152 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
UDC 004.492.3 doi: 10.32620/reks.2024.1.13

Antonina KASHTALIAN?, Sergii LYSENKO?, Oleg SAVENKO?,
Andrii NICHEPORUK!, Tomas SOCHOR?, Volodymyr AVSIYEVYCH!

! Khmelnitsky National University, Khmelnitsky, Ukraine
2 Prigo University, Havirov, Czech Republic

MULTI-COMPUTER MALWARE DETECTION SYSTEMS
WITH METAMORPHIC FUNCTIONALITY

The need to develop new systems for detecting and counteracting malware remains relevant. In addition to mal-
ware detection methods, the need to develop new systems for detecting and counteracting malware has become
increasingly important. The use of various detection systems and the formation of a variable architecture in them
significantly improves the effectiveness of detection, since both for attackers in computer attacks and for mal-
ware, understanding the system is significantly complicated. In addition, such systems may contain baits, traps,
and, accordingly, modifiable operating environments to deceptively execute programs for research. This paper
develops a conceptual model of multicomputer systems, which is designed to ensure the functioning of antivirus
bait and traps to detect malware and computer attacks in corporate networks. The proposed approach is intended
to prevent and counteract metamorphic virus penetration. This paper presents the conceptual model of multi-
computer systems and introduces a defining characteristic responsible for the control of decisions and other
defining characteristics of the system. Methods for detecting metamorphic viruses with the possibility of their
implementation in the architecture of multi-computer systems with bait and traps are developed so that the sys-
tem directly joins the detection procedure through its components and decides on the presence of metamorphic
code in the executable file. An implementation of a multi-computer malware detection system with metamorphic
functionality was developed to prove the feasibility of the proposed conceptual architecture model and the de-
veloped methods for detecting metamorphic viruses. An experiment on the functioning of a multi-computer mal-
ware detection system was set up, and experimental studies were conducted. The conducted experiments included
metamorphic virus detection. In addition, an experiment on the effectiveness of detecting the metamorphic code
of viruses was conducted. The efficiency of detecting metamorphic virus code using the developed multi-com-
puter system was also investigated, and the presence of improved detection was established. The directions of
further work are to extend the results of this work to new types of malware.

Keywords: metamorphic code; multi-computer systems; cybersecurity; computer viruses; malware; malware
detection.

tionality. A set of such computer viruses is the set of met-
amorphic viruses. Methods using obfuscation analysis

1. Introduction

1.1. Motivation

The creation and distribution of malware continues
apace. Attackers build various functionalities into their
architecture, including those that ensure the concealment
of malicious code. Computer viruses that are designed in
such a way that they contain obfuscation mechanisms and
use them to embed into executable PE files are quite dif-
ficult to detect. Each time they are embedded in executa-
ble PE files, they change the location of their commands,
the order of placement, and replace them with alternative
command. The variety of such techniques used to avoid
detection is quite large. Therefore, for each of these tech-
niques, it is necessary to develop separate methods for
detecting viruses. The use of methods based on signature
search is possible as an additional tool. It is more im-
portant to search for new viruses with obfuscation func-

are effective in detecting metamorphic viruses [1]. How-
ever, attackers are constantly improving mechanisms
based on metamorphic transformations; therefore, the de-
velopment of methods for detecting such viruses contin-
ues. At the same time, there is a need for fundamental
changes in their development so that they can improve
detection efficiency and significantly outpace the im-
provement of metamorphic techniques developed and
used by attackers. Such detection methods should pro-
vide proactive detection of new metamorphic techniques
that could be used in metamorphic viruses by attackers.
Existing methods for detecting metamorphic vi-
ruses could be improved and enhanced by implementing
them in distributed systems to organize their functioning
within computer networks. Such technologies have been
used and presented in [2, 3]. Then, in order to improve
the detection of metamorphic viruses, if the place of de-

© Antonina Kashtalian, Sergii Lysenko, Oleg Savenko, Andrii Nicheporuk,

Tomas Sochor, Volodymyr Avsiyevych, 2024

Information security and functional safety

153

tection is considered to be the nodes of a computer net-
work, it is necessary to improve and simultaneously de-
velop two components that are used in the detection pro-
cess. On the one hand, these detection systems must op-
erate in computer network nodes and their components
are located in the nodes. In addition, to maintain the in-
tegrity of the system, such systems have to respond in
conjunction with specialized functionality responsible
for detecting metamorphic viruses and must be multi-
computer. Another possibility of the proposed system is
the use of methods for the direct detection of metamor-
phic viruses. The detection methods should be improved
in terms of their possible combination and implementa-
tion in a multi-computer system to form one sensor in a
computer network. This makes it possible to scale the
multi-computer system to all nodes of the computer net-
work and expand the scope of detection methods com-
pared with their use in individual computer stations. In
this embodiment, the detection methods have enhanced
capabilities, which gives them an advantage over the
metamorphic techniques used by attackers in computer
viruses.

There are not enough approaches and methods de-
voted to the development of multi-computer systems for
this purpose among scientific researchers. As a rule, re-
searchers on detecting computer viruses in host computer
systems or in computer networks, including directly in
their nodes, focus mainly on the development of effective
detection methods. To implement detection methods in a
particular system, method developers pay insufficient at-
tention to the architecture of systems. The architecture of
systems should also focus on the specifics of the tasks
assigned to the system, since attackers take advantage of
the shortcomings of known architectures. In addition, the
effectiveness of detection methods can be leveled due to
the imperfection of the architecture of the systems in
which they are implemented.

Therefore, the aim of this study is to improve the
efficiency of detecting metamorphic viruses by develop-
ing effective multi-computer systems and methods for
their detection.

1.2. Previous works

When designing multi-computer systems for detect-
ing malware and computer attacks, such systems with
baits and traps have proven to be quite effective. They
can be used to implement and implement detection meth-
ods. The number of traps and baits for malicious software
and computer attacks is constantly growing, which cre-
ates problems for attackers. Such multi-computer sys-
tems are becoming multifunctional. Their architectural
features are hidden from attackers. This does not allow
them to understand their essence and, accordingly, by-
pass their countermeasures. Among such multi-computer

systems, systems with a controller are promising [4].
Thanks to it, a multicomputer system, after developing a
decision on a particular event, selects options from those
developed, considering its previous decisions on the
same events. This makes it possible to confuse the at-
tacker and, accordingly, improve the effectiveness of de-
tecting and countering malware. The principle of synthe-
sizing such multi-computer systems is presented in [4].

The operating environment in each component of
the system is taken as a trap in such multicomputer sys-
tems. Each operating environment in different compo-
nents of the system is different. Accordingly, the research
to detect metamorphic viruses is carried out in parallel in
different nodes of the computer network, which in partic-
ular improves the time efficiency. In addition, different
environments allow different variants of metamorphic
transformations embedded in the architecture of meta-
morphic viruses to manifest themselves.

Let’s consider methods of using baits and traps im-
plemented in multi-computer systems for detecting and
counteracting malware and computer attacks.

1.3. State of the art

The purpose of deception systems and their compo-
nents is to improve attack prevention, attack detection,
and mitigate the effects of successful attacks. Deception
systems can be classified according to various features,
including the purpose of deception, the level of the de-
ception system, the type of deployment of the deception
system [5], the type of deception [6], and the level of be-
havior and responses of the deception system [7].

The type of deception is characterized by its infor-
mation structures, actions, duration, and concept. The
main types of deception include disturbance, confusion,
mixing, involvement, moving target protection, and
honey-x.

Disturbance involves the breach of confidential
data [8], including for users who send information to an
unreliable source [9]. Obfuscation hides valuable infor-
mation with noise, adding irrelevant data to relevant data
[10], and sending confidential and false data through a
certain number of nodes [11]. Connectivity prevention
methods use the idea of mixing for security and privacy
[12]. The active defense strategy involves engaging the
attacker in interaction using various approaches, such as
using an attack graph to represent the attacker’s strategy
and the location of baits in the network [13] and modeling
the attacker’s penetration into the network using a game-
theoretic model [14].

Moving target defense and honey-x are more com-
mon types of deception than others. Moving target de-
fense uses the concepts of flexibility, changing the attack
surface, and random customization, which are called mu-

154

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

tations or cyber mutations. Among the types of cyber mu-
tations, random host mutations, random route mutations,
random port mutations, fingerprint mutations, and varia-
ble virtual networks are widely used [15]. In the
study [16], we propose a dynamic host mutation architec-
ture based on moving target protection that can actively
counteract cyberattacks. The dynamic host mutation
strategy includes address mutation, fingerprint mutation,
attraction operations, key management, and authentica-
tion. To turn end hosts into unpredictable moving targets,
methods have been developed to intelligently and ran-
domly transform their IP addresses or ports without re-
ducing network performance [17]. Mutations are also
used to improve the security of cloud services, a decep-
tive defense mechanism based on the idea of a moving
target centered on frequent virtual machine migrations,
whose strategies are determined based on a signaling
game [18]. Some methods have been proposed to deter-
mine the optimal time for mutating network ad-
dresses [19].

The honey-x type of deception is by far the most
common; the class of honey-x deceptive objects includes
objects that can be named with the beginning honey-,
such as honeypots, honeynets, honeytokens, honeymails,
honeyurls, etc.

Baits and traps can be classified in different ways
according to their key characteristics [20]. According to
the purpose of using the bait, they can be used for re-
search and production. According to the role of the bait,
there are client baits that actively initiate interaction with
attackers and server baits that passively wait for at-
tacks [21]. According to the level of interaction, the baits
are divided into low-, medium-, and high-level baits.
Low-interaction baits imitate simple functions of one or
more services, thus not requiring significant development
and implementation costs. Baits with a high level of in-
teraction can imitate an unlimited set of services for at-
tackers [22, 23]. To optimize bait resources, combined
low and high-interaction baits are used [24]. The scala-
bility of the baits reflects their ability to increase the num-
ber of bait nodes and traps in the system. The simplest
baits are not scalable. However, modern bait and trap sys-
tems provide the ability to change the number of nodes
according to the needs of the network and the specified
parameters. It is proposed to implement a distributed sys-
tem of baits with their dynamic location. In such a net-
work, an attacker cannot distinguish real services from
baits, and efficiency is ensured by a game-theoretic ap-
proach [25]. Methods for the dynamic configuration of
baits, a strategy for their deployment and maintenance
based on machine learning methods that allow the auton-
omous deployment of baits [26], and a methodology for
determining the optimal number of baits in a net-
work [19] are proposed. Such bait systems allow fighting
distributed attacks [27] and analyzing data in networks of

geographically distributed baits to identify attack patterns
and build attacker profiles [28]. By the type of resources
used, baits are divided into physical, virtual, and com-
bined. Physical baits and their networks run on physical
machines designed to deploy these nodes. Virtual baits
are deployed on virtual machines [29, 30]. Combined
baits support deployment on physical and virtual ma-
chines [31]. According to the availability of the code,
baits are open source [32] and closed source.

To protect confidential data, the automated genera-
tion of honeytokens is used to analyze user behavior and
their interaction with honeytokens [33]. Honey-x objects
are also used to protect credentials, including improving
the security of hashed passwords, which is done with the
help of additional false passwords (honey-words), the use
of which allows generating an alarm [34].

A deception system can be applied at different lev-
els, which reflects the level of the protected system to
which deception is applied. A deception system can be
applied at the network, system, application, and data lev-
els. At the network level, a deception system is designed
to deal with network attacks such as scanning, eavesdrop-
ping, penetration, and propagation. At the system level,
deception techniques are applied to nodes and are in-
tended to combat external and internal malicious activi-
ties[35, 36]. The application level involves the use of spe-
cialized deception systems developed for specific ser-
vices and applications, such as web services and data-
bases. Deception systems designed for data protection
use various types of false data to attract attackers and are
designed to combat data leaks, privacy breaches, and cre-
dential theft [38].

The deployment of a deception system character-
izes how this system is integrated into the target sys-
tem [5]. Depending on the method of deployment, there
are: built-in deception systems, deception systems in-
stalled before the target system, deception solutions
added during the operation of the target system, and iso-
lated deception systems. Some solutions offer built-in in-
tegration of deception with the system at the development
stage. Work [39] proposes a multi-paradigm approach to
defining deception tactics during software development,
which is implemented by a set of deception objects inte-
grated with system components. Deception systems in-
stalled before the target system mostly contain deception
nodes placed between the attacker and the target system,
which allows the intercepting of network traffic and in-
fluencing processes [7]. Deception systems added at
runtime integrate with the target system during its opera-
tion. Such systems mostly use honey-x objects such as
honey-assets, honey-files, honey-passwords, honey pro-
files, and honey hyperlinks [40]. The most common com-
ponent of isolated deception systems are baits, which can
operate separately from the target system.

Information security and functional safety

155

The level of behavior and responses of a deception
system characterizes the level of deception of the system
and objects according to the responses to queries. The de-
ception behavior of a system can vary from the simplest
predictable truthful behavior to intellectually deceptive
behavior [41]. Systems with truthful behavior always re-
spond to any query with complete "truthfulness”, so the
answers reflect the actual internal states of the system. In
systems with naively deceptive behavior, processes try to
deceive the attacker with artificial responses; however, if
the attacker knows this deceptive behavior from previous
interactions, the deception can be exposed and the at-
tacker is warned about the presence of deception [17, 42].
The best protection can be provided by deception systems
that have intellectually deceptive behavior. The function-
ing of such a system for an attacker does not differ from
the functioning of the target system, even if there has
been previous interaction. Systems with intellectually de-
ceptive behavior use machine learning and artificial in-
telligence methods [43]. The article [44] presents the
consistency issue and related trade-offs in distributed
replicated systems and databases. In the study [45], an
overview of cyber threats and vulnerabilities is presented.

A cyberattack detection system based on infor-
mation-extreme machine learning is presented in the
work [46].

Methods and technologies for ensuring cybersecu-
rity of industrial and web-oriented systems and networks
are presented in the study [47]. A model and training
method for malware traffic detection based on a decision
tree ensemble presented in the work [48].

An approach devoted to the problem of malware de-
tection using evolutionary algorithms is presented in the
study [49]. Research that highlights loT malware detec-
tion based on control flow graph analysis is presented
in [50]. The technique for malware detection via distrib-
uted systems is described in the work [51]. In the
study [52], the mean of malware detection is the multi-
agent systems.

1.4. The purpose and tasks of research

Considering the shortcomings in the methods of de-
tecting metamorphic viruses and the need to improve the
architecture of multi-computer systems for detecting ma-
licious software that use baits and traps to improve the
efficiency of detecting metamorphic viruses in computer
networks and their nodes, it is necessary to conduct re-
search and solve several problems.

The peculiarity of the architecture of multi-com-
puter systems with baits and traps for detecting malware
with metamorphic functionality is the implementation of
detection methods and, accordingly, its construction as a
single sensor for functioning in a computer network.

Therefore, to achieve the goal of improving the ef-
fectiveness of metamorphic viruses, the following tasks
need to be solved:

1) to identify the features of the synthesized archi-
tecture of multi-computer systems with bait and traps for
detecting malware through its properties and use them as
a basis for building such a system;

2) to develop a conceptual model of the architecture
of multi-computer systems with baits and traps for de-
tecting malicious software, considering the possibility of
implementing methods for detecting metamorphic vi-
ruses, as well as their features as decision controllers;

3) to develop methods for detecting metamorphic
viruses with the possibility of their implementation in the
architecture of multi-computer systems with baits and
traps in such a way that the system directly joins the de-
tection procedure through its components and decides on
the presence of metamorphic code in the executable PE
file;

4) to develop an implementation of a multi-com-
puter malware detection system with metamorphic func-
tionality to prove the feasibility of the proposed concep-
tual architecture model and the developed methods for
detecting metamorphic viruses;

5) to set up an experiment on the functioning of a
multi-computer malware detection system and conduct
experimental studies on the process of processing meta-
morphic code to confirm the possibility of implementing
the steps of the developed methods for detecting meta-
morphic viruses;

6) to set up an experiment on the effectiveness of
detecting the metamorphic virus code and conduct rele-
vant experimental studies;

7) to investigate the effectiveness of detecting met-
amorphic virus code using the developed multi-computer
system and determine whether there is an improvement
in detection, as well as to determine the directions for fur-
ther research and development of the proposed solution
and its extension to other types of malware.

The aim of this study is to develop a multi-com-
puter malware detection system with metamorphic func-
tionality to improve the efficiency of detecting metamor-
phic viruses.

The paper structure is as follows: Section 1 presents
motivation, previous work, and state-of the art — a brief
analysis of the very modern and the latest ideas and meth-
ods addressed to solve the problem of malware detection
with its advantages and disadvantages. Sections 2 dis-
cusses the main idea of the research: the development of
multi-computer malware detection systems with meta-
morphic functionality. Section 3 describes the experi-
mental results of this research. In addition, conclusions
present the obtained results of the research.

156

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

2. Multicomputer systems and methods
for detecting malware with metamorphic
functionality in corporate networks

2.1. Concept of multi-computer systems
of combined antivirus bait and trap
and decision controller for malware

and computer attack detection

To synthesize multicomputer systems for detecting
malware and computer attacks in corporate networks, in
the architecture of which detection methods can be im-
plemented that corresponds to part of its specialized func-
tionality, let us use the principle of synthesis P of such
systems, which was presented in [1]. According to this
principle, it is possible to synthesize systems in which
detection methods are implemented, and together with
them, such systems function as sensors in corporate net-
works, whose tasks are to detect malware and computer
attacks in corporate networks using combined antivirus
baits and traps. Such systems can also be used as sand-
boxes. Such features are supported by the developed ar-
chitecture of multi-computer systems. The system com-
ponents have variable environments that provide variable
operating environments for the study of computer virus
program codes. The variable operating environments
provided in the system components should improve the
efficiency of detecting obfuscated virus codes. This can
be achieved using baits placed in the components. Their
use forms variable operating environments that allow vi-
rus program codes to be manifested. Such studies are par-
ticularly relevant for metamorphic and polymorphic vi-
ruses or executable programs infected with them. Let us
consider the concept of creating such systems.

The concept of creating multicomputer systems of
combined antivirus bait and traps and a decision control-
ler to improve the efficiency of detecting malware and
computer attacks in corporate networks is based on a
combination of the following defining properties and
their synthesis in systems according to the synthesis prin-
ciple B [1], such as:

- variability in the type of system architecture;

- variability of the system centers;

- system adaptability according to changes in exter-
nal conditions;

- characteristic changes in the system center

- self-organization of the system

- ability to detect malware.

The considered systems are denoted further by sys-
tems of class &.

Let us consider the peculiarities of the synthesis of
systems by combining their defining properties. Display
graph of the defining characteristics for systems of type
G in their architecture at the vertices corresponding to the
elements of the sets B; (i = 1,2, ..., ngng — the number

of subsets) is shown in Fig. 1. Any closed route in the
display graph of defining characteristics in the architec-
ture of systems of the class G shown in Fig. 1 always in-
cludes a vertex v, 1 € B, from the set B, , [1]. This
means that the graph reflects the architecture of various
systems according to the principle of synthesis 3. Verti-
ces that correspond to the elements of a certain set B;
(i= 1,2,...,ngng — the number of subsets) when defin-
ing a closed route can belong to it, that is, from one set,
several elements can be included in the route, not just
one. This reflects other options in the architecture of sys-
tems of the class ©.

For example, the system may not have an exclu-
sively centralized decentralized, or mixed architecture.
However, in the variant of mixed architecture with re-
spect to centralization it can also be centralized and de-
centralized. For example, at certain time intervals, the
type of architecture can change to mixed, then to central-
ized and then return to mixed or decentralized architec-
ture.

Furthermore, the level of centralization and its fea-
tures may differ. Similarly, the remaining defining char-
acteristics in the architecture of type systems G can have
the same features. That is, in type systems G there may
be several elements from a certain set B
(i=12,..911,..,ng,i+# 10, ng — the number of
subsets). The graph presented in Fig. 1 outside the bound-
aries of existing edges and vertices may contain other
vertices and edges. However, a closed route also covers
them and accordingly includes vertices and edges. As a
result, the vertices covered by the route reflect the defin-
ing characteristics synthesized in systems of the class .
From the set B, 4, only one vertex belonging to this set is
included in the route. The remaining peaks are isolated
and cannot be included in any route. Thus, the number of
systems of class G according to the synthesis principle B
is different, but according to formula (1) all of them are
united by the presence of the controller in their architec-
ture. The number of subsets B; (i = 1,2, ..., ngng — the
number of subsets) can be different, in particular less than
ng, but the presence of a one-element set 2B,,, and the
set B, [1] in the direct product of sets is mandatory.

Let us detail the concept of creation systems of type
& of their conceptual model, which is necessary to spec-
ify the features determined by the synthesis principle B.

2.2. Conceptual model of the architecture
of multi-computer systems with combined baits
and traps and a decision controller for detecting
and counteracting malicious software
and cyberattacks

According to the synthesis principle 3 of systems
of class &, a conceptual model of architecture Uqy ¢ Of

Information security and functional safety

157

mlu

By B,
B, B,

Fig. 1. Display graph of the defining characteristics
for in the architecture of systems of the class ©

multi-computer systems with combined baits and traps
and the decision-making controller for detection and
countermeasures of anti-aircraft and anti-aircraft vehi-
cles, we set as follows:

Ape = (BPMNg), Bay):
1) VEDBp; © Bi(Me); Bi(Me) € PM);
I = 1,2, ...,ngB(gme);
2) Me = U - M. ;
Entil = {mil,l'mi1,2' ey mi1r“‘mi1 };

I = 1,2, ...,nmil; ED?]_O = {mloll};

3) P(Me) 23 W(M,); w; € W(M);

w; = (mi.limi.z’ B ...,mimm);
0, if element does not belong
to the set B; (M),
i = { 1,if element belongs
to the set P;(Me);

Wio1 = 1§ =12, gy 2 = 12,00, Moy

4) 6, = (‘m%,z,p93?%,2,2;93?%,2,3;93?%2):
Mg, € (S‘m%,m X 93?%’2’3) U (93?%’2’3 X 2mﬂez,z,z) U
(ﬁmg,zs X Sm%,z,l) U (img,z,z X 93?%2'3);
im%,z = im%,m U im%,z,z U 93?%2’3;

s _J).6 S S :

5) M3z, = {mﬁ.z,meﬁ,:,Lz’ woMeain ¢ }:
Mgz

S)4 s : — 4 :

Mgz = Un=1Me gy, MG ey — lezln‘mgﬁ.z.u’

S .omS s .
Seazi Meas = Mex 10

S _{.G IS .
6) Begz1 = {p@,ﬁ,z,va@,ﬁx,Lz}v

S
PE&T1,1

& & 8T g .

(%,@,R,I3,1» Meaa) — Peqzias

S
PE831,2

& & 8T12 g .

(%,@,R,I3,1» Meaa) — Veqziz2

- B — S :
L=12.. Mgpe %87110 = V658151

ne =N, ,Ns =N,
DE8,T,1,1 Meaa' 683,12 ME zv”

. S _ —
if Yeaz1,1t 0vi =12 SEALT- IS

S _n
e 12f = 05
Vi, =12, .., ngs

.6 .
D =1
Saz1 CERTLLY)

S —qb S S S .
7) SWJ - ?}SSU (SP.U.G’ SWJJ” SP‘U‘U)’

iy
S 12,3 S8 .
8) Mg, — My 35

om0 b

2,3(G, Pt S

S8 _ Zf3=1 (%3,2,313 Tﬂ},z,a,f(mﬂ},z,3,l4)>_
Myo31, =

KG'Q} !
b B,2,3 6B
t3=1 U823tz

9) V g1, 8;: Emg,ﬁ,z,gl n img.ﬁ.i.gz =0
61 = 12346, = 1,234, 6, # g,
)

158

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

where Mg — the set of elements and components in the
system architecture, which are formed according to the
given defining properties; B(Mg) — set of subsets;
Py — the set of predicates given on the set B(Me);
P:(Mg) — I-th element of the set PBMg);
=12, .. ngme): Nyae) — the number of elements in
the set B(Mg); the set Byo; = {0101} ; B1o,1 — One-ele-
ment set; M —1, -th subset for certain elements and com-
ponents in the system architecture, t; = 1,2, ..., ng;
Ngpe — NUMber of subsets; m; ; — i-th element of the sub-
set M, [=1,2, ..., g, 5 Migp, — the number of elements
of the subset 0t ; W(Mg) — set of vectors; element
w; € WMe), | = 1,2, ..., Nggame)s Wy, — (¢ 12) — coor-
dinate of the vector w;, i, = 1,2,...,ngq ; ®, — graph of
connections of computer network environment compo-
nents MG, = MG, UMG,, UM, 5 Mg, — the set
of all vertices of the graph ®,; SUt%_Z — the set of edges of
the graph; img_m — set of typical components of systems
of class &; m%_m_lz — 1,- element of the set of typical
components Mg ,; [, = 1,2, wo Mg e — the
number of elements of the set M ;; Mg ¢ — a set of
elements from which the components of the system is
formed; MG, — @ subset of elements to ensure pres-
ence in the node of the corporate network, to ensure the
performance of functions specified by certain elements,
to supplement with new elements and ensure communi-
cation with the center of the system; Mg ¢ + , — a subset
of elements to ensure the functioning of the system cen-
ter; MG ¢ 5 — @ subset of elements to ensure the func-
tioning of the controller; Mg ¢ + , — a subset of elements
to ensure presence in the node of the corporate network,
defined to ensure the performance of functions specified
by certain elements, and to supplement with new ele-
ments and ensure communication with the center of the
system; My o~ the number of elements in the set

MG ¢ v; Fer 1 — et of functions; P§ ¢ . , —a set of pred-
icates for establishing information in the system about the
state of available active and passive and missing elements
in the components; pg g« 1 1, Pes 12 — Predicates from
the set B g1 My o™ the number of vectors in the set

of vectors MG ¢ «; v g 1110 — the first coordinate of the
vector g g+, 4, Which is the value of the component
number from the system; n%@’ﬁ’h’l - the value of the com-

ponent number according to the system list,
I3=12,.., 1,8 ;n,s — the number of vectors in
Mges’ Mgesn

the set of vectors MGea; Mg =M

S i S .
DG qT121, coordinate of the vector vggq;4;

y =12, S R

; (nne + 1) — the number of
CKRI 1,1 CRI 1,1

coordinates of the vector bg g« 1 15 Dgg 1,2y, — COOdi-

S . — .
nate of the vector vgggyiz; t2=12,..mg

(nne + 1) — the number of coordinates of the vector
€,R],3,1,2
ngglzlllz; Tg%n — a function that determines the value of

the integrated indicator of the hardware and software of
the computer station according to the values of its struc-
tural and parametric characteristics, which are taken into

account when determining the indicators
S S S F e S8
oo Spop Spoe & the arguments of the function; g5 5
H S8 _
- set of functions Spas =
S, S, S, _ .
{ 22,31’ 18,2,3,2/ ""fﬂ},z,s,nggm }; =12, AL =P
B,2,3 -

H P R AC L
Nges — the number of functions in the plural; §y; 5

Mye .~ the number of elements of the sets MG, ; and

Mg,
S8 . 63 . . .

M50 Dy, — COEFficients for correlation of weights

3 .

from the set Fg,s

of all functions

=12, ...,n%%:?’s.

Such a task of the conceptual model Uy, ¢ of the ar-
chitecture of systems of class S according to formula (2)
considers the multiplicity of elements that are in relations
and connections with each other and form a certain integ-
rity and unity of parts. Given formula (2), the relation-
ships between the parts of the system and its internal or-
ganization have specific properties that change according
to external and internal influences and the purpose of us-
ing the system.

In the conceptual model Uqy, ¢ of the architecture of
systems of class &, components and elements are distin-
guished. Moreover, some components also contain
smaller components and elements. Therefore, the synthe-
sized systems of class S are complex. The selected ele-
ments of the system in the model have a purpose, a hier-
archy is defined between them and they are intercon-
nected. Accordingly, systems of class G are synthesized
according to their defining properties, which are gener-
ally not obtained by combining the properties of their
components, and the functional capabilities of the system
as a whole are greater than the functional capabilities of
its parts. Let us consider the functional orderliness of the
system of class G, i.e. the expressiveness of how the ele-
ments, components and hierarchical levels of the system
are connected and interact with each other, as well as
what properties have integrity formed by them.

A picture of the placement and connections of the
elements and components of the model in the generalized
architecture of the operating environment of the system
of class &, considering the task of the conceptual model
Ay ¢ (formula (2)) is presented in Fig. 2.

Correlation of elements and components of concep-
tual model gy , multicomputer systems of class € and

Information security and functional safety

159

system functioning environment in fig. 2 shows the nodes
of the corporate network in which system components
can be installed. At the same time, they correspond to the
elements of the set ED?%_Z of all vertices of the graph ®,.
The components of the multicomputer systems of class G
may not be present in all nodes of the corporate network.
Thus, the components of multicomputer systems of class
& in the context shown in Fig. 2 and in formula (2) con-
firm the possibility of scaling the system by an arbitrary
number of elements of the set Mg ,. Conceptual model
A ¢ of multicomputer architecture of systems of class
G is complete, because it covers the defining properties
of such systems, the principles according to which they
are synthesized, and the relations defined in 1)-9) of for-
mula (2). Confirmation of the synthesis of systems ac-
cording to conceptual model Uqy is the presence of gen-
erally accepted signs of systems: integrity, latency,
strengthening of system efficiency due to the set of com-
ponents, division into parts with connections between
them, the presence of properties not characteristic of sub-
systems and blocks, self-regulation, multivariability, and
interaction with the external environment. These features
require detail in the context of presenting the organiza-
tion of the functioning of the systems of class G.

Let us define the main elements of the conceptual
model Uqy, ¢ of multicomputer systems of class S:

- conditions of system functioning, which are deter-
mined by the nature of interaction between the system
and its environment, and between system elements;

- system control capabilities and the composition of
controlled system variables are highlighted.

In addition, the purpose of the study of systems of
class & is to improve their characteristics in the part of
the architecture itself and in the part of the specialized
functionality, which must be organically combined into a
single whole.

In the conceptual model gy of multicomputer
systems of class &, a defining characteristic responsible
for the control of decisions is introduced. This distin-
guishes it from the well-known models of multi-com-
puter systems designed to ensure the functioning of anti-
virus baits and traps to detect malware and computer at-
tacks, as well as to prevent and counteract their penetra-
tion. In addition, the model specifies the rest of the defin-
ing characteristics that should form the system architec-
ture in the process of functioning of systems of class &.
This action must be performed independently. Synthesis
of a set of individual defining characteristics occurs ac-
cording to a closed route in the graph of the display of
defining characteristics in the architecture of systems of
class & (see Fig. 1). In addition, it identifies specialized
functionality that with the general part of the system,
forms the system as a single sensor.

Principles

Self-organization

| Defining properties |

I Flexibility

Synthesis principle 8 Adaptability ﬁ
| (1310.1 |
Decision-making
By, B, |

Control of decisions made

g

Adaptability principle

l Collective collaboration of agents

| Centralization/decentralization

Q}Zh <B4r Q}’)l Q;(n Q37
B, By, By,

Flexibility principle |

Combination

|
|
|
|=>| 8
|
|
|
|

U

U

| Ay = (P(M=), Ba); relations defined in 1)-9) (equation (2.30)) |

| Class 8 multicomputer system

VAR
QL 55

1 R 55

ARVERIAVAIE {H}

|
@ Iy

VAR
O py O (&

L1]

Fig. 2. Correlation of elements and components of conceptual models gy ¢,
multicomputer systems of class & and the systems functioning environment

160

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

The defining characteristic responsible for the con-
trol of decisions is made. This is highlighted by a separate
element in the conceptual model, which actually defines
the property of artificial consciousness with limited ca-
pabilities, which are defined by tasks of systems of class
. This makes it possible to provide various options for
responses to the influence of intruders, cyberattacks, and
the functioning of malware. As a result, understanding
the behavior of the system is significantly complicated.

Other defining characteristics allow you to increase
the number of architecture options. Therefore, their use
when rebuilding the systems of class G allows not only
to diversify the system due to its various changing archi-
tectures and ensures its stability when removing individ-
ual nodes of the corporate network.

The combination of specialized functionality with
the general part of the system forms the system as the
single sensor, which improves the effectiveness of mal-
ware and cyberattack detection.

An important feature of setting the conceptual
model gy g of multicomputer systems of class S accord-
ing to formula (2) is to consider the defining properties.
They allow the system to be formed according to certain
principles. That is, to perform its actual vertical presen-
tation. This is ensured directly through the presentation
of systems in relation to the environment of their opera-
tion in corporate networks. That is, its horizontal presen-
tation is performed. These two representations in the
model Uqy s are implemented in a coordinated manner.
Thus, the conceptual model Uy, ¢ adequately reflects sys-
tems of class G due to the defining properties and envi-
ronment of operation.

The developed conceptual model Uy, g of multi-
computer systems of class G contains the necessary ele-
ments defining models. It is an abstract model that re-
flects the defining characteristics and features of systems
of class & regarding the environment of corporate net-
works. Its special element is the decision controller. It
implements a dynamic synthesis of the architecture ac-
cording to its defining properties. In addition, it imple-
ments the combination of specialized functionality with
a part of the system into a single sensor. Conceptual
model gy, ¢ is the basis for creating multicomputer sys-
tems of class & from combined antivirus bait and traps
and the decision controller for the detection of malware
and cyberattacks in corporate networks and the imple-
mentation of methods for the detection of malware and
cyberattacks using combined antivirus baits and traps to
improve detection efficiency.

2.3. Detection of metamorphic virus code using
multi-computer malware detection systems

The proposed multicomputer system detection of

malicious software can implement methods for the detec-
tion of metamorphic codes of viruses.

Let us consider the detection process using the de-
veloped methods. The process of detecting metamorphic
viruses is implemented in the form of two methods, in
which the method of detecting the metamorphic code of
viruses includes the method of forming a vector of fea-
tures of the similarity of the code sample to the metamor-
phic virus. Both methods are based on the concept of
comparing copies of metamorphic viruses, the result of
which is the definition of a set of features used to detect
metamorphic viruses.

Consider the proposed method for detecting metamor-
phic viruses in a multicomputer system deployed in a lo-
cal network. The use of the network is dictated by the
presence, in addition to obfuscation techniques, of anti-
emulation tools that prevent the execution of the emula-
tion process. This is one of the main methods of detecting
metamorphic viruses, which, in turn, leads to low detec-
tion efficiency. Therefore, it is not always possible to de-
tect metamorphic viruses that use anti-emulation technol-
ogies by means of one computer system; therefore, it is
suggested to involve a multi-computer system.

Thus, the main task of the system itself is to dis-
patch data flows between network nodes. The initial set-
tings for each component of a multicomputer system in-
clude an isolated virtual environment and a whitelist and
blacklist of behaviors.

The method for detecting the metamorphic code of
viruses involves the following steps:

1. Analysis of the behavior of executable files on each
component using the program's suspiciousness monitor.
The check is carried out on the basis of heuristic rules, which
are based on the API calls executed by the program.

2. Determination of the need for further research. In
the event that suspicious activity was detected on any com-
ponent of a multi-computer system, a search for matches is
carried out in the black and white lists. If the behavior is not
in these lists, further investigation of the suspicious program
is conducted.

3. Disassemble the suspicious program for execution
in an isolated trap environment and obtain a list of opcodes
for execution.

4. Execution of the suspicious program in an isolated
virtual trap environment, obtaining a list of API calls, re-
disassembling the suspicious program, and obtaining a
list of opcodes after execution.

5. Implementation of a method for forming a vector
of signs of similarity of a code sample to a metamorphic
virus. As input data for this method, there are listings of
opcodes before and after execution, and lists of API calls.

6. Formation in the system component of the result
about the degree of similarity of the suspicious program
to the metamorphic virus with the involvement of the
Fuzzy Inference System using Mamdani Fuzzy Inference

Information security and functional safety

161

Systems [53]. The result of the work of is the indicator
“Level of Similarity to Metamorphic Virus” (LSMV)
with the linguistic values High, Medium and Low.

7. Analysis of the formed result and decision-mak-
ing in accordance with the obtained LSMV indicator:

if the LSMV received a value of High, then the sus-
picious program was blocked on this component, and the
behavior of the suspicious program (in the form of a list of
API calls) was entered into the black list, followed by updat-
ing the black lists on all components of the multi-computer
system;

if the LSMV of the suspicious program received the
value Low - a decision is made about the legitimacy of the
suspicious program and its behavior is whitelisted;

if the LSMV receives the Medium value, then the most
suspicious program is propagated to other system compo-
nents to run them in isolated virtual trap environments. Wait-
ing for further response from the server.

8. Sequential execution of steps 4-6 in each component
of the multicomputer system. Sending a message with the
result of the LSMV indicator from each component to the
component that initiated the check (initiator).

9. Analysis using the initiator component, obtained
from the remaining components of the LSMV indicator sys-
tem. If at least one value of the LSMV indicator value is
High, the suspicious program is blocked on the component
that initiated the additional analysis of the suspicious pro-
gram, and the behavior of this executable file is included in
the black list of all system components. Otherwise, a con-
clusion is made about the legitimacy of the suspicious pro-
gram’s behavior.

The steps of the method for the metamorphic code de-
tection system are shown in Fig. 3.

Analysis

2.4. Method for forming a vector of signs
of similarity of a code sample
to a metamorphic virus

To determine the characteristic features that would
allow determining whether a suspicious program belongs
to a metamorphic virus, a method of forming a vector of
signs of similarity of a code sample to a metamorphic vi-
rus is proposed.

The method is based on comparing listings of the
suspicious program before and after execution using the
Damerau-Levenshtein distance [54].

The method consists of the following steps:

1. ldentification of the search location for code
fragments with opcode listings before and after execution.

2. Definition of code fragments.

3. Eliminating uncertainty when defining code
fragments.

4. Determining the degree of dangerous behavior
of a suspicious program based on a comparison of the
program’s behavior with a database of behavioral
patterns.

5. Pairwise comparison of fragments. Formation of
a vector of features of the similarity of a code sample to
a metamorphic virus based on the comparison of pairs of
fragments of a suspicious program before and after
execution in an isolated trap environment.

Let's consider the steps of the proposed method in
more detail.

The primary task is to localize the search location
for code fragments in the opcode listings of the suspi-
cious program before and after execution.

The choice of search location for code fragments is
determined according to the following rules:

®

___LSMV____

R
IF LSMV=Hight ->

IF LSMV=Medium ->

" IF LSMV=Low ->
Allowing execution

Analysis

Blocking Send to another hosts
Analysis
Steps 4-6 % @
Step 8
Step 9

Analysis results:

Results from another hosts

®

If at least one value LSMV Hight -> Blocking
If all LSMV Low or Medium ->Allowing execution

{ A host that received a suspicious program

—— Data flow direction

Fig. 3. Steps of the method of detection of the metamorphic code of viruses using a multicomputer system

162

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

target_section, if ((s, # .data Vs, #.code V...) A (s, = executable)),

f{ target_section, if (Scu1 = Qlast V' Sjump = Flast); 3)

target_section = Ny — 1, otherwise,

where s,, — the name of the section in which the entry
point to the suspicious program is present, s, — section
attribute, scan, Sjump — Call and jump instructions of the
corresponding section, the operand of which contains the
address of the last section aj,g;.

After identifying the search location, the next stage
of the method involves splitting the opcode listings for
code samples before and after execution (we denote these
listings as Q and respectively Q') into code fragments
{a1} €Qand .{q', } € Q' based on conditional transition
instructions. The TF-IDF metric is used to determine the
importance of an opcode in the context of each code frag-
ment in {q;} and {q', }. As a result, two matrices Q and
Q' are formed, in which the rows correspond to the code
fragments present in this listing ({q;} or {q',}), and the
columns correspond to the opcodes present in the corre-
sponding code fragment.

Each cell of the matrix defines TF-IDF estimation
of the appearance of the i-th opcode in the j-th code frag-
ment. Next, to find code fragments from {q,}, corre-
sponding to code fragments with {q’, } the following met-
ric is applied:

r({q;}, {Q'k}) = Zi:O,j:O(qli - q’kj)zv

where qy; - the estimate of the occurrence of the i-th op-
code in the fragment {q,} ,q'y; — evaluation of the appear-
ance of the j-th opcode in the fragment {q’, }.

If the value of the similarity score of two fragments
is less than the threshold value o, then the similarity score
is recalculated for the i-th code fragment from q;; and the
next j+1-th fragment from q'y;. The value o is constant,
which is selected empirically.

As a result, there may be a situation in which one
fragment of code from {q;} corresponds to several frag-
ments from {q', }. Therefore, to eliminate uncertainty and
form an unambiguous correspondence between frag-
ments, code fragments from {q’, }, which have the maxi-
mum evaluation value r, is selected for fragment q;.

All the above-mentioned actions were performed to
determine code fragments from {q,} and {q’k} that corre-
spond to each other as closely as possible. Therefore, the
last stage of the method is the formation vector of signs
of similarity of a code sample to a metamorphic virus.
This vector is formed based on a pairwise comparison of
the corresponding fragments from {q,} and by the
Damerau-Levenshtein distance.

Let us define the feature vector as follows:

Lmod (E)' Lmed (E)' Xmod (E)r Xmed (E)r Dmod (E),

k= (Dmed (E)' Imod (E)' Imed (E)r lv[mod (E)r Mmed (E), Y

)
(4)

where E = {g}L,; — pairs of code fragments from {q;}
and {q', }; n — the total number of pairs of fragments;
Lmoa — the modal value of the Damerau-Levenshtein
metric between g;; L,.q — the median value of the
Damerau-Levenshtein metric between g;; X,,q — the
modal value of the number of necessary opcode exchange
operations for g;; X;,.q — the median value of the number
of necessary opcode exchange operations for g
Dmog — the modal value of the number of necessary op-
erations of removing operational codes for €;; D04 — the
median value of the number of necessary opcode removal
operations for ¢;; I,,,q4 — the modal value of the number
of necessary opcode insertion operations for ¢
Imea — the median value of the number of necessary op-
code insertion operations for g;; M,,,q — modal value of
the number of opcode matches for g; M,.q — Median
value of the number of opcode matches for g;; Y — the
degree of danger of the program'’s behavior.

To assess the degree of danger of behavior, its be-
havior is compared with a defined set of harmful behav-
ioral patterns. If there is a match between the actions of
the suspicious program and one of the malicious patterns,
the similarity vector property for metamorphic viruses
takes the suspiciousness value of Low, Medium, or High.

In this way, two methods are presented for detecting
metamorphic viruses in a multicomputer system. The first
method is based on the identification of code fragments and
the formation of a vector with signs of similarity to a meta-
morphic virus. The second method uses a multicomputer
system to coordinate the analysis and share results between
components of the multicomputer system. The presented
methods make it possible to detect not only known meta-
morphic viruses but also new ones.

Thus, these two methods were implemented in the ar-
chitecture of a multicomputer system. Its operation pro-
vided several different operating environments for examin-
ing programs for the presence of metamorphic virus code.
Let’s consider the implementation of a multicomputer sys-
tem and its methods. The implementation of the developed
methods and the system itself are necessary for conducting
experimental studies on the effectiveness of the proposed
solution in terms of improving detection efficiency.

Information security and functional safety

163

3. Multicomputer malware detection system
with metamorphic functionality

3.1. Architecture of the multicomputer system

A multicomputer malware detection system (hamed
AMJS), which consists of a set of interacting nodes -
components, was developed to implement the process of
detecting metamorphic malware. AMJS is implemented
as a set of modules, the main ones of which are:

— AMJSP (Amjs Publisher) - sends level 0 mes-
sages (user login/logout, file replacement, administrator
installation).

— AMISS (Amjs Subscriber) — receives level 0
messages (user login/logout, file replacement, admin in-
stallation), event logging.

— AMJISAC (Amjs Admin Checker) — Checks if
the current admin is active and can be an admin.

— AMJISAP (Amjs Admin Publisher) — sends mes-
sages between administrators, works only on hosts se-
lected by administrators.

— AMJSAS (Amjs Admin Subscriber) — receives
messages between administrators, sends a request to in-
stall a new administrator, logs events, and works only on
components selected by administrators.

— AMISDB (Amjs DataBase) — retrieves data
from the database.

— AmjsMPILib - a library of functions for distrib-
uted work.

— AMISMS (Amjs MPI Scheduler) is a task
scheduler (sends the executable task file to work partici-
pants, starts the task and records its execution data in the
database).

- AMISMR (Amjs MPI Runner) — executable
task file.

— AMISCE (Amjs Config Editor) - receives a
message about the need to change the configuration.

Interaction of these modules is shown in Fig. 4. In
the process of implementing AMJS, such architectures as
Event-Driven architecture (Amjss, Amjsas, Amjsce,
Amjs Ul modules), distributed architecture (Amjsms,
Amjsmr, Amjss, Amjsas, Amjsp, Amjsap modules), cli-
ent-server architecture (graphic component of Amjs Ul),
and monolithic architecture (modules amjsp, amjsap, am-
jsac, amjsjc, amjsdb).

A distributed architecture was used to combine the
components into a cluster. Cluster members exchange
messages over the network while maintaining a defined
system state. Modules amjss, amjas, amjsp, and amjsap
provide the exchange of these messages (generate
events). The configuration parameters are defined in the
fileconfig.ini, including the settings of the cluster name,
the number of hosts in the cluster, the prefix of the

domain name of hosts in the network, data for MPI work,
and ports that were used to establish a connection be-
tween hosts.

! Amjsp
]
' SN Sl
! Publisher-Subscriber
1 Amjsap < Amjsas
[}
1 ! ~~ N ~ i
] SN) 1!
‘ ! ~. N 1!
S RGN 1!
1 7 ~ ~ N ~ ,l

\ 1 -~

Config.ini

L
LN
— N
Amjsjc -
- —_——— = .
. - ’
Amjsce -,
I

-
-
Amjsmr (€ = o _ _ -
== Amjsms
~
-~

~ S
-
~
AmjsMPILib ~
OpenMPI
library

Fig. 4. Architecture of the multicomputer system

The main interaction occurs between amjsp and am-
jss, amjsap and amjsas modules. These modules receive
and send messages about changes in the status of clients,
as well as changes in the administrator. Every minute all
hosts send these messages. In addition, amjsap sends a
message when a new administrator is selected. Pairs of
applications work according to the Publisher — Sub-
scriber pattern. Distributed tasks are run using the am-
jsms module, and the amjsmr program is an executable
for MPI. Functions from the AMJS MPI Lib library are
used to perform tasks. Before the job, the amjsvc pro-
gram is run, which clears the job table if the oldest job
was more than a week ago.

The amjsce daemon service is always running on
the AMJS system, waiting for configuration change noti-
fications. It also checks every minute whether the current
administrator meets the requirements.

The interface window displaying the status of hosts in
the system is presented in Fig. 5.

3.2. Implementation of the detection function
of metamorphic viruses
in a multicomputer system

The main function assigned to the developed multi-
computer system AMJS, is the identification of the mal-
ware metamorphic code.

164

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Main | Settings | Jobs | Update

Cluster management

Clustar name: clusterAMIS1234

1P 192.168.7.104

Client name: clientd
Status: active
1P: 152.168.7.105

Fig. 5. Interface window displaying the status
of the hosts in the system

For this purpose, the method of detecting the meta-
morphic code of viruses and the method of forming a vec-
tor of signs of the similarity of a code sample to a meta-
morphic virus were implemented in the AMJS system.

The basis of the proposed method is the concept of
comparing copies of metamorphic viruses by their op-
codes, which involves obtaining two disassembled list-
ings of opcodes - before and after the execution of the
suspicious program. This process was achieved by creat-
ing an isolated environment, passing the suspicious file
to it, and running it for execution. The functionality of
the isolated environment is implemented using a Docker
container built on the Ubuntu 22.04 image. To simplify
the work with the Docker container, management was
implemented through the docker command interface, us-
ing the system function. The GDB [54] disassembler was
used to perform the disassembly.

The implementation of data exchange functions be-
tween the components of the AMJS multicomputer sys-
tem was implemented using the MPI interface.
MPI_Recv and MPI1_Send functions were used for data
exchange between processes.

Each process has a rank from 0 to the number of
running processes per task, inclusive of 1. To obtain all
results, a process with rank 0 is used. The first stage of
transmission involves sending a list of API functions, and
the second stage involves the listing of opcodes.

In turn, we perform symmetric actions on all pro-
cesses whose number is different from 0: disassembly of
the binary file, sending to process 0 the list of API func-
tions and the listing of opcodes.

After the container with the isolated virtual environ-
ment is started, the suspicious file is copied to it, it is
started, and the new executable file is copied again to the
host system. Furthermore, disassembly was again carried
out with the result being sent in the form of a listing of

opcodes after execution to the main process. Thus, the
distributed task of analyzing a binary file for similarity to
a metamorphic virus is performed.

Thus, a multi-computer system for detecting mali-
cious software with metamorphic functionality has been
implemented. This implementation corresponds to the
concept and conceptual model of multicomputer systems
(formula (2)).

Experimental studies were conducted to confirm the
improvement of the effectiveness of detection of meta-
morphic viruses in computer networks.

4. Experiments

4.1. Setting up the experiment and its results
for the functioning of the developed
multi-computer system

The main purpose of the experiment was to check
the effectiveness of the detection of MWOR metamor-
phic malware using the developed multi-computer sys-
tem AMJS.

The experiment included a series of tests in which
the metamorphic malware was launched on one of the
components (the task initiator) of the AMJS system.
Every time on the initiator component, the analysis pro-
cedure of this file was started according to the method of
detection of metamorphic viruses.

With the help of the GDB disassembler [54], the
malware was disassembled and a sample code was ob-
tained to be executed in an isolated virtual environment
(in the form of a list of opcodes and a set of API func-
tions). To obtain a sample code, after execution, the mal-
ware was launched in an isolated environment. After ex-
ecuting the executable file of the malware in an isolated
environment, its repeated disassembly was performed.

Next, the formation of the vector of signs of simi-
larity of the code sample to the metamorphic virus was
carried out based on the implemented method of forming
the vector of signs of similarity of the code sample to the
metamorphic virus.

Then, with the help of the fuzzy inference system
built into the proposed system [53], the identification of
malware as a metamorphic virus was carried out.

If the indicator “Level of Similarity to Metamorphic
Virus” (LSMV) received a value of Medium (that is, it
was not possible to uniquely identify the test sample's be-
longing to one of the classes of metamorphic malware
using the means of one host), then the test sample was
sent to other components of the AMJS multi-computer
system to run them in isolated environments and manifest
metamorphic properties.

Fig. 6 shows an example of two listings of opcodes
for one instance of malware obtained after starting and
disassembling on different hosts of the system. Modified
blocks are marked with red squares.

Information security and functional safety

165

After performing similar symmetrical actions on
each of the system components (step 8 of the method of
detecting metamorphic viruses), the results of the analy-
sis were sent to the initiator component.

endbi64
push | %rbp
mov | %rsp,%rbp

push %rbx
sub |$0x218,%rsp
mov | %fs:0x28,%rax
mov | %rax,-0x18(%rbp)
xor [%heax,%eax
lea [xd99(%rip).%rax
mov | %rax,%rsi
lea [ox2dc7(%rip).%rax
mov | %rax,%rdi
call px10f0 <_2ZStisiSt11char_traitsicEERSt13basic_ostreamlicT_ESS_PKe@plt>
lea [Ox220(%rbp).%rax
mov | $0x10.%edx
lea Oxd7e(%rip).%rcx
mov %rcx,%rsi
mov %rax.%rdi
call 0x1100 =_ZNStldbasic_ofstreamlicSt11char_traitsicEEC1EPKCSt13_los_Openmode@plt>
lea -0x220(%rbp).%rax
mov_ %erax,%rdi
call [px10d0 <_ZNStldbasic_ofstreamlcStllchar_traitsicEE7is_openEv@plt=>
test |%al,%al
je x12f5 <main+172>
i |lea [FOx220(%rbp),%rax
: |lea |0xd60(%rip).%rdx
mov | %rdx,%rsi
mov | %rax,%rdi
call px10f0 <_ZstisIStl1lchar_traitsicEERSt13basic_ostreamicT_ES5_PKc@plt>
lea [0x220(%rbp).%rax
mov | %rax.%rdi
: |call Px1120 <_ZNStldbasic_ofstreamlcStllchar_traitsicEEScloseEv@plt>

lea |oxd5f{%rip).%rax # 0x2040

mov | Ybrax,%rsi

lea |0x2d55(%rip).%rax
mov | %rax,%rdi

call px10f0 <_ZsStisIStl1char_traitsicEERSt13basic_ostreamicT_ES5_PKc@pit>
jmp | 0x1315 <main+204>
lea |0xd7c(%erip),%rax
mov | Yerax.%rsi

lea |ox2eSa(%orip),%rax

0x2008

0x4040 <_ZSt4cout@GLIBCXX_3.4>

0x2010

0x2020

0x4040 =_ZStdcout@GLIBCXX_3.4>

0x2078

0x4160 <_ZStdcerr@GLIBCKX_3.4>

a)

endb[64

push| %rbp

mov | %rsp.%rbp

sub | $0x10.%rsp

mov | %fs:0x28,%rax
mov | %rax.-0x8(%rbp)
xor |%eax,%eax

lea |0Oxddc(%6rip).3erax
mov | %rax,3ersi

lea |0x2dfbi%rip),%%rax
mov | %rax, 2erdi

call Px10c0 <_ZStlsiSt11char_traitslcEERSt13basic_ostreamlcT_ESS5_PKc@plt>
lea |-0x10(%rbp).%rax
mov | $0x0,%ecx

lea |F0x74(%rip),%rdx
mov | $0x0,%esi

mov | %rax,%rdi

call pPx10f0 =pthread_create@plt=>
mov | -0x10(%rbp),%rax

mov | $0x0.%esi

mov | %erax 2erdi

call Px10b0 <pthread_join@plt=
mov | $0x0.%eax

| mov | -0x8(%rbp).%rdx

:| sub |%fs:0x28,%rdx

)| je x1294 <main+123>

call px10d0 <_ stack_chk_fail@plt=>
)| leavey
_ret

0x2017

0x4040 <_ZStdcout@GLIBCXX_3.4>

0x11e9 =_Zl4threadFunctionPv>

b)
Fig.6. Two listings of opcodes of the investigated
malware after start-up and disassembly on different
hosts of the system: a) Host 1 and b) Host 3

A fragment of the log on the initiator component is
shown in Fig. 7.

After additional verification with other components
of the system, the final conclusion was formed (step 9 of
the detection method).

Fig. 8 presents the interface window for receiving
information by the component that initiated the check

about the results of checking the suspicious program by
other (Hostl-Host4) hosts in the system. It should be
noted that in this case, the result of the rest of the hosts in
the system coincides, and the RPM is set as High. As a
result, HostO decides to block the suspicious program and
add its behavior to the behavior blacklist.

e37d93bde495257fa0e7a488c6000e60fd115ec030dedaea006371f4682a71bf

bb4c91f2a819527c756074509af3c1af6bee0691dc81de9b770bca4dfe85e77e

e06¢cbab64638f1cdfeOce5be7¢99580653413754ceb78e109353f9943a8a293d

0843221ff80ef294a6611c45b90084092abc8d800bacch6c1b55e771ec84b93b

Host 1 started isolated container.

Host 1sent new functions vector to Host 0.

Host 1sent new assembly code to Host 0.

Host 4 started isolated container.

Host 2 started isolated container.

Host 4sent new functions vector to Host 0.

Host 3 started isolated container.

Host 2sent new functions vector to Host 0.

Host 3sent new functions vector to Host 0.

Host 1 functions : _GLOBAL__sub_|I_main

__do_global_dtors_aux

__static_initialization_and_destruction_0(int, int)

fini

“init

_start

deregister_tm_clones

frame_dummy

main

register_tm_clones

Host 2 functions : _GLOBAL__sub_|I_main

Fig. 7. A fragment of the log illustrating the reception
of the list of API functions by the Host 0 component
from other components in a multicomputer system

4.2. Setting of the experiment and results

of experimental studies on the detection

of metamorphic viruses by the developed
multicomputer system

Setting up the experiment. In the developed multi-
computer system, files are available in each component,
which contain information about the actions performed
and functions launched to perform certain tasks, as well
as about events that affect the system directly and cause
it to react to them in a certain way. These files must be
constantly updated, and outdated information is removed
from them according to certain criteria. In addition, ac-
cording to these files, the system creates separate tables
in which information about the system’s reactions to the
given effects is stored for a long time. Such information
enables the center of the system to develop options for
decisions regarding further steps of the system, rate them,
and agree with the controller. The controller uses the in-
formation from the corresponding table of effects to fi-
nalize the decision regarding further steps of the system
according to one effect. Thus, the internal tables of the
system components contain information about the previ-
ous decisions of the system as decisions on the defined
impacts. In other words, the developed multicomputer
system is positioned as a system with memory elements.
Since at the initial stage of its operation it does not have

166

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Main | Settings | Jobs Update

Select task from list

Task Sat Déc 23 03:14:50 202:

Task Sat Dec 23 03:13:26 2023

0x0000000000001 11 <+8>
0X0000000000001 15 <4123
19

o ®

0x0000000000001200 <+

Clear jobs

mbly code changed after Launch

0x4040 <_ZStAcOuGGUBCKX 34>

ISt 1char_traitsicEERSt] 3basic_ostreamicT_ESS_PKCEF:

e changed after launch

e changed after launch

Fig. 8. Interface window for receiving information by the component

information about previous events, we consider it in the
first experiment as one that does not contain a fully func-
tional controller of the decisions made. In this case, the
controller approves the decision of the system center [4]
according to the rating (highest) of the proposed options.
Accordingly, for each series of the first stage of the ex-
periment, the conditions were the same.

The second important factor in conducting an ex-
periment is metamorphic viruses and their variety [1]-[3].
Let's highlight the following features: writing completely
into an executable PE-file while preserving the volume
of the original file, i.e. replacing part of the bits and, ac-
cordingly, losing the functionality of the original file and
saving part of the bits of the original file without using
them; recording completely in the executable PE-file
without saving the volume of the initial file, i.e. adding
part of the bits of the metamorphic virus to the initial file
and, accordingly, saving the functionality of the initial
file and obtaining access to execute the first command of
the virus when the infected PE-file is launched; replace-
ment of the initial PE file with a metamorphic virus with
a change or preservation of the size of the file in bits by
supplementing with inactive commands; writing the met-
amorphic virus to an initial PE file and copying and stor-
ing this initial file under a different name with the possi-
bility of calling it for execution after executing the virus
commands. These features form the basis for the for-
mation of four subsets of metamorphic viruses. The se-
lection of these subsets is decisive in the context of the
study of their code according to the results of the previous
experiment on obtaining disassembled commands and
the logic of the studied programs. For example, if a virus
is embodied in a file such that the entry point to the pro-
gram is the first command of the virus and there is an
unconditional transition through several commands, then
such a mechanism of the virus forms one template. In the
absence of an unconditional transition, a second template

is formed. Therefore, these features should be considered
when detecting the metamorphic code of viruses.

Let us denote the subsets of metamorphic viruses as
follows: $, — replacement of bits, the volume of the ini-
tial file in bits is saved, the loss of the functionality of the
initial PE file, the presence of an unconditional transition
at the beginning of the PE file (from the point of entry
into the file), the absence of the function of saving the
initial PE file in a separate file; $, — replacement of bits,
the volume of the initial file in bits is preserved, the loss
of the functionality of the initial PE-file, the presence of
an unconditional transition at the beginning of the PE-file
(from the point of entry into the file), saving the initial
PE-file in a separate file with the possibility of calling it
for execution after execution metamorphic virus com-
mands; £, — replacement of bits, the volume of the initial
file in bits is preserved, the loss of the functionality of the
initial PE-file, the presence of an unconditional transition
at the beginning of the PE-file (from the point of entry
into the file), saving the initial PE-file in a separate file
without calling it for execution after executing com-
mands metamorphic virus; $, — replacement of bits, the
volume of the initial file in bits is not saved, the loss of
functionality of the initial PE file, the presence of an un-
conditional transition at the beginning of the PE file
(from the point of entry into the file), the absence of the
function of saving the initial PE file in a separate file; $s
— replacement of bits, the volume of the initial file in bits
is preserved, the loss of the functionality of the initial PE
file, the presence of an unconditional transition at the be-
ginning of the PE file (from the point of entry into the
file), saving the initial PE-file in a separate file with the
possibility of calling it for execution after executing the
commands of the metamorphic virus; $, — replacement
of bits, the volume of the initial file in bits is not saved,
the loss of the functionality of the initial PE file, the pres-
ence of an unconditional transition at the beginning of the

Information security and functional safety

167

PE file (from the point of entry into the file), saving the
initial PE file in a separate file without calling it for exe-
cution after execution metamorphic virus commands; $,
— replacement of bits, the volume of the initial file in bits
is saved, loss of functionality of the initial PE file, ab-
sence of an unconditional transition at the beginning of
the PE file (from the point of entry into the file), absence
of the function of saving the initial PE file in a separate
file; $g — replacement of bits, the volume of the initial
file in bits is preserved, loss of the functionality of the
initial PE file, no unconditional transition at the begin-
ning of the PE file (from the point of entry into the file),
saving the initial PE file in a separate file with the possi-
bility of calling it for execution after execution metamor-
phic virus commands; £, — replacement of bits, the vol-
ume of the initial file in bits is preserved, loss of the func-
tionality of the initial PE file, no unconditional transition
at the beginning of the PE file (from the point of entry
into the file), saving the initial PE file in a separate file
without calling it for execution after executing com-
mands metamorphic virus; £, — substitution of bits, vol-
ume of the initial file in bits is not saved, loss of function-
ality of the initial PE file, lack of unconditional transition
at the beginning of the PE file (from the point of entry
into the file), lack of function to save the initial PE file in
a separate file; $,, — replacement of bits, the volume of
the initial file in bits is preserved, loss of the functionality
of the initial PE file, no unconditional transition at the
beginning of the PE file (from the point of entry into the
file), saving the initial PE file in a separate file with the
possibility of calling it for execution after execution met-
amorphic virus commands; $,, — replacement of bits, the
size of the initial file in bits is not saved, the loss of the
functionality of the initial PE file, the absence of an un-
conditional transition at the beginning of the PE file
(from the point of entry into the file), saving the initial
PE file in a separate file without calling it for execution
after execution metamorphic virus commands.

Thus, in the set of metamorphic viruses, 12 subsets
separated by certain criteria were selected. These subsets
include most types of metamorphic viruses, but their un-
ion is not an exhaustive set of metamorphic viruses. To
conduct the experiment, we divided the data in 12 sub-
sets, and each subset was defined by an element or ele-
ments in the experiment.

Let's define a set of metamorphic viruses as follows:

H= Uf1=21 s (5)

Let us denote the number of elements in the set §
as Mg, and similarly for subsets $; we denote g,
(t=12,..,12). These designations were used when
processing the results of the experiment and indicated the
number of metamorphic viruses of a certain subset and

the set as a whole, which were used for experimental re-
search.

The purpose of the first stage of the experiment is
to establish the reliability of the detection of metamor-
phic viruses developed by a multi-computer malware de-
tection system with metamorphic functionality, provided
there is no information in the memory elements for the
previous steps and, accordingly, without the involvement
of the controller. That is, in the first experiment with the
system, only the center of the system was involved in de-
termining the detection of a metamorphic virus [4]. In
contrast to host systems, in the developed multi-computer
malware detection system with metamorphic functional-
ity, efficiency improvement was achieved by increasing
computing resources, using computer network capacity
and features in the architecture of the multi-computer
system itself. Metamorphic viruses can be detected by
host systems without involving the rest of the computing
resources of the network, and can also be detected by
components of a multicomputer system without involv-
ing part of the entire system and the center of the system.
In this case, the system components and their sensors per-
formed decision-making functions.

Strategy at work [52] involved researching the ac-
tivities of malicious software in hosts, comparing them
with each other, and making a general decision according
to the received decisions. It includes a mechanism ac-
cording to which the system components assign a suspi-
cious status to the executed process, which is then con-
sidered by the rest of the components. The decision about
whether a suspicious process is running on a host or on
an individual host is made at a single system center. If an
executable is running on only one host and not on the
others, it is difficult to determine whether malicious ac-
tivity is present. However, such options were not investi-
gated in the setting of this experiment. Thus, in the first
stage of the experiment, the multicomputer system itself
was tested for the detection of metamorphic viruses, po-
sitioning it as a single sensor without a controller.

The purpose of the next stages of the experiment is
to establish the reliability of the detection of metamor-
phic viruses by the developed multi-computer malware
detection system with metamorphic functionality, pro-
vided that there is information in the memory elements
for the previous steps and, accordingly, with the involve-
ment of the controller. The second stage of the experi-
ment included the capabilities of the developed multi-
computer system using previous experience in detecting
metamorphic viruses; however, this experience, which is
formed on the information in the memory elements, was
insignificant. Therefore, it is advisable to conduct a cer-
tain number of stages of experiments to achieve constant
reliability in the detection of metamorphic viruses.
Enough stages was defined as the number of stages at

168

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

which the detection reliability results were no longer im-
proved. When conducting experimental research, the
number of stages needed to be determined. It was influ-
enced by the particularity of the architecture of the con-
troller and the mechanism for approving the decision of
the system center embedded in it.

During the experiment, the controller was config-
ured so that every third and sixth stage, when the effects
were repeated, the second-ranked answer was chosen,
and every ninth time the third-ranked answer was chosen.
Then, the minimum number of stages of experiments
from the initial one should be equal to ten because it was
included in the first stage. In order to continue the re-
search after the tenth stage, nine experiments should be
conducted to ensure compliance with stages two through
ten, that is, to perform a full iteration. However, the num-
ber of stages may not necessarily be 10, 19, or 28. It can
be different and determined by the fact that at two or three
adjacent stages, depending on the formed requirements,
the appropriate level of reliability of detection of meta-
morphic viruses was achieved.

An important part of the experiment is a set of test
samples of metamorphic viruses and their correct use be-
cause they all have functionality that involves implemen-
tation into executable PE files. To conduct the experi-
ment, we chose five different, but at the same time, those
that have characteristic features of the class, metamor-
phic viruses for each of the subsets $; (t = 1,2, ..., 12).
Their construction was performed artificially without in-
cluding malicious functionality. Thus, the number of
samples of different metamorphic viruses used in the ex-
periment was sixty. The general pattern of all sixty met-
amorphic viruses was searched for an executable PE file
and infect it with a type that defines one of the classes $;
(t=1,2,...,12) and it must be of the same type as the
executable metamorphic virus.

Benign software, i.e., user programs, must also be
executed during the experiment. We selected twenty-five
computer stations in the corporate network that were lo-
cated in at least three of its segments. We turned off the
rest of the computer stations.

We installed the system components in each of
them and performed its initial settings and start-up. When
conducting a series of experiments at different stages of
the installation of system components, we repeated the
experiments to ensure their independence for all twelve
types of metamorphic viruses, which are specified by the
corresponding classes $; (f = 1,2, ..., 12).

For each type of metamorphic virus, the multi-com-
puter system was not reinstalled. It accumulates
knowledge in memory elements for use by the controller.
Thus, the independence of the experiment was applied
exclusively to classes $; (f = 1,2, ...,12).

In each of the twenty-five nodes in which the com-
ponents of the multicomputer system were installed, only

system processes and one researched process were
launched. In twenty-four nodes, twenty-four different
processes were launched for execution, which were ori-
ented to the use of input—output to ensure the duration of
execution.

After a given custom process is fully executed, it is
repeated until the experiment series is completed at the
set time. A metamorphic virus was launched in a node.
The time for conducting a series of experiments was de-
termined by considering the time spent on the execution
of the metamorphic virus and the processing of events re-
lated to it in a multicomputer system.

The time for all series of the experiment was the
same and was determined experimentally during the pre-
vious series of the experiments. For a defined set of initial
data of the planned experiment, we set the time for con-
ducting a series of experiments lasting 30 min.

For the metamorphic virus, the same executable PE
files were used as baits and as the targets of its attacks for
further infection. These node-specific bait files had the
same bit set but different names. They were placed in all
directories and the root directory.

All research was conducted in an isolated environ-
ment of the corporate network. After all experiments and
experiments with classes were completed, the system
software was reinstalled with the same settings in the
computer stations.

Conduct the experiment and the results of the
experimental research. To conduct experimental stud-
ies with the developed multi-computer system, the spec-
ified executable programs were launched at the same
time in each specified node of the corporate network. For
this, the same launcher was used with the launch time set.

The results of all series of experiments were sepa-
rately saved with log files and tables of memory ele-
ments.

To evaluate the efficiency of the detection approach
TPR — True Positive Rate, FPR — False Positive Rate,
Precision, Recall, F1-score, and MCC metrics were in-
volved [56, 57]:

TP

TPR = -100, (6)
TP+FN
FPR = ——- 100, @
TN+FP
TN
Sp = oy 100, C)
Precision = ———, 9)
TP+FP
Recall = ——, (20)
TP+FN
F1 = Z*Recall*Pre?i?ion, (11)
Recall+Precision
MCC TP+*TN—FP*FN (12)

- /(TP+FP)(TP+FN)(TN+FP)(TN+FN) '

Information security and functional safety

169

Matthews correlation coefficient (MCC) [56] is de-
fined from -1 to 1, where £1 means full agreement or dis-
agreement, and a value of zero means no relationship.
The phi coefficient has a maximum value determined by
the distribution of two variables if one or both variables
can take more than two values.

The examples for 1% and 21% results of a series of
experimental studies (total 46 stages) are presented in Ta-
ble 1. The experiment is stopped after the full completion

of step 46 because the values obtained in steps 44-46 are
close and reflect an improvement in the reliability of de-
tection compared with the previous steps. That is, the re-
quirements for stopping the experiment have been met.
To process the results of the experimental studies, we
used the ROC analysis technique [55].

Examples of results of ROC analysis for 1 and 21
stages (total 46 stages) are given separately in Table 2.

Table 1

The results of the study on the accuracy of detection of metamorphic viruses at certain stages, considering
all the features of artificially created class instances

Detec- Metamorphic virus class
Stage | ton ol g3 a5 6| 7| 8| 9|10 11| 12| T
result
TP 11 10 13 13 12 12 13 12 12 12 11 12 143
1 FN 4 5 2 2 3 3 2 3 3 3 4 3 37
FP 34 | 27 | 20 | 20 | 19 | 33 35 32 29 21 28 27 325
TN 326 | 333 | 340 | 340 | 341 | 327 | 325 | 328 | 331 | 339 | 332 | 333 | 3995
TP 10 13 13 11 11 12 10 11 9 13 13 12 138
FN 5 2 2 4 4 3 5 4 6 2 2 3 42
21 FP 33 | 21 | 34 | 22| 32| 19 36 42 40 26 28 25 358
TN 327 | 339 | 326 | 338 | 328 | 341 | 324 | 318 | 320 | 334 | 332 | 335 | 3962
FN 4 4 3 6 2 4 2 3 2 4 6 4 44
Table 2
Examples of results of ROC analysis for 1 and 21% stages (total 46 stages)
Stage TPR FPR Sp Precision Recall F1 MCC
1 79.44 7.52 92.48 0.31 0.79 0.44 0.46
| 21 | 7667 8.29 91.71 0.28 0.77 0.41 0.43

Table 2 shows the evaluation of the MCC value.
The obtained results in table 2 confirm the appropriate
level of the developed classifier of metamorphic viruses.

The demonstration of the change in the values of the
main indicators of the ROC analysis when performing the
46 stages is shown in Fig. 9.

In Fig. 9, a, the graph of the function shows the
growth of the reliability value of detection of metamor-
phic viruses in the process of filling the system with in-
formation about its previous steps.

The detection result of the developed multi-com-
puter system reached 90%, which is a sufficient basic in-
dicator.

Fig. 9, b shows a graph for the false positive rate.
The graph is descending, demonstrating the improvement
in the system’s classification of programs that do not con-
tain metamorphic functionality.

The percentage of false positives was 3%, and itim-
proved by about 6%, which confirms the need to use in-
formation about the results of the previous stages of de-
tection of metamorphic viruses.

Similarly, Fig. 9, b and Fig. 9, ¢ show the result of
classification of programs without metamorphic func-
tionality and the result is about 97%, which is acceptable
for further improvements of the developed multicom-
puter system.

170

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

o Change in the TPR value

90

70

65 ¥

60

Mumber of experiment

a)

93

o 5 10 15 20 25 30 38 40 45 50

10 Change in the FPR value

FPR, %
o

0 5 10 15 20 25 30 35 40 45 50
Mumber of experimeant

b)

Change in the Sp value

a7 |
96 |
o5
o4
93l
o2t

a1

a0

o] & 10 15 20

25 30 35 40 45

MNumber of experiment

Fig. 9. Graphs for functions from Table 2

4.3. Discussion

Let’s summarize all the results obtained at all stages
into a single table of values from stages 1-46. As a result,
we have received the sum of the values for each class of
metamorphic viruses according to the indicators of the
ROC analysis.

At the first stages, these values were smaller, and at
the last stages, they were larger, but this made it possible
to assess the quality of the test samples of classes of met-
amorphic viruses.

This was achieved by comparing the deviation of
the indicator results from the average value.

If the deviation is significant, then it is necessary to
analyze instances of metamorphic viruses of the class in
which the deviation is found, or to finalize the corre-
sponding subsystem of the multicomputer system.

Table 3 shows the summary values of the results of
the experiment.

The arithmetic mean value of detection reliability
for all classes and all series and stages of the experiment
is equal TP = 75.46 %. The deviation from this value of
all the values of the twelve classes does not exceed 3%;
therefore, the created instances of classes of metamorphic
viruses are correlated with each other. This is also con-
firmed by the values of the remaining indicators of the
ROC analysis.

Thus, according to the results of the conducted ex-
periment, it was established that the presence of the con-
troller in a multi-computer system provides improved de-
tection of metamorphic viruses with increasing number
of applications.

Information security and functional safety 171
Table 3
Results of the study of individual types of artificially created instances of classes at all stages
Detection Classes of metamorphic viruses Total
result 1 2 3 4 5 6 7 8 9 10 11 12
TP 510 520 519 511 517 515 | 535 | 519 | 520 | 540 | 501 | 541 | 6248
FN 180 170 171 179 173 175 155 | 171 | 170 | 150 | 189 | 149 | 2032
FP 1132 | 1151 | 1167 | 1115 | 1096 | 1214 | 1132 | 1228 | 1161 | 1164 | 1178 | 1117 | 13855
TN 15428 | 15409 | 15393 | 15445 | 15464 | 15346 | 15428 | 15332 | 15399 | 15396 | 15382 | 15443 | 184865
TPR 7391 | 7536 | 7522 | 74.06 | 7493 | 7464 | 7754 | 7522 | 7536 | 7826 | 72.61 | 78.41 | 75.46
FPR 684 | 695 | 705 | 673 | 662 | 733 | 684 | 742 | 701 | 703 | 711 | 675 | 6.97
Precision | 031 | 031 | 031 | 031 | 032 | 030 | 032 | 030 | 031 | 032 | 030 | 033 | 031
Recall 0.74 0.75 0.75 0.74 0.75 075 | 078 | 075 | 075 | 0.78 | 0.73 | 0.78 0.75
F1 0.44 0.44 0.44 0.44 0.45 0.43 0.45 0.43 0.44 0.45 0.42 0.46 0.44
MCC 0.45 0.45 0.45 0.45 0.46 0.44 0.47 0.44 0.45 0.47 0.43 0.48 0.45

Conclusion and Future Work

Thus, a conceptual model of multi-computer sys-
tems has been developed, in which, unlike known models
of multi-computer systems, which are designed to ensure
the functioning with their support of antivirus baits and
traps for detecting malware and cyberattacks in corporate
networks, as well as for prevention and countermeasures
their penetration, in the conceptual model of multi-com-
puter systems a defining characteristic is introduced,
which is responsible for the control of the decisions
made, and the rest of the defining characteristics, which
in the process of functioning of the systems should form
the architecture of the system by independently synthe-
sizing a set of separate defining characteristics according
to a closed route in the graph of defining characteristics
in architecture of the systems, as well as specialized func-
tionality is allocated, which, compatible with the general
part of the system, forms the system as the single sensor,
which makes it possible to provide a variety of options
for responses to the influence of intruders, cyberattacks
and the functioning of malware, and also makes it possi-
ble not only to diversify the system due to its different
architecture, but also ensures its stability when removing
certain nodes in the corporate network and when combin-
ing specialized functionality with the general part of the
system forms the system as the single sensor, which gen-
erally improves the effectiveness of countering malware
and cyberattacks.

Methods for detecting metamorphic viruses have
been developed with the possibility of their implementa-
tion in the architecture of multicomputer systems with
baits and traps in such a way that the system directly par-
ticipates in the detection procedure through its compo-
nents and makes a decision about the presence of meta-
morphic code in the executable PE file.

The implementation of a multi-computer system for
detecting malicious software with metamorphic function-

ality has been developed to demonstrate the ability to im-
plement the proposed conceptual architecture model and
the developed methods of detecting metamorphic vi-
ruses. An experiment was set up regarding the function-
ing of a multi-computer system for detecting malicious
software, and experimental studies were conducted with
it in the part of studying the metamorphic code develop-
ment process to confirm the possibility of implementing
the steps of the developed methods of detecting metamor-
phic viruses. In addition, an experiment was conducted
regarding the effectiveness of detecting the metamorphic
code of viruses, and relevant experimental studies were
conducted.

Based on the results of the work performed, the ef-
fectiveness of the detection of the metamorphic code of
viruses by the developed multi-computer system was in-
vestigated and the presence of an improvement in detec-
tion was established.

The directions of further work according to the
conceptual model to ensure the functioning of multi-
computer systems from combined antivirus baits and
traps and the decision-making controller for detecting
malware and cyberattacks in corporate networks, it is
necessary to develop a method of organizing the func-
tioning of such systems, as well as a method of organiz-
ing the functioning of combined antivirus baits and traps
and methods of detecting malware and cyberattacks us-
ing combined antivirus baits and traps implemented in
the architecture of such systems to improve detection ef-
ficiency, as well as spread the results of work to new
types of malicious software.

Authors Contribution
Antonina Kashtalian analyzed the known methods
of developing bait and traps, developed a conceptual
model of multi-computer malware detection systems,
participated in the development of the implementation of
the detection system with metamorphic functionality, and
designed and conducted experiments.

172

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Sergii Lysenko participated in the formulation of
the problem and purpose of the study, determined the
strategy for developing methods for detecting metamor-
phic viruses, participated in the experimental design and
verification of scientific results.

Oleg Savenko formulated the research problem, de-
fined the conceptual provisions for the development, par-
ticipated in the experiment design, processed the experi-
ment results in terms of malware detection via the sys-
tem, and verified the scientific and practical results.

Andrii Nicheporuk developed two methods for de-
tecting metamorphic viruses and participated in the de-
sign and processing of the experimental results.

Tomas Sochor participated in the malware detec-
tion approach creation and verification of scientific re-
sults.

Volodymyr Avsiyevych participated in the devel-
opment of the implementation of a multi-computer sys-
tem for detecting malware with metamorphic functional-
ity and conducted experiments to obtain the results of the
study of metamorphic code.

Conflict of interest
The authors declare that they have no conflict of in-
terest in relation to this research, whether financial, per-
sonal, authorship or otherwise, that could affect the re-
search and its results presented in this paper.

Financing
This study was conducted without financial support.

Data availability
The manuscript has no associated data.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence technologies when creating the current
study.

All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. Markowsky, G. Savenko, O., Lysenko, S., &
Nicheporuk, A. The technique for metamorphic viruses'
detection based on its obfuscation features analysis.
CEUR-WS, 2018, vol. 2104, pp. 680-687.

2. Savenko, O., Lysenko, S., Nicheporuk, A., &
Savenko, B. Metamorphic Viruses’ Detection Technique
Based on the Equivalent Functional Block Search.
CEUR-WS, 2017, vol. 1844, pp. 555-569.

3. Savenko, O., Lysenko, S., Nicheporuk, A., &
Savenko, B. Approach for the Unknown Metamorphic

Virus Detection. Proceedings of the 8-th IEEE Interna-
tional Conference on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS 2017), Bucha-
rest (Romania), September 21-23, 2017, Bucharest,
2017, pp. 71-76. DOI:10.1109/IDAACS.2017.8095052.

4. Kashtalian, A., Lysenko, S., Savenko, B., So-
chor, T., & Kysil, T. Principle and method of deception
systems synthesizing for malware and computer attacks
detection. Radioelectronic and Computer Systems, 2023,
no. 4, pp. 112-151. DOI: 10.32620/reks.2023.4.10.

5. Han, X., Kheir, N., & Balzarotti, D. Deception
Techniques in Computer Security. ACM Computing Sur-
veys (CSUR), 2018, vol. 51, pp. 1-36. DOL:
10.1145/3214305.

6. Pawlick, J., Colbert, E., & Zhu, Q. A Game-the-
oretic Taxonomy and Survey of Defensive Deception for
Cybersecurity and Privacy. ACM Computing Surveys
(CSUR), 2018, wvol. 52, pp. 1-28. DOL:
10.48550/arXiv.1712.05441.

7. Almeshekah, M. H., & Spafford, E. H. Cyber
Security Deception. In: Jajodia, S., Subrahmanian, V.,
Swarup, V., Wang, C. (eds) Cyber Deception, Springer,
Cham, 2016. DOI: 10.1007/978-3-319-32699-3_2.

8. Chessa, M., Grossklags, J., & Loiseau, P. A
Game-Theoretic Study on Non-monetary Incentives in
Data Analytics Projects with Privacy Implications, 2015
IEEE 28th Computer Security Foundations Symposium,
Verona, Italy, 2015, pp. 90-104. DOI:
10.1109/CSF.2015.14.

9. Shokri, R. Privacy games: Optimal user-centric
data obfuscation. Proc. Privacy Enhancing Technolo-
gies, 2015, vol. 2, pp. 299-315. DOI 10.1515/popets-
2015-0024.

10. Pawlick, J., & Zhu, Q. A Stackelberg Game Per-
spective on the Conflict Between Machine Learning and
Data Obfuscation. In IEEE Workshop on Inform. Foren-
sics and Security, 2016. Available at:
https://arxiv.org/abs/1608.02546. (accessed 12.12.2023).

11.Clark, A., Zhu, Q., Poovendran, R., & Basar, T.
Deceptive routing in relay networks. In Decision and
Game Theory for Security. Springer, 2012, pp. 171-185.
DOI: 10.1007/978-3-642-34266-0_10.

12.Lu, R, Lin, X,, Luan, T. H., Liang, X., & Shen,
X. Pseudonym changing at social spots: An effective
strategy for location privacy in vanets. IEEE Trans Ve-
hicular Technol, 2012, vol. 61, iss. 1, pp. 86-96. DOI:
10.1109/TVT.2011.2162864.

13.Durkota, K., Lisy, V., Bosansky, B., &
Kiekintveld, C. Optimal Network Security Hardening
Using Attack Graph Games. In Intl. Joint Conf. on Arti-
ficial Intelligence, 2015, pp. 526-532. Available at:
https://www.semanticscholar.org/paper/Optimal-Net-
work-Security-Hardening-Using-Attack-Durkota-
Lis%C3%BD/114c35ed4e6bede556f36bed7af3bfe9fe92
09d9. (accessed 10.12.2023).

14. Horak, K., Zhu, Q., & Bosansky, B. Manipulat-
ing Adversary’s Belief: A Dynamic Game Approach to
Deception by Design in Network Security. In Decision
and Game Theory for Security. Springer, 2017, pp. 273—
294. DOI: 10.1007/978-3-319-68711-7_15.

https://doi.org/10.32620/reks.2023.4.10

Information security and functional safety

173

15. Al-Shaer, E. A Cyber Mutation: Metrics, Tech-
niques and Future Directions. In Proceedings of the 2016
ACM Workshop on Moving Target Defense (MTD '16).
Association for Computing Machinery, New York, NY,
USA, 2016, vol. 1. DOI: 10.1145/2995272.2995285.

16. Park, K., Woo, S., Moon, D., & Choi, H. Secure
Cyber Deception Architecture and Decoy Injection to
Mitigate the Insider Threat. Symmetry, 2018, vol. 10, iss.
1, article no. 14. DOI: 10.3390/sym10010014.

17. Kechao, L., & Xinli, X. OpenHIP Random Host
Hopping in Network Layer. In International Conference
on Education, Management and Information Technology
(ICEMIT 2019), 2019. DOI: 10.25236/icemit.2019.048.

18. Adili, M. T., Mohammadi, A., Manshaei, M. H.
& Rahman, M. A. A cost-effective security management
for clouds: A game-theoretic deception mechanism. 2017
IFIP/IEEE Symposium on Integrated Network and Ser-
vice Management (IM). Lisbon, Portugal, 2017, pp. 98-
106. DOI: 10.23919/INM.2017.7987269.

19. Reti, D., Fraunholz, D., Elzer, K., Schneider, K.,
& Schotten, H. D. Evaluating Deception and Moving
Target Defense with Network Attack Simulation. In Pro-
ceedings of the 9th ACM Workshop on Moving Target
Defense (MTD'22). Association for Computing Machin-
ery, New York, NY, USA, 2022, pp. 45-53. DOI:
10.1145/3560828.3564006.

20. Franco, J., Aris, A., Canberk, B., & Uluagac,
A. S. A Survey of Honeypots and Honeynets for Internet
of Things, Industrial Internet of Things, and Cyber-Phys-
ical Systems. arXiv:2108.02287v1 [cs.CR] 4 Aug 2021.
Available at: https://arxiv.org/pdf/2108.02287.pdf. (ac-
cessed 12.12.2023).

21. Zielinski, D., & Kholidy, H. A. An Analysis of
Honeypots and their Impact as a Cyber Deception Tactic
arXiv:2301.00045v1 [cs.CR] 30 Dec 2022. Available at:
https://doi.org/10.48550/ar Xiv.2301.00045. (accessed
12.12.2023).

22.Sochor, T., & Zuzcak, M. High-Interaction
Linux Honeypot Architecture in Recent Perspective. In:
Gaj, P., Kwiecien, A., Stera, P. (eds) Computer Net-
works. CN 2016. Communications in Computer and In-
formation Science, 2016, vol. 608. Springer, Cham. DOI:
10.1007/978-3-319-39207-3_11.

23. Chovancova, E., & Adam, N. A Clustered Hy-
brid Honeypot Architecture. Acta Polytechnica Hun-
garica, 2019, vol. 16, iss. 10, pp. 173-189. DOI:
10.12700/APH.16.10.2019.10.11.

24.Baykara, M., & Das, R. A novel honeypot based
security approach for real-time intrusion detection and
prevention systems. Journal of Information Security and
Applications, 2018, vol. 41, pp. 103-116. DOI:
10.1016/j.jisa.2018.06.004.

25.Li, Y., Shi, L., & Feng, H. A Game-Theoretic
Analysis for Distributed Honeypots. Future Internet,
2019, wvol. 11, iss. 3, article no. 65. DOI:
10.3390/i111030065.

26. Fraunholz, D., Zimmermann, M., & Schotten,
H. D. An adaptive honeypot configuration, deployment
and maintenance strategy. 2017 19th International Con-
ference on Advanced Communication Technology

(ICACT), 2017, pp. 53-57. DOl:
10.23919/ICACT.2017.7890056.

27.Wang, K., Du, M., Maharjan, S., & Sun, Y. Stra-
tegic Honeypot Game Model for Distributed Denial of
Service Attacks in the Smart Grid. In IEEE Transactions
on Smart Grid. Sept. 2017, vol. 8, no. 5, pp. 2474-2482,
DOI: 10.1109/TSG.2017.2670144.

28.Nasr, M., Zolfaghari, H., & Houmansadr, A.
The Waterfall of Liberty: Decoy Routing Circumvention
that Resists Routing Attacks. Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security. 2017. DOI: 10.1145/3133956.3134075.

29. Sadasivam, G. K., & Hota C. Scalable Honeypot
Architecture for Identifying Malicious Network Activi-
ties. 2015 International Conference on Emerging Infor-
mation Technology and Engineering Solutions. Mahash-
tra, India, 2015, pp. 27-31. DOI:
10.1109/EITES.2015.15.

30. Kumar, S., Janet, B., & Eswari, R. Multi Plat-
form Honeypot for Generation of Cyber Threat Intelli-
gence. 2019 IEEE 9th International Conference on Ad-
vanced Computing (IACC). Tiruchirappalli, India, 2019,
pp. 25-29. DOI: 10.1109/IACC48062.2019.8971584.

31.You, J., Lv, S, Sun, Y., Wen, H., & Sun, L.
HoneyVP: A Cost-Effective Hybrid Honeypot Architec-
ture for Industrial Control Systems. ICC 2021 - IEEE In-
ternational Conference on Communications, Montreal,
QC, Canada, 2021, pp. 1-6, DOI:
10.1109/1CC42927.2021.9500567.

32.11g, N., Duplys, P., Sisejkovic, D., & Menth, M.
A survey of contemporary open-source honeypots,
frameworks, and tools. Journal of Network and Com-
puter Applications, 2023, vol. 220, article no. 103737,
ISSN 1084-8045, DOI: 10.1016/j.jnca.2023.103737.

33.Shabtai, A., Bercovitch, M., Rokach, L., Gal,
Y., Elovici, Y., & Shmueli, E. Behavioral Study of Users
When Interacting with Active Honeytokens. ACM Trans.
Inf. Syst. Secur., 2016, vol. 18, iss. 3, article no. 9, pp. 1-
21. DOI: 10.1145/2854152.

34. Juels, A., & Rivest, R. L. Honeywords: Making
password-cracking detectable. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, 2013, pp. 145-160. DOI:
10.1145/2508859.2516671.

35. Rrushi, J. L. NIC displays to thwart malware at-
tacks mounted from within the OS. Comput. Secur.,
2016, vol. 61, pp. 59-71. DOl:
10.1016/j.cose.2016.05.002.

36. Kaghazgaran, P., & Takabi, H. Toward an In-
sider Threat Detection Framework Using Honey Permis-
sions. Journal of Internet Services and Information Secu-
rity (JISIS), 2015, wvol. 5, iss. 3. DOIL:
10.22667/J1S1S.2015.08.31.019.

37.Efendi, M. A., Ibrahim, Z. B., Zawawi, M. N.,
Rahim, F. A., Pahri, N. A., & Ismail, A. A Survey on De-
ception Techniques for Securing Web Application. 2019
IEEE 5th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Per-
formance and Smart Computing, (HPSC) and IEEE Intl
Conference on Intelligent Data and Security (IDS). 2019,

174

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

pp. 328-331. DOI:
IDS.2019.00066.

38.Onaolapo, J., Mariconti, E., & Stringhini, G.
What Happens After You Are Pwnd: Understanding the
Use of Leaked Webmail Credentials in the Wild. In Pro-
ceedings of the 2016 Internet Measurement Conference
(IMC '16). Association for Computing Machinery, New
York, NY, USA, 2016, pp. 65-79. DOI:
10.1145/2987443.2987475.

39. De Faveri, C., Moreira, A., & Amaral, V. Multi-
Paradigm Deception Modeling for Cyber Defense. The
Journal of Systems & Software, 2018, vol. 141, pp. 32-
51. DOI: 10.1016/.jss.2018.03.031.

40. De Cristofaro, E., Friedman, A., Jourjon, G., Ali
Kaafa, M. A., & Shafig, M. Z. Paying for Likes? Under-
standing Facebook Like Fraud Using Honeypots. In Pro-
ceedings of the 2014 Conference on Internet Measure-
ment Conference (IMC '14). Association for Computing
Machinery, New York, NY, USA, 2014, pp. 129-136.
DOI: 10.1145/2663716.2663729.

41. Almeshekah, M. H., & Spafford, E. H. Planning
and Integrating Deception into Computer Security De-
fenses. In Proceedings of the 2014 New Security Para-
digms Workshop (NSPW '14). Association for Compu-
ting Machinery, New York, NY, USA, 2014, pp. 127-
138. DOI: 10.1145/2683467.2683482.

42. Bercovitch, M., Renford, M., Hasson, L., Shab-
tai, A., Rokach, L., & Elovici, Y. HoneyGen: An auto-
mated honeytokens generator. Proceedings of 2011 IEEE
International Conference on Intelligence and Security In-
formatics, Beijing, China, 2011, pp. 131-136. DOI:
10.1109/1S1.2011.5984063.

43. Matin, I. M. M., & Rahardjo, B. Malware De-
tection Using Honeypot and Machine Learning. 2019 7th
International Conference on Cyber and IT Service Man-
agement (CITSM). Jakarta, Indonesia, 2019, pp. 1-4.
DOI: 10.1109/CITSM47753.2019.8965419.

44. Ahmed, J., Karpenko, A., Tarasyuk, O., Gor-
benko, A., & Sheikh-Akbari, A. Consistency issue and
related trade-offs in distributed replicated systems and
databases: a review. Radioelectronic and Computer Sys-
tems, 2023, no. 2. pp. 171-179. DOIL.
10.32620/reks.2023.2.14.

45, Fursov, ., Yamkowyi, K., & Shmatko, O. Smart
Grid and wind generators: an overview of cyber threats
and vulnerabilities of power supply networks. Radioelec-
tronic and Computer Systems, 2022, vol. 4. pp. 50-63.
DOI: 10.32620/reks.2022.4.04.

46. Dovbysh, A., Liubchak, V., Shelehov, 1., Si-
monovskiy, J., & Tenytska, A. Information-extreme ma-
chine learning of a cyber attack detection system. Radio-
electronic and Computer Systems, 2022, no. 3, pp. 121-
131. DOI: 10.32620/reks.2022.3.09.

47.Morozova, O., Nicheporuk, A, Tetskyi, A., &
Tkachov, V. Methods and technologies for ensuring cy-
bersecurity of industrial and web-oriented systems and

10.1109/BigDataSecurity-HPSC-

networks. Radioelectronic and Computer Systems, 2021,
no. 4, pp. 145-156. DOI: 10.32620/reks.2021.4.12.

48. Moskalenko, V., Zaretskyy, M., Moskalenko,
A., Kudryavtsev, A., & Semashko, V. Multi-layer model
and training method for malware traffic detection based
on decision tree ensemble. Radioelectronic and Com-
puter Systems, 2020, no. 2, pp. 92-101. DOI:
10.32620/reks.2020.2.08.

49. Lysenko, S., Bobrovnikova, K., Shchuka, R., &
Savenko, O. A Cyberattacks Detection Technique Based
on Evolutionary Algorithms. 11th International Confer-
ence on Dependable Systems, Services and Technologies
(DESSERT), 2020, wvol. 1, pp. 127-132. DOI:
10.1109/DESSERT50317.2020.9125016.

50. Bobrovnikova, K., Lysenko, S., Savenko, B.,
Gaj, P., & Savenko, O. Technique for IoT malware de-
tection based on control flow graph analysis. Radioelec-
tronic and Computer Systems, 2022, no. 1, pp. 141-153.
DOI: 10.32620/reks.2022.1.11.

51.Savenko, B., Kashtalian, A., Lysenko, S., &
Savenko, O. Malware Detection By Distributed Systems
with Partial Centralization. 2023 IEEE 12th International
Conference on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Applica-
tions (IDAACS), Dortmund, Germany, 2023, pp. 265-
270. DOI: 10.1109/IDAACS58523.2023.10348773.

52.Savenko, O., Lysenko, S., & Kryschuk, A.
Multi-agent based approach of botnet detection in com-
puter systems. CCIS, 2012, vol. 291, pp. 171-180. DOI:
10.1007/978-3-642-31217-5_19.

53. Kleshch, K., & Shablii, V. Comparison of fuzzy
search algorithms based on Damerau-Levenshtein au-
tomata on large data. Technology audit and production
reserves, 2023, vol. 4, no. 2/72, pp. 27-32. DOI:
10.15587/2706-5448.2023.286382.

54.GDB: The GNU Project Debugger. Available
at: https://www.sourceware.org/gdb/ (accessed
06.12.2023).

55. Powers, D. Evaluation: From Precision. Recall
and F-Measure to ROC. Informedness. Markedness &
Correlation. arXiv 2020. Available at:
10.48550/arXiv.2010.16061. (accessed 06.12.2023).

56. Chicco, D., & Jurman, G. The Matthews corre-
lation coefficient (MCC) should replace the ROC AUC
as the standard metric for assessing binary classification.
BioData Mining, 2023, vol. 16, iss. 1, pp. 1-23. DOI:
10.1186/513040-023-00322-4.

57.Savenko, B., Lysenko, S., Bobrovnikova, K.,
Savenko, O., & Markowsky, G. Detection DNS Tunnel-
ing Botnets. Proceedings of the 2021” IEEE 11th Inter-
national Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applica-
tions (IDAACS), IDAACS’2021, Cracow, Poland, Sep-
tember 22-25, 2021. DOl:
10.1109/IDAACS53288.2021.9661022.

Received 05.01.2024. Accepted 20.02.2024

Information security and functional safety 175

MYJbTUKOMIT’'IOTEPHI CUCTEMMU BUABJIEHHSA 3JIOBMUCHOI'O ITPOT'PAMHOI'O
3ABE3INEYEHHSA 3 METAMOP®HUM ®YHKIHIOHAJIOM

Anmounina Kawmanwvan, Cepeiii /Iucenko, Onez Casenko, Anopiii Hiuenopyx,
Tomaw Couop, Bonooumup Aeciceuu

[otpeda B po3poOI1i HOBUX CHCTEM BUSIBICHHS Ta MPOTHIIT MIKTTMBOMY IIPOrpaMHOMY 3a0€3IeUeHHIO 3aJIH-
IIA€THCS aKTyasbHOI0. OKpIiM METOJIB BHSBICHHS IIKITMBOI'O MPOrPaMHOro 3a0e3NeueHHs, Bce OiIbIIo] aKTyallb-
HOCTI HaOyBae moTpeda B po3poOIli HOBUX CHCTEM BUSBJICHHSI Ta MPOTHUIIT IIKIUTMBOMY IIPOrPaMHOMY 3a0€3IIeUEeHHIO.
BukopucranHs pi3HOMaHITHHX CHUCTEM BHSBIEHHS Ta ()OPMYBaHHS B HUX 3MIHHOI apXiTEKTYpU 3HAYHO IiJBHIIYE
e(EeKTUBHICTh BUSBIICHHS, OCKUIBKU SK ISl 37IOBMHACHHUKIB ITPU KOMITFOTEPHUX aTakax, Tak 1 JUIsl OIKiJIMBOTO MpPO-
TpaMHOr0 3a0e3MeueHHs] PO3yMIHHSI CHCTEMH 3HaYyHO YCKJIaJHIOEThCS. KpiMm TOro, Taki CHCTEMH MOXKYTh MiCTHTH
TIPUMaHKY, MTACTKH 1, BIJIIOB1THO, MOAM(IKOBaHI OmepalliifHi cepesoBHIa it 0OMaHHOTO BUKOHAHHS TIPOrpaM 3 Me-
TOIO JTOCITI/PKEHHS. Y CTaTTi po3p0o0IIeHO KOHIENTYalbHY MOJIEh 0araTOKOMITIOTEPHUX CUCTEM, sIKa pO3po0IIeHa ISt
3a0e3neueHHs] QyHKIIOHYBaHHS aHTHUBIPYCHHX MPUMAaHOK 1 MACTOK 3 METOI0 BUSIBJICHHS LIKIJUIMBOTO MPOrPaMHOI0
3a0e3MeueHHs Ta KOMITIOTEPHUX aTaK y KOPIOPaTUBHUX Mepekax. 3alpornoHOBaHUH MiJX1J CIpsSMOBaHUI Ha 3aI1o-
OiraHHs Ta MPOTHUJIiI0 NPOHUKHEHH MeTaMopdHUX BipyciB. [IpencraBieHo KoHIENTyanbHy MOZAEIb O0araToKoOMI'1o-
TEPHHUX CHCTEM Ta BBE/ICHO BU3HAYAILHY XapaKTEPUCTHUKY, sSIKa BIAMOBIAA€ 32 KOHTPOIb PillIeHb Ta 1HII BU3HAYaIbHI
XapaKTEePUCTUKH CUCTeMU. Po3pobiieHO MeToin BUSBIICHHsI MeTaMOp(HUX BipyCiB 3 MOMKIIMBICTIO 1X peaji3amii B ap-
XITEKTYpi MYJIBTHKOMII'IOTEPHUX CHUCTEM 3 NMPUMaHKaMH Ta MMacTKaMH TaKMM YMHOM, IO cucTeMa Oe3rmocepeaHbo
4yepe3 CBOI KOMITIOHEHTH JI0JTy9a€eThCsl 10 3A1HCHEHHS BUSIBIICHHS Ta MPUHAMaE PillieHHsI PO HAsSBHICTh MeTaMOp(HOTo
KOy Y BUKOHYBaHOMY (haiiii. 3xiificHeHo peati3aliro 6araToKOMITIOTEpHOI CHCTEMH BUSIBIIEHHS LIKIUIUBOTO ITPOrpa-
MHOro 3a0e3rnedeHHst 3 MeTaMop(HUM (QYHKIIOHAJIOM JJisl JIOBEACHHS CIPOMOKHOCTI peanizalii 3anpornoHOBaHOT
KOHIIETITYaJIbHOI apXiTeKTYpHOI MOZIENi Ta Po3poOJIeHNX METOJIB BHSIBIEHHs MeTamopdHux BipyciB. [loctaBieHo
€KCIIEPUMEHT 3 (DYHKIIIOHYBaHHS 0araTOKOMIT FOTEPHOI CUCTEMH BHSIBIICHHS LIKIUTUBOTO IIPOrPaMHOI0 3a0€3eUeHH I
Ta MPOBEJIEHO EKCIIEPUMEHTANBHI JTociimKkeHHs. [IpoBeieHi eKCriepUMEHTH BKITFOYAU BUSBIICHHSI MeTaMOp(HUX Bi-
pyciB. Kpim Toro, 0y;io mocraBieHO eKCIIEpUMEHT 00 e(eKTUBHOCTI BUSIBICHHS MeTaMOp(HOro KoAy BipyciB Ta
NPOBE/ICHO BiJINOBI/IHI €KCIIEPUMEHTAJIbHI JTociimKeHHs. Takox O0yao JociipKeHo epeKTHBHICTh BUSBJICHHS MeTa-
MopdHOro Koy BipyciB po3po0JIeHO 0araTOKOMITIOTEPHOIO CHCTEMOIO Ta BCTAHOBJICHO HASIBHICThH ITOKPAILEHOTO
BUsIBJIeHHs. HanpsiMky nozanbinoi poOoTu MojsratoTh y NOMIMPEHHI Pe3yJbTaTiB pOOOTH Ha HOBI THITH LIKIIJTMBOT'O
MIPOrpaMHOTr0 3a0e3MeUeHHS.

Karwuosi cioBa: meramopdiuHuii KO, MYJIbTHKOMITIOTEPHI CHCTEMH; KibepOe3rneka; KOMI'IOTEpHI BipycH,
LIKIJUIMBE MpOorpaMHe 3a0e3MeueHHs; BUSABICHHS [IKiUIMBOTO MPOrPaMHOro 3a0e3Me4eHHsI.

Kamranbssn Autonina CepriiBHa — KaH/. TeXH. HayK, JOIL. kKad. (i3UKH Ta eNEKTPOTEXHIKH, JTOKTOPAHTKA,
XMenbHUIBKUI HAlllOHATbHUI YHIBEpCUTET, XMENbHUIBKUN, Y KpaiHa.

Jlucenko Cepriii MukoiaiioBud — 1-p TexH. Hayk, npod., npod. kad. KOMITIOTEpHOI iHXKeHepil
Ta iHdopMaLiiiHuii cucreM, XMeIbHUIBKUI HAIlIOHANBHUN yHIBEpCUTET, XMEIbHHUILIbKUA, YKpaiHa.

Cagenko OJier CTaHiciaBoBHY — JI-p TeXH. Hayk, rmpod., aexan (akynpTery iHQOpPMAIHHIX TEXHOJIOTIH,
npod. xad. xoMmm'rOTepHOI iHKeHepii Ta iHGOpMAaIiiiHUii cucTeM, XMENbHUIBKUA HAlliOHABHUN YHIBEPCHUTET,
XMeNpHULBKUH, YKpaiHa.

Hiuenmopyk Amnapiii OsnexkcaHIpoBHY — KaHJA. TeXH. HayK, JOI., JOI. Kad. KOMIT'IOTEpHOI iHKeHepii
Ta iHdopMariitauii cucreM, XMeNbHUIBKUI HAllIOHAILHUN YHIBEPCUTET, XMENbHUIbKHUN, Y KpaiHa.

Couop Tomam — yo11. ka). eKOHOMIKM Ta EKOHOMIYHOI TONITHKH, Y HiBepeuteT [Ipiro, Uechbka PecmyOumika.

ABcieBn4 Bonoaumup — crynenT, XMeIbHUIBKUI HalllOHAIbHUIT yHIBepcUTET, XMENbHULBKUH, YKpaiHa.

Antonina Kashtalian — PhD, Associate Professor at the Department of Physics and Electrical Engineering,
Doctoral Staff, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: yantonina@ukr.net, ORCID: 0000-0002-4925-9713.

Sergii Lysenko — Dr.S., Full Professor, Professor at the Computer Engineering & Information Systems
Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: sirogyk@ukr.net, ORCID: 0000-0001-7243-8747.

Oleg Savenko — Dr.S., Full Professor, Dean of Information Systems, Professor of Computer Engineering &
Information Systems Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: savenko_oleg_st@ukr.net, ORCID: 0000-0002-4104-745X.

Andrii Nicheporuk — PhD, Associate Professor at the Department of Computer Engineering & Information
Systems Department, Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: andrey.nicheporuk@gmail.com, ORCID: 0000-0002-7230-9475.

Tomas Sochor — Associated Professor for Cybersecurity and Quantitative Methods, Department of Economics
and Economic Policies, Prigo University, Czech Republic,
e-mail: tomas.sochor@prigo.cz, ORCID: 0000-0002-1704-1883.

Volodymyr Avsiyevych — Student in Khmelnytskyi National University, Khmelnytskyi, Ukraine,
e-mail: kovalleonid4@gmail.com.

