
Intelligent information technologies

19

UDC 004.4’422-048.34 doi: 10.32620/reks.2024.2.02

Oleksandr DEINEHA

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

SUPERVISED DATA EXTRACTION

FROM TRANSFORMER REPRESENTATION OF LAMBDA-TERMS

The object of this research is the process of compiler optimization, as it is essential in modern software devel-
opment, particularly in functional programming languages like Lambda Calculus. Optimization strategies di-

rectly impact interpreter and compiler performance, influencing resource efficiency and program execution.

While functional programming compilers have garnered less attention regarding optimization efforts than their

object-oriented counterparts, Lambda Calculus’s complexity poses unique challenges. Bridging this gap re-

quires innovative approaches like leveraging machine learning techniques to enhance optimization strategies.

This study focuses on leveraging machine learning to bridge the optimization gap in functional programming,

particularly within the context of Lambda Calculus. This study delves into the extraction features from Lambda

terms related to reduction strategies by applying machine learning. Previous research has explored various

approaches, including analyzing reduction step complexities and using sequence analysis Artificial Neural Net-

works (ANNs) with simplified term representation. This research aims to develop a methodology for extracting

comprehensive term data and providing insights into optimal reduction priorities by employing Large Language
Models (LLMs). Tasks were set to generate embeddings from Lambda terms using LLMs, train ANN models to

predict reduction steps, and compare results with simplified term representations. This study employs a sophis-

ticated blend of machine learning algorithms and deep learning models as a method of analyzing and predicting

optimal reduction paths in Lambda Calculus terms. The result of this study is a method that showed improvement

in determining the number of reduction steps by using embeddings. Conclusions: The findings of this research

offer significant implications for further advancements in compiler and interpreter optimization. This study paves

the way for future research to enhance compiler efficiency by demonstrating the efficacy of employing LLMs to

prioritize normalization strategies. Using machine learning in functional programming optimization opens ave-

nues for dynamic optimization strategies and comprehensive analysis of program features.

Keywords: Lambda Calculus; functional programming language; strategy optimization; Large Language

Model; code embeddings.

Introduction

Modern software development relies on functional

programming languages, which provide robust solutions

to problems in modern development [1]. With an

increasing emphasis on efficiency, compiler optimization

becomes essential. Lambda Calculus represents

functional programming languages, where the key

challenge lies in deciphering program code to unveil

reduction strategies, thereby improving compiler and

interpreter performance [2]. Understanding how the

program execution state varies based on the chosen

execution strategy aids in selecting appropriate, resource-

efficient, resilient interpreter and compiler methods.

These strategies are pivotal in enhancing compilers and

interpreters, thereby benefiting functional and object-

oriented languages.

Exploring Lambda Calculus allows one to emulate

interpreters and compilers as they seek optimal reduction

strategies. Our methodology yields diverse Lambda

terms, creating a solid foundation for testing various

approaches to enhance reduction quality [2, 3]. The

intricate task of determining whether to devise tailored

strategies for individual terms or opt for a global

approach, like the Rightmost Innermost method,

provides valuable insights into the complexities of

reduction. We contemplate employing sophisticated

machine learning techniques to extract term data and

uncover internal relationships, potentially enhancing the

term reduction process.

Although, functional programming compilers have

received comparatively less attention in terms of

optimization efforts. Previous studies have explored

areas like heap profiling [4] and hand-crafted logic

optimization [5] for functional compilers, albeit on a

smaller scale. Functional languages like Haskell and

OCaml often employ specific reduction strategies using

specialized mechanisms such as call-by-need and call-

by-value.

Considering the landscape above, the challenge of

optimizing functional programming compilers and

interpreters becomes evident. While machine learning

techniques have effectively optimized object-oriented

compilers, applying them to functional code introduces

 Oleksandr Deineha, 2024

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
20

unique complexities [6]. Therefore, this study aims to

address this gap by extracting features from functional

code and leveraging machine learning to enhance the

quality of optimization strategies.

Paper structure. In Section 1, “The Current State

of Research in the Lambda Term Normalization

Process,” we review existing research on Lambda

Calculus, focusing on strategies for optimizing Lambda

term normalization and the potential of machine learning

techniques to refine these processes.

Section 2, “Motivation and Problem Statement”,

elaborates on the challenges in optimizing compilers and

interpreters for functional programming languages,

proposing the use of large language models (LLMs) and

artificial neural networks (ANNs) to automate

optimization processes based on program features.

In Section 3, “Objective and Approach”, the paper

outlines the specific objectives of using LLMs and ANNs

to enhance feature extraction from Lambda terms, thus

improving the understanding and performance of

compilers and interpreters.

Section 4, “Materials and Methods of Research”,

details the methods used for generating and processing

data, including the use of various LLMs to transform

Lambda terms into meaningful vectors and the setup for

predicting normalization strategies using ANN models.

Section 5, “Results”, presents findings from the

experiments, mainly focusing on the predictive

performance of ANNs in determining optimal

normalization strategies and comparing these to baseline

models.

Section 6, “Discussion”, reviews the findings'

implications, the effectiveness of LLMs in feature

extraction, and potential improvements in compiler and

interpreter technologies for functional programming

languages.

The paper ends with the Conclusion section, which

summarizes the study’s findings, highlights advances in

understanding and optimizing Lambda term

normalization, and suggests future research directions to

refine these approaches further.

1. Current state of research in the Lambda

term normalization process

Research on Lambda Calculus was performed using

a Pure Lambda Calculus environment developed by the

authors [2, 3]. This environment was used to optimize the

Lambda terms normalization process. This study

proposed a new method for analyzing the reduction step

[3]. The proposed method considers that normalization

(term reduction) steps can have different reduction

complexities. For verification, this suggestion used base

tree term characteristics and Machine Learning methods

for data extraction. Such a suggestion allows for

estimating each redex complexity and always choosing

the least complex reduction. This will enable a greedy

reduction strategy based on estimating redex reduction

complexity.

Many studies have investigated another approach to

analyzing Lambda terms. This approach does not involve

building a new strategy but rather choosing the optimal

strategy from a pool of strategies. In this case, the

estimation approach compares the estimation of the count

reduction steps or indicates if the strategy is better.

Research [7] analyzed the LO strategy’s influence on the

depth increase of Lambda terms. Conversely, the work

[8] showed that almost every simply typed Lambda term

has a long beta-reduction sequence, which means that

finding the worst possible reduction path for terms is

possible. The use of the randomized strategy for term

reduction and its influence on the beta reduction path was

considered in the work [9]. Research [10] considered the

consumption of computational resources of

normalization strategies. None of them did not select

term characteristics, which might indicate strategy

preference. However, work [11] considered using

simplified term strings as input on Artificial Neural

Network (ANN) models to predict the number of the LO

and RI steps. The predicted numbers can be used as

strategy prediction indicators, which means that a smaller

predicted number is a better strategy. Although using

ANN is not computationally effective, analyzing trained

ANN can answer questions about term features that

indicate strategy priority. Using these features can be

easily implemented in modern compilers. However, note

that a significant disadvantage of this research is the use

of simplified term strings, which lose information about

term variables, impacting the reduction process.

In addition, promising research has been conducted

on solving mathematical problems [12], code execution

[13], and compilation improvement [14] using ANNs on

Transformer models. Transformer models for processing

natural, machine, or mathematical text information are

called Large Language Models (LLM). LLM was used to

analyze typed Lambda terms to detect term type, as

shown in the article [15]. LLM has demonstrated the

ability to analyze and understand Lambda terms to

predict their type. Using string term representation while

keeping its variable names and encoding each type of

symbol was considered in the article [15]. The relatively

small size of LLM is used in the article [15] allows the

keeping of only 32 term variables and special symbols

for application and abstraction. Moreover, training such

as LLM still requires hours of work on modern graphical

units.

2. Motivation and problem statement

Compilers and interpreters are based on unique op-

timization methods that decrease computational

Intelligent information technologies

21

consumption during compilation, interpretation, and ex-

ecution [14]. The main issue with such methods is im-

proving their efficiency with many possible program var-

iants. This research considered automatizing the selec-

tion of specific program features, influencing the compu-

tational efficiency of compilation, interpretation, or exe-

cution. It might help create a universal optimization tech-

nique that analyzes actual code and generates specific op-

timizations locally or analyze a considerable amount of

code to generate general optimization.

The optimization searching method can be auto-

mated using ANNs to statistically analyze data [16]. The

program contains sequences of variables, keywords, and

operators. The most advanced way to process text infor-

mation is using LLM [17]. Large enough LLMs can solve

various text-related tasks [17]. One such task is to trans-

form text into vectors of meaning, also called embed-

dings [18]. Embeddings are vectors of characteristics that

can be used to solve specific tasks. Analyzing LLM,

which generates such vectors and input data, might help

identify text features that significantly impact the for-

mation of these features. In other words, LLMs can ex-

tract specific characteristics that significantly impact the

forming features in the program code. Such characteris-

tics can influence program compilation, interpretation, or

execution and can be used to choose dynamic optimiza-

tion strategies for compilers or interpreters.

Testing on modern functional programming lan-

guages poses a significant challenge because of the ex-

tensive array of keywords, making it arduous to gather or

generate sufficient training data. A plausible solution lies

in opting for a programming language with simpler syn-

tax, such as Lambda Calculus, which is characterized by

only two operators: Application and Abstraction. How-

ever, despite its simplicity, Lambda Calculus is Turing

complete [19], rendering it capable of emulating any

computational process feasible in other programming

languages. Within Lambda Terms, the selection rule gov-

erning a specific application, redex, dictates a reduction

strategy (or execution sequence), as evidenced in prior

studies [7, 8], showcasing its impact on reduction step

counts.

Although Lambda Calculus is the most straightfor-

ward programming language regarding operator usage,

gathering training data is quite resource-consuming.

Thus, synthetic training data is an excellent way to cover

as many term variants as possible. However, it should be

noted that missing some term combinations with im-

portant feature indication reduction priority is still possi-

ble.

3. Objective and approach

This study improves feature extraction from

Lambda terms to better understand the term normaliza-

tion

process. Such term features can improve the performance

of compilers and interpreters. This can be done by apply-

ing advanced machine learning techniques to represent

Lambda calculus terms as embedding vectors containing

specific features. Machine learning methods can also in-

vestigate these features by analyzing their relation to the

actual number of reduction steps.

Considering all this, the following research solves

the following problems:

1. Select a set of LLM models to process the

Lambda terms and convert them into embeddings.

2. Configure hyperparameters of ANN models and

train them to solve the problem of prediction term reduc-

tion steps for specific reduction strategies, as in the

work [11].

3. Compare the results of using simplified term

representation in the work [11] to achieve accuracy and

conclude that such an approach is efficient.

This study deals with the artificially generated da-

taset of Lambda terms. Previous research converted this

dataset into a simplified term representation [11]. The

main idea was to save only tree structures to analyze

redexes, not variables. Therefore, this research deals with

the same dataset but keeps variable information. Keeping

variable information in the text representing Lambda

terms helps to better analyze terms and indicate specific

relations lost in simplified representation. However,

keeping variable information increases computational

consumption significantly. Therefore, this research con-

sidered using general and specific LLMs to collect text

embeddings, representing Lambda terms with variable

information. Such embeddings can be used as input to

some ANN models to solve the reduction step prediction

task for a specific normalization strategy. These step pre-

dictions are keys to estimating the normalization strategy

priority.

Therefore, this article's central hypothesis is that us-

ing LLMs to transform Lambda term expressions into

embedding vectors can provide a sufficient way of ana-

lyzing their optimal reduction priority.

4. Materials and methods of the research

4.1. Machine learning models

for text processing

The research considered Lambda term representa-

tion as it is in the text. There are numerous machine learn-

ing methods and models for processing text information.

These methods and models can be split into simple meth-

ods (Support Vector Machines, Naive Bayes, Artificial

Neural Networks, and others) and complex methods

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
22

(deep learning architectures: Convolutional Neural Net-

works (CNNs), Recurrent Neural Networks (RNNs), and

Transformers) [20 – 22].

Fig. 1 [22] shows an example of the CNN model’s

typical usage for solving text classification problems.

CNN models provide robust solutions for solving simple

text problems, like classification. CNN can work as a

word indicator, indicating word or phrase availability in

text. However, it lacks context understanding and usually

understands text content.

Fig. 2 shows another example of text-processing ar-

chitectures [23]. It shows the units of RNN, Long Short-

Term Memory (LSTM), and Gated Recurrent Unit

(GRU). The basic idea behind RNN, LSTM, and GRU is

the same. Each unit can process each piece of text (usu-

ally symbols or words) and use its memory or output to

store the entire text meaning in a vector representation

called embedding. Such architecture provides a simple

way to solve various text-related problems, from simple

classification to text generation and translation. Although

these architectures are a step forward compared to CNN,

they have problems with too long sequences, especially

RNN, and training problems due to gradient vanish-

ing [23].

The state-of-the-art text processing models consider

the Transformer architecture [20, 21]. The Transformer

model architecture is shown in Fig. 3 [20]. The Trans-

former allows data processing in parallel, as in CNN ar-

chitecture, but without input text sequence limitations. It

can capture long-range dependencies using a self-atten-

tion mechanism. This model provides state-of-the-art

performance in various text-related tasks [23].

The research compared the considered architec-

tures’ performance in estimating term reduction

steps [11]. Although the LSTM model showed the best

performance, it had sequence length limitations. In addi-

tion, simplified term representation without keeping var-

iable information was considered in the research [11].

This limited the Transformer model in terms of its term

analysis capabilities.

Fig. 1. CNN model architecture for solving the text classification problem

Fig 2. Diagrams of the RNN, LSTM, and GRU units

Intelligent information technologies

23

Fig 3. Architecture of the Transformer model

4.2. Large language models

for embedding extraction

The latest sophisticated LLMs leverage the Trans-

former architecture [20, 21], which, owing to the charac-

teristics of ANNs and Transformers, allows the use of in-

termediate layer outputs as feature vectors. Essentially,

LLMs excel in translating textual data into vectors or ma-

trices representing semantic information [20, 24]. Conse-

quently, it becomes feasible to transform Lambda terms

into meaningful vectors or matrices, facilitating subse-

quent analysis. Such vectors of meaning are called em-

beddings.

Research [6] analyzed popular LLMs related to

code analysis and generation tasks. We concluded that

the Microsoft CodeBERT model is the most suitable for

transforming Lambda terms while keeping its variable in-

formation in embedding representation. Although that re-

search focused on prioritizing normalization strategy, it

did not consider general-purpose LLMs, which have

much larger average weights and input tokens available.

In addition, research [6] considers a reinforcement learn-

ing approach to analyze embedding space, while this

work uses inform learning. The LLMs used for generat-

ing embeddings are listed below. The Microsoft

CodeBERT is a relatively small model that can be pro-

cessed locally. However, OpenAI models are proprietary

and publicly unavailable, except for API calls, which pro-

vide model outputs.

This research aims to compare the results of rela-

tively small and publicly available CodeBERT with gen-

eral-purpose OpenAI models to show the limits of exist-

ing technologies and reliability for further research to-

ward smaller LLMs. If CodeBERT shows lower results

comparable to OpenAI models, it can be concluded that

smaller LLMs cannot provide enough feature extraction

capabilities.

CodeBERT and OpenAI can process Lambda terms

as pure text, so data preprocessing is unnecessary. How-

ever, for CodeBERT, data postprocessing is required be-

cause its output contains the embedding vector vectors.

The postprocessing for CodeBERT is explained and

shown in the research [6], where average embedding vec-

tors were taken. OpenAI provides embedding vectors

without the need for postprocessing.

Comparison of LLMs for generating embeddings:

1. Microsoft CodeBERT, a bimodal pre-trained

model designed for programming and natural language

tasks, employs a Transformer architecture. It incorpo-

rates a hybrid objective function that includes a replaced

token detection pre-training task. The authors curated da-

tasets comprising code samples from Go, Java, JavaS-

cript, PHP, Python, Ruby, and others for training the

model [25]. The embedding vector size is 768.

2. OpenAI text-embedding-ada-002. The model

supersedes five distinct models catering to text search,

text similarity, and code search. It surpasses the previous

flagship model, Davinci, in most tasks, all while being

priced at a staggering 99.8% lower cost [26, 27]. The em-

bedding vector size is 1536.

3. OpenAI text-embedding-3-small. The model

is significantly upgraded upgrades over text-embedding-

ada-002. It boasts improved performance, with MIRACL

scores rising from 31.4% to 44.0% and MTEB scores in-

creasing from 61.0% to 62.3%. Additionally, it offers a

5X price reduction [27, 28]. The embedding vector size

is 1536.

4. OpenAI text-embedding-3-large. The model

is significantly upgraded over text-embedding-ada-002.

It boasts improved performance, with MIRACL scores

rising from 31.4% to 44.0% and MTEB scores increasing

from 61.0% to 62.3%. Additionally, it offers a 5X price

reduction [27, 28]. The embedding vector size is 3072.

4.3. Neural network model

for reduction steps prediction

The central assumption of this research was that em-

beddings generated with specific and general LLMs

could be suitable for the detection normalization strategy.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
24

A fully connected ANN model was considered to detect

term strategy priority. However, simply telling whether

the LO strategy is better or worse than the RI strategy is

not enough for deep analysis. In this case, the solution

can be using the ANN model with a prediction number of

reduction steps. Showing the relation between the input

embedding vector and output integer values is a problem

here. Possible solutions are:

1. Solving the steps prediction problem as a regres-

sion problem. It requires accurate data tuning to limit

possible predictions and ensure that they are evenly dis-

tributed.

2. Solving the steps prediction problem as a classi-

fication problem. This allows the model to be more con-

crete for various data samples. However, it requires re-

moving some samples with too many reduction steps for

both the LO and the RI strategies.

3. Solving the steps prediction problem as a bin

problem allows the solving of classification problems for

specific reduction steps, spreading some reduction steps

into units but only a few steps. It creates some degree of

freedom for the model but reduces its accuracy.

The training and testing datasets were split 80/20.

The training procedure for fully connected ANN models

requires 200 training steps. A testing set was used for val-

idation, so the best model weights were saved for the best

validation accuracy. Step decay was not considered be-

cause of the usage of the Adam optimizer. The categori-

cal cross-entropy loss function was used because it is typ-

ical for the multiclass classification problem.

4.4. Experiments setup

Given the findings from research [11], which indi-

cate that most terms are reduced within 0–30 steps, the

decision was made to approach the problem as a classifi-

cation task. So, the typical ANN model architecture is

shown in Fig. 4. The ANN model contains a few inter-

mediate layers with the ReLu activation function and 31

units of the output layer with the Softmax activation

function for solving classification tasks. In addition, the

ANN model contains a Dropout layer to prevent overfit-

ting. Moreover, recognizing the limitations of accuracy

metric usage for estimating, also Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) metrics

were evaluated [29]. Based on the hypothesis that terms

with more reduction steps would result in higher error

values, we examined MAE to the actual reduction step

count.

Considering all the abovementioned points, the ex-

periments will be processed in the following way:

1. Generate embeddings for each term in the pre-

viously generated dataset of terms using LLM models for

generating embeddings.

2. Split each embedding dataset into training and

testing sets in the same order. This step generates training

and testing sets with the same terms and, for each term,

the set number of the LO or the RI steps.

3. Predict the number of LO and RI steps using

model predictions for the training and testing sets. Using

predictions, build MAE graphics to estimate the possibil-

ity of the proposed LLM models representing term infor-

mation as a vector. Compare the MAE result with the best

result achieved in the work [11].

5. Results

Fig 5 visualizes training the proposed ANN model

for predicting the number of the LO steps for the OpenAI

text-embedding-3-small model embeddings. It shows the

typical procedure for training all eight possible ANN

models. In Fig 5, validation values stop progressing or

worsen for loss and accuracy metrics. We consider sav-

ing model weights to maximize model performance for

the best validation accuracy. Therefore, each trained

model uses a different count of training steps but still pro-

vides the best performance. In addition, model weights

are saved and can be used for further investigation.

Fig. 4. Architecture of the fully connected ANN model used to estimate the count normalization steps

with the selected reduction strategy

Intelligent information technologies

25

Fig 5. Training of the fully connected ANN model on OpenAI text-embedding-3-small model embeddings

to predict the number of LO steps: (a) loss function; (b) accuracy progression

The results of training ANN models on the predic-

tion number of LO reduction steps are shown in Table 1.

In addition, the best results of the research [11] of predic-

tion LO reduction steps by the convolution ANN model

using simplified term representations are shown in Ta-

ble 1. As it is represented for testing sets, embeddings can

provide improvement up to 3 times. However, the testing

set does not provide much improvement, although the

mean deviation is almost 0.6 steps, which is a considera-

ble result. In addition, RMSE provides information about

deviation to the side of underprediction number of reduc-

tion steps for more complex terms.

The results of training ANN models on the predic-

tion number of RI reduction steps are shown in Table 2.

In addition, the best results of the research [11] of predic-

tion RI reduction steps by the LSTM ANN model using

simplified term representations are shown in Table 2. In

this case, using embedding to predict the RI normaliza-

tion steps does not provide many improvements com-

pared with the best results of the research [11]. Although

the MAE of text-embedding-3-large model embeddings

shows much better results in the training set, it underper-

forms in the testing set. However, RMSE results for

OpenAI indicate improved model performance with a

minor possible maximum error.

Table 1

Result of training ANN model for predicting the number of the LO reduction steps using embeddings

or simplified term representation

No Embeddings source
MAE RMSE

Train Test Train Test

1 Microsoft CodeBERT 2.24 2.41 3.87 3.99

2 OpenAI text-embedding-ada-002 1.36 2.09 2.69 3.50

3 OpenAI text-embedding-3-small 1.07 2.12 2.21 3.61

4 OpenAI text-embedding-3-large 0.95 2.18 2.10 3.72

5 Best results with simplified terms with

convolution model [11]

2.91 2.74 5.28 5.16

Table 2

Result of training ANN model for predicting the number of the RI reduction steps using embeddings

or simplified term representation

No Embeddings source
MAE RMSE

Train Test Train Test

1 Microsoft CodeBERT 1.38 1.74 2.60 2.87

2 OpenAI text-embedding-ada-002 0.95 1.53 1.74 2.41

3 OpenAI text-embedding-3-small 0.71 1.46 1.42 2.37

4 OpenAI text-embedding-3-large 0.27 1.51 0.69 2.35

5 Best results with simplified terms with

LSTM model [11]

0.50 1.29 1.25 2.7

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
26

Fig 6 shows a more specific MAE analysis. Ten

plots of the model performance depending on the ex-

pected number of reduction steps and the selected strat-

egy are shown in Fig 6. Eight of these plots relate to the

analysis of the possibility that LLM models produce em-

beddings usable in prioritizing normalization strategies.

Fig 6, i and Fig 6, j show the best models for predicting

LO and Ri steps from the research [11].

The results of the model testing, shown in Fig. 6,

indicate that, in most cases, LLMs provide more suitable

results than models trained on simplified terms represen-

tation (Fig 6, i and Fig. 6, j). The considered LLMs were

not explicitly developed to analyze Lambda terms. How-

ever, overall MAE or RMSE performance was higher

than that achieved on specially designed models in the

work [11]. This result can be explained by considering

variable information and more weights presented in pre-

trained LLMs for collecting embeddings.

6. Discussion

This article shows how advanced machine learning

methods can be used to highlight hidden features in

Lambda terms. These features can be used to estimate

which normalization strategy is preferable for a particular

Lambda term. Potentially, such features can be extracted

in other more computationally effective ways, thus im-

proving the efficiency of compilers and interpreters of

functionally oriented programming languages. These ad-

vantages are justified by the greater capabilities of ma-

chine learning methods to analyze many terms and the

ability to use trained LLMs for feature extraction. What

differs from [11] is that such Lambda term features were

obtained using pretrained LLMs and full text to represent

Lambda terms instead of simplified representation.

Results show that MAE and RMSE are lower for

models trained on the RI (see Table 2) steps prediction

than on the LO (see Table 1) steps prediction, which

might indicate that detecting the priority of RI terms is

more accessible than the LO. Also, it is interesting that

Fig. 6. MAE progression depending on the number of reduction steps for models trained on: (a) CodeBERT to LO

steps; (b) text-embedding-ada-002 to LO steps; (c) text-embedding-3-small to LO steps; (d) text-embedding-3-large

to LO steps; (e) CodeBERT to RI steps; (f) text-embedding-ada-002 to RI steps; (g) text-embedding-3-small to RI

steps; (h) text-embedding-3-large to RI steps; (i) simplified terms to LO; (j) simplified terms to RI

Intelligent information technologies

27

general LLMs of OpenAI outperform the CodeBERT

model for specific code-related tasks. This can be ex-

plained by the fact that OpenAI is more capable of pro-

cessing logical information because of its enormous

number of weights and broad data experience.

The limitation of this study is the use of the

CodeBert model, which was initially trained in other pro-

gramming languages (Go, Java, Python, and others),

which can lead to incorrect representation of Lambda cal-

culus terms in embedding vectors. Also, it is possible to

say the same about using OpenAI LLMs to transform

terms into embeddings, which have no training data and

procedures. Another limitation of this study is the use of

a comparable small number of Lambda terms and their

artificial nature, which might only cover some possible

variants of real ones.

Conclusion

Four LLM models were used to generate embed-

dings from the text representations of Lambda terms. Pre-

viously, artificially generated data of 4k Lambda terms

were used. Generating embeddings was performed to an-

alyze the possibility of using an LLM embedding model

to extract term normalization features, which might help

develop functional programming language compilers and

interpreters.

Generated embeddings were used to create eight da-

tasets for each considered embedding model and for the

LO and RI term normalization strategies. These datasets

contain the number of reduction steps for the selected

strategy as a target variable. ANN models were designed

and trained to solve a classification problem for predict-

ing from 0 to 30 reduction steps. Such ANN configura-

tion improves its performance in solving step prediction

tasks.

Trained ANN models were used to collect MAE,

RMSE, and step-depending MAE coefficients. These co-

efficients were compared with the best results achieved

on the same task and dataset using simplified term repre-

sentation. Results indicate improvements in the step pre-

diction task; significant improvements were mainly

achieved in predicting the number of LO steps. However,

predictions of the number of RI were on the same low

error rate as they were for the best result of the work [11],

with slight improvement. Such results indicate that code

and general LLMs can help extract information from

Lambda terms and use this information to analyze strat-

egy priority. Specially trained LLMs may lead to better

data extraction. The overall conclusion is that the term

feature extraction procedure using LLM is suitable and

can be implemented in real Lambda code interpreters.

Future research directions. Given these limita-

tions, further research can be conducted using the re-

trained LLM model for problems related to Lambda Cal-

culus. Alternatively, increasing the number of terms in

the database is possible by generating some and collect-

ing real terms. Feature importance analysis can indicate

important normalization term features and configure the

Lambda Calculus interpreter to detect those features to

select the appropriate strategy.

Conflict of Interest

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship, or otherwise, that could affect the re-

search and its results presented in this paper.

Financing

This study was conducted without any financial

support.

Data Availability

This work has associated data in the data repository.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence technologies when creating the current

study.

References

1. Tanabe, Y., Lubis, L. A., Aotani, T., & Masu-

hara, H. A Functional Programming Language with Ver-

sions. The Art, Science, and Engineering of Program-

ming, 2021, vol. 6, issue 1, article 5. DOI: 10.22152/pro-

gramming-journal.org/2022/6/5.

2. Deineha, O., Donets, V., & Zholtkevych, G. On

Randomization of Reduction Strategies for Typeless

Lambda Calculus. Communications in Computer and In-

formation Science, 2023, no. 1980, pp. 25–38. Available

at: https://icteri.org/icteri-2023/proceedings/pre-

view/01000021.pdf (accessed 08.03.2024).

3. Deineha, O., Donets, V., & Zholtkevych, G. Es-

timating Lambda-Term Reduction Complexity with Re-

gression Methods. International Conference "Infor-

mation Technology and Interactions", 2023, no. 3624,

pp. 147–156. Available at: https://ceur-ws.org/Vol-

3624/Paper_13.pdf (accessed 08.03.2024).

4. Runciman, C., & Wakeling, D. Heap Profiling

of a Lazy Functional Compiler. Functional Program-

ming, 1992, pp 203–214. DOI: 10.1007/978-1-4471-

3215-8_18.

5. Chlipala, A. An optimizing compiler for a

purely functional web-application language. Proceedings

of the 20th ACM SIGPLAN International Conference on

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
28

Functional Programming, 2015, pp. 10-21. DOI:

10.1145/2784731.2784741.

6. Deineha, O., Donets, V., & Zholtkevych, G. Un-

supervised Data Extraction from Transformer Represen-

tation of Lambda-Terms. Eastern European Journal of

Enterprise Technology, 2024. In press.

7. Clemens Grabmayer. Linear Depth Increase of

Lambda Terms along Leftmost-Outermost Beta-Reduc-

tion. ArXiv: Computer Science, 2019. DOI:

10.48550/arXiv.1604.07030.

8. Asada, K., Kobayashi, N., Sin'ya, R., & Tsu-

kada, T. Almost Every Simply Typed Lambda-Term Has

a Long Beta-Reduction Sequence. Logical Methods in

Computer Science, 2019, vol. 15, issue 1. DOI:

10.23638/LMCS-15(1:16)2019.

9. Lago, U. D., & Vanoni, G. On randomised strat-

egies in the λ-calculus. Theoretical Computer Science,

2020, vol. 813, pp. 100-116. DOI:

10.1016/j.tcs.2019.09.033.

10. Xiaochu, Qi. Reduction Strategies in Lambda

Term Normalization and their Effects on Heap Usage.

ArXiv: Computer Science, 2004. Available at:

https://arxiv.org/abs/cs/0405075 (accessed 08.03.2024).

11. Deineha, O., Donets, V., & Zholtkevych, G.

Deep Learning Models for Estimating Number of

Lambda-Term Reduction Steps. ProfIT AI 2023: 3rd In-

ternational Workshop of IT-professionals on Artificial

Intelligence (ProfIT AI 2023), 2023, vol. 3624, pp. 147-

156. Available at: https://ceur-ws.org/Vol-3641/pa-

per12.pdf (accessed 08.03.2024).

12. Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z.,

Guo, Y., Bai, J., & Tang, J. GPT Can Solve Mathematical

Problems Without a Calculator. ArXiv: Computer sci-

ence, Machine Learning, 2023. DOI:

10.48550/arXiv.2309.03241.

13. Liu, C., Lu, S., Chen, W., Jiang, D., Svyatkov-

skiy, A., Fu, S., Sundaresan, N., & Duan, N. Code Exe-

cution with Pre-trained Language Models. Accepted to

the Findings of ACL 2023, 2023, pp. 4984-4999. DOI:

10.48550/arXiv.2305.05383.

14. Cummins, C., Seeker, V., Grubisic, D, Elhou-

shi, M., Liang, Y., Roziere, B., Gehring, J., Gloeckle, F.,

Hazelwood, K., Synnaeve, G., & Leather, H. Large Lan-

guage Models for Compiler Optimization. ArXiv: Com-

puter science, 2023. DOI: 10.48550/arXiv.2309.07062.

15. Miranda, B., Shinnar, A., Pestun, V., & Trager,

B. Transformer Models for Type Inference in the Simply

Typed Lambda Calculus: A Case Study in Deep Learning

for Code. Computer Science, 2023. DOI:

10.48550/arXiv.2304.10500.

16. LeCun, Y., Bengio, Y., & Hinton, G. Deep

Learning. Nature, 2021, no. 521, pp. 436-444. DOI:

10.1038/nature14539.

17. Li, Y., Zhang, Y., & Sun, L. MetaAgents: Sim-

ulating Interactions of Human Behaviors for LLM-based

Task-oriented Coordination via Collaborative Generative

Agents. ArXiv, 2023. DOI: 10.48550/arXiv.2310.06500.

18. Asudani, D. S., Nagwani, N. K., & Singh, P. Im-

pact of word embedding models on text analytics in deep

learning environment: a review. Artificial Intelligence,

2023, vol. 56, pp. 10345-10425. DOI: 10.1007/s10462-

023-10419-1.

19. Turing, A. M. Computability and λ-Definabil-

ity. The Journal of Symbolic Logic, 1937, vol. 2, iss. 4,

pp. 153-163. DOI: 10.2307/2268280.

20. Vaswani, A., Shazeer, N. M., Parmar, N., Usz-

koreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosu-

khin, I. Attention is All you Need. Neural Information

Processing Systems, 2017, vol. 30. DOI:

10.48550/arXiv.1706.03762.

21. Zhao, W.X., Zhou, K., Li, J., Tang, T., Wang,

X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du,

Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li,

Y., Tang, X., Liu, Z., Liu, P., Nie, J., & Wen, J. A Survey

of Large Language Models. ArXiv: Computer science,

2023. DOI: 10.48550/arXiv.2303.18223.

22. Ormerod, M., Del Rincón, M. J., & Devereux,

B. How is a “Kitchen Chair” like a “Farm Horse”? Ex-

ploring the Representation of Noun-Noun Compound Se-

mantics in Transformer-based Language Models. Com-

putational Linguistics, 2024, vol. 50, iss. 1, pp. 49-81.

DOI: 10.1162/coli_a_00495.

23. Kowsari, K., Meimandi, K. J., Heidarysafa, M.,

Mendu, S., Barnes, L., & Brown, D. Text Classification

Algorithms: A Survey. Information, 2019, vol. 10, iss. 4:

article no. 150. DOI: 10.3390/info10040150.

24. Compare the different Sequence models (RNN,

LSTM, GRU, and Transformers). Machine Learning Re-

sources, March 2024. Available at:

https://aiml.com/compare-the-different-sequence-mod-

els-rnn-lstm-gru-and-transformers/ (accessed

08.03.2024).

25. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X.,

Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou,

M. CodeBERT: A Pre-Trained Model for Programming

and Natural Languages. Findings of the Association for

Computational Linguistics: EMNLP 2020, 2020, pp.

1536-1547. DOI: 10.18653/v1/2020.findings-

emnlp.139.

26. New and improved embedding model. Blog,

Dec. 2022. Available at: https://openai.com/blog/new-

and-improved-embedding-model (accessed 08.03.2024).

27. Nussbaum, Z., Morris, J.X., Duderstadt, B., &

Mulyar, A. Nomic Embed: Training a Reproducible

Long Context Text Embedder. ArXiv: Computer science,

2024. DOI: 10.48550/arXiv.2402.01613.

28. New embedding models and API updates. Blog,

Jan 2024. Available at: https://openai.com/blog/new-em-

bedding-models-and-api-updates (accessed 08.03.2024).

Intelligent information technologies

29

29. Krell, M. M., & Wehbe, B. A First Step To-

wards Distribution Invariant Regression Metrics. ArXiv:

Computer science, 2020. DOI:

10.48550/arXiv.2009.05176.

Received 17.02.2024, Accepted 15.04.2024

КЕРОВАНЕ ВИЛУЧЕННЯ ДАНИХ

З ТРАНСФОРМЕРНОЇ РЕПРЕЗЕНТАЦІЇ ЛЯМБДА-ТЕРМІВ

О. А. Дейнега

Об’єктом даного дослідження є процес оптимізації компіляторів, яких має ключове значення для розви-

тку сучасного програмного забезпечення, особливо коли мова йде про функціональні мови програмування,

такі як лямбда-числення. Методи оптимізації безпосередньо впливають на швидкодію та ефективність роботи

інтерпретаторів і компіляторів, визначаючи використання ресурсів та час виконання програм. Незважаючи на

те, що компілятори для функціональних мов отримали менше уваги в контексті оптимізацій порівняно з об'є-

ктно-орієнтованими мовами, унікальні виклики, що ставить перед ними лямбда-числення, потребують особ-

ливих рішень. Подолання цього розриву вимагає інноваційних підходів, таких як використання методів ма-

шинного навчання для вдосконалення стратегій оптимізації. У цьому дослідженні розглядаються особливості

вилучення даних з лямбда-термів, пов’язаних із стратегіями редукції за допомогою машинного навчання. По-
передні дослідження досліджували різні підходи, включаючи аналіз складності кроку скорочення та викори-

стання штучних нейронних мереж (ШНМ) аналізу послідовності зі спрощеним представленням термів. Ме-

тою цього дослідження є розробка методології для отримання вичерпних даних про терми, надаючи розуміння

оптимальних стратегій нормалізації. Були поставлені задачі генерування вбудовування з лямбда-термів за

допомогою великих мовних моделей (LLM), тренування моделі ШНМ для прогнозування кроків редукції та

порівняння результатів зі спрощеним представленням термів. У дослідженні використовується складне поєд-

нання алгоритмів машинного навчання та моделей глибинного навчання як метод аналізу та прогнозування

оптимальних шляхів редукції в термах лямбда-числення для досягнення цих цілей. Результати показали по-

кращення у визначенні кількості кроків скорочення за допомогою вбудовування. Результати цього дослі-

дження мають суттєве значення для подальшого прогресу в оптимізації компілятора та інтерпретатора. Це

дослідження прокладає шлях для майбутніх досліджень підвищення ефективності компілятора, демонстру-
ючи ефективність використання LLM для визначення пріоритетів стратегій нормалізації. Використання ма-

шинного навчання для оптимізації функціонального програмування відкриває можливості для стратегій ди-

намічної оптимізації та комплексного аналізу функцій програми.

Ключові слова: лямбда-числення; функціональне програмування; оптимізація стратегії; велика мовна

модель; вбудовування коду.

Дейнега Олександр Андрійович – аспірант, Харківський національний університет

імені В. Н. Каразіна, Харків, Україна.

Oleksandr Deineha – PhD Student, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,
e-mail: oleksandr.deineha@karazin.ua, ORCID: 0000-0001-8024-8812, Scopus Author ID: 58865003800,

https://scholar.google.com.ua/citations?user=XpjRe9gAAAAJ.

