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AUTOMATED, QUICK, AND PRECISE BUILDING EXTRACTION
FROM AERIAL IMAGES USING LL-UNET MODEL

The subject matter of this article is the detection and semantic segmentation of buildings from high-resolution
aerial images. It extracts building images from similar characteristics of roads and soil objects. It is used for
various applications such as urban planning, infrastructure development, and disaster management. The goal
of this study is to develop a fast, accurate, and automatic building detection model based on the semantic
segmentation LL-UNET architecture that is optimized and tuned with proper hyper parameter settings. The tasks
to be solved are as follows: collect remote sensing building dataset that is divided into three parts of training,
validation, and testing; apply data augmentation on the training dataset by vertical flip, horizontal flip, and
rotation methods; further pass into the bilateral filter to remove noises from the images; optimize LL-UNET
model by various optimizer methods and tuned hyper parameter by proper selection value, the method is
compared by the performance metrics recall, precision, and accuracy. The following results were obtained: the
model is evaluated under the training loss curve and accuracy curve of different optimizers SGD, ASGD, ADAM,
ADAMW, and RMSProp; it measures the training time, mean accuracy, and mean 10U parameters during the
training phase; the testing phase is evaluated by precision and recall; the method is compared by visualizing the
result of LL-UNET + different optimizers; and the proposed method is compared with the existing method by
common evolution parameters metric. Conclusions. The scientific novelty of the results obtained is as follows:
1) the LL-UNET effectively segmented the building remotely sensed images in the limited number of training
samples available; 2) the loss function of the model observed under hyper parameter selection of the optimizer,
learning rate, batch size, and epochs; which makes an optimal model to extract the building in an accurate and
fast manner from the complex background; 3) the proposed model results compared with a well-known model of

the building extraction under the common evaluation metrics of F1 score.
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1. Introduction

1.1. Motivation

Buildings extraction from aerial images is the
process of automatically identifying and extracting the
boundaries of buildings from high-resolution aerial or
satellite images. The extracted building footprints can be
used for a variety of applications, such as urban planning,
disaster management, city development, land
management, environmental monitoring, and 3D
modeling. The results of building extraction from aerial
images depend on several factors, such as the quality and
resolution of the image and the choice of algorithm. The
process of building extraction typically involves a series
of steps, including image preprocessing, feature
extraction, and classification. Classification involves the
use of machine learning algorithms to classify each pixel
in the image as either building or non-building.
Comparing and recognizing similar features between two
or more photos is known as image feature matching
technology as suggested in [1]. The fine segmentation of
remote sensing is not thought to be sufficient for most

segmentation techniques currently in use; however,
because of the Similar Buildings feature extraction from
aerial images can be challenging due to factors such as
varying building sizes and shapes, shadows, occlusions,
and inherent uncertainties in aerial images, which have
extremely complex resolutions, which frequently cause
ambiguity among some geographic entities during the
segmentation process [2].

These problems drive our research, which suggests
a better method for building extraction based on deep
learning less layered UNET architecture (LL-UNET) to
overcome these obstacles. However, recent advances in
deep learning and computer vision techniques have led to
significant improvements in the accuracy and efficiency
of building extraction methods. Several research studies
have used deep learning methods for the extraction of fast
and accurate buildings from aerial images.

1.2. Obijectives

This study aims to develop an automatic, fast, and
accurate building detection model based on aerial
images. To obtain this, we constructed a model based on
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deep learning that detects the buildings and background
from the testing dataset. To accomplish the research
objective, the following tasks have been developed as
under.

1. Training, Validating, and Testing the building
detection model based on deep neural network.

2. Preprocessing and data augmentation of the
building detection dataset.

3. Developing a model for feature extraction and
semantic segmentation using optimizers of SGD, ASGD,
ADAM, ADAMW, and RMSProp.

4. Comparative analysis to assess the performance of
the different models.

2. Literature Review

Urban areas of any country have high population
density and crowded human-built structures such as
roads, buildings, and other infrastructures. Nowadays,
satellites are used for Earth observation through satellite
images. These images are used to monitor and assess
various natural resources and manmade infrastructures.
Among these, one of the complex tasks is to detect
buildings from aerial images. Perfect segmentation and
classification of buildings from aerial images is a
complex and challenging task. High-resolution satellite
images provide high-quality images and help to classify
images into various classes such as buildings and
background. Manual detection of buildings from aerial
images is a tedious task. The automatic approach of
building detection from aerial images is highly
demanding. The most commonly used algorithms for
building or road extraction from aerial images include
object-based image analysis (OBIA) [3], deep learning
[4, 5], and traditional image processing techniques such
as thresholding [6, 7] and segmentation [8, 9]. Detection
of buildings can be used for city planning, urban
mapping, urban change detection, natural disaster
damage assessment, rescue systems, geographic
information system (GIS) updates, environmental
monitoring, virtual augmented reality, and defense
systems [10]. Varying color textures, construction, and
different shapes make the task more difficult.

In earlier days, building detection and classification
from satellite images used texture filtering proposed by
[11]. This method was not accurate in studying the rapid
growth of urban areas and city development. The
automatic building detection from high-resolution
images and LiDAR data is done by the threshold-based
method and object-based classification ~methods
suggested by [6]. However, object-based classification
requires higher procedure complexity, whereas
threshold-based methods need to define only two
threshold levels. A. Femin and K. S. Biju [12] proposed
a CNN base building detection method from satellite

images irrespective of different textures, different
rooftops of various colors, and different shapes of
rooftops. S. Kala and M. K. Jayakumar [13] proposed
three-step methods to segment the image into buildings
and backgrounds. First, preprocess the input image for
noise reduction. The Adaptive FCM-based clustering
method was then used for segmentation. In the last step,
post-processing is performed to remove small objects
like roads from the segmented image. Ryuhei and Shuhei
suggested a multitask UNet model for the detection of
various-sized buildings and roads from deep globe
building datasets [14]. A method for building detection
from high-resolution satellite images using improved
data labeling and improved UNet with a batch
normalization layer added to the UNet [15]. Haiying
Wang and Miao [16] proposed building detection from
aerial images using a deep residual. The methods have
the advantages of UNet, atrous spatial pyramid pooling,
residual learning, and focal loss. The modified residual
UNet model reduces the learning parameters and
degradation of the network. The model failed in some
cases, such as misclassification of concrete floors,
shadows considered as buildings, and poor identification
effect of adjacent buildings. Wojciech Sirko [17]
proposed a supervised semi-automatic UNet model for
satellite image semantic segmentation that classifies each
pixel of the image as building or non-building. The
connected component method is used to determine the
threshold level. Super-pixel-CRF for weakly supervised
construction of semantic segmentation using initial deep
seeds as guidance presented [18].

Recently, we proposed a large-scale building
extraction framework based on super-resolution (SR) and
instance segmentation using an open-sourced dataset
with a considerably lower-resolution image [19]. To
reduce the computational burden of building extraction,
the method suggests that the scene classification model
based on the ConvNeXt-based network can successfully
distinguish between images with and without buildings.
When dense building structures are present in the remote
sensing photos, it is impossible to separate the building
and background from the input images. [20] suggested a
method to detect the building features from the highly
dense area of the building. It enhances the image by
super-resolution followed by polygonization techniques,
which improve accuracy and robustness for building
outline extraction in these highly dense complex scenes.
[21] suggested using the uncertainty rank approach to
map the encoder-decoder network with a high relative
uncertainty feature for building extraction. Although it
improves the accuracy of building detection, the
uncertainty rank method weight is not adaptable. [22] and
[23] suggested a building interpretation model that not
only extracts the building but also detects changes in the
building that indicate the rate of urban area development.
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In this paper, we propose semantic segmentation for
building extraction using the open-source dataset of
Massachusetts [24]. The proposed method used LL-
UNET-based semantic segmentation architecture for
building extraction from high spatial resolution aerial
images. The LL-UNET-based deep learning method
combined with data augmentation and preprocessing
steps to increase the F1 score by 10% more than the
existing methods.

3. Materials and Methods of Research

3.1. Proposed Method

Building detection from aerial images is a
challenging task because of occlusion and similar-type
type characteristic objects present in the RSI. We
attempted to extract building images from the input as
described in Fig. 1. It has several stages to detect the
building data from RSI, such as data preprocessing,
where the input image size is larger so it is resized to
512x512 pixels. Further input images are taken by
satellite or by drone, so they are noisy images. Therefore,
a bilateral filter is used to remove noise and preserve the
contrast of the image [25]. Furthermore, De-noising input
image dataset is split into training, validation, and testing
sets. As a limited number of training samples are
available, it is augmented to increase the training dataset
size. The proposed model based on the semantic
segmentation architecture UNet [26] was originally
developed for biomedical image segmentation
applications but has since gained popularity for a variety
of semantic segmentation applications [27 —29]. The
proposed method is based on UNet but has less
convolution layered to detect the building from the aerial
images. Due to the smaller number of convolution layers,
it detects the building data from the input image quickly.
However, the building is not a tiny component, so it
detects accurately when layered are reduced from the
original UNet.

The LL-UNet architecture and skip connection are
shown in Fig2. Originally, UNet had four units of Unet-
down sample, four units of Unet-uP sample, and two
units of the Unet-Middle block. The suggested less
layered method has three units of Unet-down, three units
of Unet-uP, and one unit of Unet-Middle block. This
causes a total of seven convolution layers to be reduced.

The detailed layer of each block of the Unet-down,
Unet-up, and Unet-Middle blocks is shown in Fig. 3. The
Unet-down sample consists of two 3x3 convolution
layers, each followed by a Leaky RelLu activation
function that introduces nonlinearity into the network for
better generalization. The after Max Pooling function
with stride = 2 is used to half the image size. During the
Unet-down sample, the network learns the features of the
input image.

Skip connection allows us to bring lost information
of images previously done during the Unet-down sample
block to the Unet-up sample block, which gives better
image segmentation.

The Unet-middle block consists of two convolution
layers followed by the Leaky Relu activation function
that bridges the Unet-down and Unet-up sample blocks.

The Unet-up sample consist of the 2x2 de-
convolution unit followed by two convolution units with
a filter size of 3x3 and the same padding. The concat
function concatenated the features convoluted output of
the Unet-up sample block and the Unet-down sample unit
by the skip connection. This provides the features of
images that are lost due to the depth of the network.

The Hyperparameter of the UNet network is tuned
by several epochs, learning rate, batch size, and loss
function along with different types of optimizers such as
SGD, ASGD, ADAM, ADAMW, and RMSProp
[30, 31]. During the Training Phase, Ground Truth and
Predicted image mask are compared concerning the
chosen loss model of the Less Layered UNET, and
accordingly, the weight parameter and learning rate of
the proposed method are calculated by the back
propagation algorithm under the consideration of various
optimization techniques. After training and validation
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Fig. 1. Block Diagram of Building Detection System from Aerial images
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Fig. 3. Detailed layer of UNet architecture Block

phase, the trained model is saved as a less layered
building detection model into the disk, and testing was
performed by loading testing dataset images and
measuring the model mean accuracy, precision, and
recall parameter for building detection.

3.2. Building the Training Dataset

Two open source Massachusetts and WHU building
datasets were used to train and validate the model. The
Massachusetts Buildings Dataset comprises 151 aerial

images covering 2.25 km2 in the Boston region, with an
image size is 1500 x 1500 pixels. The dataset was divided
into a training set of 137 images, a validation set of 4
images, and a test set of 10 images. The dataset considers
urban and suburban areas of buildings of all sizes,
including high-rise and single-storied buildings. Every
image has been resized to have a resolution of 1 pixel /m?.
To improve the accuracy of the evaluations, target maps
for the dataset’s test and wvalidation sections were
manually corrected.
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The WHU building extraction dataset is a subset of
aerial images. A total of 8188 non-overlapping RGB
images have a size of 512 x 512 pixels. The images were
taken above Christchurch; New Zealand, with a spatial
resolution varying between 0.0075 and 0.3 meters. A
total of 600 images were randomly taken from a 8188
images. The taken images were divided into three
categories: training set (540), validation set (170), and
test set (30).

3.3. Hyper Parameter Selection

Before the training process starts, a set of variables
known as hyper parameters is often chosen through
experimentation [32]. The learning rate, batch size, and
number of epochs are typically among them. Hyper-
parameter tuning is the process of achieving optimal
hyper-parameter settings [33]. Through experimentation
with different permutations, the values of the various
hyper parameters employed in the proposed work are
displayed in Table 1. Ultimately, the parameter values
that yielded the best results for building semantic
segmentation were chosen. Vertical and horizontal flip
operations were performed on the original image for data
augmentation using a random probability of 0.5. Further
rotation by 45° and 90° was used to randomly augment
the image set with a probability of 0.75.

Table 1
Hyper parameter-tuned value for building segmentation

Value
LL-UNET
104

Hyper-Parameter
Model

Initial Learning Rate

Image Size 512x512 pixel
Batch Size 4
Target Labels 2

Data Augmentation Vertical Flip, Horizontal
Flip, Rotation = 45°

Cross Entropy Loss

SGD, ASGD, ADAM,
ADAMW, RMSProp

Loss Function

Optimize Algorithm

3.4. Performance Metrics

Performance metric measurement accuracy,
precision, recall, 10U, and F1-score are generally used
for semantic segmentation effectiveness. It is derived
from the test dataset’s confusion matrix. It defined as:

TP+TN )
TP+TN+FP+FN’

Accuracy =

45
Recall = — " , 2
TP+FN
Precision = TP , (3)
TP+FP
Fl-score = 2*Recall I.Dr-eC|S|on , 4)
Precision + Recall
10U = L, 5)
TP+FP+FN

where TP, TN, FP, and FN indicate the number of pixels
of True Positive, True Negative, False Positive, and False
Negative respectively. Accuracy shows how the model
performs overall in all classes. Recall is the ratio of the
number of correctly identified positive samples to all
positive samples in the test set. The precision of an image
is defined as the proportion of accurately predicted
positive samples among the entire expected positive
sample. The F1 score represents the harmonic average
value of precision and Recall. IOU represents the
expected and original image overlap ratios.

4. Results and Analysis

This section describes the findings of semantic
segmentation of buildings from the WHU and
Massachusetts aerial datasets that are publicly accessible.

4.1. Segmentation of the building

The input image for testing, validation, and training
has a dimension of 1500 by 1500 pixels. Images entered
into the network were scaled to 512x512 throughout the
training phase. The LL-UNET maodel is trained with a
batch size of 4, 64 hidden layers, and a 10+ learning rate
over 100 epochs. Initially, the model is trained by
traditional gradient-based SGD and ASGD optimization
techniques. In addition, adaptive estimation of
momentum-based optimization methods, including
ADAMW, RMSProp, and ADAM, was used to train the
suggested model.

4.2. Classical optimizer and adaptive
momentum-based Training

The optimization techniques SGD and ASGD were
used to train the first version of the model. Graph of
Training Loss vs. Epochs are shown in Fig. 4. As Fig. 4
illustrates, training loss is excessive during the first few
epochs. The model is trained using both classical and
adaptive momentum-based optimizers, which alter the
loss behavior according to the optimizer.
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Fig. 4, a illustrates how, in the SGD and ASGD
algorithms, the training loss dropped to about half of the
initial loss after a progressive number of epochs. Initially,
the loss was excessively large. Moreover, the loss
reduction profile for the ADAMW, RMSProp, and
ADAM optimizers is also displayed in Fig. 4,0b.
At training for the 100th epoch, ADAM has less loss. It
is approximately 18% less than the traditional method
based on optimizers.

The accuracy curves for several optimizers
employed in the training and validation stages are
displayed in Fig. 5. These results demonstrate that for
different numbers of epochs, the training and validation
accuracy for SGD and ASGD are nearly equal. However,
as the epochs went by throughout the training and
validation phase, as illustrated in Fig. 5, the accuracy
curve for the ADAMW, RMSProp, and ADAM-based
optimizer progressively increased. Thus, it can be seen
from Fig. 5 that an adaptive momentum-based optimizer
works well when building detection models from aerial
images.

4.3. Performance Metrics Comparison
for the Proposed Method

Various performance metrics are used during the
training and testing phases to measure building
segmentation effectiveness. After training the building
detection model, the average training accuracy
(mAccuracy) and average intersect over union (mlOU)
and Training Time (TT) [34] are calculated and noted in
Table 2. It was concluded that ADAM has the highest
accuracy and 10U, whereas ADAMW has the lowest
IOU and accuracy. On the other hand, RMSProp has an
I0U of 66.12% and an accuracy of 84.87%.
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Table 2
Performance Metrics Comparison for Various
Optimizers During the Training Phase

Performance Metrics
Optimize mAccuracy | miOU T_ralnlng
r %) %) Time (TT)
(sec)
SGD 65.02 23.44 5066.64
ASGD 70.23 21.23 5527.43
ADAM 84.66 66.42 5000.79
ADAMW 82.63 64.67 4980.23
RMSprop 84.87 66.12 5126.87

The Building Detection model's testing phase
performance metrics, recall and precision, are computed
in Table 3. This reveals that the precision of SGD and
ASGD is close to 54% and the recall is almost 0%.
Consequently, it was not possible for these optimizers to
identify buildings from the aerial images. Additionally,
ADAM has the highest precision and recall, whereas
RMSProp has a recall parameter of 93.78% and precision
of 76.38%. As a result, the proposed model employed the
ADAM optimizer-based technique to identify the
building from aerial photos. The visual result is displayed
in Fig. 6 also conveys the results of the proposed strategy.

Table 3
Performance Metrics Comparison
for Various Optimizers During the Testing Phase

Ontimizer Performance Metrics
P Recall (%) Precision (%)
SGD 0 53.39
ASGD 0 52.24
ADAM 94.92 78.84
ADAMW 92.56 73.62
RMSprop 93.78 76.38
9 -
a5 Training Loss Curve
8 -
§ 75 | Loss(ADAM)
z_é 7 - = = — Loss(ADAMW)
S 65 R Loss(RMSPROP)
§° H
- 6
5,5
5
4,5

Fig. 4. Training Loss vs Epochs for (a) SGD, ASGD (b) ADAM, ADAMW, and RMSProp
during the Training Phase



Intelligent information technologies

47

084 - Accuracy Curve for ASGD
Accuracy Curve for SGD '
0,9 -
0,8 -
08 ry———— — —r——— -
2 1] -
© g ' >
S 0,6 ,. | 0072 N PR YL W T "Ny SN NA SN A
8 ’ E I 2 s “II v |'\l' \llﬂ\v:v’ "l‘l“l\l \'\I\’I‘f.. N N v e v
<05 1 : H ------------- Training Accuracy 0.68
0,4 - ' ‘ — - — - Validation Accuracy - T Tra.lnln.gAccuracy
] Validation Accuracy
03 O'640 10 20 30 40 50 60 70 80 90
0 10 20 30 40 50 60 70 80 9 5
Epochs Epochs
(a) (b)
09 1 Accuracy Curve for ADAMW
Accuracy Curve for ADAM 085
0,90 - ’
08 4 MMV >.0,8 . omrmi e LV O AL
merNe=TTTY g PRV VR e
B0 375 |
3,75 - S oo
o <0,7 1!
/70 . e Training Accuracy
_______ Training Accuracy i Validation Accurac
0,65 7 Validation Accuracy 0,65 v
0,60 B S B — ‘
0 10 20 30 40 50 60 70 80 90 100 06 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Enoch 0 10 20 30 40 50 60 70 80 90 100
ochs
P Epochs
(c) (d)
Accuracy Curve for RMSProp
0,90 -
0,85 -
>
(%} -~
E AP, '___‘__,/~~¢"~/
5 0,80 - ™
Q ’ o
& P Al -
0,75 - :l ——————— Training Accuracy
! Validation Accuracy
0N
0,70 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
Epochs
(e)

Fig. 5. Accuracy Curve for (a)SGD, (b) ASGD, (c) ADAM, (d) ADAMW,
and (e) RMSProp during the Training and Validation Phase

4.4, Comparison with Existing Methods

The challenge of detecting buildings from aerial
photos is difficult because the target building data
appears to be similar to the background images. Cities
these days are expanding quickly, so it is necessary to
detect this increase from aerial photos. Numerous other
things will benefit from this as well, such as city
planning, infrastructure development management, and

urban planning and management [4, 33]. Reliability,
speed, accuracy, and automation are challenging to
achieve when extracting a building. More time, money,
and efficiency are required for people to identify a
building using aerial images [15, 5]. However, by
automatically extracting the building from the satellite
photos, these issues are eliminated.

Reference [15] proposed three three-step
procedures for using the morphological building index
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Fig. 6. Visual Results for Building Detection

approach to identify the built-up area. It used five satellite
photos with a spatial resolution of one meter and four
spectral bands. [35] separated the vegetation and
buildings from the LIDAR image using Convolutional
Neural Network techniques based on the k closest
approach. Subsequently, the same type of item building
and backdrop were segmented using the Euclidean
Clustering technique. The technique fails when there is
less space between two buildings, but it works for high-
resolution photos. Reference [16] presented a unique
UNet-based model that uses an ADAM optimizer and an
up-sampling pooling operator. High-resolution aerial
image evaluation is performed using the proposed model.
The approach works well for larger buildings; however,
it falls short for smaller buildings.

However, Reference [14] proposed a method for
building detection based on UNET along with VGG and
RESNET. It is used to extract every size of the building
from the remote sensing building images. The method
used the building detection dataset provided in the
DeepGlobe competition. All the existing methods along
with our proposed method are compared under the
common performance metrics F1-score, as shown in
Table 4. The model [26] UNet architecture with a
VGG16 backbone and ADAM optimizer has an F1-score
of 83.55%. The suggested approach of the LL-UNET
model F1-score of 86.13% performs better than the other
methods. Furthermore, because there were fewer
convolution layers in the original UNET, it took less time
to train and detect. However, the model is trained with
fewer samples.
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Table 4
Results Comparison with the Existing Method

F1-score (%0)
[15] 66.40
[16] 70.00
[14] 73.99
[35] 80.87
[26] 83.55
ours 86.13

5. Conclusion

The main problems of building segmentation from
aerial images are the size, shape, and color of buildings
due to similar background elements. Deep Learning
provides better automatic object segmentation from
aerial images. Various deep learning-based architectures
such as UNET, SEGNET, and CNN have been used by
researchers to detect buildings from high-resolution
aerial images. The proposed LL-UNET deep learning-
based architecture extracts buildings more effectively
from aerial images compared to existing methods. The
semantic segmentation architecture-based implemented
LL-UNET obtained high accuracy with fewer training
samples and processing power. After the implementation
of the LL- UNET model, it is trained, validated, and
tested using the WHU and Massachusetts datasets. The
proposed model is trained with hyper parameters of the
Learning rate of 10 a Batch size of 4, and hidden layers
of 64 for 100 epochs. Furthermore, the model is trained
by various optimizers to calculate the loss value between
the predicted building and the actual building pixel. The
model obtained 86.13 % optimum F1-score value using
ADAM optimizer and Leaky ReLu activation function.
The experimental results show that our proposed method
improves the total F1 score by more than 5% compared
with the existing methods. Furthermore, in the future, this
model can be improved using an unsupervised deep
learning algorithm to make it more generalized, fast, and
accurate.
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CEMAHTHUYHA CEI'MEHTAIIA HA OCHOBI I''INBOKOI'O HABUAHHA
JIJISI IOBYJIOBU BUSIBJIEHHS HA 30BPAKEHHSIX JIMCTAHIIIMHOI'O 30HYBAHHS

Xacmyx Kopinea, Mipan Ilamens

IlpenMeToM CTAaTTi € BHSBJICHHS Ta CEMaHTHYHA CEerMEHTallis OyniBii 3a 300paxkenHsmu [133 BucoOkol
PO3aibHOT 31aTHOCTI. BiH BUTSTYe 300pa)keHHst OyAiBeNb i3 CXOKHUX 32 XapaKTepPUCTUKAMH 00’ €KTIB JIOPIT i IPYHTY.
BiH BUKOpHCTOBYETHCSI JUIsl PI3HHX 3aCTOCYBaHb, TAKMX SIK MIChbKE IUIAHYBAaHHS, PO3BHTOK iH(QPACTPYKTYpU Ta
6opoth0a 31 CTHXIHHIUMU JTuXxamu. MeTa roJjsirae B TOMy, 00 po3poOUTH IIBUJIKY, TOYHY T4 aBTOMATUYHY MOJIEIb
BUSIBJICHHSI OY/iBEJIb Ha OCHOBI CEMaHTHYHOI cerMeHTalii apxirekrypu Unet, sika onTUMi30BaHa Ta HAJIAIITOBAHA 3
HAJIOKHUM HaJalITyBaHHSAM TrineprnapamerpiB. 3aBJaHHsl, sKi HEOOXiJAHO BUpIIMTH: 3i0patd HaOip JaHUX
JMCTaHLIMHOTrO 30HIYBaHH, KU CKJIANAEThCA 3 TPOX YACTHH: HABYAHHS, IIEPEBIpKa Ta TECTYBAHHSI; 3aCTOCOBaHE
JIOTIOBHEHHS JaHUX Ha0Opy JaHMX I0i3[a 3a JONOMOIOK METOJIB BEPTUKAJIBHOTO IIEpEeBEPTaHHSA, TOPU3OHTAIILHOTO
niepeBepTaHHs, POTallii; Jaii POXOIUTh Y IBOCTOPOHHIH (LIBTP [yIsl BUAATICHHS IIYMIB i3 300pakeHb; ONTHUMIi3yBaTH
Mojenb Unet 3a JOMOMOIrOI PI3HHX METOJIB ONTHMI3aTopa Ta HANAIITOBAHOTO TileprapaMerpa 3a HaJeKHUM
3HAYEHHSM BHOOpY, METO]] MOPIBHIOETHCS 32 BIAKIMKAHHIM TTOKa3HUKIB MPOJIYKTHBHOCTI, TOYHICTIO Ta TOYHICTIO.
OTpuMaHO HACTYIHI pe3yJbTaTH: MOJETb OLIHEHA 3a KPUBOIO BTPAT HABYAHHS Ta KPHBOKI TOYHOCTI PI3HHX
ontumizaropie SGD, ASGD, ADAM, ADAMW Ta RMSProp; BiH BUMIpIOE Yac HaBYAHHS, CEPEIHIO TOYHICTH i
cepenni napamerpu IOU mijx yac da3u HaBYaHHS; (a3a TECTYBaHHS OLIHIOETHCS 32 TOUHICTIO Ta 3araM’ ITOBYBaHHSIM,
METO/I IIOPIBHIOETHCS 32 JOMOMOTOI0 pe3yNbTaTiB Bizyamizamii Unet + iHIIMIT onTHMI3aTop i 3aMpONOHOBAaHUN METO/
TIOPIBHAHO 3 ICHYIOYUMM METOJOM 3a 3arajbHOI0 METPUKOIO Mapamerpa eBoirouil. BucHoBkm HaykoBa HoBH3HA
OTPHMAaHUX pPE3yNbTariB moisarae B HactymHoMy: 1) Unet edexTuBHO cermeHTyBaB moOymoBy /33 B oOMexeHii
KUTBKOCTI JOCTYIHHX HABYANBHHUX 3pa3kiB; 2) (YHKIIS BTpAaT MOJENi, fKa CIOCTEPIraeThca I Yac BHOOPY
rinepmapaMeTpiB oNTUMizaTopa, MBHUIKOCTI HABYAHHS, PO3MIpPY MapTil Ta €moX; IO CTBOPIOE ONTHMAaJIbHY MOJENb
JUTS TOYHOTO Ta IIBUIKOTO BUALICHHS OYiBIi 31 ckiIaaHOro (OHY; 3) 3aIpOIIOHOBaHA MOIEIH TOPIBHIOETHCS 3 100pe
BiJIOMOIO MOJIEIITIO BUAUICHHS OY/IIBII 3a 3aTalbHOI0 METPUKOIO oriHku F1-score.

KurouoBi cioBa: rmnboke HaB9aHHS; ceMaHTHIHa cermeHTanis; UNet; moOymosa.
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