Intelligent information technologies

19

UDC 004.4°422-048.34

Oleksandr DEINEHA

doi: 10.32620/reks.2024.2.02

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

SUPERVISED DATA EXTRACTION
FROM TRANSFORMER REPRESENTATION OF LAMBDA-TERMS

The object of this research is the process of compiler optimization, as it is essential in modern software devel-
opment, particularly in functional programming languages like Lambda Calculus. Optimization strategies di-
rectly impact interpreter and compiler performance, influencing resource efficiency and program execution.
While functional programming compilers have garnered less attention regarding optimization efforts than their
object-oriented counterparts, Lambda Calculus’s complexity poses unique challenges. Bridging this gap re-
quires innovative approaches like leveraging machine learning techniques to enhance optimization strategies.
This study focuses on leveraging machine learning to bridge the optimization gap in functional programming,
particularly within the context of Lambda Calculus. This study delves into the extraction features from Lambda
terms related to reduction strategies by applying machine learning. Previous research has explored various
approaches, including analyzing reduction step complexities and using sequence analysis Artificial Neural Net-
works (ANNSs) with simplified term representation. This research aims to develop a methodology for extracting
comprehensive term data and providing insights into optimal reduction priorities by employing Large Language
Models (LLMs). Tasks were set to generate embeddings from Lambda terms using LLMs, train ANN models to
predict reduction steps, and compare results with simplified term representations. This study employs a sophis-
ticated blend of machine learning algorithms and deep learning models as a method of analyzing and predicting
optimal reduction paths in Lambda Calculus terms. The result of this study is a method that showed improvement
in determining the number of reduction steps by using embeddings. Conclusions: The findings of this research
offer significant implications for further advancements in compiler and interpreter optimization. This study paves
the way for future research to enhance compiler efficiency by demonstrating the efficacy of employing LLMs to
prioritize normalization strategies. Using machine learning in functional programming optimization opens ave-
nues for dynamic optimization strategies and comprehensive analysis of program features.

Keywords: Lambda Calculus; functional programming language; strategy optimization; Large Language

Model; code embeddings.
Introduction

Modern software development relies on functional
programming languages, which provide robust solutions
to problems in modern development [1]. With an
increasing emphasis on efficiency, compiler optimization
becomes essential. Lambda Calculus represents
functional programming languages, where the key
challenge lies in deciphering program code to unveil
reduction strategies, thereby improving compiler and
interpreter performance [2]. Understanding how the
program execution state varies based on the chosen
execution strategy aids in selecting appropriate, resource-
efficient, resilient interpreter and compiler methods.
These strategies are pivotal in enhancing compilers and
interpreters, thereby benefiting functional and object-
oriented languages.

Exploring Lambda Calculus allows one to emulate
interpreters and compilers as they seek optimal reduction
strategies. Our methodology vyields diverse Lambda
terms, creating a solid foundation for testing various
approaches to enhance reduction quality [2, 3]. The

intricate task of determining whether to devise tailored
strategies for individual terms or opt for a global
approach, like the Rightmost Innermost method,
provides valuable insights into the complexities of
reduction. We contemplate employing sophisticated
machine learning techniques to extract term data and
uncover internal relationships, potentially enhancing the
term reduction process.

Although, functional programming compilers have
received comparatively less attention in terms of
optimization efforts. Previous studies have explored
areas like heap profiling [4] and hand-crafted logic
optimization [5] for functional compilers, albeit on a
smaller scale. Functional languages like Haskell and
OCaml often employ specific reduction strategies using
specialized mechanisms such as call-by-need and call-
by-value.

Considering the landscape above, the challenge of
optimizing functional programming compilers and
interpreters becomes evident. While machine learning
techniques have effectively optimized object-oriented
compilers, applying them to functional code introduces

© Oleksandr Deineha, 2024

20

Radioelectronic and Computer Systems, 2024, no. 2(110)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

unique complexities [6]. Therefore, this study aims to
address this gap by extracting features from functional
code and leveraging machine learning to enhance the
quality of optimization strategies.

Paper structure. In Section 1, “The Current State
of Research in the Lambda Term Normalization
Process,” we review existing research on Lambda
Calculus, focusing on strategies for optimizing Lambda
term normalization and the potential of machine learning
techniques to refine these processes.

Section 2, “Motivation and Problem Statement”,
elaborates on the challenges in optimizing compilers and
interpreters for functional programming languages,
proposing the use of large language models (LLMs) and
artificial neural networks (ANNs) to automate
optimization processes based on program features.

In Section 3, “Objective and Approach”, the paper
outlines the specific objectives of using LLMs and ANNs
to enhance feature extraction from Lambda terms, thus
improving the understanding and performance of
compilers and interpreters.

Section 4, “Materials and Methods of Research”,
details the methods used for generating and processing
data, including the use of various LLMs to transform
Lambda terms into meaningful vectors and the setup for
predicting normalization strategies using ANN models.

Section 5, “Results”, presents findings from the
experiments, mainly focusing on the predictive
performance of ANNs in determining optimal
normalization strategies and comparing these to baseline
models.

Section 6, “Discussion”, reviews the findings'
implications, the effectiveness of LLMs in feature
extraction, and potential improvements in compiler and
interpreter technologies for functional programming
languages.

The paper ends with the Conclusion section, which
summarizes the study’s findings, highlights advances in
understanding and optimizing Lambda term
normalization, and suggests future research directions to
refine these approaches further.

1. Current state of research in the Lambda
term normalization process

Research on Lambda Calculus was performed using
a Pure Lambda Calculus environment developed by the
authors [2, 3]. This environment was used to optimize the
Lambda terms normalization process. This study
proposed a new method for analyzing the reduction step
[3]. The proposed method considers that normalization
(term reduction) steps can have different reduction
complexities. For verification, this suggestion used base
tree term characteristics and Machine Learning methods
for data extraction. Such a suggestion allows for

estimating each redex complexity and always choosing
the least complex reduction. This will enable a greedy
reduction strategy based on estimating redex reduction
complexity.

Many studies have investigated another approach to
analyzing Lambda terms. This approach does not involve
building a new strategy but rather choosing the optimal
strategy from a pool of strategies. In this case, the
estimation approach compares the estimation of the count
reduction steps or indicates if the strategy is better.
Research [7] analyzed the LO strategy’s influence on the
depth increase of Lambda terms. Conversely, the work
[8] showed that almost every simply typed Lambda term
has a long beta-reduction sequence, which means that
finding the worst possible reduction path for terms is
possible. The use of the randomized strategy for term
reduction and its influence on the beta reduction path was
considered in the work [9]. Research [10] considered the
consumption of computational resources of
normalization strategies. None of them did not select
term characteristics, which might indicate strategy
preference. However, work [11] considered using
simplified term strings as input on Artificial Neural
Network (ANN) models to predict the number of the LO
and RI steps. The predicted numbers can be used as
strategy prediction indicators, which means that a smaller
predicted number is a better strategy. Although using
ANN is not computationally effective, analyzing trained
ANN can answer questions about term features that
indicate strategy priority. Using these features can be
easily implemented in modern compilers. However, note
that a significant disadvantage of this research is the use
of simplified term strings, which lose information about
term variables, impacting the reduction process.

In addition, promising research has been conducted
on solving mathematical problems [12], code execution
[13], and compilation improvement [14] using ANNSs on
Transformer models. Transformer models for processing
natural, machine, or mathematical text information are
called Large Language Models (LLM). LLM was used to
analyze typed Lambda terms to detect term type, as
shown in the article [15]. LLM has demonstrated the
ability to analyze and understand Lambda terms to
predict their type. Using string term representation while
keeping its variable names and encoding each type of
symbol was considered in the article [15]. The relatively
small size of LLM is used in the article [15] allows the
keeping of only 32 term variables and special symbols
for application and abstraction. Moreover, training such
as LLM still requires hours of work on modern graphical
units.

2. Motivation and problem statement

Compilers and interpreters are based on unique op-
timization methods that decrease computational

Intelligent information technologies

21

consumption during compilation, interpretation, and ex-
ecution [14]. The main issue with such methods is im-
proving their efficiency with many possible program var-
iants. This research considered automatizing the selec-
tion of specific program features, influencing the compu-
tational efficiency of compilation, interpretation, or exe-
cution. It might help create a universal optimization tech-
nique that analyzes actual code and generates specific op-
timizations locally or analyze a considerable amount of
code to generate general optimization.

The optimization searching method can be auto-
mated using ANNS to statistically analyze data [16]. The
program contains sequences of variables, keywords, and
operators. The most advanced way to process text infor-
mation is using LLM [17]. Large enough LLMs can solve
various text-related tasks [17]. One such task is to trans-
form text into vectors of meaning, also called embed-
dings [18]. Embeddings are vectors of characteristics that
can be used to solve specific tasks. Analyzing LLM,
which generates such vectors and input data, might help
identify text features that significantly impact the for-
mation of these features. In other words, LLMs can ex-
tract specific characteristics that significantly impact the
forming features in the program code. Such characteris-
tics can influence program compilation, interpretation, or
execution and can be used to choose dynamic optimiza-
tion strategies for compilers or interpreters.

Testing on modern functional programming lan-
guages poses a significant challenge because of the ex-
tensive array of keywords, making it arduous to gather or
generate sufficient training data. A plausible solution lies
in opting for a programming language with simpler syn-
tax, such as Lambda Calculus, which is characterized by
only two operators: Application and Abstraction. How-
ever, despite its simplicity, Lambda Calculus is Turing
complete [19], rendering it capable of emulating any
computational process feasible in other programming
languages. Within Lambda Terms, the selection rule gov-
erning a specific application, redex, dictates a reduction
strategy (or execution sequence), as evidenced in prior
studies [7, 8], showcasing its impact on reduction step
counts.

Although Lambda Calculus is the most straightfor-
ward programming language regarding operator usage,
gathering training data is quite resource-consuming.
Thus, synthetic training data is an excellent way to cover
as many term variants as possible. However, it should be
noted that missing some term combinations with im-
portant feature indication reduction priority is still possi-
ble.

3. Objective and approach

This study improves feature extraction from

Lambda terms to better understand the term normaliza-
tion

process. Such term features can improve the performance
of compilers and interpreters. This can be done by apply-
ing advanced machine learning techniques to represent
Lambda calculus terms as embedding vectors containing
specific features. Machine learning methods can also in-
vestigate these features by analyzing their relation to the
actual number of reduction steps.

Considering all this, the following research solves
the following problems:

1. Select a set of LLM models to process the
Lambda terms and convert them into embeddings.

2. Configure hyperparameters of ANN models and
train them to solve the problem of prediction term reduc-
tion steps for specific reduction strategies, as in the
work [11].

3. Compare the results of using simplified term
representation in the work [11] to achieve accuracy and
conclude that such an approach is efficient.

This study deals with the artificially generated da-
taset of Lambda terms. Previous research converted this
dataset into a simplified term representation [11]. The
main idea was to save only tree structures to analyze
redexes, not variables. Therefore, this research deals with
the same dataset but keeps variable information. Keeping
variable information in the text representing Lambda
terms helps to better analyze terms and indicate specific
relations lost in simplified representation. However,
keeping variable information increases computational
consumption significantly. Therefore, this research con-
sidered using general and specific LLMs to collect text
embeddings, representing Lambda terms with variable
information. Such embeddings can be used as input to
some ANN models to solve the reduction step prediction
task for a specific normalization strategy. These step pre-
dictions are keys to estimating the normalization strategy
priority.

Therefore, this article's central hypothesis is that us-
ing LLMs to transform Lambda term expressions into
embedding vectors can provide a sufficient way of ana-
lyzing their optimal reduction priority.

4. Materials and methods of the research

4.1. Machine learning models
for text processing

The research considered Lambda term representa-
tion as itis in the text. There are numerous machine learn-
ing methods and models for processing text information.
These methods and models can be split into simple meth-
ods (Support Vector Machines, Naive Bayes, Artificial
Neural Networks, and others) and complex methods

22

Radioelectronic and Computer Systems, 2024, no. 2(110)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

(deep learning architectures: Convolutional Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs), and
Transformers) [20 — 22].

Fig. 1 [22] shows an example of the CNN model’s
typical usage for solving text classification problems.
CNN models provide robust solutions for solving simple
text problems, like classification. CNN can work as a
word indicator, indicating word or phrase availability in
text. However, it lacks context understanding and usually
understands text content.

Fig. 2 shows another example of text-processing ar-
chitectures [23]. It shows the units of RNN, Long Short-
Term Memory (LSTM), and Gated Recurrent Unit
(GRU). The basic idea behind RNN, LSTM, and GRU is
the same. Each unit can process each piece of text (usu-
ally symbols or words) and use its memory or output to
store the entire text meaning in a vector representation
called embedding. Such architecture provides a simple
way to solve various text-related problems, from simple
classification to text generation and translation. Although
these architectures are a step forward compared to CNN,

Conv1D
Conv1

Word Embedding Pool1D Pool1D

they have problems with too long sequences, especially
RNN, and training problems due to gradient vanish-
ing [23].

The state-of-the-art text processing models consider
the Transformer architecture [20, 21]. The Transformer
model architecture is shown in Fig. 3 [20]. The Trans-
former allows data processing in parallel, as in CNN ar-
chitecture, but without input text sequence limitations. It
can capture long-range dependencies using a self-atten-
tion mechanism. This model provides state-of-the-art
performance in various text-related tasks [23].

The research compared the considered architec-
tures’ performance in estimating term reduction
steps [11]. Although the LSTM model showed the best
performance, it had sequence length limitations. In addi-
tion, simplified term representation without keeping var-
iable information was considered in the research [11].
This limited the Transformer model in terms of its term
analysis capabilities.

Flatten

Conv1D
Conv1D

D

Fig. 1. CNN model architecture for solving the text classification problem

RNN @ Forth gate LSTM Q‘D
y ﬂ\ : /I’ct'\! o'
BN
I I~
L
I L1)1,

E(% Input gate

@ Reset gate Update gate

Output gate

Fig 2. Diagrams of the RNN, LSTM, and GRU units

Intelligent information technologies

23

Output
Probabilities

Add & Norm
Feed
Forward
| Add & Norm ﬁ
gl b Multi-Head
Feed Attention
Forward)) Nx
—]
N Add & Norm
* | ~{_Add & Norm) S
Multi-Head Multi-Head
Attention Attention
S S At
o J) 7
Positional Positional
Encodin D @ i
9 Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Fig 3. Architecture of the Transformer model

4.2. Large language models
for embedding extraction

The latest sophisticated LLMs leverage the Trans-
former architecture [20, 21], which, owing to the charac-
teristics of ANNs and Transformers, allows the use of in-
termediate layer outputs as feature vectors. Essentially,
LLMs excel in translating textual data into vectors or ma-
trices representing semantic information [20, 24]. Conse-
quently, it becomes feasible to transform Lambda terms
into meaningful vectors or matrices, facilitating subse-
quent analysis. Such vectors of meaning are called em-
beddings.

Research [6] analyzed popular LLMs related to
code analysis and generation tasks. We concluded that
the Microsoft CodeBERT model is the most suitable for
transforming Lambda terms while keeping its variable in-
formation in embedding representation. Although that re-
search focused on prioritizing normalization strategy, it
did not consider general-purpose LLMs, which have
much larger average weights and input tokens available.
In addition, research [6] considers a reinforcement learn-
ing approach to analyze embedding space, while this
work uses inform learning. The LLMs used for generat-
ing embeddings are listed below. The Microsoft

CodeBERT is a relatively small model that can be pro-
cessed locally. However, OpenAl models are proprietary
and publicly unavailable, except for API calls, which pro-
vide model outputs.

This research aims to compare the results of rela-
tively small and publicly available CodeBERT with gen-
eral-purpose OpenAl models to show the limits of exist-
ing technologies and reliability for further research to-
ward smaller LLMs. If CodeBERT shows lower results
comparable to OpenAl models, it can be concluded that
smaller LLMs cannot provide enough feature extraction
capabilities.

CodeBERT and OpenAl can process Lambda terms
as pure text, so data preprocessing is unnecessary. How-
ever, for CodeBERT, data postprocessing is required be-
cause its output contains the embedding vector vectors.
The postprocessing for CodeBERT is explained and
shown in the research [6], where average embedding vec-
tors were taken. OpenAl provides embedding vectors
without the need for postprocessing.

Comparison of LLMs for generating embeddings:

1. Microsoft CodeBERT, a bimodal pre-trained
model designed for programming and natural language
tasks, employs a Transformer architecture. It incorpo-
rates a hybrid objective function that includes a replaced
token detection pre-training task. The authors curated da-
tasets comprising code samples from Go, Java, JavaS-
cript, PHP, Python, Ruby, and others for training the
model [25]. The embedding vector size is 768.

2. OpenAl text-embedding-ada-002. The model
supersedes five distinct models catering to text search,
text similarity, and code search. It surpasses the previous
flagship model, Davinci, in most tasks, all while being
priced at a staggering 99.8% lower cost [26, 27]. The em-
bedding vector size is 1536.

3. OpenAl text-embedding-3-small. The model
is significantly upgraded upgrades over text-embedding-
ada-002. It boasts improved performance, with MIRACL
scores rising from 31.4% to 44.0% and MTEB scores in-
creasing from 61.0% to 62.3%. Additionally, it offers a
5X price reduction [27, 28]. The embedding vector size
is 1536.

4. OpenAl text-embedding-3-large. The model
is significantly upgraded over text-embedding-ada-002.
It boasts improved performance, with MIRACL scores
rising from 31.4% to 44.0% and MTEB scores increasing
from 61.0% to 62.3%. Additionally, it offers a 5X price
reduction [27, 28]. The embedding vector size is 3072.

4.3. Neural network model
for reduction steps prediction

The central assumption of this research was that em-
beddings generated with specific and general LLMs
could be suitable for the detection normalization strategy.

24

Radioelectronic and Computer Systems, 2024, no. 2(110)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

A fully connected ANN model was considered to detect
term strategy priority. However, simply telling whether
the LO strategy is better or worse than the RI strategy is
not enough for deep analysis. In this case, the solution
can be using the ANN model with a prediction number of
reduction steps. Showing the relation between the input
embedding vector and output integer values is a problem
here. Possible solutions are:

1. Solving the steps prediction problem as a regres-
sion problem. It requires accurate data tuning to limit
possible predictions and ensure that they are evenly dis-
tributed.

2. Solving the steps prediction problem as a classi-
fication problem. This allows the model to be more con-
crete for various data samples. However, it requires re-
moving some samples with too many reduction steps for
both the LO and the RI strategies.

3. Solving the steps prediction problem as a bin
problem allows the solving of classification problems for
specific reduction steps, spreading some reduction steps
into units but only a few steps. It creates some degree of
freedom for the model but reduces its accuracy.

The training and testing datasets were split 80/20.
The training procedure for fully connected ANN models
requires 200 training steps. A testing set was used for val-
idation, so the best model weights were saved for the best
validation accuracy. Step decay was not considered be-
cause of the usage of the Adam optimizer. The categori-
cal cross-entropy loss function was used because it is typ-
ical for the multiclass classification problem.

4.4. Experiments setup

Given the findings from research [11], which indi-
cate that most terms are reduced within 0-30 steps, the
decision was made to approach the problem as a classifi-
cation task. So, the typical ANN model architecture is
shown in Fig. 4. The ANN model contains a few inter-
mediate layers with the ReLu activation function and 31

activation = relu activation = relu

bias_constraint = bias_constraint =
kernel_constraint =

units = 256

kernel_constraint =
units = 188

dense_input

Activation Activation
?%x1536

activation = relu activation = relu

activation = relu
bias_constraint =
kernel_constraint =
units = 128

Activation

activation = relu

units of the output layer with the Softmax activation
function for solving classification tasks. In addition, the
ANN model contains a Dropout layer to prevent overfit-
ting. Moreover, recognizing the limitations of accuracy
metric usage for estimating, also Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) metrics
were evaluated [29]. Based on the hypothesis that terms
with more reduction steps would result in higher error
values, we examined MAE to the actual reduction step
count.

Considering all the abovementioned points, the ex-
periments will be processed in the following way:

1. Generate embeddings for each term in the pre-
viously generated dataset of terms using LLM models for
generating embeddings.

2. Split each embedding dataset into training and
testing sets in the same order. This step generates training
and testing sets with the same terms and, for each term,
the set number of the LO or the RI steps.

3. Predict the number of LO and RI steps using
model predictions for the training and testing sets. Using
predictions, build MAE graphics to estimate the possibil-
ity of the proposed LLM models representing term infor-
mation as a vector. Compare the MAE result with the best
result achieved in the work [11].

5. Results

Fig 5 visualizes training the proposed ANN model
for predicting the number of the LO steps for the OpenAl
text-embedding-3-small model embeddings. It shows the
typical procedure for training all eight possible ANN
models. In Fig 5, validation values stop progressing or
worsen for loss and accuracy metrics. We consider sav-
ing model weights to maximize model performance for
the best validation accuracy. Therefore, each trained
model uses a different count of training steps but still pro-
vides the best performance. In addition, model weights
are saved and can be used for further investigation.

activation = softmax

Dropout
P bias_constraint =

noise_shape = kernel_constraint =
rate = 0.3

seed =

units = 31

Activation

activation = softmax

Fig. 4. Architecture of the fully connected ANN model used to estimate the count normalization steps
with the selected reduction strategy

Intelligent information technologies

25

Loss changes

4.5
o | e Train
' Validation
3.5
3.09 ,
n)
8 251 {_
2.0 S Yo, o i |
1.5 S, .
Yow W ;\'l\'; . 1
1.0 d h"""’\,,:
0 25 50 75 100 125 150 175 200
epochs
(a)

Accuracy changes

0.71 ---- Train "‘,‘ﬁ‘,
. 3 syt
0.6 Validation "". Aﬁ'.u‘u :l
AN ‘I 1
305 Pt A
o Y ¢
S \"!{’l :
304 At
(9] /‘,".l‘
© g3 o
4
Y
0.21 4
J
1
0 25 50 75 100 125 150 175 200
epochs
(b)

Fig 5. Training of the fully connected ANN model on OpenAl text-embedding-3-small model embeddings
to predict the number of LO steps: (a) loss function; (b) accuracy progression

The results of training ANN models on the predic-
tion number of LO reduction steps are shown in Table 1.
In addition, the best results of the research [11] of predic-
tion LO reduction steps by the convolution ANN model
using simplified term representations are shown in Ta-
ble 1. Asitis represented for testing sets, embeddings can
provide improvement up to 3 times. However, the testing
set does not provide much improvement, although the
mean deviation is almost 0.6 steps, which is a considera-
ble result. In addition, RMSE provides information about
deviation to the side of underprediction number of reduc-
tion steps for more complex terms.

The results of training ANN models on the predic-
tion number of RI reduction steps are shown in Table 2.
In addition, the best results of the research [11] of predic-
tion RI reduction steps by the LSTM ANN model using
simplified term representations are shown in Table 2. In
this case, using embedding to predict the RI normaliza-
tion steps does not provide many improvements com-
pared with the best results of the research [11]. Although
the MAE of text-embedding-3-large model embeddings
shows much better results in the training set, it underper-
forms in the testing set. However, RMSE results for
OpenAl indicate improved model performance with a
minor possible maximum error.

Table 1

Result of training ANN model for predicting the number of the LO reduction steps using embeddings
or simplified term representation

. MAE RMSE
No Embeddings source Train Test Train Test
1 Microsoft CodeBERT 2.24 241 3.87 3.99
2 OpenAl text-embedding-ada-002 1.36 2.09 2.69 3.50
3 OpenAl text-embedding-3-small 1.07 2.12 2.21 3.61
4 OpenAl text-embedding-3-large 0.95 2.18 2.10 3.72
5 Best results with simplified terms with 291 2.74 5.28 5.16
convolution model [11]
Table 2
Result of training ANN model for predicting the number of the RI reduction steps using embeddings
or simplified term representation
. MAE RMSE
No Embeddings source Train Test Train Test
1 Microsoft CodeBERT 1.38 1.74 2.60 2.87
2 OpenAl text-embedding-ada-002 0.95 1.53 1.74 2.41
3 OpenAl text-embedding-3-small 0.71 1.46 1.42 2.37
4 OpenAl text-embedding-3-large 0.27 1.51 0.69 2.35
5 Best results with simplified terms with 0.50 1.29 1.25 2.7
LSTM model [11]

26

Radioelectronic and Computer Systems, 2024, no. 2(110)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Fig 6 shows a more specific MAE analysis. Ten
plots of the model performance depending on the ex-
pected number of reduction steps and the selected strat-
egy are shown in Fig 6. Eight of these plots relate to the
analysis of the possibility that LLM models produce em-
beddings usable in prioritizing normalization strategies.
Fig 6, i and Fig 6, j show the best models for predicting
LO and Ri steps from the research [11].

The results of the model testing, shown in Fig. 6,
indicate that, in most cases, LLMs provide more suitable
results than models trained on simplified terms represen-
tation (Fig 6, i and Fig. 6, j). The considered LLMs were
not explicitly developed to analyze Lambda terms. How-
ever, overall MAE or RMSE performance was higher
than that achieved on specially designed models in the
work [11]. This result can be explained by considering
variable information and more weights presented in pre-
trained LLMs for collecting embeddings.

FCNN, LO, CodeBERT FCNN, LO, Ada_02

6. Discussion

This article shows how advanced machine learning
methods can be used to highlight hidden features in
Lambda terms. These features can be used to estimate
which normalization strategy is preferable for a particular
Lambda term. Potentially, such features can be extracted
in other more computationally effective ways, thus im-
proving the efficiency of compilers and interpreters of
functionally oriented programming languages. These ad-
vantages are justified by the greater capabilities of ma-
chine learning methods to analyze many terms and the
ability to use trained LLMs for feature extraction. What
differs from [11] is that such Lambda term features were
obtained using pretrained LLMs and full text to represent
Lambda terms instead of simplified representation.

Results show that MAE and RMSE are lower for
models trained on the RI (see Table 2) steps prediction
than on the LO (see Table 1) steps prediction, which
might indicate that detecting the priority of RI terms is
more accessible than the LO. Also, it is interesting that

FCNN, LO, OpenAlSmall 4 FCNN, LO, OpenAlLarge

25
----- train {127 ---- train (ST train 12| ---— train
201 i ;| 15.0 :
test ;| 10 test P test 'l 10 test |
w 13 ;| 8 ‘w100 I A A\
< p [6 P] vy g
=10; N 7.5 AVAIEI ARAN
- HIEE A 5.0 AR 4 NURYRY
Wl | 2f 251 s T 2 Lor” 0 TR
0L J 015" 0.0 =" ol -
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
steps steps steps steps
(a) (b) () (d)
FCNN, RI, CodeBERT FCNN, RI, Ada_02 FCNN, RI, OpenAlSmall FCNN, RI, OpenAlLarge
17.5 . 10 . 10 . 10 -
15‘0 ----- train ----- train ----- train ----- train
: 8 8 8
12.5 test . test) test . test
gI0.0
= 75 4 Al oa 4
25 . NN A2 o~ 2 A v \Vf 2 — . I\\ v AN ” 2 . . /\"J\‘v"\;.
0.0 =~ 0L~ (o} B 0o :
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
steps steps steps steps
(e) (H (g) (h)
CONV, LO LSTM, RI
141 . train ‘-” 4| —-- train
12 f
test 4 test
10 / 3
w g s
< /
5 6 oL 2
4 - BN
2 1 e
01~ 01—
0 5 10 15 20 25 30 0 5 10 15 20 25 30
steps steps
(1) 0)

Fig. 6. MAE progression depending on the number of reduction steps for models trained on: (a) CodeBERT to LO
steps; (b) text-embedding-ada-002 to LO steps; (c) text-embedding-3-small to LO steps; (d) text-embedding-3-large
to LO steps; (e) CodeBERT to RI steps; (f) text-embedding-ada-002 to RI steps; (g) text-embedding-3-small to RI
steps; (h) text-embedding-3-large to RI steps; (i) simplified terms to LO; (j) simplified terms to RI

Intelligent information technologies

27

general LLMs of OpenAl outperform the CodeBERT
model for specific code-related tasks. This can be ex-
plained by the fact that OpenAl is more capable of pro-
cessing logical information because of its enormous
number of weights and broad data experience.

The limitation of this study is the use of the
CodeBert model, which was initially trained in other pro-
gramming languages (Go, Java, Python, and others),
which can lead to incorrect representation of Lambda cal-
culus terms in embedding vectors. Also, it is possible to
say the same about using OpenAl LLMs to transform
terms into embeddings, which have no training data and
procedures. Another limitation of this study is the use of
a comparable small number of Lambda terms and their
artificial nature, which might only cover some possible
variants of real ones.

Conclusion

Four LLM models were used to generate embed-
dings from the text representations of Lambda terms. Pre-
viously, artificially generated data of 4k Lambda terms
were used. Generating embeddings was performed to an-
alyze the possibility of using an LLM embedding model
to extract term normalization features, which might help
develop functional programming language compilers and
interpreters.

Generated embeddings were used to create eight da-
tasets for each considered embedding model and for the
LO and RI term normalization strategies. These datasets
contain the number of reduction steps for the selected
strategy as a target variable. ANN models were designed
and trained to solve a classification problem for predict-
ing from 0 to 30 reduction steps. Such ANN configura-
tion improves its performance in solving step prediction
tasks.

Trained ANN models were used to collect MAE,
RMSE, and step-depending MAE coefficients. These co-
efficients were compared with the best results achieved
on the same task and dataset using simplified term repre-
sentation. Results indicate improvements in the step pre-
diction task; significant improvements were mainly
achieved in predicting the number of LO steps. However,
predictions of the number of RI were on the same low
error rate as they were for the best result of the work [11],
with slight improvement. Such results indicate that code
and general LLMs can help extract information from
Lambda terms and use this information to analyze strat-
egy priority. Specially trained LLMs may lead to better
data extraction. The overall conclusion is that the term
feature extraction procedure using LLM is suitable and
can be implemented in real Lambda code interpreters.

Future research directions. Given these limita-
tions, further research can be conducted using the re-
trained LLM model for problems related to Lambda Cal-
culus. Alternatively, increasing the number of terms in
the database is possible by generating some and collect-
ing real terms. Feature importance analysis can indicate
important normalization term features and configure the
Lambda Calculus interpreter to detect those features to
select the appropriate strategy.

Conflict of Interest
The authors declare that they have no conflict of in-
terest in relation to this research, whether financial, per-
sonal, authorship, or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
This study was conducted without any financial
support.

Data Availability
This work has associated data in the data repository.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence technologies when creating the current
study.

References

1. Tanabe, Y., Lubis, L. A., Aotani, T., & Masu-
hara, H. A Functional Programming Language with Ver-
sions. The Art, Science, and Engineering of Program-
ming, 2021, vol. 6, issue 1, article 5. DOI: 10.22152/pro-
gramming-journal.org/2022/6/5.

2. Deineha, O., Donets, V., & Zholtkevych, G. On
Randomization of Reduction Strategies for Typeless
Lambda Calculus. Communications in Computer and In-
formation Science, 2023, no. 1980, pp. 25-38. Available
at: https://icteri.org/icteri-2023/proceedings/pre-
view/01000021.pdf (accessed 08.03.2024).

3. Deineha, O., Donets, V., & Zholtkevych, G. Es-
timating Lambda-Term Reduction Complexity with Re-
gression Methods. International Conference “Infor-
mation Technology and Interactions”, 2023, no. 3624,
pp. 147-156. Available at: https://ceur-ws.org/Vol-
3624/Paper_13.pdf (accessed 08.03.2024).

4. Runciman, C., & Wakeling, D. Heap Profiling
of a Lazy Functional Compiler. Functional Program-
ming, 1992, pp 203-214. DOI: 10.1007/978-1-4471-
3215-8 18.

5. Chlipala, A. An optimizing compiler for a
purely functional web-application language. Proceedings
of the 20th ACM SIGPLAN International Conference on

28 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 2(110) ISSN 2663-2012 (online)
Functional Programming, 2015, pp. 10-21. DOI: Task-oriented Coordination via Collaborative Generative

10.1145/2784731.2784741.

6. Deineha, O., Donets, V., & Zholtkevych, G. Un-
supervised Data Extraction from Transformer Represen-
tation of Lambda-Terms. Eastern European Journal of
Enterprise Technology, 2024. In press.

7. Clemens Grabmayer. Linear Depth Increase of
Lambda Terms along Leftmost-Outermost Beta-Reduc-
tion. ArXiv: Computer Science, 2019. DOI:
10.48550/arXiv.1604.07030.

8. Asada, K., Kobayashi, N., Sin'ya, R., & Tsu-
kada, T. Almost Every Simply Typed Lambda-Term Has
a Long Beta-Reduction Sequence. Logical Methods in
Computer Science, 2019, vol. 15, issue 1. DOI:
10.23638/LMCS-15(1:16)2019.

9. Lago, U.D., & Vanoni, G. On randomised strat-
egies in the A-calculus. Theoretical Computer Science,
2020, vol. 813, pp- 100-116. DOI:
10.1016/j.tcs.2019.09.033.

10. Xiaochu, Qi. Reduction Strategies in Lambda
Term Normalization and their Effects on Heap Usage.
ArXiv: Computer Science, 2004. Awvailable at:
https://arxiv.org/abs/cs/0405075 (accessed 08.03.2024).

11. Deineha, O., Donets, V., & Zholtkevych, G.
Deep Learning Models for Estimating Number of
Lambda-Term Reduction Steps. ProflT Al 2023: 3rd In-
ternational Workshop of IT-professionals on Artificial
Intelligence (ProflT Al 2023), 2023, vol. 3624, pp. 147-
156. Awvailable at: https://ceur-ws.org/Vol-3641/pa-
per12.pdf (accessed 08.03.2024).

12.Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z.,
Guo, Y., Bai, J., & Tang, J. GPT Can Solve Mathematical
Problems Without a Calculator. ArXiv: Computer sci-
ence, Machine Learning, 2023. DOl:
10.48550/ar Xiv.2309.03241.

13. Liu, C., Lu, S., Chen, W.,, Jiang, D., Svyatkov-
skiy, A., Fu, S., Sundaresan, N., & Duan, N. Code Exe-
cution with Pre-trained Language Models. Accepted to
the Findings of ACL 2023, 2023, pp. 4984-4999. DOI:
10.48550/ar Xiv.2305.05383.

14. Cummins, C., Seeker, V., Grubisic, D, Elhou-
shi, M., Liang, Y., Roziere, B., Gehring, J., Gloeckle, F.,
Hazelwood, K., Synnaeve, G., & Leather, H. Large Lan-
guage Models for Compiler Optimization. ArXiv: Com-
puter science, 2023. DOI: 10.48550/arXiv.2309.07062.

15. Miranda, B., Shinnar, A., Pestun, V., & Trager,
B. Transformer Models for Type Inference in the Simply
Typed Lambda Calculus: A Case Study in Deep Learning
for Code. Computer Science, 2023. DOI:
10.48550/arXiv.2304.10500.

16. LeCun, Y., Bengio, Y., & Hinton, G. Deep
Learning. Nature, 2021, no. 521, pp. 436-444. DOI:
10.1038/nature14539.

17.Li, Y., Zhang, Y., & Sun, L. MetaAgents: Sim-
ulating Interactions of Human Behaviors for LLM-based

Agents. ArXiv, 2023. DOI: 10.48550/ar Xiv.2310.06500.

18. Asudani, D. S., Nagwani, N. K., & Singh, P. Im-
pact of word embedding models on text analytics in deep
learning environment: a review. Artificial Intelligence,
2023, vol. 56, pp. 10345-10425. DOI: 10.1007/s10462-
023-10419-1.

19. Turing, A. M. Computability and A-Definabil-
ity. The Journal of Symbolic Logic, 1937, vol. 2, iss. 4,
pp. 153-163. DOI: 10.2307/2268280.

20.Vaswani, A., Shazeer, N. M., Parmar, N., Usz-
koreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosu-
khin, 1. Attention is All you Need. Neural Information
Processing Systems, 2017, wvol. 30. DOI:
10.48550/arXiv.1706.03762.

21.Zhao, W.X., Zhou, K, Li, J., Tang, T., Wang,
X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du,
Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li,
Y., Tang, X, Liu, Z., Liu, P., Nie, J., & Wen, J. A Survey
of Large Language Models. ArXiv: Computer science,
2023. DOI: 10.48550/arXiv.2303.18223.

22.Ormerod, M., Del Rincon, M. J., & Devereux,
B. How is a “Kitchen Chair” like a “Farm Horse”? Ex-
ploring the Representation of Noun-Noun Compound Se-
mantics in Transformer-based Language Models. Com-
putational Linguistics, 2024, vol. 50, iss. 1, pp. 49-81.
DOI: 10.1162/coli_a_00495.

23. Kowsari, K., Meimandi, K. J., Heidarysafa, M.,
Mendu, S., Barnes, L., & Brown, D. Text Classification
Algorithms: A Survey. Information, 2019, vol. 10, iss. 4:
article no. 150. DOI: 10.3390/info10040150.

24. Compare the different Sequence models (RNN,
LSTM, GRU, and Transformers). Machine Learning Re-
sources, March 2024, Available at:
https://aiml.com/compare-the-different-sequence-mod-
els-rnn-Istm-gru-and-transformers/ (accessed
08.03.2024).

25.Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X.,
Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., & Zhou,
M. CodeBERT: A Pre-Trained Model for Programming
and Natural Languages. Findings of the Association for
Computational Linguistics: EMNLP 2020, 2020, pp.
1536-1547. DOl: 10.18653/v1/2020.findings-
emnlp.139.

26.New and improved embedding model. Blog,
Dec. 2022. Available at: https://openai.com/blog/new-
and-improved-embedding-model (accessed 08.03.2024).

27.Nussbaum, Z., Morris, J.X., Duderstadt, B., &
Mulyar, A. Nomic Embed: Training a Reproducible
Long Context Text Embedder. ArXiv: Computer science,
2024. DOI: 10.48550/arXiv.2402.01613.

28. New embedding models and API updates. Blog,
Jan 2024. Available at: https://openai.com/blog/new-em-
bedding-models-and-api-updates (accessed 08.03.2024).

Intelligent information technologies 29

29.Krell, M. M., & Wehbe, B. A First Step To- Computer science, 2020. DOl:
wards Distribution Invariant Regression Metrics. ArXiv: 10.48550/arXiv.2009.05176.

Received 17.02.2024, Accepted 15.04.2024

KEPOBAHE BUJIYYEHHA JAHUX
3 TPAHC®OPMEPHOI PENPE3EHTAIIIL JISIMBIA-TEPMIB

0. A. /letineza

O0’€KTOM aHOTO JIOCIIKEHHS € ITPOIIeC ONTUMI3allii KOMITIJISATOPIB, IKUX Ma€ KIFOYOBE 3HAUEHHS JUIsI PO3BH-
TKY CY4acHOT0 IPOrpaMHOro 3a0e3redeHHs, 0COOIMBO KOJIM MOBA Hie Mpo (DyHKI[IOHAJIbHI MOBH MPOrpaMyBaHHS,
Taxi K JIIMOAa-unciieHHs. MeTonu onTuMizalii 6e3rmocepeIHbO BILTUBAIOTH Ha MIBUAKO/IIO Ta €peKTUBHICTH pOOOTH
IHTEPIIPETaTOpiB 1 KOMIIISATOPIB, BU3HAYAI0OYH BUKOPUCTAHHS PECYPCIB Ta Yac BUKOHAHHS IporpaM. HesBakaroun Ha
Te, 10 KOMIUIATOPH JIst (QYHKI[IOHATBHUX MOB OTPHMAJIM MEHIIIE yBAaru B KOHTEKCTI ONTHUMI3aliif HOpiBHIHO 3 00'e-
KTHO-OpI€EHTOBaHMMHU MOBaMH, YHIKaJIbHI BUKJIMKH, 1110 CTABUTh Nepe]] HUMH JIIMO1a-4HCIIeHHSs, TOTPe0YIOTh 0co0-
JIMBHX pilieHb. [lofonaHHs NbOoro po3puBy BUMarae iHHOBAaLliMHUX MiJXOMIB, TAKUX SIK BUKOPUCTAHHS METOJIB Ma-
LIMHHOTO HABYAHHS JUIsl BIIOCKOHAJICHHS CTpaTeriii onTuMizanii. Y oMY JIOCHTIPKEHH] pO3IIIsIal0ThCsl 0COOIMBOCTI
BIUTYYEHHS JaHUX 3 JISIMO/1a-TepMiB, OB’ SI3aHUX 13 CTpaTErisiMH PeAyKIii 3a JOMOMOr ol MalMHHOro HaBuauHs. [To-
TiepeHI IOCIIPKEHHS I0CHIJDKYBAJIH Pi3Hi MTiAX0/N, BKIIOYAI0UX aHai3 CKIIaJHOCTI KPOKY CKOPOUYECHHS Ta BUKOPH-
CTaHHS WTY4HHUX HelpoHHUX Mepex (IIIHM) anamisy mocmiIOBHOCTI 3i CIIPOIICHHM MpEICTaBICHHAM TepMiB. Me-
TOIO 11bOT0 JIOCITIPKEHHS € pO3p0o0Ka METO0JIOTIT U1l OTPUMAaHHSI BHYEPITHHUX IAHHUX IPO TEPMHU, HAJAF0UH PO3YMiHHS
ONTHMAJBHUX CTpaTeridi Hopmaiizauii. Bynu nocrasneHi 3agayi reHepyBaHHs BOYJOBYBaHHS 3 JIIMOJa-TepMiB 3a
JIOIOMOT 00 BeNMKUX MOBHUX monereit (LLM), tpenyBanus momeni IITHM st mporHO3yBaHHS KPOKiB PEAyKIlii Ta
TIOPIBHSIHHS PE3YNBTATIB 31 CIPOIIECHUM MPEACTABICHHSIM TepMiB. Y JOCIIIKEHHI BUKOPUCTOBYETHCS CKIIaTHE TTO€-
HaHHS aJITOPUTMIB MAIlIMHHOTO HABYAHHS Ta MOJIeJIed NIMOMHHOI'O HAaBYaHHS SIK METOJ/ aHali3y Ta IMPOTHO3YyBaHH:I
ONTHUMAJBHUX HUIIXIB PEIYKIIT B TepMax JIIMOAa-4HMCIIeHHS UTsl JOCATHEHHS X 1iiield. Pe3ysibTaT nokasanm mo-
KpalleHHs Y BU3HAYECHHI KiJILKOCTI KPOKIB CKOPOYEHHS 3a JIONOMOrOK BOYIOBYBaHHs. Pe3ynbTaTH 1IbOro 10CIHi-
JDKEHHSI MalOTh CYTTEBE 3HAYCHHS JUIS MOJAJIBIIOro MPOrpecy B ONTHMi3alii KoMIiisTopa Ta iHTeprnperaropa. Lle
JOCITI/DKEHHSI IPOKJIA/Ia€ UUISX Uil MalOyTHIX JOCIIPKeHb MiBUIIECHHS e(peKTUBHOCTI KOMMIIATOpPA, JEMOHCTPY-
104K eeKTUBHICTh BUKOpUcTanHs LLM Juis BU3HAUEHHs MMPIOPUTETIB CTparteriii HopManizauil. Bukopucranns ma-
LIMHHOTO HAaBYaHHSI JUIs ONTUMI3allii GyHKI[IOHALHOrO MPOrpaMyBaHHs BiIKPHBAE MOXJIMBOCTI JJIsl CTpaTeriit 1u-
HaMIYHOT ONTUMI3allii Ta KOMIUIEKCHOTO aHai3y QyHKIIH mporpamu.

Koarwuosi cioBa: nam0aa-uncnenHs; QyHKIIOHAIbHE IPOrpaMyBaHHsI; ONTUMI3allisl CTpaTerii; BeJMKa MOBHA
MoOJeIb; BOYIOBYBaHHS KOLY.

Heiinera Ouexkcanap AwuapilioBud — acmipaHT, XapKiBCbKWil HaI[lOHAJNbHUM yHIBEpCHUTET
imeni B. H. Kapasina, XapkiB, YkpaiHa.

Oleksandr Deineha — PhD Student, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine,
e-mail: oleksandr.deineha@karazin.ua, ORCID: 0000-0001-8024-8812, Scopus Author 1D: 58865003800,
https://scholar.google.com.ua/citations?user=XpjRe9gAAAAJ.

