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The invasion of Ukraine by the Russian Federation and the escalation of military actionsin the regions have led
to significant damage to residential buildings, civilian infrastructure, various critical infrastructure objects,
dams, and extensive pollution ofthe territories. In this context, the tasks of remote sensing using satellite imagery
and aerial observation arise to analyze the impact and conduct an economic assessment of damage in these
areas. This work investigates and employs deep neural network (DNNs) models in computer vision (CV) tasks
(classification, segmentation) and combinestheir derivatives, such as convolutional networks (CNNs) and vision
transformer models (ViTs), to enhance the accuracy of damage assessment. ViTs have demonstrated significant
success, often surpassing traditional CNNs, and have potential applicationsin remote sensing for damage
assessment and the protection of critical infrastructure. The research conducted in this work confirms the
importance of applying such technologies in environments where labeled data are rare or non-existent,
particularly evaluating the use of DNNs, including CNNs and ViTs, in analyzing regions affected by military
actionsusing synthetic aperture radar (SAR) and multispectral images. The aimand subject of this research also
include reviewing the possibilities ofcombining CNNs and ViTs to improve the speed ofimage feature extraction,
landscape detection, and the detection of complex structural contours of objects, where data are usually
insufficient. The results of this study provide a critical review of the application of CNNs and ViTs in remote
sensing, identifying significant gaps and challenges, especially in the context of the economic consequences of
destruction due to military actions. The technical aspects of using CNNs and transformer-based models for
complex CV tasks and transfer learning under data-scarce conditions, as well as the challenges in analyzing
large volumes of geophysical data, are considered. The conclusions emphasize the transformational potential of
DNNs, especially transformers, in remote sensing under conflict and disaster conditions. Their adaptability and
accuracy in various environments underscore their utility in both strategic military and humanitarian contexts,
establishing a practical standard for their application in key real, real -world scenario-based territory condition
assessment.
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civilian vehicle queues at border checkpoints (Fig. 1).
High-resolution imagery is being produced by private and
public satellite operators in near real time, and this
information is being used to track troop movements,

1. Introduction

1.1. Motivation

The 2022 Russian aggression in  Ukraine
demonstrates the profound impact that extensive military
confrontations can have on individuals, environments,
and economic structures. Within just a month, this
aggression led to the uprooting of nearly 10 million
people, resulted in damage exceeding US$100 billion to
infrastructure, and raised alarms about potential global
wheat supply disruptions [1]. Satellites, many
commercially managed, are increasingly documenting the
aftermath of the most significant European conflict since
the Second World War. Very-high-resolution (VHR <5
m) satellite imagery has spotlighted the 64 km Russian
vehicle procession near Kyiv, the extensive damage in
Mariupol, the destruction of the Kakhovka Dam, and
water resource issues (the assessment method was
proposed by V. Zaslavskyi et.al. in [2]), and extensive

verify attacks in inaccessible areas, assess infrastructure
damage, and document possible war crimes. However,
access to such data often comes at the cost of conditions
or steep prices, limiting its availability to researchers and
humanitarian organizations. For instance, acquiring
imagery from Maxar's WorldView-4, which offers sub-
meter resolution, would cost approximately $22.50 per
square kilometer, translating to an exorbitant US$13.6
million for a nation as vast as Ukraine. Conversely, a
plethora of lower-resolution satellite data, stemming from
publicly supported initiatives, is freely available. Freely
accessible data have played a crucial role in identifying
and tracking significant landscape transformations,
including those precipitated by conflict, such as urban
development, deforestation, and shifts in agriculture.
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border March 1,
2022 ¢

This satellite image
provided by Maxar
Technologies shows the
southern end of a
convoy, east of Antonov
airport, Ukraine, on 28
February.

Planet, Skysat.

Destruction of the 5 ‘: 2 o)
Kakhovka Dam, on A £ L T o
the June 8, 2023 . Maxar Technologies, WorldView-2. The left image

is from March 14, 2022, before the theater was
bombed.The right image from March 19, 2022,
shows the destruction of the theater after the March
16, 2022 ¢
Fig. 1. VHR imageries provide a detailed view of the situation in Ukraine during the first days
of full-scale invasion. Sources: Planet, Skysat, and Maxar Tech., WorldView-2. Inspired by [1]

These observations, whether captured through SAR
(synthetic-aperture radar), VHR, or Multi-Spectral
imagery, even if not of the highest resolution, highlight
the potential to make war imagery more universally
accessible for scientific analysis, intelligence gathering,
and humanitarian efforts.

The overview in this work aims to cover several
main topics that are dependent on each other:

1. Assessment of war consequences tasks can
expedite decision-making at tactical and strategic levels.
For instance:

1.1. Multimodal analysis: combining the strengths
of different imaging modalities (SAR, VHR
multispectral, hyperspectral) with captioning can provide
a more comprehensive understanding. Forinstance, SAR
might detect metal objects underfoliage, optical imaging
can provide color details, and multispectral can provide
material insights. A combined caption might read,
"Metallic object, possibly a vehicle, camouflaged under
trees with a green tarp (Fig. 2).

1.2. Real-time Tactical Decision Making under

high risk and uncertainty: This involves classifying Fig. 2. VHR aerial image of a camouflaged tank in
military ~ vehicle types, their numbers, and troop  White bounding box captured by the State Border Guard

movements to provide commanders with real-time data  Service of Ukraine and SAR’s masked T72 tank objects

for making informed tactical decisions [3]. from MSTAR dataset. Source:
1.3. Terrain Analysis & Pattern Recognition: This https://www.sdms .afrl.af.mil/
entails detecting patterns such as military formations or

routine patrols and understanding the nature of the terrain 1.4. Damage assessment — this aspect can be
to plan troop movements, set up bases, or strategize exceptionally valuable for various purposes, including:

defenses.
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1.4.1. Extracted building footprints: this can be
used to compare pre-conflict and post-conflict imagery,
thereby aiding in the quantification and visualization of
infrastructure damage.

1.4.2. building structures assists ground troops
during urban warfare by providing detailed maps
indicating potential shelters, ambush points and vantage
positions.

1.4.3. Relocation and Evacuation: Identifying
undamaged buildings can help create safe zones,
relocation centers, or medical hubs.

1.4.4. Critical infrastructure protection: Critical
infrastructure, including transportation networks and
bridges, is often deliberately targeted during wars and
natural disasters. This is because such infrastructure
plays a crucial role in maintaining connectivity and
facilitating the movement of people and goods, thereby

supporting national and international economic
development.
2. Attention Mechanisms as potential

applications of war consequence analysis, specifically
focusing on the following aspects:

2.1. Handle large-scale variations. Can
dynamically adjustits focus to different scales, which is
ideal for satellite imagery where objects can vary greatly
in size (e.g., from individual vehicles to entire buildings).

2.2. Provides end-to-end learning, eliminating the
need for manual feature engineering and revealing novel
features relevant to the task.

1.2. State ofthe Art

The intersection of deep learning, primarily
ConvNets, and remote sensing has witnessed
considerable advancements over the past decade,
especially for damage assessment [4] since the latest
earthquake in Turkey, as well as military consequences
analysis [5] and military vehicles detection, and
situational awareness [6]. This section highlights some
pivotal works that have laid the foundation in these areas,
specifically focusing on accelerating attention towards
war consequences and near-real-time tactical/strategic
decision-making. For example, Huang et al. (2023) [7]
employed classical ConvNets to detect war-induced
infrastructural damage in Mariupol's case. However,
such approaches have limitations in terms of capturing
intricate patterns and long-range dependencies, which are
crucial for nuanced assessments like war consequence
analysis. Transition to transformer architectures and their
application in computer vision tasks were described by
Dosovitskiy et al. (2021) [8] due to their capability to
capture 16x16 size patches and their contextual
information and provide amore holistic understanding of
scenes. This makes transformers particularly suitable for
complex tasks [9] that extend beyond simple object

detection in satellite imageries, such as assessing the
aftermath of military activities. While ViTs have found
diverse applications, there remains a noticeable vacuum

in leveraging them to assess military and war
consequences,  particularly inregions affected
bygeopolitical events. Recent eventsin  Ukraine

underscore the importance of this area ofstudy. To the
best of the authors’ knowledge, research explicitly
focusing on this intersection is limited.

The literature includes methods for evaluating
various catastrophes, such as war aftermath and
terrorism, and presents algorithms for proactive disaster
protection of critical infrastructure. The most recent
study by V. I. Norkin et al. (2018) investigated the
stochastic, informational, and behavioral uncertainties in
aggressive  actions  against  Ukraine’s  critical
infrastructure. This research applies a bilevel stochastic
min-max game problem, which is detailed in [10]. In
future, we plan to focus on utilizing these developed
methods to create robust DNN models, particularly by
framing hyperparameter optimization in DNNs and ViTs
asa problem.

The exploration of the concept of multimodality in
solving optimization problems, as proposed by
H. Yailymova et al. in [11], centers ondiversity and type
diversity, which is referred to as multimodality in this
paper. This review examines the proposed method in the
context of integrating various sources of truth, including
SAR, VHR, HSR, HS, and MS imageries, and merging
DNNs with Vision Transformers (ViT) to achieve an
optimized  effect.  Significant  contributions by
V. Kharchenko. et al. [12] introduced new mathematical
methods and qualitative analysis techniques for imagery
and high-volume data processing, which are crucial for
tuning hyperparameters in CNNs and ViTs.

1.3. Objectives and approach

This work comprehensively reviews transformer-
related advances in remote sensing and their potential
applications in the context of war.

The primary objectives are as follows:

1. Assess Transformer-Based Models in Remote
Sensing:

— theapplicability of transformer-based models to
Synthetic Aperture Radar (SAR), Very High Resolution
(VHR), and multispectral context-based image analysis
(CBIA) in remote sensing;

— investigate the use of Vision Transformers
(ViTs) to address challenges related to limited labeled
dataand enhance image captioning and real-time tactical
decision-making;

2. Comparative Analysis:

— a comparative analysis between Convolutional
Neural Networks (CNNs) and ViTs to highlight their
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respective advantages and limitations in the context of
imaging and analysis of military tasks.

3. Literature Review:

— examine exsting transformer-based studies to
identify the latest advancements and potential
applications in remote sensing, particularly in war-
affected areas.

4. Identify Research Challenges:

— explore various challenges and potential
research trajectories related to the application of
transformers in remote sensing, with a focus on
situational awareness and damage assessment.

The methods used in this research are provided by a
set of review approaches, summarized below:

1. Review Transformer Advancements:

— to conduct an extensive review of the recent
literature on transformer models, particularly their
application in computer vision tasks such as
classification and segmentation;

— compare the performance of transformer models
with traditional CNNs in remote sensing applications.

2. Conduct Comparative Analysis of CNNs and
WVITs:

— provide a detailed comparison of CNN and ViT
architectures and highlight their individual advantages
and limitations;

— discuss the scalability and flexibility of ViTs
relative to capturing global interactions and modeling
data nuances compared to content-independent CNN
operations.

3. Highlight Key Transformer Architectures:

— discuss important transformer architectures
such as Vision Transformers (ViTs), Conditional ViTs,
and Detection Transformers (DETR);

— evaluate their potential applications in remote
sensing, especially in assessing military and war
consequences.

4. The most popular datasets were reviewed, and
challenges in potential applications.

2. Methodology

The proposed methodology involves several
sequential steps to preprocess the data, extract features,
train models, and perform evaluation (Fig.3):

1. Data Preprocessing;

1.1. Normalize the input images to standardize
pixel values;

1.2. Noise Reduction:

Limoothea = 1" * G, @

where G is a Gaussian kernel;

Data Preprocessing

‘ Dataprocessing

el

‘ Normalization

Noise reduction +
Dimensionality
Reduction (PCA)

Feature extraction

)
CNN Feature Extraction

High-Level feature
extraction

]
ViT Feature Extraction

Capture long-range
dependencies and global
context

Data Fusion

Multi-Modal Data
Integration

T
1

[]
Model Training

Self-Supervised
Learning

Supervised
Fine-Tuning

Performance Metrics
(Precsion&Recall, F1-score,
Accuracy)

Fig. 3. The main flowchart describes the methodology
of a chain of transformations and the fusion of image
data by combining optical and SAR data and applying

them to attention mechanisms.the attention mechanisms

I-p . . .
I’ = =t isnormalization formula;
o

u is the mean and o is the standard deviation of the

pixel valuesin I.

1.3. Dimensionality Reduction (PCA):

1.3.1. Reduce the dimensionality of image datato
minimize redundancy and computational load;

1.3.2. Compute covariance matrix C, find
eigenvalues and eigenvectors, and project data onto the
principal components.
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2. Feature Extraction;

2.1. Using Convolutional
(CNNs);

2.1.1. The high-level features are extracted from
images via convolution operations:

Neural  Networks

W *1)G,)) =
f f
22 Wm,n) - I'i+m—-1,j+n-1),
m=1 n=1
@

where (W = 1')(i,j) — the corresponding convolutional
layer;
Activation as ReLU (x) = max(0, x);
Pooling Layer as,
P(,j) = maxosm<p,osn<pll(i +m,j+ n);
And Fully Connected Layer is described as follows,
0= W - f+bg.

2.2. Using vision transformers (VITs);

2.2.1. Capture long-range dependencies and global
contexts using self-attention mechanisms;

2.2.2. Patch Embedding: The image is split into
patches, and each patch is projected into a lower-
dimensional space;

2.2.3. Transformer Encoder: This encoder applies
multi-head self-attention and feed-forward networks to
learn contextual relationships;

2.2.4. Classification Head: The final representation
is aggregated to produce class predictions.

3. Multi-Modal Data Integration;

3.1. Data Fusion. Combine different types of
remote sensing data (e.g., SAR, multi-spectral, hyper-
spectral) to enhance robustness:

k=a L +1-a)-l,, 3)

where Iz — the resulting fused image or dataset that
combines the information from I, I,;
I, — the first input image or dataset, which could be,
for example, a SAR image;
I, — the first input image or dataset, which could be,
for example, a SAR image;
aand a — 1 — the complementary weighting factors
that determines the contribution of I, and I, to the fused
image.
4. Model Training;
4.1. Self-Supervised Learning:
4.1.1. Pre-training models on unlabeled data to
generate task-agnostic latent representations through
learning representations:

h = f, (1), 4)

where h denotes the latent representation or feature
vector generated by the model,

fo The DNN model (e.g, a CNN or WVIT)
parameterized by 6, where 0 represents the learned
weights of the model;
I' the preprocessed input image.
4.1.2. Fine-tune pre-trained models using labeled
data for specific tasks through some loss function.
5. Evaluate model performance using metrics such
as accuracy, precision, recall, and F1-score, etc.

3. Methods of transfer from CNNs
to Vision Transformers

CNNs (ConvNets) have become the standard for
computer vision tasks, particularly with optical imagery
(Fig. 4), including VHRs and High Spectral Resolution
(HSR) images. Consider a high-dimensional inputspace:
Ie RHXWXCl

The objective is to transform input I into a
representation suitable for classification or semantic
segmentation tasks. The ConvNet uses layers of
convolutions, each represented by a kernel tensor:
K € RP*W*CinxCout 'which convolves the input volume
to produce feature maps.

The operation for a single layer is defined as
follows:

F,(D) = oK *1+b), (5)

where b denotes the bias vector;
o represents an element-wise non-linear;
activation function;
F, is the output feature map of the I-th layer.

Subsequent layers, including pooling layers, are
applied recursively to produce increasingly abstract
representation.

Pooling operations reduce the spatial dimensions
(H,W)to (H',W"), often using functions like max or
average pooling. From other side vision transformers
decompose I into a sequence of flattened 2D patchesP
(Fig. 5) where each patch is linearly embedded and
positional encodings. The resulting sequenceX € RN*P
is processed through the self-attention mechanism in
each transformer block B as follows:

B(X) = MHA(LN(X)) + MLP(LN(B(X0))),  (6)

where MHA is Multi-Head Attention;
LN is the Layer Normalization;
MLP is the Multilayer Perceptron.
The MHA, in other cases MHSA (Multi-Head-Sef-
Attention), the multi-head self-attention is defined as
follows:

MHSA(X) = Concat(head,, ..., head, )W°, (7)
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Fig. 4. The platform-based imagery sources taxonomy and corresponding possible DNNs architectures
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Fig. 5. The ViT Architecture [8]

each head; in the MHSA is computed independently
using the scaled dot-product attention function [8]:

head; = Attention (XW.3, XWX, XWY¥)  (8)
Attention(Q, K, V) = softmax(Q—KT)V ©)]
I m ’

where Q,K,V are the query, key, and value matrices
which are projections of the input X;

w2, WK, WY € RPXdk are the parameter matrices
for the query, key, and value for the i -th;

WO e RMKD js the output projection matrix, where
iis the number of heads and d, is the dimensionality of
each head's output.

The attention output for each head is concatenated
and projected to match the original embedding
dimensionality D.

Layer normalization (LN) and position-wise feed-

forward networks (FFN) are also critical in the
transformer's encoder block [8]:
ING = yOx -~ +8, (10)

where u, o are the mean and standard deviation computed
across the feature dimension of x;
v, B are trainable scale and shift parameters.
Following the LN and MHSA, the output Z
undergoes another layer normalization and then a
position-wise FFN:
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FFN(Z) = max(0,ZW, + b)) W, +b,,  (11)

where W;,W, are weight matrices and b,, B, are bias
vectors of the FFN.

PE (pos, 2i) = sin< posﬂ)l (12)

1000 D.

Positional encoding (PE) is added to the input
embeddings to retain the positional information of the
image patches as follows:

PE (pos, 2i + 1) = cos( p052i>1 (13)

1000 D

where pos is the position and i is the dimension.

Training ViTs with Masked Self-Attention. During
training with masked self-attention, certain positions in
the input sequence are masked (denoted by M) to prevent
the model from attending to them:

T
A askeq = softmax (% + M) \'A (14

The mask M applies a large negative value to
masked positions prior to SoftMax operation, effectively
zeroing out their contributions.

Attention remains focused on the main transformer
architectures (backbones)in the context of assessing war-
affected regions, with an exploration of the latest
transformer-based backbones. VAT is an architecture that
directly applies apure transformer to sequences of image
patches for image classification tasks [8] and serves as a
fundamental baseline in the industry. This WIT
architecture does not incorporate typical image-specific
assumptions, such as translation equivariance and
locality, as well as more specific applications, such as
control frames in SAR or VHR imagery. It undergoes
pre-training on extensive datasets like ImageNet21k or
JFT-300M, which are not applicable in real-world cases
where time and performance are crucial.

Conditional ViTs. A notable study in the realm of
Conditional ViTs is the introduction of Conditional
Positional Encodings (CPE) for WiTs, which was
explored by Xiangxiang Chu et al. [13]. The proposed
method differs from traditional fixed or learnable
positional encodings by dynamically generating CPEs
conditioned on the local neighborhood of the input
tokens. This method allows for better generalization to
longer input sequences than observedduring training and
maintains translation invariance in image classification
tasks, which leads to improved accuracy. The CPEs are
implemented using a Position Encoding Generator
(PEG), seamlessly integrating into the existing
Transformer framework, resulting in a CPVT model that

achieves state-of-the-art results on the ImageNet
classification task. For remote sensing, especially for
aerial imagery, improved performance in [13] can
potentially be applied to UAV which have demonstrated
technology success in context the Russian-Ukrainian
War.

Since the topic of UAV was touched in terms of
forces operation, it is worth mentioning the Detection

The Transformer (DETR) model, as presented in a
publication by Nicolas Carion et al [14], is a novel
approach to object detection. DETR views object
detection as a direct set prediction problem, streamlining
the detection pipeline and eliminating the need for
components like hon-maximum suppression and anchor
generation. The model, based on a transformer encoder-
decoder architecture, achieves comparable accuracy and
run-time performance with established baselines like
Faster R-CNN, on challenging datasets like COCO.
DETR can be extended to tasks like panoptic
segmentation. The remainder of this paper provides
detailed insights into the architecture, training settings,
and performance of DETR. Generally, DETR can be
divided into several simplified subtasks:

Bipartite Matching Loss: Let us suppose that, given

ground truth objects yand predicted objects @ the
matching cost between a ground truth object y; and
prediction y; is defined as follows:

C(yu9;) = 1201 Po (il 7)) Lete;20)Loox (b, By,
(15)

where c; and b; are the class label and bounding box,
respectively, for the ground truth;

Pg is the predicted probability for class c;;

Lyox 1S a box loss (like generalized
Intersection over Union)).

Transformer Encoding/Decoding: For an input

feature map z , the transformer encoder output z’ is
computed as follows:

loU (the

z' = TransformerEncoder (z). (16)
The transformer decoder then processes a fixed
number of objects queries g, and the encoder output is
expressed as follows:
¥ = TransformerEncoder(q,z’). 17
Prediction Head: Each output of the decoder is fed
into a feed-forward network (FFN) to predict the class
and bounding box

class(}?j),box(?j) = FFN (37]-). (18)
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DETR simplifies the object detection pipeline by
directly predicting a set of objects and employing
transformers to model the global relationships and
dependencies between these objects. This is crucial when
using drones for object detection tasks.

The Swin Transformers, introduced by Liu et al.
[15], represent a novel computer vision architecture that
addresses the challenges of adapting Transformers from
language to vision. This architecture features a
hierarchical structure calculated using shifted windows,
thereby enhancing efficiency by limiting self-attention to
local, non-overlapping windows and allowing cross-
window connections. The Swin Transformer exhibits
linear computational complexity relative to image size,
making it suitable for a broad range of vision tasks. The
performance of the proposed model surpasses previous
models on key benchmarks like COCO and ADE20K.
The main advantage of Swin Transformers is their linear
computational complexity. Unlike global self-attention,
which has a quadratic complexity with respect to the
number of tokens, the complexity of self-attention within
local windows is linear with respect to image size. The
computational complexity of a window-based MSA on
an image with N patches is approximately O (N), given a
fixxd number of patches in each window. This is
applicable to SAR imageries where analysis can also
include attention to speckle noise.

4. Results of the analysis

The central idea behind this review is to understand
perspectives DNNs and their impact on studying
situational awareness and critical infrastructure defense
in war-affected regions of Ukraine using different remote
sensing sources thathave been described in the taxonomy
section.

Remote data from remote sensing have been crucial
for conveying critical information on damage following
natural disasters, focusing on surface impacts and
infrastructural damage. In contrast to natural disasters,
the worsening regional security in armed conflicts has
complicated field research and damage assessment by
international teams, with low-altitude flights being
hindered by airspace restrictions. Consequently, the
challenge of rapidly acquiring precise, up-to-date
information on humanitarian crises, evaluating losses,
and guiding global efforts in conflict resolution,
humanitarian assistance, and rebuilding efforts has
become a critical issue that the international community
urgently needs to address amid these conflicts.

TThe review focused on multiple cases in which
DNNs, primarily ViTs, were combined with different
remote sensing sources. In addition, potential methods to
identify damage in images include object detection and
segmentation techniques. For example, ConvNets have

been employed to identify global views and classify
various types of damage but not a subject of damage.
However, current techniques frequently regard damage
as a broad concept rather than a distinctly defined object,
leading to conceptual discrepancies. To tackle this
challenge, the current work describes existing damage
detection strategies that utilize transformers, particularly
ViT, to leverage the attention mechanism at the pre-
training level. To delve deeper into the subject,
summarizing the available data for addressing this issue,
we outline the sources actively covering Ukraine.

Medium resolution optical images (e.g., Landsat,
ASTER, and Sentinel-2) have provided data for a more
general interpretation of damaged areas in disasterzones.
Although these images, typically ranging from 10 to
30 m, may not be suitable for detailed damage
assessment, they are effective for gaining a
comprehensive understanding of the overall damage
situation. However, this research did not address
medium-spatial resolution due to contextual reasons.

High and Very High Spectral Resolution optical
imageries (HSR, VHR) also provided by public and
commercial organizations (e.g., IKONOS, QuickBird,
Geo-Eye, and the WorldView series) have enabled
building-scale damage detection after a disaster using
pixel or object-based change detection techniques using
CNNs. The upcoming work is also focused on the self-
attention mechanisms and fusion of CNN and ViT. These
models excel in applications like damage assessment, due
to their capacity to autonomously identify hierarchical
feature levels in images, from basic to complex.
Numerous studies have exploited deep learning to
evaluate structural damage, marking significant
advancements in this field. For example, Abdiet al. [16]
classified building damage into four categories using
CNN-based UAV imagery post-hurricane. Similarly,
Zhang et al. [17] utilized pre- and post-disaster imagery
to create a comprehensive method for building damage
assessment via semantic segmentation. Gaining
situational awareness can be challenging using only
optical sensors because they offer clear imagery
primarily in daylight and under cloud-free conditions.
This study, specifically focusing on , encounters a
significant challenge: from October to March, cloud
cover is common across much of the country, which
complicates the analysis of optical remote sensing
sources.

4.1. Experiments for HSR and VHR datasets

xView2 xBD Dataset [18] is the largest optical
satellite imagery benchmark dataset available for
building segmentation and damage assessment in remote
sensing communities. This dataset, part of Maxar’s Open
Data program, provides high-resolution satellite imagery
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that is crucial for emergency planning and damage
assessment. The model comprises annotated images
featuring polygons and damage scores for buildings
affected by natural disasters. Encompassing 18,336
images from 15 countries, the dataset spans six disaster
types and includes over 850,000 polygons across 45,000
square kilometers. Notably, the dataset captures scenes
both before and after disasters, intending to facilitate risk
assessment and response research. However, note that the
dataset is unbalanced towards the "no-damage"
classification (Fig. 6).

Fig. 6. Example of XMiew Dataset.
Source: https://xview2.org/

Custom\manual datasets, in most cases mined from
Google Earth service, sometimes such datasets were
collected for augmentation needs or to provide a source
of truth (Fig. 7).

Microwave SAR offers an alternative that does not
have these constraints. Thus, various SAR sensors (L, C,
and X-band SAR images provided by ALOS-2
PALSAR-2, RADARSAT-2, Sentinel-1, TerraSAR-X,
and the COSMO-SkyMed constellation) (Fig. 8) are
being incorporated into remote sensing disaster response.

In SAR imagery, segmentation can be challenging
due to the appearance of speckles, which is a type of
multiplicative noise that increases with increasing back-
scattering radar magnitude. Many new backbones have
been proposed recently GCBANet [19].

Meanwhile, Xia et al. [20] introduced the
CRTransSar model, which integrates CNNs and
transformers, effectively capturing both detailed and
broad perspectives for object detection in SAR images.
The proposed model employs a structure that combines
attention mechanisms with convolutional layers to
enhance object detection performance.

Sentinel-1, a satellite mission for Earth observation
equipped with Synthetic Aperture Radar (SAR) provides
medium resolution (~10m) C-band (A = 5.6 cm) SAR
measurements with dual polarization, allowing data
acquisition during night-time or through cloud cover
(Fig. 10). The two Sentinel-1 satellites operate in sun-

synchronous orbits with a 12-day repeat cycle. In this
work, W and VH polarized data from the main
Interferometric  Wide-swath mode of Sentinel-1 are
utilized.

Fig. 7. Lugansk International Airport pre-event (left)
and post-event (right) images captured by Google Earth.
Source: https://earth.google.com/

Cloud Snow Land cover

Night

Fig. 8. SAR vs. Optical Imageries exemples.
Source: https://sentinels.copernicus.eu/

While Sentinel-2 is a constellation of two sun-
synchronous satellites that enables optical Earth
observation at medium resolution. The on-board
instrument provides multi-spectral observations in the
visible, near-, and short-wave infrared in 13 bands with
up to 10 m pixel resolution. The two Sentinel-2 satellites
achieve a revisit rate of 5 days at the equator.

4.2. Experiments on the SAR datasets

Extending the view on potential applications of
SAR imageries, the proposal encompasses not only
disasterdatasets but also offers opportunities to use SAR
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for analyzing war consequences and pre-event scenarios,
which is crucial for understanding the scope of the
current work.

1. The most important dataset was recently
released, and it deserves attention SARDet-100K [21].
SAR has found extensive applications in critical domains
that potentially could be applicable to Ukraine case,
including national defense [22] and camouflage
detection. A significant obstacle in high-resolution SAR
image object detection is the sensitivity of SAR images,
coupled with the high costs associated with annotating
these images. This severely restricts the availability of
public datasets. Current datasets often contain only a
single type of object set against a basic background.
These datasets are also typically small, which may lead
to biases when evaluating the proposed methods.
Furthermore, a significant obstacle in the progress of
SAR object detection research is the unavailability of
source codes to the public. This scarcity hampers the
ability to replicate past studies accurately, compare
methodologies effectively, or enhance prior work. This
brand-new dataset comprises approximately images and
246k instances of objects across six distinct categories
according to official publications (Fig. 9).

2. Another popular ship detection dataset was
SSDD provided by Zhang et.al [23].

3. This section describes freely available datasets
specifically conceived for flood mapping applications
using SAR. The availability of such datasets is relevant
for the validation and testing of flood detection
algorithms and is even more stringent for DL detection
methods, which require a large amount of data to
accomplish the training, testing,and validation phases.

SenlFloods1l was the SenlFloods1l dataset
developed by Bonafilia etal. [24]. To supportthetraining
and validation of DL algorithms for flood detection and
mapping based on SAR imagery. It consists of 4831
labeled patches,eachsized 512 x 512, encompassing the
entire globe and covering 11 flood events at a spatial
resolution of 10 m. In addition to capturing flooding
events, the dataset also includes permanent water bodies.
Most of the patches (namely, 4370) were labeled
automatically by means of simple classification
algorithms and can be used as weakly supervised training
data, whereas the remaining patches were hand-labeled
and can be utilized for a refined training, as well as
testing and validation purposes.

4. S1S2-Water/Flood. The S1S2-Water datasetis a
global dataset designed for the semantic classification of
water bodies in S1 and S2 imagery. The model comprises
over 100,000 non-overlapping patches, each sized 256 x
256, for each sensor. Each patch is complemented by a
corresponding DEM tile derived from the Copernicus
DEM, a quality-controlled binary water mask, and other
metadata.

Harbor
2%
Car
Tank 7
11%

: Category | ship
Bridge Instance 47%
14% g

Proportion
Aircraft
21%
W 5490
1791 1781 {315 61
Harbor  Aircraft Car Bridge Ship Tank

Fig. 9. Percentage of instances in each category
and average instance area (in pixels) in SARDet-100K

5. TerraSAR-X. In particular, for damage
assessment, Yamazaki etal. [25] collected a dataset from
2011 Tohoku, Japan earthquake, which can be
considered as a baseline.

6. The MSTAR dataset is widely used for
classification and testing of algorithms. This study
classifies, recognize and detect military vehicles with the
help of DNNs. (seeFig. 2)

Previously mentioned, hyperspectral images and
multispectral (HSI, MSI), which are comprised of
numerous spectral bands, are pivotal for solving diverse
issues [26]. The complexity and high dimensionality of
hyperspectral data, along with their spectral correlation,
pose challenges for machine learning [27]. Various
techniques, including dimensionality reduction, data
fusion, and classification, have also been proposed.

Deep learning methods, such as fully connected,
convolutional (CNN), and recurrent neural networks,
have shown success in this domain. Recently, hybrid
approaches that combine CNNs with transformers have
emerged, using CNNs for spatial feature extraction
within a transformer framework. In addition, the pure
transformer  models  specifically  designed  for
hyperspectralimagery are advancing the field [28].

Datasets for HIS and MSI:

7. SpaceNet 8: Focusing on flood-disaster
scenarios, SpaceNet 8 is designed for building, road
network extraction, and flood detection. This includes
imagery covering 850kn?, encompassing over 32,000
buildings and 1,300km of roads.

Although public access to hyperspectral (HSI) and
multispectral (MSI) datasets is limited, employing
augmentation and fusion techniques can generate various
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scenarios to extend the available data for research and
application purposes.

5. Discussions and recommendations

The application of deep learning models,
particularly Vision Transformers (ViTs), to the analysis
of war-affected areas represents a significant
advancement in remote sensing. This study highlighted
several critical aspects and challenges that must be
addressedto fully leverage these technologies.

Effectiveness of Vision Transformers.

Vision Transformers can capture complex pattems
and long-range dependencies in imagery. Unlike
traditional CNNs, which often struggle with intricate
detail and context, ViTs provide a more comprehensive
understanding ofscenes by analyzing segmented patches
of images. This capability is particularly beneficial in
conflict zones where detailed and accurate damage
assessment is crucial for both military and humanitarian
efforts.

Multimodal Data Integration.

One of the key strengths of transformer-based
models is their ability to integrate various imaging
modalities. By combining SAR, VHR, and multispectral
imagery, these models can provide a more holistic view
of the affected areas. This multimodal approach not only
enhances the accuracy of damage assessments and offers
deeper insights into the nature and extent of destruction.
For example, SAR can detect metallic objects under
foliage, multispectral imagery can identify material
properties, and VHR provides detailed spatial resolution.

Challenges in Data Availability and Quality.

Despite their potential, the implementation of ViTs
in war zones faces significant challenges. A major issue
is the scarcity of labeled data, which is crucial for training
deep learning models. The high cost and limited
availability of high-resolution imagery, such as those
from Maxar’s WorldView-4, further complicate this
issue. Publicly available data from satellites like
Sentinel-1 and Sentinel-2 offer some respite, but their
lower resolution can limit the effectiveness of detailed
analyses.

Advances and Future Directions.

Recent advancements in transformer models, such
as Conditional Vision Transformers (CPEs) and
Detection Transformers (DETR), provide promising
avenues to overcome some of these challenges. CPEs
enhance the adaptability of transformers to various input
sequences, improving their accuracy in image
classification tasks. DETR simplifies object detection
pipelines, making them more efficient and effective for
real-time applications.

Practical Implications.

The practical implications of applying ViTs in
remote sensing extend to both strategic military and
humanitarian contexts. For military purposes, these
models can provide real-time data for tactical decision-
making, such as identifying troop movements and
assessing battlefield damage. For humanitarian efforts,
accurate damage assessments can aid in disaster
response, resource allocation, and rebuilding efforts.

Economic Considerations.

The economic implications of using advanced deep
learning models in remote sensing are also significant.
The initial costs ofacquiring high-resolution imagery and
developing sophisticated models can be high; however,
the long-term benefits, in terms of accurate and timely
information, can outweigh these costs. Moreover,
advancements in self-supervised learning and transfer
learning can reduce the dependency on large —labeled
datasets, making these technologies more accessible.

6. Conclusion

The transformative capabilities of DNNs,
particularly ViTs, representa significant leap forward in
the assessment of war-affected regions using satellite and
aerial imagery. This paper has illustrated how these
technologies can surpass the limitations of traditional
CNNs (ConvNets) by effectively analyzing SARs,
VHRs, HSRs, and multispectral images to evaluate the
extensive damage caused by armed conflicts, notably
evident in Ukraine during the 2022 Russian invasion.

Relying on self-supervised pre-training methods to
generate task-agnostic [29] latent representations has
demonstrated promising results in land cover
classification, damage assessment, and military asset
detection, outperforming fully supervised baselines. This
shift towards using transformers in remote sensing and
UAVs underscores the urgent need to leverage advanced
machine learning techniques for military consequence
analysis and humanitarian missions.

The paper emphasizes the significance of
integrating various imaging modalities — SAR, VHR,
multispectral, and hyperspectral — to provide a holistic
understanding of the affected areas. This study also
addresses the challenges posed by the scarcity of labeled
data and the high costs associated with acquiring
hyperspectraland VHR images, suggesting the potential
utilization of publicly available data from Sentinel-1 and
Sentinel-2 satellites for remote sensing tasks.

Furthermore, the exploration of conditional ViTs
and their application in improving the accuracy of image
classification tasks in remote sensingillustrates ongoing
advances in this field. The study of Detection
Transformers (DETR) for object detection and Swin
Transformers for dealing with scale variations presents
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new pathways for enhancing situational awareness and
tactical decision-making in conflict zones.

In conclusion, the paperadvocates forthe increased
accessibility of war imagery for scientific, intelligence,
and humanitarian purposes, emphasizing the role of
transformers in advancing remote sensing technologies.
As the field progresses, continued exploration of
integrating DNN architectures, such as ViTs and CNNs,
is crucial to address the multifaceted impacts of
geopolitical events on the environment and human
settlements.

This comprehensive assessment not only
illuminates the current state of transformer-based models
in remote sensing for war-affected areas and sets the
stage for future research directions, aiming to enhance
the effectiveness and accessibility of critical information
derived from satellite imagery during crises.
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NOCJHUIKEHHSI CTAHY PAHMOHIB YKPAIHH, IIOCTPAXKIAJUX BII BIMCHBKOBUX I,
HA OCHOBI JAHMX JUCTAHLIIMHOI'O 30HIYBAHHSI
TA APXITEKTYP TJIMBOKOI'O HABUAHHSI

10. B. Ilywikapenko, B. A. 3acnaécovkuii

Bropruenns P® B VkpaiHy Ta eckamaris BiCBKOBUX [iif B perioHax HMpPHBENO IO 3HAYHOTO IOIIKOJUKCHHS
KUTIOBUX OyMWHKIB, HOPIr Ta MOCTIB, PI3HOMAHITHUX 00’ €KTIB KPUTHYHOI iHPpaCIpyKTypH, Tpebdens, Ta 3HAYHUX
3a0pyIHEHD TepUTOPii. Y 3B’A3Ky 3 IIUM, U JOCIIDKCHHS CTaHY PETIOHIB Ta OKPEMUX TePUTOPiil MOCTaIOTh 3amadi
JIMCTAHIIIHOTO 30HIyBaHHS 3a JOMOMOTOIO KOCMIYHHX 3HIMKIB, aepOCIOCTCpEIKEHHs OC3MUIOTHUMH JITAJBHUM U
anapatamu (BITJIA) 3 MeTot0 aHaNi3y BIUIMBY Ta €KOHOMIYHOT OIIIHKM YIIKO/DKCHb Ta PYHHYBaHb Ha TepuTOpisax. st
JMOCTIHKEHHST CTaHy TEepUTOPId 3a JOMOMOTOI0 JUCTAHIIHHOTO 30HIyBaHHS BHKOPHCTOBYETHCS PI3HOMAHITHI
(pI3BHOTHIIHI) OKpeMiTUIIM MoJejel MMOOKOTO HaBYaHHA abo0 iX KOMIUIEKCH, apXiTeKTypu. B po0oTi HoCHmimKy0ThC A
Ta BUKOPHUCTOBYIOTHCSI MOJieTi IOokux HelipoHHHX Mepex (DNN) B 3amauax KOMII'IOTEpHOTO 30py (KIacudikamis,
CeTMEHTAIlis) Ta IMOEAHAHHS IX MOXITHUX TAKUX SK 3TOPTKOBI MEpekiTa MOJeNi-TpaHC(HOpMeEpH 3 METOIO MiABUIIICH HA
TOYHOCTI OIIHKM YIIKO/DKeHb Ta PyHWHYBaHb TepuTopidl. Lli Momenm mpoaeMOHCTpyBamM 3HAYHMH YCHIX, 9acTo
MepeBEPINY FOUH TPAMITIHHI 3ropTKoBi HeliponHi Mepesxi (CNN), iMarTh MOTEHI[Ia] 3aCTOCYBaHHS B AUCTAHIIIHHOM Yy
30HIyBaHHI I OIIHKU MOIIKOPKEHbD 1 3aXUCTy KpUTHUYHOT iHppacTpykTypH. [IpoBeaeHi B poOOTI JOCTIMKEHHS TUX
MOJIeNiel MATBEPKYIOTh BaKIMBICTh 3aCTOCYBAHHS TAKMX TEXHOJIOTIH y CepeIoBHINAx, e pO3MideHi TaHi PiaKicHi
abo BiacyTHi. 30Kpema, OLIHKA BUKOPHCTAHHS ITMMOOKMX HEHPOHHUX MEpEeXk, BKIOYAIOUM 3TOPTKOBI MeEpexi Ta
TpaHcopMepH, I dYac aHAN3y PETiOHIB, AKi MOCTpakIamM Big BIMCHPKOBHX ji, 3a JOMOMOTOI0 pajmapiB i3
CHHTE30BaHOIO anepTyporo (SAR) i MyJIbTHCTIEKTpANIBFHUX 300pakeHb. METOI0 Ta MpeIMEeTOM JOCITIDKEHHS € TAKOXK
OTJIST MOXJIMBOCTEH ITO€HAHHSA 3TOPTKOBHX MEpexX Ta TpaHC(GOpMepiB T MIIBHUINCHHS IIBHAKOCTI OTPUMAaHHS
03HaK, JaHquadTB, 3a0yI0B, Ta BUSABICHHS CKIAJAHUX CTPYKTYPHHX KOHTYpPIB 00’€KTIB, e 3a3BHUail HE BHCTA4ae
JaHuX. Pesynprar 1poro JOCHIDKEHHs 3a0e3ledye KpUTHYHUH ONNIAA 3aCTOCYBaHHS 3TOPTKOBUX MEpEk Ta
TpanchopMepiB y AUCTAHIIHHOMY 30HAyBaHHI, BH3HAYAIOUM 3HAYHI MPOTAIMHM Ta BUKIMKH B JOCTIHKEHHSIX,
0COOJMBO B KOHTCKCTI €KOHOMIYHMX HACIIIKIB pYyHHYBaHb depe3 BilicbKoBi fil. Po3rmsmaroTeCcst TexXHIUHI acHeKTH
BUKOPUCTaHHS SIK 3TOPTKOBHX MEpEX, TaK 1 Mojeneil Ha OCHOBI TpaHcopMmepiB I CKIAAHUX 3aBAAHb
KOMIT'IOTEPHOTO 30py Ta TepelaBajJbHOTO HaBUAaHHS B yMOBax Ne(DIUTy MAHMAX, a TAKOX BUKIMKA TIPH aHAI31
BEJMKUX 00’€MiB Te0()i3UIHUX NaHWX. BUCHOBKM MiIKPECIIOIOTh TpaHchopMamiiauii moteHian DNN, oco6imBo
TpancdopMepiB, y IMCTAHLIHHOMY 30HIYBaHHI B YyMOBaX KOH(JIKTIB i 30H jMxa. [XHS ajanToBaHIiCTh i TOUHICTL Y
PI3HUX CepeloBUIIaX MIAKPECTIOITh iX KOPHUCTH SIK Y CTpATEeriiHOMY BiliCbKOBOMY, TaK i TyMaHITApHOMY KOHTEKCTaX,
BCTAHOBIIOIOYH MPAKTUYHUN CTAHAAPT I iX 3aCTOCYBaHHS B KIIOYOBUX, PEabHHUX CIIEHAPISX JOCIIDKSHHS CTaHy
TePUTOPIi.
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30H/IyBaHHS; OIIiHKA ITOINKOJ/DKEHb; 3TOPTKOBI HEHPOHHI Mepexi.
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