to analyze chlorophyll-a in the Medi-

terranean Sea. Among the most popular low spatial reso-

lution satellite data used to measure chlorophyll-a is the 

GCOM-C/SGLI with a spatial resolution of 4638.3 m. 

The GCOM-C/SGLI L3 Concentration of Chlorophyll-a 

is a product with a delay of 3-4 days. They make it pos-

sible to measure the concentration of photosynthetic pig-

ment (chlorophyll-a) in phytoplankton in the surface 

layer of the sea. Another satellite used in this study, ca-

pable of measuring Chlorophyll-a, is Sentinel-3 OLCI 

EFR (Ocean and Land Color Instrument Earth Observa-

tion Full Resolution) data with a spatial resolution of 300 

m. Shooting occurs in 21 spectral bands from visible to 

near-infrared (400 to 1029 nm). Of these, 7 spectral 

bands contain a mention of chlorophyll measurements; 

accordingly, these bands were further investigated for 

comparison with ground-based measurement data. These 

data provide the ability to measure large areas, but they 

have limited accuracy due to their low spatial resolution. 

In addition, and considering that Chlorophyll-a ab-

sorbs light in the blue (about 458-523 nm) and red (about 

650-680 nm) regions of the spectrum and reflects light in 

the green region of the spectrum (about 543-578 nm), the 

high spatial resolution data from Sentinel-2 satellites 
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were used to investigate the relationship between satellite 

and ground data, as well as to improve spatial resolution. 

Although these data do not directly measure chlorophyll-

a, they allow us to explore relationships with other pa-

rameters and use them to improve the accuracy and spa-

tial resolution of the product. Table 1 presents satellite 

data and spectral bands that were studied within the scope 

of this study. 

One of the challenges in using Sentinel-2 data for 

water quality monitoring is the preprocessing of artifacts. 

In particular, it was found that collections of harmonized 

data in the Google Earth Engine (GEE) cloud platform 

after atmospheric correction using the Sen2Cor algorithm 

have certain inconsistencies between granules for one 

date. An example of a satellite image without atmos-

pheric correction and with correction for October 25, 

2023 is shown in Fig. 2. 

 

  
Sentinel-2 L1C (RGB) – 

without atmospheric  

correction 

Sentinel-2 L2A (RGB, 

Sen2Cor) –  

with atmospheric correction 

 

Fig. 2. Example of the Sentinel-2 data near Cyprus  

on 2023-10-25 

 

A particularly outlined problem is noticeable after 

calculating the Normalized Difference Chlorophyll Index 

(NDCI) [17] (Fig. 3), which is determined by the follow-

ing formula: 

 

B5 B4
NDCI

B5 B4





, (1) 

 

where B5 is the Visible and Near Infrared (VNIR) band 

of the Sentinel-2 satellite and B4 is the Red band. 

This means that for further use of the data, we 

should use another approach for atmospheric data correc-

tion, or change the settings of the standard Sen2Cor algo-

rithm [18]. In our study, we used data from the cloud-

based GEE platform without L1C atmospheric correction 

and with L2A correction to compare the results. 

Other problems that can be seen from Fig. 2, Fig. 3 

are bands on the data and solar glare in the sea [19]. The 

banding problem is associated with odd and even Senti-

nel-2 sensors, which shoot at different angles [20]. The 

first problem is not completely solved today, but it is pos-

sible to improve the quality of the picture by removing 

the sun glare, but not for all cases. 

 

  
Normalized Difference 

Chlorophyll Index (L1C) 

 

Normalized Difference 

Chlorophyll Index (L2A) 

 

Fig. 3. NDCI index based on Sentinel-2 data  

near Cyprus for 2023-10-25 

 

One of the works, where the authors also encoun-

tered such problems for the estimation of chlorophyll-a 

from Sentinel-2 data, is the work [21], where different 

methods of atmospheric correction were used, and an al-

gorithm based on obtaining BRDF values was used to 

eliminate the effect of solar glare (Bidirectional Reflec-

tance Distribution Function) of the image in the SWIR 

(Short Wavelength InfraRed) ranges. There are also other 

approaches based on the estimation of the brightness of 

the glow from the signal in the near-infrared range [22]. 

This is the approach used in our study. 

 

Table 1  

Satellite data were used in this study 

Satellite 
Revisit time 

(days) 

Spatial  

resolution (m) 
Used spectral bands 

GCOM-C/SGLI L3  

Chlorophyll-a Concentration 
2 4638.3 CHLA_AVE 

Sentinel-3 OLCI EFR 2 300 

Oa03_radiance, Oa04_radiance, Oa05_radiance,  

Oa06_radiance, Oa08_radiance, Oa10_radiance, 

Oa11_radiance. 

Sentinel-2 5 10 - 60 

B1 (aerosol), B2 (blue), B3 (green), B4 (red),  

B5 - B8a (Visible and Near Infrared),  

B9 - B12 (Short Wave Infrared)  
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3.2. In situ Data 

 

Coriolis data are used for ground-based monitoring 

of ocean parameters [22]. These data typically include 

measurements of chlorophyll-a, water temperature, salin-

ity, and other parameters using instruments located on 

buoys, drifting platforms, or ships. Coriolis data play an 

important role in the validation and calibration of satellite 

data because they provide an opportunity to obtain accu-

rate sea surface measurements that can be compared with 

satellite observations. 

In addition, Coriolis data were used to create mod-

els and analyze the dynamics of marine ecosystems. They 

allow the study of changes in chlorophyll-a and other im-

portant parameters in time and space, which is key to un-

derstanding the impact of climate change and human ac-

tivity on the marine environment. 

Coriolis data are widely used in scientific research 

and practical applications, such as weather forecasting, 

natural resource management, and environmental protec-

tion. For our study, all available chlorophyll-a data until 

February 2024 were used (Fig. 4). 

 

 
 

Fig. 4. Geospatial distribution of chlorophyll-a  

measurement data for the Mediterranean Sea 

 

Before using the data, they were preprocessed. All 

data with the highest quality according to measurement 

quality control (identifier in attributes) were downloaded 

in csv format and converted to vector format (according 

to coordinates in each file). All values of chlorophyll-a 

that had negative values were excluded because in this 

case they have no physical meaning. Measurements at 

each point were performed several times, each of which 

corresponds to the measurement depth. Instead of the 

measurement depth, the attributive information contains 

the pressure measured in decibars. To determine the 

depth of chlorophyll-a measurement, the approach de-

scribed in the Copernicus Marine Service product quality 

technical documentation [23] was used. Research was 

also conducted based on the method proposed in [24] and 

Archimedes’ law, considering the correction for the ac-

celeration of free fall. Results obtained by different meth-

ods showed similar results. After obtaining the depth of 

measurement of chlorophyll-a, for each point, the values 

closest to the water surface are selected. 

For comparison with satellite data, the data were 

screened by the depth value; in particular, only those 

points with a measurement depth of no more than 20 m 

were left for consideration. This depth was chosen con-

sidering the Sentinel-2 spatial resolution for SWIR bands 

(B11 and B12) and experimental comparison with satel-

lite spectral bands. For the period 2015-2024, after data 

pre-processing, a total of 4547 points were obtained 

(Fig. 4), and after comparing these measurements with 

the corresponding satellite data, 1569 of them remained 

(satellites may not have taken the data on the day when 

the measurement took place, or the data could get into the 

cloud mask). 
 

4. Information Technology for Increasing 

the Spatial Resolution of Chlorophyll-a 
 

The goal of this study was to create a map of Chlo-

rophyll-a concentration with high spatial resolution for a 

pilot area in the Mediterranean Sea. To achieve this goal, 

an information technology was developed that integrates 

satellite data of different spatial resolutions and ground-

based measurements of Chlorophyll-a in the Google 

Earth Engine (GEE) cloud platform. The proposed meth-

odology is based on the use of machine learning to iden-

tify relationships between satellite data and ground meas-

urements, and to improve the spatial resolution of chlo-

rophyll-a maps. The general scheme of information tech-

nology is presented in Fig. 5 and consists of the following 

stages.  

Preliminary processing of ground measurement 

data. At this stage, an analysis of ground-based measure-

ments of chlorophyll-a obtained from the Coriolis service 

is performed. Data are downloaded and filtered before 

being imported into the GEE cloud platform for further 

analysis. 

Preprocessing of satellite data. Data selection was 

carried out according to the date of ground measurements 

of chlorophyll-a. In particular, low spatial resolution data 

to analyze their dependence with ground data and high 

spatial resolution data (10 meters) Sentinel-2, which has 

13 spectral bands for visible and near-infrared spectra. 

Preprocessing of satellite data is carried out, such as 

cloud masking and atmospheric correction. 

Data analysis. GCOM-C/SGLI and Sentinel-3 sat-

ellite data are compared (chlorophyll concentration is 

calculated using the OC4ME algorithm [3]) with ground-

based chlorophyll-a data from the Coriolis service. The 

purpose of this comparison is to determine the degree of 

connection between satellite and ground measurements 

and to identify informative features and the optimal depth 

of ground measurements for model training. For compar-

ison, correlation analysis is used, which allows the  
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Fig. 5. General scheme of chlorophyll-a mapping based on satellite data with a spatial resolution of 10 m

 

assessment the dependence between variables. This 

made it possible to remove anomalous values of chloro-

phyll-a, and to determine the maximum depth with chlo-

rophyll-a measurements, where there is a dependence on 

satellite data. After data preparation, they are divided into 

training (80%) and test (20%) samples to build the model 

and check its quality. 

Development of a model to calculate chlorophyll-a. 

Two machine-learning algorithms – Random Forest (RF) 

and Multilayer Perceptron (MLP) –  were chosen as mod-

els. Both algorithms were trained on 80% of the ground 

data that were pre-processed and tested on the 20% of 

ground data that were left for validation. For each model, 

the best parameters that minimize the prediction error are 

selected. Optimization of RF parameters included selec-

tion of the number of trees, depth, and number of samples 

for branching. The following parameters are defined as 

optimal: number of trees: 100; maximum depth: 4; max-

imum percentage of data usage for the bootstrap sample: 

60%; minimum number of samples per sheet: 4; mini-

mum number of samples for branching: 12. MLP optimi-

zation includes tuning the number of layers, the number 

of neurons in each layer, and the learning rate. The fol-

lowing parameters are defined as optimal: activation 

function: logistic; regularization parameter (alpha): 0.1; 

learning rate: 0.001; size of hidden layers: (7, 7); maxi-

mum number of iterations: 1000. Simulation results were 

evaluated using the coefficient of determination (R2), 

mean squared error (MSE) and correlation with the test 

data set. 

Construction of a high-resolution chlorophyll-a 

map. After training and testing the model, it was applied 

to Sentinel-2 images to construct a high spatial resolution 

chlorophyll-a map. For this, spectral bands with resolu-

tions of 10 and 20 m were used. 

The developed information technology makes it 

possible to create maps of water pollution (chlorophyll-

a) in the pilot area of the Mediterranean Sea based on 

Sentinel-2 satellite data in the free GEE cloud platform. 

Considering the speed of the cloud platform, it is possible 

to easily expand the construction area of the chlorophyll-

a concentration map and input satellite data.  

 

5. Metrics for evaluating the models  

and data 
 

The following metrics were used to assess the de-

pendence between satellite data and ground measurement 

data, as well as the quality of the model and its ability to 

reproduce the dependence between variables: the Pearson 

correlation coefficient, the coefficient of determination, 

and the root mean square error [3]. The Pearson correla-

tion coefficient is a measure of the linear relationship be-

tween two variables, which ranges from 1 to 1. The closer 

the coefficient is to 1 or 1, the stronger the relationship 

between the variables. The correlation coefficient is cal-

culated by the following formula: 

 

  

   

n

i ii 1

n n2 2

i ii 1 i 1

x x y y
r

x x y y



 

 


 



 
, (2) 

 

where xi and yi – values of variables x and y in the ith ob-

servation, x and y  – average values of the variables x 

and y. 

The coefficient of determination (R2) is a measure 

of how well the model explains the variation of the de-

pendent variable. It shows the proportion of the depend-
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ent variable that can be explained by the model. The co-

efficient of determination takes values from 0 to 1. The 

closer the coefficient is to 1, the better the model repro-

duces the data. The coefficient of determination is calcu-

lated by the following formula: 

 
n 2

2 i 1 i i

n 2

i 1 i

ˆ(y y )
R 1

(y y)





 
 

 
, (3) 

 

where yi  – the actual value of the dependent variable in 

the ith observation, iŷ  – the predicted value of the de-

pendent variable in the ith observation, y  – the mean 

value of the dependent variable. 

The mean squared error (MSE) is a measure of how 

accurately the model predicts the value of the dependent 

variable. It shows how the actual and predicted values 

differ on average. The smaller the root mean square error, 

the better the model. The root mean square error is calcu-

lated according to the following formula: 

 

n 2

i 1 i i

1
ˆMSE (y y )

n
   , (4) 

 

where iy  and iŷ  – the actual and predicted values of the 

dependent variable in the ith observation and n is the num-

ber of observations. 

 

6. Analysis of chlorophyll-a measurements 

based on satellite data  
 

Chlorophyll-a is an important indicator of marine 

ecosystem pollution that can be measured using satellite 

data. However, different satellites have different charac-

teristics, such as spatial, temporal and spectral resolution, 

which can affect the accuracy and comparability of meas-

urements. This study analyzes the chlorophyll-a  

measurement between GCOM-C/SGLI satellites and 

Sentinel-3 data within one pixel for the period 

01/01/2023 - 12/31/2023. 

To compare chlorophyll-a measurements between 

GCOM-C/SGLI satellites and the Sentinel-3 data, spec-

tral bands related to chlorophyll-a measurements were 

selected for Sentinel-3 and GCOM-C/SGLI (Table 1). 

Since the GCOM pixel is significantly larger than Senti-

nel-3, an average of 4638.3 m was performed using the 

arithmetic mean of the pixels belonging to one GCOM-

C/SGLI pixel (Fig. 6). 

In addition, a study was conducted on the calcula-

tion of chlorophyll-a according to Sentinel-3 data. As you 

know, there are different methods: OC4ME, OC4, OC5, 

OC6, and methods based on neural networks [4]. In this 

study, the OC4ME method was used to calculate the 

chlorophyll-a index, which is described in more detail 

in [3], where the authors made calculations and selected 

coefficients specifically for the Mediterranean Sea. 

A comparison of the correlation coefficients be-

tween the measurements of chlorophyll-a by the GCOM-

C/SGLI satellite and the Sentinel-3 data is given in Ta-

ble 2. 

 

Table 2  

Correlations between Sentinel-3 data  

with GCOM-C/SGLI 

Band Correlation 

Oa011 -0.082851 

Oa03 -0.272541 

Oa04 -0.255240 

Oa05 -0.214820 

Oa06 -0.175918 

Oa08 -0.114631 

s3-Index (method C4ME) 0.379838 

 

Based on the obtained results between the GCOM-

C/SGLI and Sentinel-3 satellites, we can draw conclu-

sions that the correlations with all bands are negative, but 

the best (the largest by module) is the correlation with the 

Oa03 band, which indicates their similarities. Measure-

ment of chlorophyll-a concentration using the OC4ME 

method has the highest correlation with GCOM-C/SGLI, 

indicating its effectiveness. 

 

 

  
GCOM-C/SGLI Sentinel-3 (OC4ME) 

 

Fig. 6. Example of the comparison of chlorophyll-a for the Mediterranean Sea within one pixel near Cyprus 
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GCOM-C/SGLI (24.11.23) Sentinel-3 (OC4ME) (24.11.23) 

 

Fig. 7. An example of the comparison of chlorophyll-a for the Mediterranean Sea near Cyprus 
 

To confirm the results of the correlation, the analy-

sis was performed not within the limits of one pixel, but 

of the chlorophyll-a maps for the same dates, which had 

an area of approximately 3,400 thousand hectares. The 

comparison was also carried out for the period 

01.01.2023 - 12.31.2023 (Fig. 7). 

For the comparison of satellite data for this period, 

only those images obtained on the same dates were se-

lected, after which a correlation analysis of individual 

maps was carried out for each common date. On Fig. 8 

shows the frequency distribution of correlations for the 

period 01.01.2023 - 12.31.2023. Because of cloudiness, 

the number of pixels for each date could be different 

when calculating correlations. 

 
 

Fig. 8. Frequency distributions of chlorophyll-a  

correlations between GCOM-C/SGLI and Sentinel-3 

(OC4ME) during 2023 for common dates 
 

As can be seen from Fig. 8 emissions are present (in 

particular, negative values of chlorophyll-a concentra-

tions), but they have been excluded for the sake of trans-

parency of the results. The average correlation for all 

dates was 0.30. The obtained result is close to the com-

parison of data within one pixel. 
 

7. Analysis of chlorophyll-a data from 

ground measurements 
 

To check the reliability and calibration of the satel-

lite data, they were compared with ground measurements 

obtained with the help of the Coriolis service. These 

ground data are more accurate and reliable although they 

are limited in spatial coverage and measurement fre-

quency for one territory. For correct calculations, it is 

necessary to consider that the measurements are made at 

different depths, and the satellite, in turn, can only shoot 

on the surface of the reservoir. To do this, research was 

conducted to determine at what minimum depth of meas-

urement of chlorophyll-a should be trained in the future 

model. Table 3 presents the results of the ground data 

correlation with the GCOM-C/SGLI satellite. 
 

Table 3  

Correlations between ground data  

with the GCOM-C/SGLI satellite 

Samples 

number 

Depths 

(m) 

Coefficient of 

determination 

Corre-

lation 

377 5 0.3558 0.596 

466 10 0.3013 0.5489 

600 20 0.3266 0.5715 

886 50 0.1883 0.4340 

1569 All depths 0.0126 0.1121 

 

To have more data for training the model and con-

sidering the spatial resolution of the Sentinel-2 data, data 

with chlorophyll-a measurements of at least 20 m were 

selected. Analysis of chlorophyll-a measurement data 

showed that the dataset contains data with negative val-

ues (which is physically impossible for such an indicator) 

and data with very high values. Accordingly, there was a 

need to remove outliers, for which we used the three-

sigma rule. The result obtained by comparing the filtered 

ground measurements of chlorophyll-a with the GCOM-

C/SGLI satellite data (CHLA_AVE) is presented in 

Fig. 9. The calculated coefficient of determination is 

R2=0.3266, and the correlation is 0.5715. 

When comparing ground-based measurements of 

chlorophyll-a (CPHL_ADJUS) with data from the Senti-

nel-3 satellite, correlations with all bands were negative 

(Fig. 10). The ground data correlates best with the 

Oa03_radiance band (correlation r=-0.56 and R2=0.32). 

Therefore, to further use the Sentinel-3 data, it is worth 
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improving the methods of counting chlorophyll-a based 

on different combinations of bands. Within the scope of 

this study, Sentinel-3 data were used to check the relia-

bility of the GCOM-C/SGLI satellite measurement and 

to optimally choose the minimum depth of chlorophyll-a 

measurement from ground stations. 
 

 
Fig. 9. Comparison of ground-based chlorophyll-a 

measurements (CPHL_ADJUS) and GCOM-C/SGLI 

satellite data (CHLA_AVE) 
 

Having confirmed the reliability of ground data, the 

dependence of chlorophyll-a data on Sentinel-2 satellite 

data was investigated. For this, too, were the data ob-

tained for each of the 10 bands accurate for the corre-

sponding date. The Sentinel-2 data also lack a band that 

measures chlorophyll-a directly. Correlations with 

ground data are generally higher for atmospherically ad-

justed L2A data (Fig. 11). The highest correlation was 

obtained with the B1 band used for aerosols, but this may 

be a consequence of the existing artifacts observed in the 

data and discussed above. 

8. Results 
 

This study developed an information technology us-

ing satellite data and ground measurements to improve 

the spatial resolution of chlorophyll-a in the GEE cloud 

platform. The trained model was adapted for application 

to a pilot area in the Mediterranean Sea, with the possi-

bility of use for any date for which Sentinel-2 optical sat-

ellite data is available. Pre-processing of the data was 

limited by the capabilities of the Google Earth Engine 

cloud platform, which affected the quantity and quality 

of data in the two pre-prepared datasets, with and without 

Sentinel-2 correction. The different cloud masks used 

could also partially affect the results. 

For model training, 80% of the data was used, fol-

lowed by cross-validation, where the training data was 

divided into 10 subsets. To train the models, the optimal 

parameters were searched for the Random Forest (RF) 

and Multilayer Perceptron (MLP) models to minimize 

the risk of overtraining. Random Forest was chosen for 

its ability to efficiently process large datasets while en-

suring accuracy. In addition, it is less sensitive to differ-

ent ranges of values and is available for use in the GEE 

cloud platform. The Multilayer Perceptron model was 

used to identify implicit relationships in the data and was 

performed using Google Collab, which is not available in 

the GEE cloud platform. For RF, R2 was 0.33 for uncor-

rected data and 0.36 for corrected data, and the correla-

tion was 0.56 and 0.6, respectively. For MLP, worse R2 

results were obtained, but MSE performed better on un-

corrected data for the two models. The results of the ob-

tained model on the test dataset are presented in Fig. 12.  

 

 
Dependence of chlorophyll-a Oa03_radiance band  

of Sentinel-3 with ground measurements (CPHL_ADJUS) 

Correlation matrix of Sentinel-3  

bands with ground data (CPHL_ADJUS) 

Fig. 10. Dependence of in-situ chlorophyll-a measurements on Sentinel-3 bands 



Intelligent information technologies 
 

61 

  
Correlation matrix of Sentinel-2 (L1C)  

with ground data (CPHL_ADJUS) 

 

Correlation matrix of Sentinel-2 (L2A)  

with ground data (CPHL_ADJUS) 

 

Fig. 11. Dependence of ground chlorophyll-a measurements on Sentinel-2 bands  

(without and with atmospheric correction)  

 

  
FR model result on Sentinel-2 (L1C)  

test data (MSE): 0.0028 

 

FR model result on Sentinel-2 (L2A)  

test data (MSE): 0.0025 

  
MLP model result on Sentinel-2 (L1C)  

test data (MSE): 0.0027 

MLP model result on Sentinel-2 (L2A)  

test data (MSE): 0.0025 

 

Fig. 12. Results of training on the test dataset 
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After training the models, they were used to  

construct a chlorophyll-a map for a pilot area near the 

northern part of Cyprus. On Fig. 13 presents the input 

Sentinel-2 images fed to the model. In particular, images 

without correction (left column) for October 25, 2023 

and with correction (right column). As can be seen from 

the figures, the corrected data have bands on the territory 

of the sea. Accordingly, the results of building the map 

also have them. On data without atmospheric correction, 

such artifacts are much less noticeable, especially based 

on the FR algorithm, which is not as sensitive to a differ-

ent range of spectral values. Although the results of the 

MLP model also have a band due to the measurement 

sensor on the satellite, their results may be more promis-

ing in the future after this problem is eliminated. To ob-

tain uniform results, a solution may be the correction of 

data based on existing methods or the development of 

your own. The obtained results confirm the effectiveness 

of the Random Forest method, which can be used in real 

time in the GEE cloud platform. 

 

9. Discussions 

 
The proposed information technology for increas-

ing the spatial resolution of chlorophyll-a concentration 

maps demonstrates the potential of using satellite data, 

ground measurements, and machine learning methods in 

the GEE cloud platform. Although the obtained coeffi-

cients of determination have not yet shown high results, 

the correlation with test ground data is more than 0.6, 

which indicates the effectiveness of the developed ap-

proach. 

However, there are opportunities to improve the ac-

curacy and reliability of the developed models. One of 

the main challenges faced in this study was the inconsist-

encies and artifacts of the Sentinel-2 data after atmos-

pheric correction using the Sen2Cor algorithm. In addi-

tion, solar glare on the water surface can significantly af-

fect the accuracy of the obtained chlorophyll-a maps. In-

vestigating alternative methods of atmospheric correc-

tion or improving existing algorithms could mitigate 

these problems. 

Another aspect that can be further explored is the 

inclusion of additional features such as spectral indices, 

bands combinations or data from other satellites to train 

the models. By expanding the feature space, models can 

identify complex relationships between satellite observa-

tions and chlorophyll-a concentrations, potentially in-

creasing their accuracy. 

Alternatively, the use of more advanced machine 

learning techniques, such as deep learning architectures 

or ensemble models, can be explored. 

It is worth noting that the current study focused on 

the Mediterranean region. Expanding the training and 

testing datasets to include data from other geographic ar-

eas can increase the robustness of the models and their 

adaptability to different environmental conditions and 

water characteristics. If more data are used, it will be pos-

sible to select chlorophyll-a measurements taken at a 

depth of no more than 1 m, which should have the great-

est impact on the accuracy of the results. 

 

 

   
Sentinel-2 (L1C) Sentinel-2 (L2A) Sentinel-2 (L1C) - RF 

  

 

Sentinel-2 (L2A) - RF Sentinel-2 (L1C) – MLP 
Legend to the obtained maps  

(chlorophyll-a concentration) 

 

Fig. 13. Chlorophyll-a maps obtained using Random Forest and Multilayer Perceptron  
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In addition, the integration of additional environ-

mental variables such as sea surface temperature, salin-

ity, or other water quality parameters can provide valua-

ble contextual information and potentially improve the 

accuracy of chlorophyll-a concentration estimation mod-

els. 

Although the proposed information technology is a 

promising step toward high-resolution chlorophyll-a 

mapping, further research is needed to address the exist-

ing challenges and limitations. 

  

10. Conclusions  
 

This paper proposes an information technology for 

increasing the spatial resolution of chlorophyll-a. For this 

purpose, an analysis was conducted regarding the possi-

bility of satellite monitoring of the quality of water bod-

ies (chlorophyll-a concentration), especially in the Med-

iterranean Sea. The available satellite data, which make 

it possible to measure the concentration of chlorophyll-a 

on the surface of water bodies, were studied and com-

pared during 2023 for the pilot area. It was found that the 

average correlation between GCOM-C/SGLI and Senti-

nel-3 data is equal to 0.3 both at the level of one pixel and 

when comparing chlorophyll-a maps in the pilot area. To 

improve the correlations, further research is needed to 

improve the calculation of chlorophyll-a from Sentinel-3 

data. 

The available ground-based data of chlorophyll-a 

measurements for the Mediterranean Sea were also in-

vestigated. One of the best and most effective sources is 

the Coriolis service. To use these data with satellite data, 

we conducted a study on the dependence of chlorophyll-

a between different satellite data and measurement 

depths. It was important to choose the minimum meas-

urement depth at which it is possible to obtain the largest 

amount of data that is used for training and testing mod-

els. Following these studies, a dataset was created to train 

models to map chlorophyll-a using high-resolution satel-

lite data. 

The results of model training demonstrate a corre-

lation with ground test data at the level of 0.6 and the co-

efficient of determination at the level of 0.36. To improve 

the results of the model in the future, it is planned to in-

vestigate more features (indices, band combinations, data 

from other satellites) that can be used, as well as to im-

prove the preprocessing of Sentinel-2 satellite data. In 

particular, to improve the methods of atmospheric cor-

rection, the methods of removing sunlight from water, 

and the coordination of different satellite sensors to elim-

inate artifacts. It is also planned to apply more complex 

machine learning models and use data not only from the 

Mediterranean Sea but also from other regions to increase 

the amount and variability of training and test data.   
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ПІДВИЩЕННЯ ПРОСТОРОВОГО РОЗРІЗНЕННЯ ХЛОРОФІЛУ-А  

В СЕРЕДЗЕМНОМУ МОРІ НА ОСНОВІ МАШИННОГО НАВЧАННЯ 

Б. Я. Яйлимов, Н. М. Куссуль,  

П. О. Геніцой, А. Ю. Шелестов  

Предметом вивчення в статті є підвищення просторового розрізнення даних про рівень хлорофілу-а в 

Середземному морі за допомогою супутникових знімків та наземних вимірювань. Метою статті є розробка 

інформаційної технології на основі машинного навчання для створення карт концентрації хлорофілу-а з ви-

соким просторовим розрізненням для пілотних територій Середземного моря. Традиційні методи наземного 

вимірювання хлорофілу-а є трудомісткими, дорогими та мають обмежене просторове й часове покриття. Тому 

супутникові спостереження стали ефективним інструментом для моніторингу хлорофілу-а на великих тери-

торіях. Супутникові дані низького просторового розрізнення, такі як GCOM-C/SGLI та Sentinel-3 OLCI, до-

зволяють вимірювати концентрацію хлорофілу-а на поверхні моря. Однак, ці дані мають обмежену точність 

та просторову роздільну здатність, що створює виклики для моніторингу локальних змін у прибережних зонах 

та невеликих акваторіях. Завдання: проаналізувати наявні супутникові дані та наземні вимірювання хлоро-

філу-а для Середземного моря; дослідити залежності між супутниковими даними різного просторового роз-

різнення та наземними вимірюваннями; обрати інформативні ознаки з супутникових даних для побудови мо-

делей машинного навчання; розробити моделі для підвищення просторового розрізнення хлорофілу-а на ос-

нові регресійних алгоритмів та алгоритми машинного навчання. Отримані результати: запропоновано 

інформаційну технологію, що поєднує супутникові дані з наземними вимірюваннями в хмарній платформі 

Google Earth Engine; досліджено кореляції між супутниковими вимірюваннями хлорофілу-а та наземними да-

ними; побудовано моделі на основі Random Forest та Multilayer Perceptron з коефіцієнтами детермінації до 

0,36 та кореляцією 0,6 з тестовими даними; створено карти хлорофілу-а з просторовим розрізненням 10 м для 

пілотної території біля Кіпру. Розроблена інформаційна технологія дозволяє ефективно поєднувати супут-

никові дані різного просторового розрізнення та наземні вимірювання для підвищення точності та деталізації 

карт хлорофілу-а в Середземному морі. Подальші дослідження передбачають вдосконалення попередньої об-

робки супутникових даних, використання більшої кількості ознак, залучення даних з інших регіонів та засто-

сування складніших моделей машинного навчання. 

Ключові слова: машинне навчання; супутникові дані; хлорофіл-а; хмарні технології, інформаційна тех-

нологія; iMERMAID. 
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