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The subject matter of this article is the detection and semantic segmentation of buildings from high-resolution 

aerial images. It extracts building images from similar characteristics of roads and soil objects. It is used for 

various applications such as urban planning, infrastructure development, and disaster management. The goal 

of this study is to develop a fast, accurate, and automatic building detection model based on the semantic 

segmentation LL-UNET architecture that is optimized and tuned with proper hyper parameter settings. The tasks 

to be solved are as follows: collect remote sensing building dataset that is divided into three parts of training, 

validation, and testing; apply data augmentation on the training dataset by vertical flip, horizontal flip, and 

rotation methods; further pass into the bilateral filter to remove noises from the images; optimize LL-UNET 
model by various optimizer methods and tuned hyper parameter by proper selection value, the method is 

compared by the performance metrics recall, precision, and accuracy. The following results were obtained: the 

model is evaluated under the training loss curve and accuracy curve of different optimizers SGD, ASGD, ADAM, 

ADAMW, and RMSProp; it measures the training time, mean accuracy, and mean IOU parameters during the 

training phase; the testing phase is evaluated by precision and recall; the method is compared by visualizing the 

result of LL-UNET + different optimizers; and the proposed method is compared with the existing method by 

common evolution parameters metric. Conclusions. The scientific novelty of the results obtained is as follows: 

1) the LL-UNET effectively segmented the building remotely sensed images in the limited number of training 

samples available; 2) the loss function of the model observed under hyper parameter selection of the optimizer, 

learning rate, batch size, and epochs; which makes an optimal model to extract the building in an accurate and 

fast manner from the complex background; 3) the proposed model results compared with a well-known model of 
the building extraction under the common evaluation metrics of F1 score. 
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1. Introduction 

1.1. Motivation 

 Buildings extraction from aerial images is the 

process of automatically identifying and extracting the 

boundaries of buildings from high-resolution aerial or 

satellite images. The extracted building footprints can be 

used for a variety of applications, such as urban planning, 

disaster management, city development, land 

management, environmental monitoring, and 3D 

modeling. The results of building extraction from aerial 

images depend on several factors, such as the quality and 

resolution of the image and the choice of algorithm. The 

process of building extraction typically involves a series 

of steps, including image preprocessing, feature 

extraction, and classification. Classification involves the 

use of machine learning algorithms to classify each pixel 

in the image as either building or non-building. 

Comparing and recognizing similar features between two 

or more photos is known as image feature matching 

technology as suggested in [1]. The fine segmentation of 

remote sensing is not thought to be sufficient for most 

segmentation techniques currently in use; however, 

because of the Similar Buildings feature extraction from 

aerial images can be challenging due to factors such as 

varying building sizes and shapes, shadows, occlusions, 

and inherent uncertainties in aerial images, which have 

extremely complex resolutions, which frequently cause 

ambiguity among some geographic entities during the 

segmentation process [2]. 

These problems drive our research, which suggests 

a better method for building extraction based on deep 

learning less layered UNET architecture (LL-UNET) to 

overcome these obstacles. However, recent advances in 

deep learning and computer vision techniques have led to 

significant improvements in the accuracy and efficiency 

of building extraction methods. Several research studies 

have used deep learning methods for the extraction of fast 

and accurate buildings from aerial images. 

 

1.2. Objectives 

This study aims to develop an automatic, fast, and 

accurate building detection model based on aerial 

images. To obtain this, we constructed a model based on 
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deep learning that detects the buildings and background 

from the testing dataset. To accomplish the research 

objective, the following tasks have been developed as 

under. 

1. Training, Validating, and Testing the building 

detection model based on deep neural network. 

2. Preprocessing and data augmentation of the 

building detection dataset. 

3. Developing a model for feature extraction and 

semantic segmentation using optimizers of SGD, ASGD, 

ADAM, ADAMW, and RMSProp. 

4. Comparative analysis to assess the performance of 

the different models.  

 

2. Literature Review 

Urban areas of any country have high population 

density and crowded human-built structures such as 

roads, buildings, and other infrastructures. Nowadays, 

satellites are used for Earth observation through satellite 

images. These images are used to monitor and assess 

various natural resources and manmade infrastructures. 

Among these, one of the complex tasks is to detect 

buildings from aerial images. Perfect segmentation and 

classification of buildings from aerial images is a 

complex and challenging task. High-resolution satellite 

images provide high-quality images and help to classify 

images into various classes such as buildings and 

background. Manual detection of buildings from aerial 

images is a tedious task. The automatic approach of 

building detection from aerial images is highly 

demanding. The most commonly used algorithms for 

building or road extraction from aerial images include 

object-based image analysis (OBIA) [3], deep learning 

[4, 5], and traditional image processing techniques such 

as thresholding [6, 7] and segmentation [8, 9]. Detection 

of buildings can be used for city planning, urban 

mapping, urban change detection, natural disaster 

damage assessment, rescue systems, geographic 

information system (GIS) updates, environmental 

monitoring, virtual augmented reality, and defense 

systems [10]. Varying color textures, construction, and 

different shapes make the task more difficult.  

In earlier days, building detection and classification 

from satellite images used texture filtering proposed by 

[11]. This method was not accurate in studying the rapid 

growth of urban areas and city development. The 

automatic building detection from high-resolution 

images and LiDAR data is done by the threshold-based 

method and object-based classification methods 

suggested by [6]. However, object-based classification 

requires higher procedure complexity, whereas 

threshold-based methods need to define only two 

threshold levels. A. Femin and K. S. Biju [12] proposed 

a CNN base building detection method from satellite 

images irrespective of different textures, different 

rooftops of various colors, and different shapes of 

rooftops. S. Kala and M. K. Jayakumar [13] proposed 

three-step methods to segment the image into buildings 

and backgrounds. First, preprocess the input image for 

noise reduction. The Adaptive FCM-based clustering 

method was then used for segmentation. In the last step, 

post-processing is performed to remove small objects 

like roads from the segmented image. Ryuhei and Shuhei 

suggested a multitask UNet model for the detection of 

various-sized buildings and roads from deep globe 

building datasets [14]. A method for building detection 

from high-resolution satellite images using improved 

data labeling and improved UNet with a batch 

normalization layer added to the UNet [15]. Haiying 

Wang and Miao [16] proposed building detection from 

aerial images using a deep residual. The methods have 

the advantages of UNet, atrous spatial pyramid pooling, 

residual learning, and focal loss. The modified residual 

UNet model reduces the learning parameters and 

degradation of the network. The model failed in some 

cases, such as misclassification of concrete floors, 

shadows considered as buildings, and poor identification 

effect of adjacent buildings. Wojciech Sirko [17] 

proposed a supervised semi-automatic UNet model for 

satellite image semantic segmentation that classifies each 

pixel of the image as building or non-building. The 

connected component method is used to determine the 

threshold level. Super-pixel-CRF for weakly supervised 

construction of semantic segmentation using initial deep 

seeds as guidance presented [18].  

Recently, we proposed a large-scale building 

extraction framework based on super-resolution (SR) and 

instance segmentation using an open-sourced dataset 

with a considerably lower-resolution image [19]. To 

reduce the computational burden of building extraction, 

the method suggests that the scene classification model 

based on the ConvNeXt-based network can successfully 

distinguish between images with and without buildings. 

When dense building structures are present in the remote 

sensing photos, it is impossible to separate the building 

and background from the input images. [20] suggested a 

method to detect the building features from the highly 

dense area of the building. It enhances the image by 

super-resolution followed by polygonization techniques, 

which improve accuracy and robustness for building 

outline extraction in these highly dense complex scenes. 

[21] suggested using the uncertainty rank approach to 

map the encoder-decoder network with a high relative 

uncertainty feature for building extraction. Although it 

improves the accuracy of building detection, the 

uncertainty rank method weight is not adaptable. [22] and 

[23] suggested a building interpretation model that not 

only extracts the building but also detects changes in the 

building that indicate the rate of urban area development. 
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In this paper, we propose semantic segmentation for 

building extraction using the open-source dataset of 

Massachusetts [24].  The proposed method used LL-

UNET-based semantic segmentation architecture for 

building extraction from high spatial resolution aerial 

images. The LL-UNET-based deep learning method 

combined with data augmentation and preprocessing 

steps to increase the F1 score by 10% more than the 

existing methods. 

 

3. Materials and Methods of Research 

3.1. Proposed Method 

Building detection from aerial images is a 

challenging task because of occlusion and similar-type 

type characteristic objects present in the RSI. We 

attempted to extract building images from the input as 

described in Fig. 1. It has several stages to detect the 

building data from RSI, such as data preprocessing, 

where the input image size is larger so it is resized to 

512x512 pixels. Further input images are taken by 

satellite or by drone, so they are noisy images. Therefore, 

a bilateral filter is used to remove noise and preserve the 

contrast of the image [25]. Furthermore, De-noising input 

image dataset is split into training, validation, and testing 

sets. As a limited number of training samples are 

available, it is augmented to increase the training dataset 

size. The proposed model based on the semantic 

segmentation architecture UNet [26] was originally 

developed for biomedical image segmentation 

applications but has since gained popularity for a variety 

of semantic segmentation applications [27 – 29]. The 

proposed method is based on UNet but has less 

convolution layered to detect the building from the aerial 

images. Due to the smaller number of convolution layers, 

it detects the building data from the input image quickly. 

However, the building is not a tiny component, so it 

detects accurately when layered are reduced from the 

original UNet.   

The LL-UNet architecture and skip connection are 

shown in Fig2. Originally, UNet had four units of Unet-

down sample, four units of Unet-uP sample, and two 

units of the Unet-Middle block. The suggested less 

layered method has three units of Unet-down, three units 

of Unet-uP, and one unit of Unet-Middle block. This 

causes a total of seven convolution layers to be reduced.  

The detailed layer of each block of the Unet-down, 

Unet-up, and Unet-Middle blocks is shown in Fig. 3. The 

Unet-down sample consists of two 3x3 convolution 

layers, each followed by a Leaky ReLu activation 

function that introduces nonlinearity into the network for 

better generalization. The after Max Pooling function 

with stride = 2 is used to half the image size. During the 

Unet-down sample, the network learns the features of the 

input image. 

Skip connection allows us to bring lost information 

of images previously done during the Unet-down sample 

block to the Unet-up sample block, which gives better 

image segmentation. 

The Unet-middle block consists of two convolution 

layers followed by the Leaky Relu activation function 

that bridges the Unet-down and Unet-up sample blocks. 

The Unet-up sample consist of the 2x2 de-

convolution unit followed by two convolution units with 

a filter size of 3x3 and the same padding. The concat 

function concatenated the features convoluted output of 

the Unet-up sample block and the Unet-down sample unit 

by the skip connection. This provides the features of 

images that are lost due to the depth of the network. 

The Hyperparameter of the UNet network is tuned 

by several epochs, learning rate, batch size, and loss 

function along with different types of optimizers such as 

SGD, ASGD, ADAM, ADAMW, and RMSProp 

[30, 31]. During the Training Phase, Ground Truth and 

Predicted image mask are compared concerning the 

chosen loss model of the Less Layered UNET, and 

accordingly, the weight parameter and learning rate of 

the proposed method are calculated by the back 

propagation algorithm under the consideration of various 

optimization techniques. After training and validation 
 

 
 

Fig. 1.  Block Diagram of Building Detection System from Aerial images 
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Fig. 2. LL-UNET Architecture    

 

                
 

(a)  (b)  (c) 

 

Fig. 3. Detailed layer of UNet architecture Block 

 

phase, the trained model is saved as a less layered 

building detection model into the disk, and testing was 

performed by loading testing dataset images and 

measuring the model mean accuracy, precision, and 

recall parameter for building detection. 

 

3.2. Building the Training Dataset  

Two open source Massachusetts and WHU building 

datasets were used to train and validate the model. The 

Massachusetts Buildings Dataset comprises 151 aerial 

images covering 2.25 km2 in the Boston region, with an 

image size is 1500 × 1500 pixels. The dataset was divided 

into a training set of 137 images, a validation set of 4 

images, and a test set of 10 images. The dataset considers 

urban and suburban areas of buildings of all sizes, 

including high-rise and single-storied buildings. Every 

image has been resized to have a resolution of 1 pixel /m2. 

To improve the accuracy of the evaluations, target maps 

for the dataset’s test and validation sections were 

manually corrected. 
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The WHU building extraction dataset is a subset of 

aerial images. A total of 8188 non-overlapping RGB 

images have a size of 512 x 512 pixels. The images were 

taken above Christchurch; New Zealand, with a spatial 

resolution varying between 0.0075 and 0.3 meters. A 

total of 600 images were randomly taken from a 8188 

images. The taken images were divided into three 

categories: training set (540), validation set (170), and 

test set (30). 

 

3.3. Hyper Parameter Selection 

Before the training process starts, a set of variables 

known as hyper parameters is often chosen through 

experimentation [32]. The learning rate, batch size, and 

number of epochs are typically among them. Hyper-

parameter tuning is the process of achieving optimal 

hyper-parameter settings [33]. Through experimentation 

with different permutations, the values of the various 

hyper parameters employed in the proposed work are 

displayed in Table 1. Ultimately, the parameter values 

that yielded the best results for building semantic 

segmentation were chosen. Vertical and horizontal flip 

operations were performed on the original image for data 

augmentation using a random probability of 0.5. Further 

rotation by 450 and 900 was used to randomly augment 

the image set with a probability of 0.75. 

 

Table 1 

Hyper parameter-tuned value for building segmentation 

Hyper-Parameter Value 

Model  LL-UNET 

Initial Learning Rate 10-4 

Image Size 512x512 pixel 

Batch Size 4 

Target Labels  2 

Data Augmentation Vertical Flip, Horizontal 

Flip, Rotation = 450 

Loss Function  Cross Entropy Loss 

Optimize Algorithm SGD, ASGD, ADAM, 

ADAMW, RMSProp 

 

3.4. Performance Metrics 

Performance metric measurement accuracy, 

precision, recall, IOU, and F1-score are generally used 

for semantic segmentation effectiveness. It is derived 

from the test dataset’s confusion matrix. It defined as: 

 

TP TN
Accuracy ,

TP TN FP FN




  
             (1) 
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TP FN



                          (2) 
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TP FP



                         (3) 

 

Precision
F1-score 2*Recall ,

Precision Recall



         (4) 

 

TP
IOU ,

TP FP FN


 
                       (5) 

                        
where TP, TN, FP, and FN indicate the number of pixels 

of True Positive, True Negative, False Positive, and False 

Negative respectively. Accuracy shows how the model 

performs overall in all classes. Recall is the ratio of the 

number of correctly identified positive samples to all 

positive samples in the test set. The precision of an image 

is defined as the proportion of accurately predicted 

positive samples among the entire expected positive 

sample. The F1 score represents the harmonic average 

value of precision and Recall. IOU represents the 

expected and original image overlap ratios. 

 

4. Results and Analysis 

This section describes the findings of semantic 

segmentation of buildings from the WHU and 

Massachusetts aerial datasets that are publicly accessible. 

 

4.1. Segmentation of the building 

The input image for testing, validation, and training 

has a dimension of 1500 by 1500 pixels. Images entered 

into the network were scaled to 512x512 throughout the 

training phase. The LL-UNET model is trained with a 

batch size of 4, 64 hidden layers, and a 10-4 learning rate 

over 100 epochs. Initially, the model is trained by 

traditional gradient-based SGD and ASGD optimization 

techniques. In addition, adaptive estimation of 

momentum-based optimization methods, including 

ADAMW, RMSProp, and ADAM, was used to train the 

suggested model. 

 

4.2. Classical optimizer and adaptive  

momentum-based Training  

The optimization techniques SGD and ASGD were 

used to train the first version of the model. Graph of 

Training Loss vs. Epochs are shown in Fig. 4. As Fig. 4 

illustrates, training loss is excessive during the first few 

epochs. The model is trained using both classical and 

adaptive momentum-based optimizers, which alter the 

loss behavior according to the optimizer. 
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Fig. 4, a illustrates how, in the SGD and ASGD 

algorithms, the training loss dropped to about half of the 

initial loss after a progressive number of epochs. Initially, 

the loss was excessively large. Moreover, the loss 

reduction profile for the ADAMW, RMSProp, and 

ADAM optimizers is also displayed in Fig. 4, b. 

At training for the 100th epoch, ADAM has less loss. It 

is approximately 18% less than the traditional method 

based on optimizers. 

The accuracy curves for several optimizers 

employed in the training and validation stages are 

displayed in Fig. 5. These results demonstrate that for 

different numbers of epochs, the training and validation 

accuracy for SGD and ASGD are nearly equal. However, 

as the epochs went by throughout the training and 

validation phase, as illustrated in Fig. 5, the accuracy 

curve for the ADAMW, RMSProp, and ADAM-based 

optimizer progressively increased. Thus, it can be seen 

from Fig. 5 that an adaptive momentum-based optimizer 

works well when building detection models from aerial 

images.  

 

4.3. Performance Metrics Comparison  

for the Proposed Method 

Various performance metrics are used during the 

training and testing phases to measure building 

segmentation effectiveness. After training the building 

detection model, the average training accuracy 

(mAccuracy) and average intersect over union (mIOU) 

and Training Time (TT) [34] are calculated and noted in 

Table 2. It was concluded that ADAM has the highest 

accuracy and IOU, whereas ADAMW has the lowest 

IOU and accuracy. On the other hand, RMSProp has an 

IOU of 66.12% and an accuracy of 84.87%. 

 

Table 2 

Performance Metrics Comparison for Various 

 Optimizers During the Training Phase 

Optimize

r 

Performance Metrics 

mAccuracy 

(%) 

mIOU 

(%) 

Training 

Time (TT) 

(sec) 

SGD 65.02 23.44 5066.64 

ASGD 70.23 21.23 5527.43 

ADAM 84.66 66.42 5000.79 

ADAMW 82.63 64.67 4980.23 

RMSprop 84.87 66.12 5126.87 

 

The Building Detection model's testing phase 

performance metrics, recall and precision, are computed 

in Table 3. This reveals that the precision of SGD and 

ASGD is close to 54% and the recall is almost 0%. 

Consequently, it was not possible for these optimizers to 

identify buildings from the aerial images. Additionally, 

ADAM has the highest precision and recall, whereas 

RMSProp has a recall parameter of 93.78% and precision 

of 76.38%. As a result, the proposed model employed the 

ADAM optimizer-based technique to identify the 

building from aerial photos. The visual result is displayed 

in Fig. 6 also conveys the results of the proposed strategy. 

 

Table 3 

Performance Metrics Comparison  
for Various Optimizers During the Testing Phase 

Optimizer 
Performance Metrics 

Recall (%) Precision (%) 

SGD 0 53.39 

ASGD 0 52.24 

ADAM 94.92 78.84 

ADAMW 92.56 73.62 

RMSprop 93.78 76.38 
 

       
(a) (b) 

 

Fig. 4.  Training Loss vs Epochs for (a) SGD, ASGD (b) ADAM, ADAMW, and RMSProp  

during the Training Phase 
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(a)  (b) 

 

         
(c)  (d) 

 

 
(e) 

 
Fig. 5. Accuracy Curve for (a)SGD, (b) ASGD, (c) ADAM, (d) ADAMW,  

and (e) RMSProp during the Training and Validation Phase 

 
4.4. Comparison with Existing Methods  

The challenge of detecting buildings from aerial 

photos is difficult because the target building data 

appears to be similar to the background images. Cities 

these days are expanding quickly, so it is necessary to 

detect this increase from aerial photos. Numerous other 

things will benefit from this as well, such as city 

planning, infrastructure development management, and 

urban planning and management [4, 33]. Reliability, 

speed, accuracy, and automation are challenging to 

achieve when extracting a building. More time, money, 

and efficiency are required for people to identify a 

building using aerial images [15, 5]. However, by 

automatically extracting the building from the satellite 

photos, these issues are eliminated. 

Reference [15] proposed three three-step 

procedures for using the morphological building index  
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Original Ground Truth LL-UNET + ADAM LL-UNET + ADAMW 
LL-UNET + 

RMSPROP 

     

     

     

     

     
Fig. 6. Visual Results for Building Detection  

 

approach to identify the built-up area. It used five satellite 

photos with a spatial resolution of one meter and four 

spectral bands. [35] separated the vegetation and 

buildings from the LIDAR image using Convolutional 

Neural Network techniques based on the k closest 

approach. Subsequently, the same type of item building 

and backdrop were segmented using the Euclidean 

Clustering technique. The technique fails when there is 

less space between two buildings, but it works for high-

resolution photos. Reference [16] presented a unique 

UNet-based model that uses an ADAM optimizer and an 

up-sampling pooling operator. High-resolution aerial 

image evaluation is performed using the proposed model. 

The approach works well for larger buildings; however, 

it falls short for smaller buildings. 

However, Reference [14] proposed a method for 

building detection based on UNET along with VGG and 

RESNET. It is used to extract every size of the building 

from the remote sensing building images. The method 

used the building detection dataset provided in the 

DeepGlobe competition. All the existing methods along 

with our proposed method are compared under the 

common performance metrics F1-score, as shown in 

Table 4. The model [26] UNet architecture with a 

VGG16 backbone and ADAM optimizer has an F1-score 

of 83.55%. The suggested approach of the LL-UNET 

model F1-score of 86.13% performs better than the other 

methods. Furthermore, because there were fewer 

convolution layers in the original UNET, it took less time 

to train and detect. However, the model is trained with 

fewer samples. 
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Table 4 

Results Comparison with the Existing Method 

 F1-score (%) 

[15]  66.40 

[16]  70.00 

[14]  73.99 

[35]  80.87 

[26] 83.55 

ours 86.13 

 

5. Conclusion 

The main problems of building segmentation from 

aerial images are the size, shape, and color of buildings 

due to similar background elements. Deep Learning 

provides better automatic object segmentation from 

aerial images. Various deep learning-based architectures 

such as UNET, SEGNET, and CNN have been used by 

researchers to detect buildings from high-resolution 

aerial images. The proposed LL-UNET deep learning-

based architecture extracts buildings more effectively 

from aerial images compared to existing methods. The 

semantic segmentation architecture-based implemented 

LL-UNET obtained high accuracy with fewer training 

samples and processing power. After the implementation 

of the LL- UNET model, it is trained, validated, and 

tested using the WHU and Massachusetts datasets. The 

proposed model is trained with hyper parameters of the 

Learning rate of 10-4
, a Batch size of 4, and hidden layers 

of 64 for 100 epochs. Furthermore, the model is trained 

by various optimizers to calculate the loss value between 

the predicted building and the actual building pixel. The 

model obtained 86.13 % optimum F1-score value using 

ADAM optimizer and Leaky ReLu activation function. 

The experimental results show that our proposed method 

improves the total F1 score by more than 5% compared 

with the existing methods. Furthermore, in the future, this 

model can be improved using an unsupervised deep 

learning algorithm to make it more generalized, fast, and 

accurate.  
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СЕМАНТИЧНА СЕГМЕНТАЦІЯ НА ОСНОВІ ГЛИБОКОГО НАВЧАННЯ  

ДЛЯ ПОБУДОВИ ВИЯВЛЕННЯ НА ЗОБРАЖЕННЯХ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ 

Хасмух Корінга, Мірал Патель 

Предметом статті є виявлення та семантична сегментація будівлі за зображеннями ДЗЗ високої 

роздільної здатності. Він витягує зображення будівель із схожих за характеристиками об’єктів доріг і ґрунту. 

Він використовується для різних застосувань, таких як міське планування, розвиток інфраструктури та 

боротьба зі стихійними лихами. Мета полягає в тому, щоб розробити швидку, точну та автоматичну модель 

виявлення будівель на основі семантичної сегментації архітектури Unet, яка оптимізована та налаштована з 

належним налаштуванням гіперпараметрів. Завдання, які необхідно вирішити: зібрати набір даних 

дистанційного зондування, який складається з трьох частин: навчання, перевірка та тестування; застосоване 

доповнення даних набору даних поїзда за допомогою методів вертикального перевертання, горизонтального 

перевертання, ротації; далі проходить у двосторонній фільтр для видалення шумів із зображень; оптимізувати 

модель Unet за допомогою різних методів оптимізатора та налаштованого гіперпараметра за належним 

значенням вибору, метод порівнюється за відкликанням показників продуктивності, точністю та точністю. 

Отримано наступні результати: модель оцінена за кривою втрат навчання та кривою точності різних 

оптимізаторів SGD, ASGD, ADAM, ADAMW та RMSProp; він вимірює час навчання, середню точність і 

середні параметри IOU під час фази навчання; фаза тестування оцінюється за точністю та запам’ятовуванням, 

метод порівнюється за допомогою результатів візуалізації Unet + інший оптимізатор і запропонований метод 

порівняно з існуючим методом за загальною метрикою параметра еволюції. Висновки Наукова новизна 

отриманих результатів полягає в наступному: 1) Unet ефективно сегментував побудову ДЗЗ в обмеженій 

кількості доступних навчальних зразків; 2) функція втрат моделі, яка спостерігається під час вибору 

гіперпараметрів оптимізатора, швидкості навчання, розміру партії та епох; що створює оптимальну модель 

для точного та швидкого виділення будівлі зі складного фону; 3) запропонована модель порівнюється з добре 

відомою моделлю виділення будівлі за загальною метрикою оцінки F1-score. 

Ключові слова: глибоке навчання; семантична сегментація; UNet; побудова. 
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