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The invasion of Ukraine by the Russian Federation and the escalation of military actions in the regions have led 

to significant damage to residential buildings, civilian infrastructure, various critical infrastructure objects, 

dams, and extensive pollution of the territories. In this context, the tasks of remote sensing using satellite imagery 

and aerial observation arise to analyze the impact and conduct an economic assessment of damage in these 

areas. This work investigates and employs deep neural network (DNNs) models in computer vision (CV) tasks 

(classification, segmentation) and combines their derivatives, such as convolutional networks (CNNs) and vision 

transformer models (ViTs), to enhance the accuracy of damage assessment. ViTs have demonstrated significant 

success, often surpassing traditional CNNs, and have potential applications in remote sensing for damage 

assessment and the protection of critical infrastructure. The research conducted in this work confirms the 

importance of applying such technologies in environments where labeled data are rare or non -existent, 

particularly evaluating the use of DNNs, including CNNs and ViTs, in analyzing regions affected by military 

actions using synthetic aperture radar (SAR) and multispectral images. The aim and subject of this research also 

include reviewing the possibilities of combining CNNs and ViTs to improve the speed of image feature extraction, 

landscape detection, and the detection of complex structural contours of objects, where data are usually 

insufficient. The results of this study provide a critical review of the application of CNNs and ViTs in remote 

sensing, identifying significant gaps and challenges, especially in the context of the economic consequences of 

destruction due to military actions. The technical aspects of using CNNs and transformer-based models for 

complex CV tasks and transfer learning under data-scarce conditions, as well as the challenges in analyzing 

large volumes of geophysical data, are considered. The conclusions emphasize the transformational potential of 

DNNs, especially transformers, in remote sensing under conflict and disaster conditio ns. Their adaptability and 

accuracy in various environments underscore their utility in both strategic military and humanitarian contexts, 

establishing a practical standard for their application in key real, real -world scenario-based territory condition 

assessment. 
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1. Introduction 
 

1.1. Motivation 
 

The 2022 Russian aggression in Ukraine 

demonstrates the profound impact that extensive military  

confrontations can have on individuals, environments, 

and economic structures. Within just a month, this 

aggression led to the uprooting of nearly 10 million  

people, resulted in damage exceeding US$100 billion to 

infrastructure, and raised alarms about potential global 

wheat supply disruptions [1]. Satellites, many 

commercially managed, are increasingly documenting the 

aftermath of the most significant European conflict since 

the Second World War. Very-high-resolution (VHR <5 

m) satellite imagery has spotlighted the 64 km Russian 

vehicle procession near Kyiv, the extensive damage in 

Mariupol, the destruction of the Kakhovka Dam, and 

water resource issues (the assessment method was 

proposed by V. Zaslavskyi et.al. in [2]), and extensive 

civilian vehicle queues at border checkpoints (Fig. 1). 

High-resolution imagery is being produced by private and 

public satellite operators in near real time, and this 

information is being used to track troop movements, 

verify attacks in inaccessible areas, assess infrastructure 

damage, and document possible war crimes. However, 

access to such data often comes at the cost of conditions 

or steep prices, limiting its availability to researchers and 

humanitarian organizations. For instance, acquiring 

imagery from Maxar's WorldView-4, which offers sub-

meter resolution, would cost approximately $22.50 per 

square kilometer, translating to an exorbitant US$13.6 

million for a nation as vast as Ukraine. Conversely, a 

plethora of lower-resolution satellite data, stemming from 

publicly supported initiatives, is freely available. Freely 

accessible data have played a crucial role in identifying 

and tracking significant landscape transformations, 

including those precipitated by conflict, such as urban 

development, deforestation, and shifts in agriculture. 
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Fig. 1. VHR imageries provide a detailed view of the situation in Ukraine during the first days  

of full-scale invasion. Sources: Planet, Skysat, and Maxar Tech., WorldView-2. Inspired by [1] 

 
These observations, whether captured through SAR 

(synthetic-aperture radar), VHR, or Multi-Spectral 

imagery, even if not of the highest resolution, highlight 

the potential to make war imagery more universally 

accessible for scientific analysis, intelligence gathering, 

and humanitarian efforts . 

The overview in this work aims to cover several 

main topics that are dependent on each other: 

1. Assessment of war consequences  tasks can 

expedite decision-making at tactical and strategic levels . 

For instance:  

1.1. Multimodal analysis: combining the strengths 

of different imaging modalities (SAR, VHR 

multispectral, hyperspectral) with captioning can provide 

a more comprehensive understanding. For instance, SAR 

might detect metal objects under foliage, optical imaging  

can provide color details, and multispectral can provide 

material insights. A combined caption might read, 

"Metallic object, possibly a vehicle, camouflaged under 

trees with a green tarp (Fig. 2). 

1.2. Real-time Tactical Decision Making under 

high risk and uncertainty: This involves classifying 

military vehicle types, their numbers, and troop 

movements to provide commanders with real-time data 

for making informed tactical decisions [3]. 

1.3. Terrain Analysis & Pattern Recognition: This 

entails detecting patterns such as military formations or 

routine patrols and understanding the nature of the terrain 

to plan troop movements, set up bases, or strategize 

defenses. 

 
 

Fig. 2. VHR aerial image of a camouflaged tank in 

white bounding box captured by the State Border Guard 

Service of Ukraine and SAR’s masked T72 tank objects 

from MSTAR dataset. Source: 

https://www.sdms.afrl.af.mil/ 

 

1.4. Damage assessment – this aspect can be 

exceptionally valuable for various purposes, including: 

https://www.sdms.afrl.af.mil/
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1.4.1. Extracted building footprints: this can be 

used to compare pre-conflict and post-conflict imagery , 

thereby aiding in the quantification and visualization of 

infrastructure damage. 

1.4.2. building structures assists ground troops 

during urban warfare by providing detailed maps 

indicating potential shelters, ambush points and vantage 

positions. 

1.4.3. Relocation and Evacuation: Identifying 

undamaged buildings can help create safe zones, 

relocation centers, or medical hubs . 

1.4.4. Critical infrastructure protection: Critical 

infrastructure, including transportation networks and 

bridges, is often deliberately targeted during wars and 

natural disasters. This is because such infrastructure 

plays a crucial role in maintaining connectivity and 

facilitating the movement of people and goods, thereby 

supporting national and international economic 

development. 

2. Attention Mechanisms as potential 

applications of war consequence analysis, specifically 

focusing on the following aspects: 

2.1. Handle large-scale variations. Can 

dynamically adjust its focus to different scales, which is 

ideal for satellite imagery where objects can vary greatly 

in size (e.g., from individual vehicles to entire buildings). 

2.2. Provides end-to-end learning, eliminating the 

need for manual feature engineering and revealing novel 

features relevant to the task. 

 

1.2. State of the Art 
 

The intersection of deep learning, primarily  

ConvNets, and remote sensing has witnessed 

considerable advancements over the past decade, 

especially for damage assessment [4] since the latest 

earthquake in Turkey, as well as military consequences 

analysis [5] and military vehicles detection, and 

situational awareness [6]. This section highlights some 

pivotal works that have laid the foundation in these areas, 

specifically focusing on accelerating attention towards 

war consequences and near-real-time tactical/strategic 

decision-making. For example, Huang et al. (2023) [7] 

employed classical ConvNets to detect war-induced 

infrastructural damage in Mariupol's case. However, 

such approaches have limitations in terms of capturing 

intricate patterns and long-range dependencies, which are 

crucial for nuanced assessments like war consequence 

analysis. Transition to transformer architectures and their 

application in computer vision tasks were described by 

Dosovitskiy et al. (2021) [8] due to their capability to 

capture 16x16 size patches and their contextual 

information and provide a more holistic understanding of 

scenes. This makes transformers particularly suitable for 

complex tasks [9] that extend beyond simple object 

detection in satellite imageries, such as assessing the 

aftermath of military activities. While ViTs have found 

diverse applications, there remains a noticeable vacuum 

in leveraging them to assess military and war 

consequences, particularly inregions affected 

bygeopolitical events . Recent eventsin Ukraine 

underscore the importance of this area ofstudy. To the 

best of the authors’ knowledge, research explicitly  

focusing on this intersection is limited. 

The literature includes methods for evaluating 

various catastrophes, such as war aftermath and 

terrorism, and presents algorithms for proactive disaster 

protection of critical infrastructure. The most recent 

study by V. I. Norkin et al. (2018) investigated the 

stochastic, informational, and behavioral uncertainties in 

aggressive actions against Ukraine’s critical 

infrastructure. This research applies a bilevel stochastic 

min-max game problem, which is detailed in [10]. In 

future, we plan to focus on utilizing these developed 

methods to create robust DNN models, particularly by 

framing hyperparameter optimization in DNNs and ViTs  

as a problem. 

The exploration of the concept of multimodality in 

solving optimization problems, as proposed by 

H. Yailymova et al. in [11], centers on diversity and type 

diversity, which is referred to as multimodality in this 

paper. This review examines the proposed method in the 

context of integrating various sources of truth, including 

SAR, VHR, HSR, HS, and MS imageries, and merging  

DNNs with Vision Transformers (ViT) to achieve an 

optimized effect. Significant contributions by 

V. Kharchenko. et al. [12] introduced new mathematical 

methods and qualitative analysis techniques for imagery  

and high-volume data processing, which are crucial for 

tuning hyperparameters in CNNs and ViTs. 

 

1.3. Objectives and approach 
 

This work comprehensively reviews transformer-

related advances in remote sensing and their potential 

applications in the context of war. 

The primary objectives are as follows: 

1. Assess Transformer-Based Models in Remote 

Sensing: 

 the applicability of transformer-based models to 

Synthetic Aperture Radar (SAR), Very High Resolution 

(VHR), and multispectral context-based image analysis 

(CBIA) in remote sensing; 

 investigate the use of Vision Transformers 

(ViTs) to address challenges related to limited labeled 

data and enhance image captioning and real-time tactical 

decision-making; 

2. Comparative Analysis: 

 a comparative analysis between Convolutional 

Neural Networks (CNNs) and ViTs to highlight their 
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respective advantages and limitations in the context of 

imaging and analysis of military tasks . 

3. Literature Review: 

 examine existing transformer-based studies to 

identify the latest advancements and potential 

applications in remote sensing, particularly in war-

affected areas. 

4. Identify Research Challenges: 

 explore various challenges and potential 

research trajectories related to the application of 

transformers in remote sensing, with a focus on 

situational awareness and damage assessment. 

The methods used in this research are provided by a 

set of review approaches, summarized below: 

1. Review Transformer Advancements: 

 to conduct an extensive review of the recent 

literature on transformer models, particularly their 

application in computer vision tasks such as 

classification and segmentation; 

 compare the performance of transformer models 

with traditional CNNs in remote sensing applications. 

2. Conduct Comparative Analysis of CNNs and 

ViTs: 

 provide a detailed comparison of CNN and ViT 

architectures and highlight their individual advantages 

and limitations; 

 discuss the scalability and flexibility of ViTs  

relative to capturing global interactions and modeling  

data nuances compared to content-independent CNN 

operations. 

3. Highlight Key Transformer Architectures: 

 discuss important transformer architectures 

such as Vision Transformers (ViTs), Conditional ViTs , 

and Detection Transformers (DETR); 

 evaluate their potential applications in remote 

sensing, especially in assessing military and war 

consequences. 

4. The most popular datasets were reviewed, and 

challenges in potential applications .  

 

2. Methodology 

 
The proposed methodology involves several 

sequential steps to preprocess the data, extract features, 

train models, and perform evaluation (Fig.3): 

1. Data Preprocessing; 

1.1. Normalize the input images to standardize 

pixel values; 

1.2. Noise Reduction: 
 

Ismoothed = I′ ∗ G,      (1) 

 

where G is a Gaussian kernel; 

 
 

Fig. 3. The main flowchart describes the methodology 

of a chain of transformations and the fusion of image 

data by combining optical and SAR data and applying 

them to attention mechanisms.the attention mechanisms  

 

I′ =
I−μ

σ
 is normalization formula; 

μ is the mean and σ is the standard deviation of the 

pixel values in I. 

1.3. Dimensionality Reduction (PCA): 

1.3.1. Reduce the dimensionality of image data to 

minimize redundancy and computational load; 

1.3.2. Compute covariance matrix C, find 

eigenvalues and eigenvectors, and project data onto the 

principal components. 



Intelligent information technologies 
 

9 

2. Feature Extraction; 

2.1. Using Convolutional Neural Networks 

(CNNs); 

2.1.1. The high-level features are extracted from 

images via convolution operations : 

 

(𝐖 ∗ I′)(i, j) = 

=  ∑ ∑ 𝐖(m, n) ∙ I′(i + m − 1, j + n − 1)
f

n =1

f

m=1
 , 

(2) 

 

where (𝐖 ∗ I′)(i, j)  – the corresponding convolutional 

layer; 

Activation as ReLU (x) = max (0, x); 

Pooling Layer as, 

P(I, j) = max0≤m<p,0≤n<p I′(i + m, j + n); 

And Fully Connected Layer is described as follows, 

 o = Wfc ∙ f + bfc . 

2.2. Using vision transformers (ViTs); 

2.2.1. Capture long-range dependencies and global 

contexts using self-attention mechanisms; 

2.2.2. Patch Embedding: The image is split into 

patches, and each patch is projected into a lower-

dimensional space; 

2.2.3. Transformer Encoder: This encoder applies 

multi-head self-attention and feed-forward networks to 

learn contextual relationships ; 

2.2.4. Classification Head: The final representation 

is aggregated to produce class predictions . 

3. Multi-Modal Data Integration; 

3.1. Data Fusion. Combine different types of 

remote sensing data (e.g., SAR, multi-spectral, hyper-

spectral) to enhance robustness: 

 

If = α ∙ I1 + (1 − α) ∙ I2 ,  (3) 

 

where If  – the resulting fused image or dataset that 

combines the information from I1, I2; 

I1 – the first input image or dataset, which could be, 

for example, a SAR image; 

I2 – the first input image or dataset, which could be, 

for example, a SAR image; 

α and α − 1 – the complementary weighting factors 

that determines the contribution of I1 and I2 to the fused 

image.  

4. Model Training; 

4.1. Self-Supervised Learning: 

4.1.1. Pre-training models on unlabeled data to 

generate task-agnostic latent representations through 

learning representations:  

 

𝐡 = fθ
(I′),               (4) 

 

where h denotes the latent representation or feature 

vector generated by the model; 

fθ  The DNN model (e.g., a CNN or ViT)  

parameterized by θ , where θ  represents the learned 

weights of the model; 

I′ the preprocessed input image. 

4.1.2. Fine-tune pre-trained models using labeled 

data for specific tasks through some loss function. 

5. Evaluate model performance using metrics such 

as accuracy, precision, recall, and F1-score, etc. 

 

3. Methods of transfer from CNNs  

to Vision Transformers 
 

CNNs (ConvNets) have become the standard for 

computer vision tasks, particularly with optical imagery  

(Fig. 4), including VHRs and High Spectral Resolution 

(HSR) images. Consider a high-dimensional input space: 

I ∈  ℝH×W×C. 

The objective is to transform input I  into a 

representation suitable for classification or semantic 

segmentation tasks. The ConvNet uses layers of 

convolutions, each represented by a kernel tensor: 

 K ∈  ℝh×w×Cin×Cout , which convolves the input volume 

to produce feature maps. 

The operation for a single layer is defined as 

follows: 

 

Fl
(I) = σ(K ∗ I + b),                          (5) 

 

where b denotes the bias vector; 

σ represents an element-wise non-linear; 

activation function; 

Fl  is the output feature map of the l-th layer. 

Subsequent layers, including pooling layers, are 

applied recursively to produce increasingly abstract 

representation. 

Pooling operations reduce the spatial dimensions 

(H, W) to (H′, W′) , often using functions like max or 

average pooling. From other side vision transformers 

decompose I into a sequence of flattened  2D patches  P 

(Fig. 5) where each patch is linearly embedded and 

positional encodings. The resulting sequence X ∈  ℝN×D  

is processed through the self-attention mechanism in 

each transformer block B as follows:  

 

B(X) = MHA(LN(X) ) + MLP (LN(B(X))),       (6) 

 

where MHA is Multi-Head Attention; 

LN is the Layer Normalization; 

MLP is the Multilayer Perceptron. 

The MHA, in other cases MHSA (Multi-Head-Self-

Attention), the multi-head self-attention is defined as 

follows: 

 

MHSA(X) = Concat(head1, … , hea dh
)WΟ,      (7) 
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Fig. 4. The platform-based imagery sources taxonomy and corresponding possible DNNs architectures  

 

 
Fig. 5. The ViT Architecture [8] 

 

each headi in the MHSA  is computed independently 

using the scaled dot-product attention function [8]:  

 

hea di = Attention(XWi
Q

,XWi
K, XWi

V)         (8) 

 

Attention(Q , K, V) = softmax(
QKT

√dk
)V,          (9) 

 

where Q, K, V  are the query, key, and value matrices  

which are projections of the input X; 

Wi
Q

,Wi
K, Wi

V  ∈  ℝD×dk  are the parameter matrices 

for the query, key, and value for the i -th; 

WΟ ∈  ℝhdk×D  is the output projection matrix, where 

i is the number of heads and dk is the dimensionality of 

each head's output. 

The attention output for each head is concatenated 

and projected to match the original embedding 

dimensionality D. 

Layer normalization (LN) and position-wise feed-

forward networks (FFN) are also critical in the 

transformer's encoder block [8]:  

 

LN(x) =  γ⨀x −
μ

σ
+ β,                        (10) 

 

where μ, σ are the mean and standard deviation computed 

across the feature dimension of x;  

γ, β are trainable scale and shift parameters. 

Following the LN and MHSA, the output Z 

undergoes another layer normalization and then a 

position-wise FFN: 
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FFN(Z) = max(0, ZW1 + b1
) W2 + b2,       (11) 

 

where W1,W2  are weight matrices and b1, B2  are bias 

vectors of the FFN. 

 

PE (pos, 2i) = sin (
pos

1000
2i

D

),                      (12) 

 

Positional encoding (PE)  is added to the input 

embeddings to retain the positional information of the 

image patches as follows: 

 

PE (pos, 2i + 1) = cos (
pos

1000
2i
D

),              (13) 

 

where pos is the position and 𝑖 is the dimension. 

Training ViTs with Masked Self-Attention. During  

training with masked self-attention, certain positions in 

the input sequence are masked (denoted by 𝑀) to prevent 

the model from attending to them: 

 

Amasked = softmax (
QKT

√dk
+ M) V,             (14) 

 

The mask 𝑀  applies a large negative value to 

masked positions prior to SoftMax operation, effectively  

zeroing out their contributions. 

Attention remains focused on the main transformer 

architectures (backbones) in the context of assessing war-

affected regions, with an exploration of the latest 

transformer-based backbones. ViT is an architecture that 

directly applies a pure transformer to sequences of image 

patches for image classification tasks [8] and serves as a 

fundamental baseline in the industry. This ViT 

architecture does not incorporate typical image-specific 

assumptions, such as translation equivariance and 

locality, as well as more specific applications , such as 

control frames in SAR or VHR imagery. It undergoes 

pre-training on extensive datasets like ImageNet21k or 

JFT-300M, which are not applicable in real-world cases 

where time and performance are crucial. 

Conditional ViTs. A notable study in the realm of 

Conditional ViTs is the introduction of Conditional 

Positional Encodings (CPE) for ViTs, which was 

explored by Xiangxiang Chu et al. [13]. The proposed 

method differs from traditional fixed or learnable 

positional encodings by dynamically generating CPEs  

conditioned on the local neighborhood of the input 

tokens. This method allows for better generalization to 

longer input sequences than observed during training and 

maintains translation invariance in image classification 

tasks, which leads to improved accuracy. The CPEs are 

implemented using a Position Encoding Generator 

(PEG), seamlessly integrating into the existing  

Transformer framework, resulting in a CPVT model that 

achieves state-of-the-art results on the ImageNet 

classification task. For remote sensing, especially for 

aerial imagery, improved performance in [13] can 

potentially be applied to UAV which have demonstrated 

technology success in context the Russian-Ukrainian 

War. 

Since the topic of UAV was touched in terms of 

forces operation, it is worth mentioning the Detection 

The Transformer (DETR) model, as presented in a 

publication by Nicolas Carion et al [14], is a novel 

approach to object detection. DETR views object 

detection as a direct set prediction problem, streamlining  

the detection pipeline and eliminating the need for 

components like non-maximum suppression and anchor 

generation. The model, based on a transformer encoder-

decoder architecture, achieves comparable accuracy and 

run-time performance with established baselines like 

Faster R-CNN, on challenging datasets like COCO. 

DETR can be extended to tasks like panoptic 

segmentation. The remainder of this paper provides 

detailed insights into the architecture, training settings, 

and performance of DETR. Generally, DETR can be 

divided into several simplified subtasks : 

Bipartite Matching Loss: Let us suppose that, given 

ground truth objects 𝐲 and predicted objects  (𝐲)̂ , the 

matching cost between a ground truth object yi  and 

prediction ŷj is defined as follows: 

 

C(yi , ŷj ) = −1{ci≠∅} p̂θ (ci| ŷj)1c{ci≠∅}ℒbox(bi , b̂j), 

(15) 

 

where ci  and bi  are the class label and bounding box, 

respectively, for the ground truth; 

p̂θ  is the predicted probability for class ci; 

ℒbox  is a box loss (like generalized IoU (the 

Intersection over Union)). 

Transformer Encoding/Decoding: For an input 

feature map 𝐳  , the transformer encoder output 𝐳′  is 

computed as follows: 

 

𝐳′ = TransformerEncoder (𝐳).                 (16) 

 

The transformer decoder then processes a fixed  

number of objects queries q, and the encoder output is 

expressed as follows: 

 

𝐲 = TransformerEncoder(𝐪, 𝐳′).             (17) 

 

Prediction Head: Each output of the decoder is fed 

into a feed-forward network (FFN) to predict the class 

and bounding box: 

 

class(ŷj),box(ŷj) = FFN(ŷj).             (18) 
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DETR simplifies the object detection pipeline by 

directly predicting a set of objects and employing  

transformers to model the global relationships and 

dependencies between these objects. This is crucial when 

using drones for object detection tasks . 

The Swin Transformers, introduced by Liu et al. 

[15], represent a novel computer vision architecture that 

addresses the challenges of adapting Transformers  from 

language to vision. This architecture features a 

hierarchical structure calculated using shifted windows, 

thereby enhancing efficiency by limiting self-attention to 

local, non-overlapping windows and allowing cross-

window connections. The Swin Transformer exhibits  

linear computational complexity relative to image size, 

making it suitable for a broad range of vision tasks. The 

performance of the proposed model surpasses previous 

models on key benchmarks like COCO and ADE20K. 

The main advantage of Swin Transformers is their linear 

computational complexity. Unlike global self-attention, 

which has a quadratic complexity with respect to the 

number of tokens, the complexity of self-attention within  

local windows is linear with respect to image size. The 

computational complexity of a window-based MSA on 

an image with 𝑁 patches is approximately 𝑂(𝑁), given a 

fixed number of patches in each window. This is 

applicable to SAR imageries where analysis can also 

include attention to speckle noise. 

 

4. Results of the analysis 

 

The central idea behind this   review is to understand 

perspectives DNNs and their impact on studying 

situational awareness and critical infrastructure defense 

in war-affected regions of Ukraine using different remote 

sensing sources that have been described in the taxonomy 

section. 

Remote data from remote sensing have been crucial 

for conveying critical information on damage following  

natural disasters, focusing on surface impacts and 

infrastructural damage. In contrast to natural disasters, 

the worsening regional security in armed conflicts has 

complicated field research and damage assessment by 

international teams, with low-altitude flights being 

hindered by airspace restrictions. Consequently, the 

challenge of rapidly acquiring precise, up-to-date 

information on humanitarian crises, evaluating losses, 

and guiding global efforts in conflict resolution, 

humanitarian assistance, and rebuilding efforts has 

become a critical issue that the international community  

urgently needs to address amid these conflicts. 

TThe review focused on multiple cases in which 

DNNs, primarily ViTs, were combined with different 

remote sensing sources. In addition, potential methods to 

identify damage in images include object detection and 

segmentation techniques. For example, ConvNets have 

been employed to identify global views and classify 

various types of damage but not a subject of damage. 

However, current techniques frequently regard damage 

as a broad concept rather than a distinctly defined object, 

leading to conceptual discrepancies. To tackle this 

challenge, the current work describes existing damage 

detection strategies that utilize transformers, particularly  

ViT, to leverage the attention mechanism at the pre-

training level. To delve deeper into the subject, 

summarizing the available data for addressing this issue, 

we outline the sources actively covering Ukraine.  

Medium resolution optical images (e.g., Landsat, 

ASTER, and Sentinel-2) have provided data for a more 

general interpretation of damaged areas in disas ter zones. 

Although these images, typically ranging from 10 to 

30 m, may not be suitable for detailed damage 

assessment, they are effective for gaining a 

comprehensive understanding of the overall damage 

situation. However, this research did not address 

medium-spatial resolution due to contextual reasons . 

High and Very High Spectral Resolution optical 

imageries (HSR, VHR) also provided by public and 

commercial organizations (e.g., IKONOS, QuickBird , 

Geo-Eye, and the WorldView series) have enabled 

building-scale damage detection after a disaster using 

pixel or object-based change detection techniques using 

CNNs. The upcoming work is also focused on the self-

attention mechanisms and fusion of CNN and ViT. These 

models excel in applications like damage assessment, due 

to their capacity to autonomously identify hierarchical 

feature levels in images, from basic to complex. 

Numerous studies have exploited deep learning to 

evaluate structural damage, marking significant 

advancements in this field. For example, Abdi et al. [16] 

classified building damage into four categories using 

CNN-based UAV imagery post-hurricane. Similarly , 

Zhang et al. [17] utilized pre- and post-disaster imagery 

to create a comprehensive method for building damage 

assessment via semantic segmentation. Gaining  

situational awareness can be challenging using only 

optical sensors because they offer clear imagery 

primarily in daylight and under cloud-free conditions. 

This study, specifically focusing on , encounters a 

significant challenge: from October to March, cloud 

cover is common across much of the country, which 

complicates the analysis of optical remote sensing 

sources. 

 

4.1. Experiments for HSR and VHR datasets 
 

xView2 xBD Dataset [18] is the largest optical 

satellite imagery benchmark dataset available for 

building segmentation and damage assessment in remote 

sensing communities. This dataset, part of Maxar’s Open 

Data program, provides high-resolution satellite imagery  
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that is crucial for emergency planning and damage 

assessment. The model comprises annotated images 

featuring polygons and damage scores for buildings 

affected by natural disasters . Encompassing 18,336 

images from 15 countries, the dataset spans six disaster 

types and includes over 850,000 polygons across 45,000 

square kilometers. Notably, the dataset captures scenes 

both before and after disasters, intending to facilitate risk 

assessment and response research. However, note that the 

dataset is unbalanced towards the "no-damage" 

classification (Fig. 6).  

 

 
Fig. 6. Example of xView Dataset.  

Source: https://xview2.org/ 

 

Custom\manual datasets, in most cases mined from 

Google Earth service, sometimes such datasets were 

collected for augmentation needs or to provide a source 

of truth (Fig. 7). 

Microwave SAR offers an alternative that does not 

have these constraints. Thus, various SAR sensors (L, C, 

and X-band SAR images provided by ALOS-2 

PALSAR-2, RADARSAT-2, Sentinel-1, TerraSAR-X, 

and the COSMO-SkyMed constellation) (Fig. 8) are 

being incorporated into remote sensing disaster response. 

In SAR imagery, segmentation can be challenging 

due to the appearance of speckles, which is a type of 

multiplicative noise that increases with increasing back-

scattering radar magnitude. Many new backbones have 

been proposed recently GCBANet [19]. 

Meanwhile, Xia et al. [20] introduced the 

CRTransSar model, which integrates CNNs and 

transformers, effectively capturing both detailed and 

broad perspectives for object detection in SAR images. 

The proposed model employs a structure that combines 

attention mechanisms with convolutional layers to 

enhance object detection performance. 

Sentinel-1, a satellite mission for Earth observation 

equipped with Synthetic Aperture Radar (SAR) provides 

medium resolution (∼10m) C-band (λ = 5.6 cm) SAR 

measurements with dual polarization, allowing data 

acquisition during night-time or through cloud cover 

(Fig. 10). The two Sentinel-1 satellites operate in sun-

synchronous orbits with a 12-day repeat cycle. In this 

work, VV and VH polarized data from the main  

Interferometric Wide-swath mode of Sentinel-1 are 

utilized. 

 

 
Fig. 7. Lugansk International Airport pre-event (left) 

and post-event (right) images captured by Google Earth. 

Source: https://earth.google.com/ 

 

 
Fig. 8. SAR vs. Optical Imageries exemples.  

Source: https://sentinels.copernicus.eu/ 

 
While Sentinel-2 is a constellation of two sun-

synchronous satellites that enables optical Earth 

observation at medium resolution. The on-board 

instrument provides multi-spectral observations in the 

visible, near-, and short-wave infrared in 13 bands with 

up to 10 m pixel resolution. The two Sentinel-2 satellites 

achieve a revisit rate of 5 days at the equator.  

 

4.2. Experiments on the SAR datasets 
 

Extending the view on potential applications of 

SAR imageries, the proposal encompasses not only 

disaster datasets but also offers opportunities to use SAR 
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for analyzing war consequences and pre-event scenarios, 

which is crucial for understanding the scope of the 

current work.  

1. The most important dataset was recently 

released, and it deserves attention SARDet-100K [21]. 

SAR has found extensive applications in critical domains 

that potentially could be applicable to Ukraine case, 

including national defense [22] and camouflage 

detection. A significant obstacle in high-resolution SAR 

image object detection is the sensitivity of SAR images, 

coupled with the high costs associated with annotating 

these images. This severely restricts the availability of 

public datasets. Current datasets often contain only a 

single type of object set against a basic background. 

These datasets are also typically small, which may lead 

to biases when evaluating the proposed methods. 

Furthermore, a significant obstacle in the progress of 

SAR object detection research is the unavailability of 

source codes to the public. This scarcity hampers the 

ability to replicate past studies accurately, compare 

methodologies effectively, or enhance prior work. This 

brand-new dataset comprises approximately images and 

246k instances of objects across six distinct categories 

according to official publications  (Fig. 9). 

2. Another popular ship detection dataset was 

SSDD provided by Zhang et.al [23]. 

3. This section describes freely available datasets 

specifically conceived for flood mapping applications 

using SAR. The availability of such datasets is relevant 

for the validation and testing of flood detection 

algorithms and is even more stringent for DL detection 

methods, which require a large amount of data to 

accomplish the training, testing, and validation phases . 

Sen1Floods11 was the Sen1Floods11 dataset 

developed by Bonafilia et al. [24]. To support the training 

and validation of DL algorithms for flood detection and 

mapping based on SAR imagery. It consists of 4831 

labeled patches, each sized 512 × 512, encompassing the 

entire globe and covering 11 flood events at a spatial 

resolution of 10 m. In addition to capturing flooding 

events, the dataset also includes permanent water bodies. 

Most of the patches (namely, 4370) were labeled 

automatically by means of simple classification 

algorithms and can be used as weakly supervised training 

data, whereas the remaining patches were hand-labeled 

and can be utilized for a refined training, as well as 

testing and validation purposes . 

4. S1S2-Water/Flood. The S1S2-Water dataset is a 

global dataset designed for the semantic classification of 

water bodies in S1 and S2 imagery. The model comprises 

over 100,000 non-overlapping patches, each sized 256 × 

256, for each sensor. Each patch is complemented by a 

corresponding DEM tile derived from the Copernicus 

DEM, a quality-controlled binary water mask, and other 

metadata. 

 
Fig. 9. Percentage of instances in each category 

and average instance area (in pixels) in SARDet-100K 

 

5. TerraSAR-X. In particular, for damage 

assessment, Yamazaki et al. [25] collected a dataset from 

2011 Tohoku, Japan earthquake, which can be 

considered as a baseline. 

6. The MSTAR dataset is widely used for 

classification and testing of algorithms. This study 

classifies, recognize and detect military vehicles with the 

help of DNNs. (see Fig. 2) 

Previously mentioned, hyperspectral images and 

multispectral (HSI, MSI), which are comprised of 

numerous spectral bands, are pivotal for solving diverse 

issues [26]. The complexity and high dimensionality of 

hyperspectral data, along with their spectral correlation, 

pose challenges for machine learning [27]. Various  

techniques, including dimensionality reduction, data 

fusion, and classification, have also been proposed.  

Deep learning methods, such as fully connected, 

convolutional (CNN), and recurrent neural networks, 

have shown success in this domain. Recently, hybrid 

approaches that combine CNNs with transformers have 

emerged, using CNNs for spatial feature extraction  

within a transformer framework. In addition, the pure 

transformer models specifically designed for 

hyperspectral imagery are advancing the field [28]. 

Datasets for HIS and MSI: 

7. SpaceNet 8: Focusing on flood-disaster 

scenarios, SpaceNet 8 is designed for building, road 

network extraction, and flood detection. This includes 

imagery covering 850km², encompassing over 32,000 

buildings and 1,300km of roads. 

Although public access to hyperspectral (HSI) and 

multispectral (MSI) datasets is limited, employing  

augmentation and fusion techniques can generate various 
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scenarios to extend the available data for research and 

application purposes. 

 

5. Discussions and recommendations 

 
The application of deep learning models, 

particularly Vision Transformers (ViTs), to the analysis 

of war-affected areas represents a significant 

advancement in remote sensing. This study highlighted 

several critical aspects and challenges that must be 

addressed to fully leverage these technologies . 

Effectiveness of Vision Transformers. 

Vision Transformers can capture complex patterns 

and long-range dependencies in imagery. Unlike 

traditional CNNs, which often struggle with intricate 

detail and context, ViTs provide a more comprehensive 

understanding of scenes by analyzing segmented patches 

of images. This capability is particularly beneficial in 

conflict zones where detailed and accurate damage 

assessment is crucial for both military and humanitarian  

efforts. 

Multimodal Data Integration. 

One of the key strengths of transformer-based 

models is their ability to integrate various imaging  

modalities. By combining SAR, VHR, and multispectral 

imagery, these models can provide a more holistic view 

of the affected areas. This multimodal approach not only 

enhances the accuracy of damage assessments and offers 

deeper insights into the nature and extent of destruction. 

For example, SAR can detect metallic objects under 

foliage, multispectral imagery can identify material  

properties, and VHR provides detailed spatial resolution. 

Challenges in Data Availability and Quality. 

Despite their potential, the implementation of ViTs  

in war zones faces significant challenges. A major issue 

is the scarcity of labeled data, which is crucial for training 

deep learning models. The high cost and limited  

availability of high-resolution imagery, such as those 

from Maxar’s WorldView-4, further complicate this 

issue. Publicly available data from satellites like 

Sentinel-1 and Sentinel-2 offer some respite, but their 

lower resolution can limit the effectiveness of detailed 

analyses. 

Advances and Future Directions. 

Recent advancements in transformer models, such 

as Conditional Vision Transformers (CPEs) and 

Detection Transformers (DETR), provide promising  

avenues to overcome some of these challenges . CPEs  

enhance the adaptability of transformers to various input 

sequences, improving their accuracy in image 

classification tasks. DETR simplifies object detection 

pipelines, making them more efficient and effective for 

real-time applications. 

Practical Implications. 

The practical implications of applying ViTs in 

remote sensing extend to both strategic military and 

humanitarian contexts. For military purposes, these 

models can provide real-time data for tactical decision-

making, such as identifying troop movements and 

assessing battlefield damage. For humanitarian efforts, 

accurate damage assessments can aid in disaster 

response, resource allocation, and rebuilding efforts. 

Economic Considerations. 

The economic implications of using advanced deep 

learning models in remote sensing are also significant. 

The initial costs of acquiring high-resolution imagery and 

developing sophisticated models can be high; however, 

the long-term benefits, in terms of accurate and timely  

information, can outweigh these costs. Moreover, 

advancements in self-supervised learning and transfer 

learning can reduce the dependency on large –labeled 

datasets, making these technologies more accessible. 

 

6. Conclusion 

 
The transformative capabilities of DNNs, 

particularly ViTs, represent a significant leap forward in 

the assessment of war-affected regions using satellite and 

aerial imagery. This paper has illustrated how these 

technologies can surpass the limitations of traditional 

CNNs (ConvNets) by effectively analyzing SARs, 

VHRs, HSRs, and multispectral images to evaluate the 

extensive damage caused by armed conflicts, notably 

evident in Ukraine during the 2022 Russian invasion. 

Relying on self-supervised pre-training methods to 

generate task-agnostic [29] latent representations has 

demonstrated promising results in land cover 

classification, damage assessment, and military asset 

detection, outperforming fully supervised baselines. This 

shift towards using transformers in remote sensing and 

UAVs underscores the urgent need to leverage advanced 

machine learning techniques for military consequence 

analysis and humanitarian missions. 

The paper emphasizes the significance of 

integrating various imaging modalities  — SAR, VHR, 

multispectral, and hyperspectral — to provide a holistic 

understanding of the affected areas. This study also 

addresses the challenges posed by the scarcity of labeled 

data and the high costs associated with acquiring 

hyperspectral and VHR images, suggesting the potential 

utilization of publicly available data from Sentinel-1 and 

Sentinel-2 satellites for remote sensing tasks . 

Furthermore, the exploration of conditional ViTs  

and their application in improving the accuracy of image 

classification tasks in remote sensing illustrates ongoing 

advances in this field. The study of Detection 

Transformers (DETR) for object detection and Swin  

Transformers for dealing with scale variations presents 
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new pathways for enhancing situational awareness and 

tactical decision-making in conflict zones. 

In conclusion, the paper advocates for the increased 

accessibility of war imagery for scientific, intelligence, 

and humanitarian purposes, emphasizing the role of 

transformers in advancing remote sensing technologies. 

As the field progresses, continued exploration of 

integrating DNN architectures, such as ViTs and CNNs, 

is crucial to address the multifaceted impacts of 

geopolitical events on the environment and human 

settlements. 

This comprehensive assessment not only 

illuminates the current state of transformer-based models 

in remote sensing for war-affected areas and sets the 

stage for future research directions, aiming to enhance 

the effectiveness and accessibility of critical information  

derived from satellite imagery during crises . 
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ДОСЛІДЖЕННЯ СТАНУ РАЙОНІВ УКРАЇНИ, ПОСТРАЖДАЛИХ ВІД ВІЙСЬКОВИХ ДІЙ,  

НА ОСНОВІ ДАНИХ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ  

ТА АРХІТЕКТУР ГЛИБОКОГО НАВЧАННЯ 

Ю. В. Пушкаренко, В. А. Заславський 

Вторгнення РФ в Україну та ескалація військових дій в регіонах привело до значного пошкодження 

житлових будинків, доріг та мостів, різноманітних об’єктів критичної інфраструктури, гребель, та значних 

забруднень територій. У зв’язку з цим, для дослідження стану регіонів та окремих територій постають задачі 

дистанційного зондування за допомогою космічних знімків, аероспостереження безпілотними літальним и 

апаратами (БПЛА) з метою аналізу впливу та економічної оцінки ушкоджень та руйнувань на територіях. Для 

дослідження стану територій за допомогою дистанційного зондування використовується різноманітні 

(різнотипні) окремі типи моделей глибокого навчання або їх комплекси, архітектури.  В роботі досліджуються 

та використовуються моделі глибоких нейронних мереж (DNN) в задачах комп’ютерного зору (класифікація, 

сегментація) та поєднання їх похідних таких як згорткові мережі та моделі-трансформери з метою підвищення 

точності оцінки ушкоджень та руйнувань територій. Ці моделі продемонстрували значний успіх, часто 

перевершуючи традиційні згорткові нейронні мережі (CNN), і мають потенціал застосування в дистанційном у 

зондуванні для оцінки пошкоджень і захисту критичної інфраструктури. Проведені в роботі дослідження цих 

моделей підтверджують важливість застосування таких технологій у середовищах, де розмічені дані рідкісні 

або відсутні. Зокрема, оцінка використання глибоких нейронних мереж, включаючи згорткові мережі та  

трансформери, під час аналізу регіонів, які постраждали від військових дій, за допомогою радарів із 

синтезованою апертурою (SAR) і мультиспектральних зображень. Метою та предметом дослідження є також 

огляд можливостей поєднання згорткових мереж та трансформерів для підвищення швидкості отримання 

ознак, ландшафтів, забудов, та виявлення складних структурних контурів об’єктів, де зазвичай не вистачає  

даних. Результат цього дослідження забезпечує критичний огляд застосування згорткових мереж та 

трансформерів у дистанційному зондуванні, визначаючи значні прогалини та виклики в дослідженнях, 

особливо в контексті економічних наслідків руйнувань через військові дії. Розглядаються технічні аспекти 

використання як згорткових мереж, так і моделей на основі трансформерів для складних завдань 

комп’ютерного зору та передавального навчання в умовах дефіциту даних, а також виклики при аналізі 

великих обʼємів геофізичних даних. Висновки підкреслюють трансформаційний потенціал DNN, особливо 

трансформерів, у дистанційному зондуванні в умовах конфліктів і зон лиха. Їхня адаптованість і точність у 

різних середовищах підкреслюють їх користь як у стратегічному військовому, так і гуманітарному контекстах, 

встановлюючи практичний стандарт для їх застосування в ключових, реальних сценаріях дослідження стану  

територій. 

Ключові слова: зорові трансформери; комп’ютерний зір; злиття даних (різнотипність); дистанційне 

зондування; оцінка пошкоджень; згорткові нейронні мережі. 
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