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SUPERVISED DATA EXTRACTION  

FROM TRANSFORMER REPRESENTATION OF LAMBDA-TERMS 
 

The object of this research is the process of compiler optimization, as it is essential in modern software devel-
opment, particularly in functional programming languages like Lambda Calculus. Optimization strategies di-

rectly impact interpreter and compiler performance, influencing resource efficiency and program execution. 

While functional programming compilers have garnered less attention regarding optimization efforts than their 

object-oriented counterparts, Lambda Calculus’s complexity poses unique challenges. Bridging this gap re-

quires innovative approaches like leveraging machine learning techniques to enhance optimization strategies. 

This study focuses on leveraging machine learning to bridge the optimization gap in functional programming, 

particularly within the context of Lambda Calculus. This study delves into the extraction features from Lambda 

terms related to reduction strategies by applying machine learning. Previous research has explored various 

approaches, including analyzing reduction step complexities and using sequence analysis Artificial Neural Net-

works (ANNs) with simplified term representation. This research aims to develop a methodology for extracting 

comprehensive term data and providing insights into optimal reduction priorities by employing Large Language 
Models (LLMs). Tasks were set to generate embeddings from Lambda terms using LLMs, train ANN models to 

predict reduction steps, and compare results with simplified term representations. This study employs a sophis-

ticated blend of machine learning algorithms and deep learning models as a method of analyzing and predicting 

optimal reduction paths in Lambda Calculus terms. The result of this study is a method that showed improvement 

in determining the number of reduction steps by using embeddings. Conclusions: The findings of this research 

offer significant implications for further advancements in compiler and interpreter optimization. This study paves 

the way for future research to enhance compiler efficiency by demonstrating the efficacy of employing LLMs to 

prioritize normalization strategies. Using machine learning in functional programming optimization opens ave-

nues for dynamic optimization strategies and comprehensive analysis of program features. 

 

Keywords: Lambda Calculus; functional programming language; strategy optimization; Large Language 

Model; code embeddings. 

 

Introduction 

 

Modern software development relies on functional 

programming languages, which provide robust solutions 

to problems in modern development [1]. With an 

increasing emphasis on efficiency, compiler optimization 

becomes essential. Lambda Calculus represents 

functional programming languages, where the key 

challenge lies in deciphering program code to unveil 

reduction strategies, thereby improving compiler and 

interpreter performance [2]. Understanding how the 

program execution state varies based on the chosen 

execution strategy aids in selecting appropriate, resource-

efficient, resilient interpreter and compiler methods. 

These strategies are pivotal in enhancing compilers and 

interpreters, thereby benefiting functional and object-

oriented languages. 

Exploring Lambda Calculus allows one to emulate 

interpreters and compilers as they seek optimal reduction 

strategies. Our methodology yields diverse Lambda 

terms, creating a solid foundation for testing various 

approaches to enhance reduction quality [2, 3]. The 

intricate task of determining whether to devise tailored 

strategies for individual terms or opt for a global 

approach, like the Rightmost Innermost method, 

provides valuable insights into the complexities of 

reduction. We contemplate employing sophisticated 

machine learning techniques to extract term data and 

uncover internal relationships, potentially enhancing the 

term reduction process. 

Although, functional programming compilers have 

received comparatively less attention in terms of 

optimization efforts. Previous studies have explored 

areas like heap profiling [4] and hand-crafted logic 

optimization [5] for functional compilers, albeit on a 

smaller scale. Functional languages like Haskell and 

OCaml often employ specific reduction strategies using 

specialized mechanisms such as call-by-need and call-

by-value. 

Considering the landscape above, the challenge of 

optimizing functional programming compilers and 

interpreters becomes evident. While machine learning 

techniques have effectively optimized object-oriented 

compilers, applying them to functional code introduces 
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unique complexities [6]. Therefore, this study aims to 

address this gap by extracting features from functional 

code and leveraging machine learning to enhance the 

quality of optimization strategies. 

Paper structure. In Section 1, “The Current State 

of Research in the Lambda Term Normalization 

Process,” we review existing research on Lambda 

Calculus, focusing on strategies for optimizing Lambda 

term normalization and the potential of machine learning 

techniques to refine these processes. 

Section 2, “Motivation and Problem Statement”, 

elaborates on the challenges in optimizing compilers and 

interpreters for functional programming languages, 

proposing the use of large language models (LLMs) and 

artificial neural networks (ANNs) to automate 

optimization processes based on program features. 

In Section 3, “Objective and Approach”, the paper 

outlines the specific objectives of using LLMs and ANNs 

to enhance feature extraction from Lambda terms, thus 

improving the understanding and performance of 

compilers and interpreters. 

Section 4, “Materials and Methods of Research”, 

details the methods used for generating and processing 

data, including the use of various LLMs to transform 

Lambda terms into meaningful vectors and the setup for 

predicting normalization strategies using ANN models. 

Section 5, “Results”, presents findings from the 

experiments, mainly focusing on the predictive 

performance of ANNs in determining optimal 

normalization strategies and comparing these to baseline 

models. 

Section 6, “Discussion”, reviews the findings' 

implications, the effectiveness of LLMs in feature 

extraction, and potential improvements in compiler and 

interpreter technologies for functional programming 

languages. 

The paper ends with the Conclusion section, which 

summarizes the study’s findings, highlights advances in 

understanding and optimizing Lambda term 

normalization, and suggests future research directions to 

refine these approaches further. 

 

1. Current state of research in the Lambda 

term normalization process 
 

Research on Lambda Calculus was performed using 

a Pure Lambda Calculus environment developed by the 

authors [2, 3]. This environment was used to optimize the 

Lambda terms normalization process. This study 

proposed a new method for analyzing the reduction step 

[3]. The proposed method considers that normalization 

(term reduction) steps can have different reduction 

complexities. For verification, this suggestion used base 

tree term characteristics and Machine Learning methods 

for data extraction. Such a suggestion allows for 

estimating each redex complexity and always choosing 

the least complex reduction. This will enable a greedy 

reduction strategy based on estimating redex reduction 

complexity. 

Many studies have investigated another approach to 

analyzing Lambda terms. This approach does not involve 

building a new strategy but rather choosing the optimal 

strategy from a pool of strategies. In this case, the 

estimation approach compares the estimation of the count 

reduction steps or indicates if the strategy is better. 

Research [7] analyzed the LO strategy’s influence on the 

depth increase of Lambda terms. Conversely, the work 

[8] showed that almost every simply typed Lambda term 

has a long beta-reduction sequence, which means that 

finding the worst possible reduction path for terms is 

possible. The use of the randomized strategy for term 

reduction and its influence on the beta reduction path was 

considered in the work [9]. Research [10] considered the 

consumption of computational resources of 

normalization strategies. None of them did not select 

term characteristics, which might indicate strategy 

preference. However, work [11] considered using 

simplified term strings as input on Artificial Neural 

Network (ANN) models to predict the number of the LO 

and RI steps. The predicted numbers can be used as 

strategy prediction indicators, which means that a smaller 

predicted number is a better strategy. Although using 

ANN is not computationally effective, analyzing trained 

ANN can answer questions about term features that 

indicate strategy priority. Using these features can be 

easily implemented in modern compilers. However, note 

that a significant disadvantage of this research is the use 

of simplified term strings, which lose information about 

term variables, impacting the reduction process. 

In addition, promising research has been conducted 

on solving mathematical problems [12], code execution 

[13], and compilation improvement [14] using ANNs on 

Transformer models. Transformer models for processing 

natural, machine, or mathematical text information are 

called Large Language Models (LLM). LLM was used to 

analyze typed Lambda terms to detect term type, as 

shown in the article [15]. LLM has demonstrated the 

ability to analyze and understand Lambda terms to 

predict their type. Using string term representation while 

keeping its variable names and encoding each type of 

symbol was considered in the article [15]. The relatively 

small size of LLM is used in the article [15] allows the 

keeping of only 32 term variables and special symbols 

for application and abstraction. Moreover, training such 

as LLM still requires hours of work on modern graphical 

units. 
 

2. Motivation and problem statement 
 

Compilers and interpreters are based on unique op-

timization methods that decrease computational  
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consumption during compilation, interpretation, and ex-

ecution [14]. The main issue with such methods is im-

proving their efficiency with many possible program var-

iants. This research considered automatizing the selec-

tion of specific program features, influencing the compu-

tational efficiency of compilation, interpretation, or exe-

cution. It might help create a universal optimization tech-

nique that analyzes actual code and generates specific op-

timizations locally or analyze a considerable amount of 

code to generate general optimization.  

The optimization searching method can be auto-

mated using ANNs to statistically analyze data [16]. The 

program contains sequences of variables, keywords, and 

operators. The most advanced way to process text infor-

mation is using LLM [17]. Large enough LLMs can solve 

various text-related tasks [17]. One such task is to trans-

form text into vectors of meaning, also called embed-

dings [18]. Embeddings are vectors of characteristics that 

can be used to solve specific tasks. Analyzing LLM, 

which generates such vectors and input data, might help 

identify text features that significantly impact the for-

mation of these features. In other words, LLMs can ex-

tract specific characteristics that significantly impact the 

forming features in the program code. Such characteris-

tics can influence program compilation, interpretation, or 

execution and can be used to choose dynamic optimiza-

tion strategies for compilers or interpreters. 

Testing on modern functional programming lan-

guages poses a significant challenge because of the ex-

tensive array of keywords, making it arduous to gather or 

generate sufficient training data. A plausible solution lies 

in opting for a programming language with simpler syn-

tax, such as Lambda Calculus, which is characterized by 

only two operators: Application and Abstraction. How-

ever, despite its simplicity, Lambda Calculus is Turing 

complete [19], rendering it capable of emulating any 

computational process feasible in other programming 

languages. Within Lambda Terms, the selection rule gov-

erning a specific application, redex, dictates a reduction 

strategy (or execution sequence), as evidenced in prior 

studies [7, 8], showcasing its impact on reduction step 

counts. 

Although Lambda Calculus is the most straightfor-

ward programming language regarding operator usage, 

gathering training data is quite resource-consuming. 

Thus, synthetic training data is an excellent way to cover 

as many term variants as possible. However, it should be 

noted that missing some term combinations with im-

portant feature indication reduction priority is still possi-

ble. 
 

3. Objective and approach 
 

This study improves feature extraction from 

Lambda terms to better understand the term normaliza-

tion  

process. Such term features can improve the performance 

of compilers and interpreters. This can be done by apply-

ing advanced machine learning techniques to represent 

Lambda calculus terms as embedding vectors containing 

specific features. Machine learning methods can also in-

vestigate these features by analyzing their relation to the 

actual number of reduction steps. 

Considering all this, the following research solves 

the following problems: 

1. Select a set of LLM models to process the 

Lambda terms and convert them into embeddings. 

2. Configure hyperparameters of ANN models and 

train them to solve the problem of prediction term reduc-

tion steps for specific reduction strategies, as in the 

work [11]. 

3. Compare the results of using simplified term 

representation in the work [11] to achieve accuracy and 

conclude that such an approach is efficient. 

This study deals with the artificially generated da-

taset of Lambda terms. Previous research converted this 

dataset into a simplified term representation [11]. The 

main idea was to save only tree structures to analyze 

redexes, not variables. Therefore, this research deals with 

the same dataset but keeps variable information. Keeping 

variable information in the text representing Lambda 

terms helps to better analyze terms and indicate specific 

relations lost in simplified representation. However, 

keeping variable information increases computational 

consumption significantly. Therefore, this research con-

sidered using general and specific LLMs to collect text 

embeddings, representing Lambda terms with variable 

information. Such embeddings can be used as input to 

some ANN models to solve the reduction step prediction 

task for a specific normalization strategy. These step pre-

dictions are keys to estimating the normalization strategy 

priority. 

Therefore, this article's central hypothesis is that us-

ing LLMs to transform Lambda term expressions into 

embedding vectors can provide a sufficient way of ana-

lyzing their optimal reduction priority. 
 

4. Materials and methods of the research 
 

4.1. Machine learning models  

for text processing 
 

The research considered Lambda term representa-

tion as it is in the text. There are numerous machine learn-

ing methods and models for processing text information. 

These methods and models can be split into simple meth-

ods (Support Vector Machines, Naive Bayes, Artificial 

Neural Networks, and others) and complex methods 
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(deep learning architectures: Convolutional Neural Net-

works (CNNs), Recurrent Neural Networks (RNNs), and 

Transformers) [20 – 22]. 

Fig. 1 [22] shows an example of the CNN model’s 

typical usage for solving text classification problems. 

CNN models provide robust solutions for solving simple 

text problems, like classification. CNN can work as a 

word indicator, indicating word or phrase availability in 

text. However, it lacks context understanding and usually 

understands text content. 

Fig. 2 shows another example of text-processing ar-

chitectures [23]. It shows the units of RNN, Long Short-

Term Memory (LSTM), and Gated Recurrent Unit 

(GRU). The basic idea behind RNN, LSTM, and GRU is 

the same. Each unit can process each piece of text (usu-

ally symbols or words) and use its memory or output to 

store the entire text meaning in a vector representation 

called embedding. Such architecture provides a simple 

way to solve various text-related problems, from simple 

classification to text generation and translation. Although 

these architectures are a step forward compared to CNN, 

they have problems with too long sequences, especially 

RNN, and training problems due to gradient vanish-

ing [23]. 

The state-of-the-art text processing models consider 

the Transformer architecture [20, 21]. The Transformer 

model architecture is shown in Fig. 3 [20]. The Trans-

former allows data processing in parallel, as in CNN ar-

chitecture, but without input text sequence limitations. It 

can capture long-range dependencies using a self-atten-

tion mechanism. This model provides state-of-the-art 

performance in various text-related tasks [23]. 

The research compared the considered architec-

tures’ performance in estimating term reduction 

steps [11]. Although the LSTM model showed the best 

performance, it had sequence length limitations. In addi-

tion, simplified term representation without keeping var-

iable information was considered in the research [11]. 

This limited the Transformer model in terms of its term 

analysis capabilities. 

 

 

 
 

Fig. 1. CNN model architecture for solving the text classification problem 

 

 
 

Fig 2. Diagrams of the RNN, LSTM, and GRU units 
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Fig 3. Architecture of the Transformer model 

 

4.2. Large language models  

for embedding extraction 

 

The latest sophisticated LLMs leverage the Trans-

former architecture [20, 21], which, owing to the charac-

teristics of ANNs and Transformers, allows the use of in-

termediate layer outputs as feature vectors. Essentially, 

LLMs excel in translating textual data into vectors or ma-

trices representing semantic information [20, 24]. Conse-

quently, it becomes feasible to transform Lambda terms 

into meaningful vectors or matrices, facilitating subse-

quent analysis. Such vectors of meaning are called em-

beddings. 

Research [6] analyzed popular LLMs related to 

code analysis and generation tasks. We concluded that 

the Microsoft CodeBERT model is the most suitable for 

transforming Lambda terms while keeping its variable in-

formation in embedding representation. Although that re-

search focused on prioritizing normalization strategy, it 

did not consider general-purpose LLMs, which have 

much larger average weights and input tokens available. 

In addition, research [6] considers a reinforcement learn-

ing approach to analyze embedding space, while this 

work uses inform learning. The LLMs used for generat-

ing embeddings are listed below. The Microsoft 

CodeBERT is a relatively small model that can be pro-

cessed locally. However, OpenAI models are proprietary 

and publicly unavailable, except for API calls, which pro-

vide model outputs. 

This research aims to compare the results of rela-

tively small and publicly available CodeBERT with gen-

eral-purpose OpenAI models to show the limits of exist-

ing technologies and reliability for further research to-

ward smaller LLMs. If CodeBERT shows lower results 

comparable to OpenAI models, it can be concluded that 

smaller LLMs cannot provide enough feature extraction 

capabilities. 

CodeBERT and OpenAI can process Lambda terms 

as pure text, so data preprocessing is unnecessary. How-

ever, for CodeBERT, data postprocessing is required be-

cause its output contains the embedding vector vectors. 

The postprocessing for CodeBERT is explained and 

shown in the research [6], where average embedding vec-

tors were taken. OpenAI provides embedding vectors 

without the need for postprocessing. 

Comparison of LLMs for generating embeddings: 

1. Microsoft CodeBERT, a bimodal pre-trained 

model designed for programming and natural language 

tasks, employs a Transformer architecture. It incorpo-

rates a hybrid objective function that includes a replaced 

token detection pre-training task. The authors curated da-

tasets comprising code samples from Go, Java, JavaS-

cript, PHP, Python, Ruby, and others for training the 

model [25]. The embedding vector size is 768. 

2. OpenAI text-embedding-ada-002. The model 

supersedes five distinct models catering to text search, 

text similarity, and code search. It surpasses the previous 

flagship model, Davinci, in most tasks, all while being 

priced at a staggering 99.8% lower cost [26, 27]. The em-

bedding vector size is 1536. 

3. OpenAI text-embedding-3-small. The model 

is significantly upgraded upgrades over text-embedding-

ada-002. It boasts improved performance, with MIRACL 

scores rising from 31.4% to 44.0% and MTEB scores in-

creasing from 61.0% to 62.3%. Additionally, it offers a 

5X price reduction [27, 28]. The embedding vector size 

is 1536. 

4. OpenAI text-embedding-3-large. The model 

is significantly upgraded over text-embedding-ada-002. 

It boasts improved performance, with MIRACL scores 

rising from 31.4% to 44.0% and MTEB scores increasing 

from 61.0% to 62.3%. Additionally, it offers a 5X price 

reduction [27, 28]. The embedding vector size is 3072. 

 

4.3. Neural network model  

for reduction steps prediction 

 

The central assumption of this research was that em-

beddings generated with specific and general LLMs 

could be suitable for the detection normalization strategy. 
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A fully connected ANN model was considered to detect 

term strategy priority. However, simply telling whether 

the LO strategy is better or worse than the RI strategy is 

not enough for deep analysis. In this case, the solution 

can be using the ANN model with a prediction number of 

reduction steps. Showing the relation between the input 

embedding vector and output integer values is a problem 

here. Possible solutions are: 

1. Solving the steps prediction problem as a regres-

sion problem. It requires accurate data tuning to limit 

possible predictions and ensure that they are evenly dis-

tributed. 

2. Solving the steps prediction problem as a classi-

fication problem. This allows the model to be more con-

crete for various data samples. However, it requires re-

moving some samples with too many reduction steps for 

both the LO and the RI strategies. 

3. Solving the steps prediction problem as a bin 

problem allows the solving of classification problems for 

specific reduction steps, spreading some reduction steps 

into units but only a few steps. It creates some degree of 

freedom for the model but reduces its accuracy. 

The training and testing datasets were split 80/20. 

The training procedure for fully connected ANN models 

requires 200 training steps. A testing set was used for val-

idation, so the best model weights were saved for the best 

validation accuracy. Step decay was not considered be-

cause of the usage of the Adam optimizer. The categori-

cal cross-entropy loss function was used because it is typ-

ical for the multiclass classification problem. 

 

4.4. Experiments setup 

 

Given the findings from research [11], which indi-

cate that most terms are reduced within 0–30 steps, the 

decision was made to approach the problem as a classifi-

cation task. So, the typical ANN model architecture is 

shown in Fig. 4. The ANN model contains a few inter-

mediate layers with the ReLu activation function and 31 

units of the output layer with the Softmax activation 

function for solving classification tasks. In addition, the 

ANN model contains a Dropout layer to prevent overfit-

ting. Moreover, recognizing the limitations of accuracy 

metric usage for estimating, also Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) metrics 

were evaluated [29]. Based on the hypothesis that terms 

with more reduction steps would result in higher error 

values, we examined MAE to the actual reduction step 

count. 

Considering all the abovementioned points, the ex-

periments will be processed in the following way: 

1.  Generate embeddings for each term in the pre-

viously generated dataset of terms using LLM models for 

generating embeddings. 

2. Split each embedding dataset into training and 

testing sets in the same order. This step generates training 

and testing sets with the same terms and, for each term, 

the set number of the LO or the RI steps. 

3. Predict the number of LO and RI steps using 

model predictions for the training and testing sets. Using 

predictions, build MAE graphics to estimate the possibil-

ity of the proposed LLM models representing term infor-

mation as a vector. Compare the MAE result with the best 

result achieved in the work [11]. 

 

5. Results 
 

Fig 5 visualizes training the proposed ANN model 

for predicting the number of the LO steps for the OpenAI 

text-embedding-3-small model embeddings. It shows the 

typical procedure for training all eight possible ANN 

models. In Fig 5, validation values stop progressing or 

worsen for loss and accuracy metrics. We consider sav-

ing model weights to maximize model performance for 

the best validation accuracy. Therefore, each trained 

model uses a different count of training steps but still pro-

vides the best performance. In addition, model weights 

are saved and can be used for further investigation. 

 

 

 
 

Fig. 4. Architecture of the fully connected ANN model used to estimate the count normalization steps  

with the selected reduction strategy 
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Fig 5. Training of the fully connected ANN model on OpenAI text-embedding-3-small model embeddings  

to predict the number of LO steps: (a) loss function; (b) accuracy progression 

 

The results of training ANN models on the predic-

tion number of LO reduction steps are shown in Table 1. 

In addition, the best results of the research [11] of predic-

tion LO reduction steps by the convolution ANN model 

using simplified term representations are shown in Ta-

ble 1. As it is represented for testing sets, embeddings can 

provide improvement up to 3 times. However, the testing 

set does not provide much improvement, although the 

mean deviation is almost 0.6 steps, which is a considera-

ble result. In addition, RMSE provides information about 

deviation to the side of underprediction number of reduc-

tion steps for more complex terms. 

The results of training ANN models on the predic-

tion number of RI reduction steps are shown in Table 2. 

In addition, the best results of the research [11] of predic-

tion RI reduction steps by the LSTM ANN model using 

simplified term representations are shown in Table 2. In 

this case, using embedding to predict the RI normaliza-

tion steps does not provide many improvements com-

pared with the best results of the research [11]. Although 

the MAE of text-embedding-3-large model embeddings 

shows much better results in the training set, it underper-

forms in the testing set. However, RMSE results for 

OpenAI indicate improved model performance with a 

minor possible maximum error. 

 

Table 1 

Result of training ANN model for predicting the number of the LO reduction steps using embeddings  

or simplified term representation 

No Embeddings source 
MAE RMSE 

Train Test Train Test 

1 Microsoft CodeBERT 2.24 2.41 3.87 3.99 

2 OpenAI text-embedding-ada-002 1.36 2.09 2.69 3.50 

3 OpenAI text-embedding-3-small 1.07 2.12 2.21 3.61 

4 OpenAI text-embedding-3-large 0.95 2.18 2.10 3.72 

5 Best results with simplified terms with 

convolution model [11] 

2.91 2.74 5.28 5.16 

 

Table 2 

Result of training ANN model for predicting the number of the RI reduction steps using embeddings  

or simplified term representation 

No Embeddings source 
MAE RMSE 

Train Test Train Test 

1 Microsoft CodeBERT 1.38 1.74 2.60 2.87 

2 OpenAI text-embedding-ada-002 0.95 1.53 1.74 2.41 

3 OpenAI text-embedding-3-small 0.71 1.46 1.42 2.37 

4 OpenAI text-embedding-3-large 0.27 1.51 0.69 2.35 

5 Best results with simplified terms with 

LSTM model [11] 

0.50 1.29 1.25 2.7 
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Fig 6 shows a more specific MAE analysis. Ten 

plots of the model performance depending on the ex-

pected number of reduction steps and the selected strat-

egy are shown in Fig 6. Eight of these plots relate to the 

analysis of the possibility that LLM models produce em-

beddings usable in prioritizing normalization strategies. 

Fig 6, i and Fig 6, j show the best models for predicting 

LO and Ri steps from the research [11]. 

The results of the model testing, shown in Fig. 6, 

indicate that, in most cases, LLMs provide more suitable 

results than models trained on simplified terms represen-

tation (Fig 6, i and Fig. 6, j). The considered LLMs were 

not explicitly developed to analyze Lambda terms. How-

ever, overall MAE or RMSE performance was higher 

than that achieved on specially designed models in the 

work [11]. This result can be explained by considering 

variable information and more weights presented in pre-

trained LLMs for collecting embeddings. 
 

6. Discussion 

 

This article shows how advanced machine learning 

methods can be used to highlight hidden features in 

Lambda terms. These features can be used to estimate 

which normalization strategy is preferable for a particular 

Lambda term. Potentially, such features can be extracted 

in other more computationally effective ways, thus im-

proving the efficiency of compilers and interpreters of 

functionally oriented programming languages. These ad-

vantages are justified by the greater capabilities of ma-

chine learning methods to analyze many terms and the 

ability to use trained LLMs for feature extraction. What 

differs from [11] is that such Lambda term features were 

obtained using pretrained LLMs and full text to represent 

Lambda terms instead of simplified representation. 

Results show that MAE and RMSE are lower for 

models trained on the RI (see Table 2) steps prediction 

than on the LO (see Table 1) steps prediction, which 

might indicate that detecting the priority of RI terms is 

more accessible than the LO. Also, it is interesting that 

 

 
Fig. 6. MAE progression depending on the number of reduction steps for models trained on: (a) CodeBERT to LO 

steps; (b) text-embedding-ada-002 to LO steps; (c) text-embedding-3-small to LO steps; (d) text-embedding-3-large 

to LO steps; (e) CodeBERT to RI steps; (f) text-embedding-ada-002 to RI steps; (g) text-embedding-3-small to RI 

steps; (h) text-embedding-3-large to RI steps; (i) simplified terms to LO; (j) simplified terms to RI 
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general LLMs of OpenAI outperform the CodeBERT 

model for specific code-related tasks. This can be ex-

plained by the fact that OpenAI is more capable of pro-

cessing logical information because of its enormous 

number of weights and broad data experience. 

The limitation of this study is the use of the 

CodeBert model, which was initially trained in other pro-

gramming languages (Go, Java, Python, and others), 

which can lead to incorrect representation of Lambda cal-

culus terms in embedding vectors. Also, it is possible to 

say the same about using OpenAI LLMs to transform 

terms into embeddings, which have no training data and 

procedures. Another limitation of this study is the use of 

a comparable small number of Lambda terms and their 

artificial nature, which might only cover some possible 

variants of real ones. 

 

Conclusion 
 

Four LLM models were used to generate embed-

dings from the text representations of Lambda terms. Pre-

viously, artificially generated data of 4k Lambda terms 

were used. Generating embeddings was performed to an-

alyze the possibility of using an LLM embedding model 

to extract term normalization features, which might help 

develop functional programming language compilers and 

interpreters. 

Generated embeddings were used to create eight da-

tasets for each considered embedding model and for the 

LO and RI term normalization strategies. These datasets 

contain the number of reduction steps for the selected 

strategy as a target variable. ANN models were designed 

and trained to solve a classification problem for predict-

ing from 0 to 30 reduction steps. Such ANN configura-

tion improves its performance in solving step prediction 

tasks. 

Trained ANN models were used to collect MAE, 

RMSE, and step-depending MAE coefficients. These co-

efficients were compared with the best results achieved 

on the same task and dataset using simplified term repre-

sentation. Results indicate improvements in the step pre-

diction task; significant improvements were mainly 

achieved in predicting the number of LO steps. However, 

predictions of the number of RI were on the same low 

error rate as they were for the best result of the work [11], 

with slight improvement. Such results indicate that code 

and general LLMs can help extract information from 

Lambda terms and use this information to analyze strat-

egy priority. Specially trained LLMs may lead to better 

data extraction. The overall conclusion is that the term 

feature extraction procedure using LLM is suitable and 

can be implemented in real Lambda code interpreters. 

Future research directions. Given these limita-

tions, further research can be conducted using the re-

trained LLM model for problems related to Lambda Cal-

culus. Alternatively, increasing the number of terms in 

the database is possible by generating some and collect-

ing real terms. Feature importance analysis can indicate 

important normalization term features and configure the 

Lambda Calculus interpreter to detect those features to 

select the appropriate strategy. 
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КЕРОВАНЕ ВИЛУЧЕННЯ ДАНИХ  

З ТРАНСФОРМЕРНОЇ РЕПРЕЗЕНТАЦІЇ ЛЯМБДА-ТЕРМІВ 

О. А. Дейнега 

Об’єктом даного дослідження є процес оптимізації компіляторів, яких має ключове значення для розви-

тку сучасного програмного забезпечення, особливо коли мова йде про функціональні мови програмування, 

такі як лямбда-числення. Методи оптимізації безпосередньо впливають на швидкодію та ефективність роботи 

інтерпретаторів і компіляторів, визначаючи використання ресурсів та час виконання програм. Незважаючи на 

те, що компілятори для функціональних мов отримали менше уваги в контексті оптимізацій порівняно з об'є-

ктно-орієнтованими мовами, унікальні виклики, що ставить перед ними лямбда-числення, потребують особ-

ливих рішень. Подолання цього розриву вимагає інноваційних підходів, таких як використання методів ма-

шинного навчання для вдосконалення стратегій оптимізації. У цьому дослідженні розглядаються особливості 

вилучення даних з лямбда-термів, пов’язаних із стратегіями редукції за допомогою машинного навчання. По-
передні дослідження досліджували різні підходи, включаючи аналіз складності кроку скорочення та викори-

стання штучних нейронних мереж (ШНМ) аналізу послідовності зі спрощеним представленням термів. Ме-

тою цього дослідження є розробка методології для отримання вичерпних даних про терми, надаючи розуміння 

оптимальних стратегій нормалізації. Були поставлені задачі генерування вбудовування з лямбда-термів за 

допомогою великих мовних моделей (LLM), тренування моделі ШНМ для прогнозування кроків редукції та 

порівняння результатів зі спрощеним представленням термів. У дослідженні використовується складне поєд-

нання алгоритмів машинного навчання та моделей глибинного навчання як метод аналізу та прогнозування 

оптимальних шляхів редукції в термах лямбда-числення для досягнення цих цілей. Результати показали по-

кращення у визначенні кількості кроків скорочення за допомогою вбудовування. Результати цього дослі-

дження мають суттєве значення для подальшого прогресу в оптимізації компілятора та інтерпретатора. Це 

дослідження прокладає шлях для майбутніх досліджень підвищення ефективності компілятора, демонстру-
ючи ефективність використання LLM для визначення пріоритетів стратегій нормалізації. Використання ма-

шинного навчання для оптимізації функціонального програмування відкриває можливості для стратегій ди-

намічної оптимізації та комплексного аналізу функцій програми. 

Ключові слова: лямбда-числення; функціональне програмування; оптимізація стратегії; велика мовна 

модель; вбудовування коду. 
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