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MULTI-COMPUTER MALWARE DETECTION SYSTEMS  

WITH METAMORPHIC FUNCTIONALITY 
 

The need to develop new systems for detecting and counteracting malware remains relevant. In addition to mal-
ware detection methods, the need to develop new systems for detecting and counteracting malware has become 

increasingly important. The use of various detection systems and the formation of a variable architecture in them 

significantly improves the effectiveness of detection, since both for attackers in computer attacks and for mal-

ware, understanding the system is significantly complicated. In addition, such systems may contain baits, traps, 

and, accordingly, modifiable operating environments to deceptively execute programs for research. This paper 

develops a conceptual model of multicomputer systems, which is designed to ensure the functioning of antivirus 

bait and traps to detect malware and computer attacks in corporate networks. The proposed approach is intended 

to prevent and counteract metamorphic virus penetration. This paper presents the conceptual model of multi-

computer systems and introduces a defining characteristic responsible for the control of decisions and other 

defining characteristics of the system. Methods for detecting metamorphic viruses with the possibility of their 

implementation in the architecture of multi-computer systems with bait and traps are developed so that the sys-
tem directly joins the detection procedure through its components and decides on the presence of metamorphic 

code in the executable file. An implementation of a multi-computer malware detection system with metamorphic 

functionality was developed to prove the feasibility of the proposed conceptual architecture model and the de-

veloped methods for detecting metamorphic viruses. An experiment on the functioning of a multi-computer mal-

ware detection system was set up, and experimental studies were conducted. The conducted experiments included 

metamorphic virus detection. In addition, an experiment on the effectiveness of detecting the metamorphic code 

of viruses was conducted. The efficiency of detecting metamorphic virus code using the developed multi-com-

puter system was also investigated, and the presence of improved detection was established. The directions of 

further work are to extend the results of this work to new types of malware. 

 

Keywords: metamorphic code; multi-computer systems; cybersecurity; computer viruses; malware; malware 

detection. 

 

1. Introduction 
 

1.1. Motivation 

 

The creation and distribution of malware continues 

apace. Attackers build various functionalities into their 

architecture, including those that ensure the concealment 

of malicious code. Computer viruses that are designed in 

such a way that they contain obfuscation mechanisms and 

use them to embed into executable PE files are quite dif-

ficult to detect. Each time they are embedded in executa-

ble PE files, they change the location of their commands, 

the order of placement, and replace them with alternative 

command. The variety of such techniques used to avoid 

detection is quite large. Therefore, for each of these tech-

niques, it is necessary to develop separate methods for 

detecting viruses. The use of methods based on signature 

search is possible as an additional tool. It is more im-

portant to search for new viruses with obfuscation func-

tionality. A set of such computer viruses is the set of met-

amorphic viruses. Methods using obfuscation analysis 

are effective in detecting metamorphic viruses [1]. How-

ever, attackers are constantly improving mechanisms 

based on metamorphic transformations; therefore, the de-

velopment of methods for detecting such viruses contin-

ues. At the same time, there is a need for fundamental 

changes in their development so that they can improve 

detection efficiency and significantly outpace the im-

provement of metamorphic techniques developed and 

used by attackers. Such detection methods should pro-

vide proactive detection of new metamorphic techniques 

that could be used in metamorphic viruses by attackers. 

Existing methods for detecting metamorphic vi-

ruses could be improved and enhanced by implementing 

them in distributed systems to organize their functioning 

within computer networks. Such technologies have been 

used and presented in [2, 3]. Then, in order to improve 

the detection of metamorphic viruses, if the place of de-
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tection is considered to be the nodes of a computer net-

work, it is necessary to improve and simultaneously de-

velop two components that are used in the detection pro-

cess. On the one hand, these detection systems must op-

erate in computer network nodes and their components 

are located in the nodes. In addition, to maintain the in-

tegrity of the system, such systems have to respond in 

conjunction with specialized functionality responsible 

for detecting metamorphic viruses and must be multi-

computer. Another possibility of the proposed system is 

the use of methods for the direct detection of metamor-

phic viruses. The detection methods should be improved 

in terms of their possible combination and implementa-

tion in a multi-computer system to form one sensor in a 

computer network. This makes it possible to scale the 

multi-computer system to all nodes of the computer net-

work and expand the scope of detection methods com-

pared with their use in individual computer stations. In 

this embodiment, the detection methods have enhanced 

capabilities, which gives them an advantage over the 

metamorphic techniques used by attackers in computer 

viruses. 

There are not enough approaches and methods de-

voted to the development of multi-computer systems for 

this purpose among scientific researchers. As a rule, re-

searchers on detecting computer viruses in host computer 

systems or in computer networks, including directly in 

their nodes, focus mainly on the development of effective 

detection methods. To implement detection methods in a 

particular system, method developers pay insufficient at-

tention to the architecture of systems. The architecture of 

systems should also focus on the specifics of the tasks 

assigned to the system, since attackers take advantage of 

the shortcomings of known architectures. In addition, the 

effectiveness of detection methods can be leveled due to 

the imperfection of the architecture of the systems in 

which they are implemented. 

Therefore, the aim of this study is to improve the 

efficiency of detecting metamorphic viruses by develop-

ing effective multi-computer systems and methods for 

their detection. 

 

1.2. Previous works 

 

When designing multi-computer systems for detect-

ing malware and computer attacks, such systems with 

baits and traps have proven to be quite effective. They 

can be used to implement and implement detection meth-

ods. The number of traps and baits for malicious software 

and computer attacks is constantly growing, which cre-

ates problems for attackers. Such multi-computer sys-

tems are becoming multifunctional. Their architectural 

features are hidden from attackers. This does not allow 

them to understand their essence and, accordingly, by-

pass their countermeasures. Among such multi-computer 

systems, systems with a controller are promising [4]. 

Thanks to it, a multicomputer system, after developing a 

decision on a particular event, selects options from those 

developed, considering its previous decisions on the 

same events. This makes it possible to confuse the at-

tacker and, accordingly, improve the effectiveness of de-

tecting and countering malware. The principle of synthe-

sizing such multi-computer systems is presented in [4]. 

The operating environment in each component of 

the system is taken as a trap in such multicomputer sys-

tems. Each operating environment in different compo-

nents of the system is different. Accordingly, the research 

to detect metamorphic viruses is carried out in parallel in 

different nodes of the computer network, which in partic-

ular improves the time efficiency. In addition, different 

environments allow different variants of metamorphic 

transformations embedded in the architecture of meta-

morphic viruses to manifest themselves. 

Let’s consider methods of using baits and traps im-

plemented in multi-computer systems for detecting and 

counteracting malware and computer attacks. 

 

1.3. State of the art 

 

The purpose of deception systems and their compo-

nents is to improve attack prevention, attack detection, 

and mitigate the effects of successful attacks. Deception 

systems can be classified according to various features, 

including the purpose of deception, the level of the de-

ception system, the type of deployment of the deception 

system [5], the type of deception [6], and the level of be-

havior and responses of the deception system [7]. 

The type of deception is characterized by its infor-

mation structures, actions, duration, and concept. The 

main types of deception include disturbance, confusion, 

mixing, involvement, moving target protection, and 

honey-x.  

Disturbance involves the breach of confidential 

data [8], including for users who send information to an 

unreliable source [9]. Obfuscation hides valuable infor-

mation with noise, adding irrelevant data to relevant data 

[10], and sending confidential and false data through a 

certain number of nodes [11]. Connectivity prevention 

methods use the idea of mixing for security and privacy 

[12]. The active defense strategy involves engaging the 

attacker in interaction using various approaches, such as 

using an attack graph to represent the attacker’s strategy 

and the location of baits in the network [13] and modeling 

the attacker’s penetration into the network using a game-

theoretic model [14]. 

Moving target defense and honey-x are more com-

mon types of deception than others. Moving target de-

fense uses the concepts of flexibility, changing the attack 

surface, and random customization, which are called mu-
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tations or cyber mutations. Among the types of cyber mu-

tations, random host mutations, random route mutations, 

random port mutations, fingerprint mutations, and varia-

ble virtual networks are widely used [15]. In the 

study [16], we propose a dynamic host mutation architec-

ture based on moving target protection that can actively 

counteract cyberattacks. The dynamic host mutation 

strategy includes address mutation, fingerprint mutation, 

attraction operations, key management, and authentica-

tion. To turn end hosts into unpredictable moving targets, 

methods have been developed to intelligently and ran-

domly transform their IP addresses or ports without re-

ducing network performance [17]. Mutations are also 

used to improve the security of cloud services, a decep-

tive defense mechanism based on the idea of a moving 

target centered on frequent virtual machine migrations, 

whose strategies are determined based on a signaling 

game [18]. Some methods have been proposed to deter-

mine the optimal time for mutating network ad-

dresses [19]. 

The honey-x type of deception is by far the most 

common; the class of honey-x deceptive objects includes 

objects that can be named with the beginning honey-, 

such as honeypots, honeynets, honeytokens, honeymails, 

honeyurls, etc. 

Baits and traps can be classified in different ways 

according to their key characteristics [20]. According to 

the purpose of using the bait, they can be used for re-

search and production. According to the role of the bait, 

there are client baits that actively initiate interaction with 

attackers and server baits that passively wait for at-

tacks [21]. According to the level of interaction, the baits 

are divided into low-, medium-, and high-level baits. 

Low-interaction baits imitate simple functions of one or 

more services, thus not requiring significant development 

and implementation costs. Baits with a high level of in-

teraction can imitate an unlimited set of services for at-

tackers [22, 23]. To optimize bait resources, combined 

low and high-interaction baits are used [24]. The scala-

bility of the baits reflects their ability to increase the num-

ber of bait nodes and traps in the system. The simplest 

baits are not scalable. However, modern bait and trap sys-

tems provide the ability to change the number of nodes 

according to the needs of the network and the specified 

parameters. It is proposed to implement a distributed sys-

tem of baits with their dynamic location. In such a net-

work, an attacker cannot distinguish real services from 

baits, and efficiency is ensured by a game-theoretic ap-

proach [25]. Methods for the dynamic configuration of 

baits, a strategy for their deployment and maintenance 

based on machine learning methods that allow the auton-

omous deployment of baits [26], and a methodology for 

determining the optimal number of baits in a net-

work [19] are proposed. Such bait systems allow fighting 

distributed attacks [27] and analyzing data in networks of 

geographically distributed baits to identify attack patterns 

and build attacker profiles [28]. By the type of resources 

used, baits are divided into physical, virtual, and com-

bined. Physical baits and their networks run on physical 

machines designed to deploy these nodes. Virtual baits 

are deployed on virtual machines [29, 30]. Combined 

baits support deployment on physical and virtual ma-

chines [31]. According to the availability of the code, 

baits are open source [32] and closed source. 

To protect confidential data, the automated genera-

tion of honeytokens is used to analyze user behavior and 

their interaction with honeytokens [33]. Honey-x objects 

are also used to protect credentials, including improving 

the security of hashed passwords, which is done with the 

help of additional false passwords (honey-words), the use 

of which allows generating an alarm [34]. 

A deception system can be applied at different lev-

els, which reflects the level of the protected system to 

which deception is applied. A deception system can be 

applied at the network, system, application, and data lev-

els. At the network level, a deception system is designed 

to deal with network attacks such as scanning, eavesdrop-

ping, penetration, and propagation. At the system level, 

deception techniques are applied to nodes and are in-

tended to combat external and internal malicious activi-

ties[35, 36]. The application level involves the use of spe-

cialized deception systems developed for specific ser-

vices and applications, such as web services and data-

bases. Deception systems designed for data protection 

use various types of false data to attract attackers and are 

designed to combat data leaks, privacy breaches, and cre-

dential theft [38]. 

The deployment of a deception system character-

izes how this system is integrated into the target sys-

tem [5]. Depending on the method of deployment, there 

are: built-in deception systems, deception systems in-

stalled before the target system, deception solutions 

added during the operation of the target system, and iso-

lated deception systems. Some solutions offer built-in in-

tegration of deception with the system at the development 

stage. Work [39] proposes a multi-paradigm approach to 

defining deception tactics during software development, 

which is implemented by a set of deception objects inte-

grated with system components. Deception systems in-

stalled before the target system mostly contain deception 

nodes placed between the attacker and the target system, 

which allows the intercepting of network traffic and in-

fluencing processes [7]. Deception systems added at 

runtime integrate with the target system during its opera-

tion. Such systems mostly use honey-x objects such as 

honey-assets, honey-files, honey-passwords, honey pro-

files, and honey hyperlinks [40]. The most common com-

ponent of isolated deception systems are baits, which can 

operate separately from the target system. 
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The level of behavior and responses of a deception 

system characterizes the level of deception of the system 

and objects according to the responses to queries. The de-

ception behavior of a system can vary from the simplest 

predictable truthful behavior to intellectually deceptive 

behavior [41]. Systems with truthful behavior always re-

spond to any query with complete "truthfulness", so the 

answers reflect the actual internal states of the system. In 

systems with naively deceptive behavior, processes try to 

deceive the attacker with artificial responses; however, if 

the attacker knows this deceptive behavior from previous 

interactions, the deception can be exposed and the at-

tacker is warned about the presence of deception [17, 42]. 

The best protection can be provided by deception systems 

that have intellectually deceptive behavior. The function-

ing of such a system for an attacker does not differ from 

the functioning of the target system, even if there has 

been previous interaction. Systems with intellectually de-

ceptive behavior use machine learning and artificial in-

telligence methods [43]. The article [44] presents the 

consistency issue and related trade-offs in distributed 

replicated systems and databases. In the study [45], an 

overview of cyber threats and vulnerabilities is presented.  

A cyberattack detection system based on infor-

mation-extreme machine learning is presented in the 

work [46]. 

Methods and technologies for ensuring cybersecu-

rity of industrial and web-oriented systems and networks 

are presented in the study [47]. A model and training 

method for malware traffic detection based on a decision 

tree ensemble presented in the work [48].  

An approach devoted to the problem of malware de-

tection using evolutionary algorithms is presented in the 

study [49]. Research that highlights IoT malware detec-

tion based on control flow graph analysis is presented 

in [50]. The technique for malware detection via distrib-

uted systems is described in the work [51]. In the 

study [52], the mean of malware detection is the multi-

agent systems. 

 

1.4. The purpose and tasks of research 

 

Considering the shortcomings in the methods of de-

tecting metamorphic viruses and the need to improve the 

architecture of multi-computer systems for detecting ma-

licious software that use baits and traps to improve the 

efficiency of detecting metamorphic viruses in computer 

networks and their nodes, it is necessary to conduct re-

search and solve several problems. 

The peculiarity of the architecture of multi-com-

puter systems with baits and traps for detecting malware 

with metamorphic functionality is the implementation of 

detection methods and, accordingly, its construction as a 

single sensor for functioning in a computer network. 

Therefore, to achieve the goal of improving the ef-

fectiveness of metamorphic viruses, the following tasks 

need to be solved: 

1) to identify the features of the synthesized archi-

tecture of multi-computer systems with bait and traps for 

detecting malware through its properties and use them as 

a basis for building such a system; 

2) to develop a conceptual model of the architecture 

of multi-computer systems with baits and traps for de-

tecting malicious software, considering the possibility of 

implementing methods for detecting metamorphic vi-

ruses, as well as their features as decision controllers; 

3) to develop methods for detecting metamorphic 

viruses with the possibility of their implementation in the 

architecture of multi-computer systems with baits and 

traps in such a way that the system directly joins the de-

tection procedure through its components and decides on 

the presence of metamorphic code in the executable PE 

file; 

4) to develop an implementation of a multi-com-

puter malware detection system with metamorphic func-

tionality to prove the feasibility of the proposed concep-

tual architecture model and the developed methods for 

detecting metamorphic viruses; 

5) to set up an experiment on the functioning of a 

multi-computer malware detection system and conduct 

experimental studies on the process of processing meta-

morphic code to confirm the possibility of implementing 

the steps of the developed methods for detecting meta-

morphic viruses; 

6) to set up an experiment on the effectiveness of 

detecting the metamorphic virus code and conduct rele-

vant experimental studies; 

7) to investigate the effectiveness of detecting met-

amorphic virus code using the developed multi-computer 

system and determine whether there is an improvement 

in detection, as well as to determine the directions for fur-

ther research and development of the proposed solution 

and its extension to other types of malware. 

The aim of this study is to develop a multi-com-

puter malware detection system with metamorphic func-

tionality to improve the efficiency of detecting metamor-

phic viruses. 

The paper structure is as follows: Section 1 presents 

motivation, previous work, and state-of the art  – a brief 

analysis of the very modern and the latest ideas and meth-

ods addressed to solve the problem of malware detection 

with its advantages and disadvantages. Sections 2 dis-

cusses the main idea of the research: the development of 

multi-computer malware detection systems with meta-

morphic functionality. Section 3 describes the experi-

mental results of this research. In addition, conclusions 

present the obtained results of the research. 
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2. Multicomputer systems and methods  

for detecting malware with metamorphic 

functionality in corporate networks 
 

2.1. Concept of multi-computer systems  

of combined antivirus bait and trap  

and decision controller for malware  

and computer attack detection 
 

To synthesize multicomputer systems for detecting 

malware and computer attacks in corporate networks, in 

the architecture of which detection methods can be im-

plemented that corresponds to part of its specialized func-

tionality, let us use the principle of synthesis P of such 

systems, which was presented in [1]. According to this 

principle, it is possible to synthesize systems in which 

detection methods are implemented, and together with 

them, such systems function as sensors in corporate net-

works, whose tasks are to detect malware and computer 

attacks in corporate networks using combined antivirus 

baits and traps. Such systems can also be used as sand-

boxes. Such features are supported by the developed ar-

chitecture of multi-computer systems. The system com-

ponents have variable environments that provide variable 

operating environments for the study of computer virus 

program codes. The variable operating environments 

provided in the system components should improve the 

efficiency of detecting obfuscated virus codes. This can 

be achieved using baits placed in the components. Their 

use forms variable operating environments that allow vi-

rus program codes to be manifested. Such studies are par-

ticularly relevant for metamorphic and polymorphic vi-

ruses or executable programs infected with them. Let us 

consider the concept of creating such systems. 

The concept of creating multicomputer systems of 

combined antivirus bait and traps and a decision control-

ler to improve the efficiency of detecting malware and 

computer attacks in corporate networks is based on a 

combination of the following defining properties and 

their synthesis in systems according to the synthesis prin-

ciple 𝔓 [1], such as: 

- variability in the type of system architecture; 

- variability of the system centers; 

- system adaptability according to changes in exter-

nal conditions; 

- characteristic changes in the system center 

- self-organization of the system 

- ability to detect malware. 

The considered systems are denoted further by sys-

tems of class 𝔖. 

Let us consider the peculiarities of the synthesis of 

systems by combining their defining properties. Display 

graph of the defining characteristics for systems of type 

𝔖 in their architecture at the vertices corresponding to the 

elements of the sets 𝔙i (i = 1,2,… , n𝔙n𝔙 – the number 

of subsets) is shown in Fig. 1. Any closed route in the 

display graph of defining characteristics in the architec-

ture of systems of the class 𝔖 shown in Fig. 1 always in-

cludes a vertex 𝔳10,1 ∈ 𝔙10,1 from the set 𝔙10,1 [1]. This 

means that the graph reflects the architecture of various 

systems according to the principle of synthesis 𝔓. Verti-

ces that correspond to the elements of a certain set 𝔙𝑖 

(i =  1,2,… , n𝔙n𝔙 – the number of subsets) when defin-

ing a closed route can belong to it, that is, from one set, 

several elements can be included in the route, not just 

one. This reflects other options in the architecture of sys-

tems of the class 𝔖.  

For example, the system may not have an exclu-

sively centralized decentralized, or mixed architecture. 

However, in the variant of mixed architecture with re-

spect to centralization it can also be centralized and de-

centralized. For example, at certain time intervals, the 

type of architecture can change to mixed, then to central-

ized and then return to mixed or decentralized architec-

ture.  

Furthermore, the level of centralization and its fea-

tures may differ. Similarly, the remaining defining char-

acteristics in the architecture of type systems 𝔖 can have 

the same features. That is, in type systems 𝔖 there may 

be several elements from a certain set 𝔙i 

(i =  1,2,… ,9,11,… , n𝔙, i ≠ 10, n𝔙 – the number of 

subsets). The graph presented in Fig. 1 outside the bound-

aries of existing edges and vertices may contain other 

vertices and edges. However, a closed route also covers 

them and accordingly includes vertices and edges. As a 

result, the vertices covered by the route reflect the defin-

ing characteristics synthesized in systems of the class 𝔖. 

From the set 𝔙10, only one vertex belonging to this set is 

included in the route. The remaining peaks are isolated 

and cannot be included in any route. Thus, the number of 

systems of class 𝔖 according to the synthesis principle 𝔓 

is different, but according to formula (1) all of them are 

united by the presence of the controller in their architec-

ture. The number of subsets 𝔙i (i = 1,2,… , n𝔙n𝔙 – the 

number of subsets) can be different, in particular less than 

n𝔙, but the presence of a one-element set 𝔙10,1 and the 

set 𝔙11 [1] in the direct product of sets is mandatory.  

Let us detail the concept of creation systems of type 

𝔖 of their conceptual model, which is necessary to spec-

ify the features determined by the synthesis principle 𝔓. 

 

2.2. Conceptual model of the architecture  

of multi-computer systems with combined baits 

and traps and a decision controller for detecting 

and counteracting malicious software  

and cyberattacks 
 

According to the synthesis principle 𝔓 of systems 

of class 𝔖, a conceptual model of architecture 𝔄𝔐,𝔖 of  
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Fig. 1. Display graph of the defining characteristics  

for in the architecture of systems of the class 𝔖 

 

multi-computer systems with combined baits and traps 

and the decision-making controller for detection and 

countermeasures of anti-aircraft and anti-aircraft vehi-

cles, we set as follows: 

 

𝔄𝔐,𝔖 = 〈𝔓(𝔐𝔖),𝔓𝔐〉:  

1) ∀ 𝔨: 𝔙10,1 ⊂ 𝔓𝔨(𝔐𝔖); 𝔓𝔨(𝔐𝔖)  ∈  𝔓(𝔐𝔖);  

𝔨 = 1,2,… , 𝔫𝔓(𝔐𝔖); 

 

2) 𝔐𝔖 = ⋃ 𝔐𝔦1

𝔫𝔐𝔖
𝔦1=1

; 

 𝔐𝔦1
= {𝔪𝔦1,1,𝔪𝔦1,2, … , 𝔪𝔦1,𝔫𝔐𝔦1

}; 

 𝔩 = 1,2,… , 𝔫𝔐𝔦1; 𝔐10 = {𝔪10,1}; 

 

3) 𝔓(𝔐𝔖)
𝔓𝔐
→ 𝔚(𝔐𝔖); 𝔴𝔧 ∈ 𝔚(𝔐𝔖); 

 𝔴𝔧 = (𝔴𝔧,1, 𝔴𝔧,2,… , 𝔴𝔧,𝔦2 , … ,𝔴𝔧,𝔫𝔐𝔳); 

𝔴𝔧,𝔦 =

{
 

 
0, if element does not belong 

to the set 𝔓𝔧(𝔐𝔖),

1, if element belongs                 

to the set 𝔓𝔧(𝔐𝔖);

 

𝔴10,1 = 1; 𝔧 = 1,2,… , 𝔫𝔚(𝔐𝔖);  𝔦2 = 1,2,… , 𝔫𝔐𝔳; 

 

4) 𝔊2 = (𝔐𝔙,2,1
𝔖 ,𝔐𝔙,2,2

𝔖 ,𝔐𝔙,2,3
𝔖 ,𝔐𝔈,2

𝔖 ); 

𝔐𝔈,2
𝔖 ⊆ (𝔐𝔙,2,1

𝔖 ×𝔐𝔙,2,3
𝔖 ) ∪ (𝔐𝔙,2,3

𝔖 ×𝔐𝔙,2,2
𝔖 ) ∪

(𝔐𝔙,2,3
𝔖 ×𝔐𝔙,2,1

𝔖 ) ∪ (𝔐𝔙,2,2
𝔖 ×𝔐𝔙,2,3

𝔖 ); 

 𝔐𝔙,2
𝔖 = 𝔐𝔙,2,1

𝔖 ∪𝔐𝔙,2,2
𝔖 ∪𝔐𝔙,2,3

𝔖 ; 

 

5) 𝔐𝔎,𝔗,1
𝔖 = {𝔪𝔎,𝔗,1,1

𝔖 ,𝔪𝔎,𝔗,1,2
𝔖 ,… ,𝔪𝔎,𝔗,1,𝔫

𝔐𝔎,𝔗,1
𝔖

𝔖 }; 

𝔐𝔈,𝔎,𝔗
𝔖 = ⋃ 𝔐𝔈,𝔎,𝔗,𝔩1

𝔖4
𝔩1=1

; 𝔫𝔐𝔈,𝔎,𝔗
𝔖 = ∑ 𝔫𝔐𝔈,𝔎,𝔗,𝔩1

𝔖
4
𝔩1=1

;  

𝔉𝔈,𝔎,𝔗,1
𝔖 :𝔐𝔈,𝔎,𝔗

𝔖 →𝔐𝔎,𝔗,1
𝔖 ; 

 

6) 𝔓𝔈,𝔎,𝔗,1
𝔖 = {𝔭𝔈,𝔎,𝔗,1,1

𝔖 , 𝔭𝔈,𝔎,𝔗,1,2
𝔖 }; 

 (𝔳𝔙,𝔈,𝔎,𝔩3,1
𝔖 ,𝔐𝔈,𝔎,𝔗

𝔖 )
𝔭𝔈,𝔎,𝔗,1,1
𝔖

→     𝔳𝔈,𝔎,𝔗,1,1
𝔖 ; 

 (𝔳𝔙,𝔈,𝔎,𝔩3,1
𝔖 ,𝔐𝔈,𝔎,𝔗

𝔖 )
𝔭𝔈,𝔎,𝔗,1,2
𝔖

→     𝔳𝔈,𝔎,𝔗,1,2
𝔖 ; 

𝔩3 = 1,2,… , 𝔫𝔐𝔙,𝔈,𝔎
𝔖 ; 𝔳𝔈,𝔎,𝔗,1,1,0

𝔖 = 𝔳𝔙,𝔈,𝔎,𝔩3,1
𝔖 ; 

 𝔫𝔳𝔈,𝔎,𝔗,1,1
𝔖 = 𝔫𝔐𝔈,𝔎,𝔗

𝔖 ; 𝔫𝔳𝔈,𝔎,𝔗,1,2
𝔖 = 𝔫𝔐𝔈,𝔎,𝔗

𝔖 ; 

if 𝔳𝔈,𝔎,𝔗,1,1,𝔨1
𝔖 = 0 ∀ 𝔨1 = 1,2,… , 𝔫𝔳𝔈,𝔎,𝔗,1,1

𝔖 , то 

𝔳𝔈,𝔎,𝔗,1,2,𝔨1
𝔖 = 0; 

∀ 𝔨2 = 1,2,… , 𝔫𝔐𝔈,𝔎,𝔗,1
𝔖 : 𝔳𝔈,𝔎,𝔗,1,1,𝔨2

𝔖 = 1;   

 

7) ℑ𝔭,𝔳
𝔖 = 𝔉

ℑ𝔭,𝔳
𝔖
𝔖 (ℑ𝔭,𝔳,𝔞

𝔖 , ℑ𝔭,𝔳,𝔭
𝔖 ,ℑ𝔭,𝔳,𝔳

𝔖 );  

 

8) 𝔐𝔙,2,3
𝔖

𝔉𝔙,2,3
𝔖,𝔙

→   𝔐𝔙,2,3
𝔖,𝔙

;  

𝔪𝔙,2,3,𝔩4
𝔖,𝔙 =

∑ (𝔶𝔙,2,3,𝔨3
𝔖,𝔙 ∙𝔣𝔙,2,3,𝔨

𝔖,𝔙 (𝔪𝔙,2,3,𝔩4
𝔖 ))

𝔫
𝔉𝔙,2,3
𝔖,𝔙

𝔨3=1

∑ 𝔶𝔙,2,3,𝔨3
𝔖,𝔙

𝔫
𝔉𝔙,2,3
𝔖,𝔙

𝔨3=1

;   

 

9) ∀ 𝔤1, 𝔤2: 𝔐𝔈,𝔎,𝔗,𝔤1
𝔖 ∩𝔐𝔈,𝔎,𝔗,𝔤2

𝔖 = ∅; 

𝔤1 = 1,2,3,4; 𝔤2 = 1,2,3,4; 𝔤1 ≠ 𝔤2, 

(2) 
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where 𝔐𝔖 – the set of  elements and components in the 

system architecture, which are formed according to the 

given defining properties; 𝔓(𝔐𝔖) – set of subsets; 

 𝔓𝔐 – the set of predicates given on the set 𝔓(𝔐𝔖); 

𝔓𝔨(𝔐𝔖) – 𝔨-th element of the set 𝔓(𝔐𝔖);  

𝔨 = 1,2,… , 𝔫𝔓(𝔐𝔖); 𝔫𝔓(𝔐𝔖) – the number of elements in 

the set 𝔓(𝔐𝔖); the set 𝔙10,1 = {𝔳10,1} ; 𝔙10,1 – one-ele-

ment set; 𝔐𝔦1
 – 𝔦1-th subset for certain elements and com-

ponents in the system architecture, 𝔦1 = 1,2,… , 𝔫𝔐𝔖; 

𝔫𝔐𝔖  – number of subsets; 𝔪𝔦1,𝔩 – i-th element of the sub-

set 𝔐𝔦1
, 𝔩 = 1,2,… , 𝔫𝔐𝔦1; 𝔫𝔐𝔦1 – the number of elements 

of the subset 𝔐𝔦1
; 𝔚(𝔐𝔖) – set of vectors; element 

 𝔴𝔧 ∈ 𝔚(𝔐𝔖), 𝔧 = 1,2,… , 𝔫𝔚(𝔐𝔖); 𝔴𝔧,𝔦2 – (𝔧, 𝔦2) – coor-

dinate of the vector 𝔴𝔧, 𝔦2 = 1,2,… , 𝔫𝔐𝔳; 𝔊2 – graph of 

connections of computer network environment compo-

nents 𝔐𝔙,2
𝔖 = 𝔐𝔙,2,1

𝔖 ∪𝔐𝔙,2,2
𝔖 ∪𝔐𝔙,2,3

𝔖 ; 𝔐𝔙,2
𝔖  – the set 

of all vertices of the graph 𝔊2; 𝔐𝔈,2
𝔖  – the set of edges of 

the graph; 𝔐𝔎,𝔗,1
𝔖  – set of typical components of systems 

of class 𝔖; 𝔪𝔎,𝔗,1,𝔩2
𝔖  – 𝔩2- element of the set of typical 

components 𝔐𝔎,𝔗,1
𝔖 ; 𝔩2 = 1,2,… , 𝔫𝔐𝔎,𝔗,1𝔖 ; 𝔫𝔐𝔎,𝔗,1𝔖  – the 

number of elements of the set 𝔐𝔎,𝔗,1
𝔖 ; 𝔐𝔈,𝔎,𝔗

𝔖  – a set of 

elements from which the components of the system is 

formed; 𝔐𝔈,𝔎,𝔗,1
𝔖  – a subset of elements to ensure pres-

ence in the node of the corporate network, to ensure the 

performance of functions specified by certain elements, 

to supplement with new elements and ensure communi-

cation with the center of the system; 𝔐𝔈,𝔎,𝔗,2
𝔖  – a subset 

of elements to ensure the functioning of the system cen-

ter; 𝔐𝔈,𝔎,𝔗,3
𝔖  – a subset of elements to ensure the func-

tioning of the controller; 𝔐𝔈,𝔎,𝔗,4
𝔖  – a subset of elements 

to ensure presence in the node of the corporate network, 

defined to ensure the performance of functions specified 

by certain elements, and to supplement with new ele-

ments and ensure communication with the center of the 

system; 𝔫𝔐𝔈,𝔎,𝔗
𝔖  – the number of elements in the set 

𝔐𝔈,𝔎,𝔗
𝔖 ; 𝔉𝔈,𝔎,𝔗,1

𝔖  – set of functions; 𝔓𝔈,𝔎,𝔗,1
𝔖  – a set of pred-

icates for establishing information in the system about the 

state of available active and passive and missing elements 

in the components; 𝔭𝔈,𝔎,𝔗,1,1
𝔖 , 𝔭𝔈,𝔎,𝔗,1,2

𝔖  – predicates from 

the set 𝔓𝔈,𝔎,𝔗,1
𝔖 ; 𝔫𝔐𝔙,𝔈,𝔎

𝔖  – the number of vectors in the set 

of vectors 𝔐𝔙,𝔈,𝔎
𝔖 ; 𝔳𝔈,𝔎,𝔗,1,1,0

𝔖  – the first coordinate of the 

vector 𝔳𝔈,𝔎,𝔗,1,1
𝔖 , which is the value of the component 

number from the system; 𝔳𝔙,𝔈,𝔎,𝔩3,1
𝔖  - the value of the com-

ponent number according to the system list,  

𝔩3 = 1,2,… , 𝔫𝔐𝔙,𝔈,𝔎
𝔖 ; 𝔫𝔐𝔙,𝔈,𝔎

𝔖  – the number of vectors in 

the set of vectors 𝔐𝔙,𝔈,𝔎
𝔖 ,; 𝔫𝔳𝔈,𝔎,𝔗,1,1

𝔖 = 𝔫𝔳𝔈,𝔎,𝔗,1,2
𝔖 ; 

𝔳𝔈,𝔎,𝔗,1,2,𝔯1
𝔖  – coordinate of the vector 𝔳𝔈,𝔎,𝔗,1,1

𝔖 ;  

𝔯1 = 1,2,… , 𝔫𝔳𝔈,𝔎,𝔗,1,1
𝔖 ; (𝔫𝔳𝔈,𝔎,𝔗,1,1

𝔖 + 1) – the number of 

coordinates of the vector 𝔳𝔈,𝔎,𝔗,1,1
𝔖 ; 𝔳𝔈,𝔎,𝔗,1,2,𝔯2

𝔖  – coordi-

nate of the vector 𝔳𝔈,𝔎,𝔗,1,2
𝔖 ; 𝔯2 = 1,2, … , 𝔫𝔳𝔈,𝔎,𝔗,1,2

𝔖 ; 

(𝔫𝔳𝔈,𝔎,𝔗,1,2
𝔖 + 1) – the number of coordinates of the vector 

𝔳𝔈,𝔎,𝔗,1,2
𝔖 ; 𝔉

ℑ𝔭,𝔳
𝔖
𝔖

 – a function that determines the value of 

the integrated indicator of the hardware and software of 

the computer station according to the values of its struc-

tural and parametric characteristics, which are taken into 

account when determining the indicators 

ℑ𝔭,𝔳,𝔞
𝔖 , ℑ𝔭,𝔳,𝔭

𝔖 ,ℑ𝔭,𝔳,𝔳
𝔖  as the arguments of the function; 𝔉𝔙,2,3

𝔖,𝔙
 

– set of functions 𝔉𝔙,2,3
𝔖,𝔙 =

{𝔣𝔙,2,3,1
𝔖,𝔙 , 𝔣𝔙,2,3,2

𝔖,𝔙 ,… , 𝔣𝔙,2,3,𝔫
𝔉𝔙,2,3
𝔖,𝔙

𝔖,𝔙 } , 𝔩4 = 1,2,… , 𝔫𝔐𝔙,2,3
𝔖 ; 

𝔫
𝔉𝔙,2,3
𝔖,𝔙  – the number of functions in the plural; 𝔉𝔙,2,3

𝔖,𝔙
; 

𝔫𝔐𝔙,2,3
𝔖  – the number of elements of the sets 𝔐𝔙,2,3

𝔖  and 

𝔐𝔙,2,3
𝔖,𝔙

; 𝔶𝔙,2,3,𝔨3
𝔖,𝔙

 – coefficients for correlation of weights 

of all functions from the set 𝔉𝔙,2,3
𝔖,𝔙

;  

𝔨3 = 1, 2,… , 𝔫𝔉𝔙,2,3
𝔖,𝔙 . 

Such a task of the conceptual model 𝔄𝔐,𝔖 of the ar-

chitecture of systems of class 𝔖 according to formula (2) 

considers the multiplicity of elements that are in relations 

and connections with each other and form a certain integ-

rity and unity of parts. Given formula (2), the relation-

ships between the parts of the system and its internal or-

ganization have specific properties that change according 

to external and internal influences and the purpose of us-

ing the system. 

In the conceptual model 𝔄𝔐,𝔖 of the architecture of 

systems of class 𝔖, components and elements are distin-

guished. Moreover, some components also contain 

smaller components and elements. Therefore, the synthe-

sized systems of class 𝔖 are complex. The selected ele-

ments of the system in the model have a purpose, a hier-

archy is defined between them and they are intercon-

nected. Accordingly, systems of class 𝔖 are synthesized 

according to their defining properties, which are gener-

ally not obtained by combining the properties of their 

components, and the functional capabilities of the system 

as a whole are greater than the functional capabilities of 

its parts. Let us consider the functional orderliness of the 

system of class 𝔖, i.e. the expressiveness of how the ele-

ments, components and hierarchical levels of the system 

are connected and interact with each other, as well as 

what properties have integrity formed by them. 

A picture of the placement and connections of the 

elements and components of the model in the generalized 

architecture of the operating environment of the system 

of class 𝔖, considering the task of the conceptual model 

𝔄𝔐,𝔖 (formula (2)) is presented in Fig. 2. 

Correlation of elements and components of concep-

tual model 𝔄𝔐,𝔖, multicomputer systems of class 𝔖 and 
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system functioning environment in fig. 2 shows the nodes 

of the corporate network in which system components 

can be installed. At the same time, they correspond to the 

elements of the set 𝔐𝔙,2
𝔖  of all vertices of the graph 𝔊2. 

The components of the multicomputer systems of class 𝔖 

may not be present in all nodes of the corporate network. 

Thus, the components of multicomputer systems of class 

𝔖 in the context shown in Fig. 2 and in formula (2) con-

firm the possibility of scaling the system by an arbitrary 

number of elements of the set 𝔐𝔙,2
𝔖 . Conceptual model 

𝔄𝔐,𝔖 of multicomputer architecture of systems of class 

𝔖 is complete, because it covers the defining properties 

of such systems, the principles according to which they 

are synthesized, and the relations defined in 1)-9) of for-

mula (2). Confirmation of the synthesis of systems ac-

cording to conceptual model 𝔄𝔐,𝔖 is the presence of gen-

erally accepted signs of systems: integrity, latency, 

strengthening of system efficiency due to the set of com-

ponents, division into parts with connections between 

them, the presence of properties not characteristic of sub-

systems and blocks, self-regulation, multivariability, and 

interaction with the external environment. These features 

require detail in the context of presenting the organiza-

tion of the functioning of the systems of class 𝔖. 

Let us define the main elements of the conceptual 

model 𝔄𝔐,𝔖 of multicomputer systems of class 𝔖: 

- conditions of system functioning, which are deter-

mined by the nature of interaction between the system 

and its environment, and between system elements;  

- system control capabilities and the composition of 

controlled system variables are highlighted.  

In addition, the purpose of the study of systems of 

class 𝔖 is to improve their characteristics in the part of 

the architecture itself and in the part of the specialized 

functionality, which must be organically combined into a 

single whole. 

In the conceptual model 𝔄𝔐,𝔖 of multicomputer 

systems of class 𝔖, a defining characteristic responsible 

for the control of decisions is introduced. This distin-

guishes it from the well-known models of multi-com-

puter systems designed to ensure the functioning of anti-

virus baits and traps to detect malware and computer at-

tacks, as well as to prevent and counteract their penetra-

tion. In addition, the model specifies the rest of the defin-

ing characteristics that should form the system architec-

ture in the process of functioning of systems of class 𝔖. 

This action must be performed independently. Synthesis 

of a set of individual defining characteristics occurs ac-

cording to a closed route in the graph of the display of 

defining characteristics in the architecture of systems of 

class 𝔖 (see Fig. 1). In addition, it identifies specialized 

functionality that with the general part of the system, 

forms the system as a single sensor. 

 
Fig. 2. Correlation of elements and components of conceptual models 𝔄𝔐,𝔖,  

multicomputer systems of class 𝔖 and the systems functioning environment 
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The defining characteristic responsible for the con-

trol of decisions is made. This is highlighted by a separate 

element in the conceptual model, which actually defines 

the property of artificial consciousness with limited ca-

pabilities, which are defined by tasks of systems of class 

𝔖. This makes it possible to provide various options for 

responses to the influence of intruders, cyberattacks, and 

the functioning of malware. As a result, understanding 

the behavior of the system is significantly complicated. 

Other defining characteristics allow you to increase 

the number of architecture options. Therefore, their use 

when rebuilding the systems of class 𝔖 allows not only 

to diversify the system due to its various changing archi-

tectures and ensures its stability when removing individ-

ual nodes of the corporate network. 

The combination of specialized functionality with 

the general part of the system forms the system as the 

single sensor, which improves the effectiveness of mal-

ware and cyberattack detection. 

An important feature of setting the conceptual 

model 𝔄𝔐,𝔖 of multicomputer systems of class 𝔖 accord-

ing to formula (2) is to consider the defining properties. 

They allow the system to be formed according to certain 

principles. That is, to perform its actual vertical presen-

tation. This is ensured directly through the presentation 

of systems in relation to the environment of their opera-

tion in corporate networks. That is, its horizontal presen-

tation is performed. These two representations in the 

model 𝔄𝔐,𝔖 are implemented in a coordinated manner. 

Thus, the conceptual model 𝔄𝔐,𝔖 adequately reflects sys-

tems of class 𝔖 due to the defining properties and envi-

ronment of operation. 

The developed conceptual model 𝔄𝔐,𝔖 of multi-

computer systems of class 𝔖 contains the necessary ele-

ments defining models. It is an abstract model that re-

flects the defining characteristics and features of systems 

of class 𝔖 regarding the environment of corporate net-

works. Its special element is the decision controller. It 

implements a dynamic synthesis of the architecture ac-

cording to its defining properties. In addition, it imple-

ments the combination of specialized functionality with 

a part of the system into a single sensor. Conceptual 

model 𝔄𝔐,𝔖 is the basis for creating multicomputer sys-

tems of class  𝔖 from combined antivirus bait and traps 

and the decision controller for the detection of malware 

and cyberattacks in corporate networks and the imple-

mentation of methods for the detection of malware and 

cyberattacks using combined antivirus baits and traps to 

improve detection efficiency. 
 

2.3. Detection of metamorphic virus code using 

multi-computer malware detection systems 
 

The proposed multicomputer system detection of 

malicious software can implement methods for the detec-

tion of metamorphic codes of viruses.  

Let us consider the detection process using the de-

veloped methods. The process of detecting metamorphic 

viruses is implemented in the form of two methods, in 

which the method of detecting the metamorphic code of 

viruses includes the method of forming a vector of fea-

tures of the similarity of the code sample to the metamor-

phic virus. Both methods are based on the concept of 

comparing copies of metamorphic viruses, the result of 

which is the definition of a set of features used to detect 

metamorphic viruses. 

Consider the proposed method for detecting metamor-

phic viruses in a multicomputer system deployed in a lo-

cal network. The use of the network is dictated by the 

presence, in addition to obfuscation techniques, of anti-

emulation tools that prevent the execution of the emula-

tion process. This is one of the main methods of detecting 

metamorphic viruses, which, in turn, leads to low detec-

tion efficiency. Therefore, it is not always possible to de-

tect metamorphic viruses that use anti-emulation technol-

ogies by means of one computer system; therefore, it is 

suggested to involve a multi-computer system.  

Thus, the main task of the system itself is to dis-

patch data flows between network nodes. The initial set-

tings for each component of a multicomputer system in-

clude an isolated virtual environment and a whitelist and 

blacklist of behaviors. 

The method for detecting the metamorphic code of 

viruses involves the following steps: 

1. Analysis of the behavior of executable files on each 

component using the program's suspiciousness monitor. 

The check is carried out on the basis of heuristic rules, which 

are based on the API calls executed by the program. 

2. Determination of the need for further research. In 

the event that suspicious activity was detected on any com-

ponent of a multi-computer system, a search for matches is 

carried out in the black and white lists. If the behavior is not 

in these lists, further investigation of the suspicious program 

is conducted. 

3. Disassemble the suspicious program for execution 

in an isolated trap environment and obtain a list of opcodes 

for execution. 

4. Execution of the suspicious program in an isolated 

virtual trap environment, obtaining a list of API calls, re-

disassembling the suspicious program, and obtaining a 

list of opcodes after execution. 

5. Implementation of a method for forming a vector 

of signs of similarity of a code sample to a metamorphic 

virus. As input data for this method, there are listings of 

opcodes before and after execution, and lists of API calls. 

6. Formation in the system component of the result 

about the degree of similarity of the suspicious program 

to the metamorphic virus with the involvement of the 

Fuzzy Inference System using Mamdani Fuzzy Inference 
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Systems [53]. The result of the work of is the indicator 

“Level of Similarity to Metamorphic Virus” (LSMV) 

with the linguistic values High, Medium and Low. 

7. Analysis of the formed result and decision-mak-

ing in accordance with the obtained LSMV indicator: 

if the LSMV received a value of High, then the sus-

picious program was blocked on this component, and the 

behavior of the suspicious program (in the form of a list of 

API calls) was entered into the black list, followed by updat-

ing the black lists on all components of the multi-computer 

system; 

if the LSMV of the suspicious program received the 

value Low - a decision is made about the legitimacy of the 

suspicious program and its behavior is whitelisted; 

if the LSMV receives the Medium value, then the most 

suspicious program is propagated to other system compo-

nents to run them in isolated virtual trap environments. Wait-

ing for further response from the server. 

8. Sequential execution of steps 4-6 in each component 

of the multicomputer system. Sending a message with the 

result of the LSMV indicator from each component to the 

component that initiated the check (initiator). 

9. Analysis using the initiator component, obtained 

from the remaining components of the LSMV indicator sys-

tem. If at least one value of the LSMV indicator value is 

High, the suspicious program is blocked on the component 

that initiated the additional analysis of the suspicious pro-

gram, and the behavior of this executable file is included in 

the black list of all system components. Otherwise, a con-

clusion is made about the legitimacy of the suspicious pro-

gram’s behavior.  

The steps of the method for the metamorphic code de-

tection system are shown in Fig. 3. 

 

2.4. Method for forming a vector of signs  

of similarity of a code sample  

to a metamorphic virus 
 
To determine the characteristic features that would 

allow determining whether a suspicious program belongs 

to a metamorphic virus, a method of forming a vector of 

signs of similarity of a code sample to a metamorphic vi-

rus is proposed.  

The method is based on comparing listings of the 

suspicious program before and after execution using the 

Damerau–Levenshtein distance [54]. 

The method consists of the following steps: 

1. Identification of the search location for code 

fragments with opcode listings before and after execution. 

2. Definition of code fragments. 

3. Eliminating uncertainty when defining code 

fragments. 

4. Determining the degree of dangerous behavior 

of a suspicious program based on a comparison of the 

program’s behavior with a database of behavioral 

patterns. 

5. Pairwise comparison of fragments. Formation of 

a vector of features of the similarity of a code sample to 

a metamorphic virus based on the comparison of pairs of 

fragments of a suspicious program before and after 

execution in an isolated trap environment. 

Let's consider the steps of the proposed method in 

more detail.  

The primary task is to localize the search location 

for code fragments in the opcode listings of the suspi-

cious program before and after execution.  

The choice of search location for code fragments is 

determined according to the following rules: 

 
 

Fig. 3. Steps of the method of detection of the metamorphic code of viruses using a multicomputer system 
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f {

target_section, if ((𝑠𝑛 ≠ .data  ∨ 𝑠𝑛 ≠ .code  ∨. . . ) ∧ (𝑠𝑎 = 𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒)), 

target_section, if (𝑠call = 𝑎last  ∨  𝑠jump = 𝑎last),            

 target_section = 𝑁𝑠 − 1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                 

  (3) 

 

where sn – the name of the section in which the entry 

point to the suspicious program is present, sа – section 

attribute, scall, sjump – call and jump instructions of the 

corresponding section, the operand of which contains the 

address of the last section alast. 

After identifying the search location, the next stage 

of the method involves splitting the opcode listings for 

code samples before and after execution (we denote these 

listings as Q and respectively Q′) into code fragments 

{ql} ∈ Q and .{q′
k
} ∈ Q′ based on conditional transition 

instructions. The TF-IDF metric is used to determine the 

importance of an opcode in the context of each code frag-

ment in {ql} and {q′
k
}. As a result, two matrices Q and 

Q′ are formed, in which the rows correspond to the code 

fragments present in this listing ({ql} or {q′
k
}), and the 

columns correspond to the opcodes present in the corre-

sponding code fragment. 

Each cell of the matrix defines TF-IDF estimation 

of the appearance of the i-th opcode in the j-th code frag-

ment. Next, to find code fragments from {ql}, corre-

sponding to code fragments with {q′
k
} the following met-

ric is applied: 

 

r({ql}, {q
′
k
}) = ∑ (qli − q′kj)

2
i=0,j=0 , 

 

where qli - the estimate of the occurrence of the i-th op-

code in the fragment {ql} ,q′kj – evaluation of the appear-

ance of the j-th opcode in the fragment {q′
k
}. 

If the value of the similarity score of two fragments 

is less than the threshold value σ, then the similarity score 

is recalculated for the i-th code fragment from qli  and the 

next j+1-th fragment from q′kj. The value σ is constant, 

which is selected empirically. 

As a result, there may be a situation in which one 

fragment of code from {ql}  corresponds to several frag-

ments from {q′
k
}. Therefore, to eliminate uncertainty and 

form an unambiguous correspondence between frag-

ments, code fragments from {q′
k
}, which have the maxi-

mum evaluation value r, is selected for fragment qli. 

All the above-mentioned actions were performed to 

determine code fragments from {ql} and {q′
k
} that corre-

spond to each other as closely as possible. Therefore, the 

last stage of the method is the formation vector of signs 

of similarity of a code sample to a metamorphic virus. 

This vector is formed based on a pairwise comparison of 

the corresponding fragments from {ql} and by the 

Damerau-Levenshtein distance.  

Let us define the feature vector as follows: 

 

F = 〈
Lmod(E), Lmed(Е), Xmod(Е), Xmed(Е),Dmod(Е),

Dmed(Е), Imod(Е), Imed(Е),Mmod(Е),Mmed(Е), Y
〉 

(4) 

 

where E = {εі}і=1
n  – pairs of code fragments from {ql} 

and {q′
k
}; n – the total number of pairs of fragments; 

Lmod  – the modal value of the Damerau-Levenshtein 

metric between εі; Lmed – the median value of the 

Damerau-Levenshtein metric between εі; Xmod – the 

modal value of the number of necessary opcode exchange 

operations for εі; Xmed – the median value of the number 

of necessary opcode exchange operations for εі; 

Dmod – the modal value of the number of necessary op-

erations of removing operational codes for εі; Dmod – the 

median value of the number of necessary opcode removal 

operations for εі; Imod – the modal value of the number 

of necessary opcode insertion operations for εі;  

Imed – the median value of the number of necessary op-

code insertion operations for εі; Mmod – modal value of 

the number of opcode matches for εі; Mmed – median 

value of the number of opcode matches for εі; Y – the 

degree of danger of the program's behavior. 

To assess the degree of danger of behavior, its be-

havior is compared with a defined set of harmful behav-

ioral patterns. If there is a match between the actions of 

the suspicious program and one of the malicious patterns, 

the similarity vector property for metamorphic viruses 

takes the suspiciousness value of Low, Medium, or High. 

In this way, two methods are presented for detecting 

metamorphic viruses in a multicomputer system. The first 

method is based on the identification of code fragments and 

the formation of a vector with signs of similarity to a meta-

morphic virus. The second method uses a multicomputer 

system to coordinate the analysis and share results between 

components of the multicomputer system. The presented 

methods make it possible to detect not only known meta-

morphic viruses but also new ones. 

Thus, these two methods were implemented in the ar-

chitecture of a multicomputer system. Its operation pro-

vided several different operating environments for examin-

ing programs for the presence of metamorphic virus code. 

Let’s consider the implementation of a multicomputer sys-

tem and its methods. The implementation of the developed 

methods and the system itself are necessary for conducting 

experimental studies on the effectiveness of the proposed 

solution in terms of improving detection efficiency. 
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3. Multicomputer malware detection system 

with metamorphic functionality 
 

3.1. Architecture of the multicomputer system 

 

A multicomputer malware detection system (named 

AMJS), which consists of a set of interacting nodes - 

components, was developed to implement the process of 

detecting metamorphic malware. AMJS is implemented 

as a set of modules, the main ones of which are: 

 AMJSP (Amjs Publisher) - sends level 0 mes-

sages (user login/logout, file replacement, administrator 

installation). 

 AMJSS (Amjs Subscriber) – receives level 0 

messages (user login/logout, file replacement, admin in-

stallation), event logging. 

 AMJSAC (Amjs Admin Checker) – Checks if 

the current admin is active and can be an admin. 

 AMJSAP (Amjs Admin Publisher) – sends mes-

sages between administrators, works only on hosts se-

lected by administrators. 

 AMJSAS (Amjs Admin Subscriber) – receives 

messages between administrators, sends a request to in-

stall a new administrator, logs events, and  works only on 

components selected by administrators. 

 AMJSDB (Amjs DataBase) – retrieves data 

from the database. 

 AmjsMPILib - a library of functions for distrib-

uted work. 

 AMJSMS (Amjs MPI Scheduler) is a task 

scheduler (sends the executable task file to work partici-

pants, starts the task and records its execution data in the 

database). 

 AMJSMR (Amjs MPI Runner) – executable 

task file. 

 AMJSCE (Amjs Config Editor) - receives a 

message about the need to change the configuration. 

Interaction of these modules is shown in Fig. 4. In 

the process of implementing AMJS, such architectures as 

Event-Driven architecture (Amjss, Amjsas, Amjsce, 

Amjs UI modules), distributed architecture (Amjsms, 

Amjsmr, Amjss, Amjsas, Amjsp, Amjsap modules), cli-

ent-server architecture (graphic component of Amjs UI), 

and monolithic architecture (modules amjsp, amjsap, am-

jsac, amjsjc, amjsdb).  

A distributed architecture was used to combine the 

components into a cluster. Cluster members exchange 

messages over the network while maintaining a defined 

system state. Modules amjss, amjas, amjsp, and amjsap 

provide the exchange of these messages (generate 

events). The configuration parameters are defined in the 

fileconfig.ini, including the settings of the cluster name, 

the number of hosts in the cluster, the prefix of the  

domain name of hosts in the network, data for MPI work, 

and ports that were used to establish a connection be-

tween hosts. 

 

 
 

Fig. 4. Architecture of the multicomputer system 

 

The main interaction occurs between amjsp and am-

jss, amjsap and amjsas modules. These modules receive 

and send messages about changes in the status of clients, 

as well as changes in the administrator. Every minute all 

hosts send these messages. In addition, amjsap sends a 

message when a new administrator is selected. Pairs of 

applications work according to the Publisher – Sub-

scriber pattern. Distributed tasks are run using the am-

jsms module, and the amjsmr program is an executable 

for MPI. Functions from the AMJS MPI Lib library are 

used to perform tasks. Before the job, the amjsvc pro-

gram is run, which clears the job table if the oldest job 

was more than a week ago.  

The amjsce daemon service is always running on 

the AMJS system, waiting for configuration change noti-

fications. It also checks every minute whether the current 

administrator meets the requirements. 

The interface window displaying the status of hosts in 

the system is presented in Fig. 5. 

 

3.2. Implementation of the detection function  

of metamorphic viruses  

in a multicomputer system 

 

The main function assigned to the developed multi-

computer system AMJS, is the identification of the mal-

ware metamorphic code.  
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Fig. 5. Interface window displaying the status  

of the hosts in the system 

 

For this purpose, the method of detecting the meta-

morphic code of viruses and the method of forming a vec-

tor of signs of the similarity of a code sample to a meta-

morphic virus were implemented in the AMJS system. 

The basis of the proposed method is the concept of 

comparing copies of metamorphic viruses by their op-

codes, which involves obtaining two disassembled list-

ings of opcodes - before and after the execution of the 

suspicious program. This process was achieved by creat-

ing an isolated environment, passing the suspicious file 

to it, and running it for execution. The functionality of 

the isolated environment is implemented using a Docker 

container built on the Ubuntu 22.04 image. To simplify 

the work with the Docker container, management was 

implemented through the docker command interface, us-

ing the system function. The GDB [54] disassembler was 

used to perform the disassembly. 

The implementation of data exchange functions be-

tween the components of the AMJS multicomputer sys-

tem was implemented using the MPI interface. 

MPI_Recv and MPI_Send functions were used for data 

exchange between processes.  

Each process has a rank from 0 to the number of 

running processes per task, inclusive of 1. To obtain all 

results, a process with rank 0 is used. The first stage of 

transmission involves sending a list of API functions, and 

the second stage involves the listing of opcodes.  

In turn, we perform symmetric actions on all pro-

cesses whose number is different from 0: disassembly of 

the binary file, sending to process 0 the list of API func-

tions and the listing of opcodes.  

After the container with the isolated virtual environ-

ment is started, the suspicious file is copied to it, it is 

started, and the new executable file is copied again to the 

host system. Furthermore, disassembly was again carried 

out with the result being sent in the form of a listing of 

opcodes after execution to the main process. Thus, the 

distributed task of analyzing a binary file for similarity to 

a metamorphic virus is performed. 

Thus, a multi-computer system for detecting mali-

cious software with metamorphic functionality has been 

implemented. This implementation corresponds to the 

concept and conceptual model of multicomputer systems 

(formula (2)).  

Experimental studies were conducted to confirm the 

improvement of the effectiveness of detection of meta-

morphic viruses in computer networks. 
 

4. Experiments 
 

4.1. Setting up the experiment and its results  

for the functioning of the developed  

multi-computer system 
 

The main purpose of the experiment was to check 

the effectiveness of the detection of MWOR metamor-

phic malware using the developed multi-computer sys-

tem AMJS. 

The experiment included a series of tests in which 

the metamorphic malware was launched on one of the 

components (the task initiator) of the AMJS system. 

Every time on the initiator component, the analysis pro-

cedure of this file was started according to the method of 

detection of metamorphic viruses.  

With the help of the GDB disassembler [54], the 

malware was disassembled and a sample code was ob-

tained to be executed in an isolated virtual environment 

(in the form of a list of opcodes and a set of API func-

tions). To obtain a sample code, after execution, the mal-

ware was launched in an isolated environment. After ex-

ecuting the executable file of the malware in an isolated 

environment, its repeated disassembly was performed. 

Next, the formation of the vector of signs of simi-

larity of the code sample to the metamorphic virus was 

carried out based on the implemented method of forming 

the vector of signs of similarity of the code sample to the 

metamorphic virus.  

Then, with the help of the fuzzy inference system 

built into the proposed system [53], the identification of 

malware as a metamorphic virus was carried out.  

If the indicator “Level of Similarity to Metamorphic 

Virus” (LSMV) received a value of Medium (that is, it 

was not possible to uniquely identify the test sample's be-

longing to one of the classes of metamorphic malware 

using the means of one host), then the test sample was 

sent to other components of the AMJS multi-computer 

system to run them in isolated environments and manifest 

metamorphic properties.  

Fig. 6 shows an example of two listings of opcodes 

for one instance of malware obtained after starting and 

disassembling on different hosts of the system. Modified 

blocks are marked with red squares. 
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After performing similar symmetrical actions on 

each of the system components (step 8 of the method of 

detecting metamorphic viruses), the results of the analy-

sis were sent to the initiator component. 

 
a) 

 
b) 

Fig.6. Two listings of opcodes of the investigated  

malware after start-up and disassembly on different 

hosts of the system: a) Host 1 and b) Host 3 

 

A fragment of the log on the initiator component is 

shown in Fig. 7. 

After additional verification with other components 

of the system, the final conclusion was formed (step 9 of 

the detection method). 

Fig. 8 presents the interface window for receiving 

information by the component that initiated the check 

about the results of checking the suspicious program by 

other (Host1-Host4) hosts in the system. It should be 

noted that in this case, the result of the rest of the hosts in 

the system coincides, and the RPM is set as High. As a 

result, Host0 decides to block the suspicious program and 

add its behavior to the behavior blacklist. 

 

 

Fig. 7. A fragment of the log illustrating the reception  

of the list of API functions by the Host 0 component 

from other components in a multicomputer system 

 

4.2. Setting of the experiment and results  

of experimental studies on the detection  

of metamorphic viruses by the developed  

multicomputer system 
 

Setting up the experiment. In the developed multi-

computer system, files are available in each component, 

which contain information about the actions performed 

and functions launched to perform certain tasks, as well 

as about events that affect the system directly and cause 

it to react to them in a certain way. These files must be 

constantly updated, and outdated information is  removed 

from them according to certain criteria. In addition, ac-

cording to these files, the system creates separate tables 

in which information about the system’s reactions to the 

given effects is stored for a long time. Such information 

enables the center of the system to develop options for 

decisions regarding further steps of the system, rate them, 

and agree with the controller. The controller uses the in-

formation from the corresponding table of effects to fi-

nalize the decision regarding further steps of the system 

according to one effect. Thus, the internal tables of the 

system components contain information about the previ-

ous decisions of the system as decisions on the defined 

impacts. In other words, the developed multicomputer 

system is positioned as a system with memory elements. 

Since at the initial stage of its operation it does not have  
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Fig. 8. Interface window for receiving information by the component 

 

information about previous events, we consider it in the 

first experiment as one that does not contain a fully func-

tional controller of the decisions made. In this case, the 

controller approves the decision of the system center [4] 

according to the rating (highest) of the proposed options. 

Accordingly, for each series of the first stage of the ex-

periment, the conditions were the same. 

The second important factor in conducting an ex-

periment is metamorphic viruses and their variety [1]-[3]. 

Let's highlight the following features: writing completely 

into an executable PE-file while preserving the volume 

of the original file, i.e. replacing part of the bits and, ac-

cordingly, losing the functionality of the original file and 

saving part of the bits of the original file without using 

them; recording completely in the executable PE-file 

without saving the volume of the initial file, i.e. adding 

part of the bits of the metamorphic virus to the initial file 

and, accordingly, saving the functionality of the initial 

file and obtaining access to execute the first command of 

the virus when the infected PE-file is launched; replace-

ment of the initial PE file with a metamorphic virus with 

a change or preservation of the size of the file in bits by 

supplementing with inactive commands; writing the met-

amorphic virus to an initial PE file and copying and stor-

ing this initial file under a different name with the possi-

bility of calling it for execution after executing the virus 

commands. These features form the basis for the for-

mation of four subsets of metamorphic viruses. The se-

lection of these subsets is decisive in the context of the 

study of their code according to the results of the previous 

experiment on obtaining disassembled commands and 

the logic of the studied programs. For example, if a virus 

is embodied in a file such that the entry point to the pro-

gram is the first command of the virus and there is an 

unconditional transition through several commands, then 

such a mechanism of the virus forms one template. In the 

absence of an unconditional transition, a second template 

is formed. Therefore, these features should be considered 

when detecting the metamorphic code of viruses.  

Let us denote the subsets of metamorphic viruses as 

follows: ℌ1 – replacement of bits, the volume of the ini-

tial file in bits is saved, the loss of the functionality of the 

initial PE file, the presence of an unconditional transition 

at the beginning of the PE file (from the point of entry 

into the file), the absence of the function of saving the 

initial PE file in a separate file; ℌ2 – replacement of bits, 

the volume of the initial file in bits is preserved, the loss 

of the functionality of the initial PE-file, the presence of 

an unconditional transition at the beginning of the PE-file 

(from the point of entry into the file), saving the initial 

PE-file in a separate file with the possibility of calling it 

for execution after execution metamorphic virus com-

mands; ℌ3 – replacement of bits, the volume of the initial 

file in bits is preserved, the loss of the functionality of the 

initial PE-file, the presence of an unconditional transition 

at the beginning of the PE-file (from the point of entry 

into the file), saving the initial PE-file in a separate file 

without calling it for execution after executing com-

mands metamorphic virus; ℌ4 – replacement of bits, the 

volume of the initial file in bits is not saved, the loss of 

functionality of the initial PE file, the presence of an un-

conditional transition at the beginning of the PE file 

(from the point of entry into the file), the absence of the 

function of saving the initial PE file in a separate file; ℌ5 
– replacement of bits, the volume of the initial file in bits 

is preserved, the loss of the functionality of the initial PE 

file, the presence of an unconditional transition at the be-

ginning of the PE file (from the point of entry into the 

file), saving the initial PE-file in a separate file with the 

possibility of calling it for execution after executing the 

commands of the metamorphic virus; ℌ6 – replacement 

of bits, the volume of the initial file in bits is not saved, 

the loss of the functionality of the initial PE file, the pres-

ence of an unconditional transition at the beginning of the 
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PE file (from the point of entry into the file), saving the 

initial PE file in a separate file without calling it for exe-

cution after execution metamorphic virus commands; ℌ7 

– replacement of bits, the volume of the initial file in bits 

is saved, loss of functionality of the initial PE file, ab-

sence of an unconditional transition at the beginning of 

the PE file (from the point of entry into the file), absence 

of the function of saving the initial PE file in a separate 

file; ℌ8 – replacement of bits, the volume of the initial 

file in bits is preserved, loss of the functionality of the 

initial PE file, no unconditional transition at the begin-

ning of the PE file (from the point of entry into the file), 

saving the initial PE file in a separate file with the possi-

bility of calling it for execution after execution metamor-

phic virus commands; ℌ9 – replacement of bits, the vol-

ume of the initial file in bits is preserved, loss of the func-

tionality of the initial PE file, no unconditional transition 

at the beginning of the PE file (from the point of entry 

into the file), saving the initial PE file in a separate file 

without calling it for execution after executing com-

mands metamorphic virus; ℌ10 – substitution of bits, vol-

ume of the initial file in bits is not saved, loss of function-

ality of the initial PE file, lack of unconditional transition 

at the beginning of the PE file (from the point of entry 

into the file), lack of function to save the initial PE file in 

a separate file; ℌ11 – replacement of bits, the volume of 

the initial file in bits is preserved, loss of the functionality 

of the initial PE file, no unconditional transition at the 

beginning of the PE file (from the point of entry into the 

file), saving the initial PE file in a separate file with the 

possibility of calling it for execution after execution met-

amorphic virus commands; ℌ12 – replacement of bits, the 

size of the initial file in bits is not saved, the loss of the 

functionality of the initial PE file, the absence of an un-

conditional transition at the beginning of the PE file 

(from the point of entry into the file), saving the initial 

PE file in a separate file without calling it for execution 

after execution metamorphic virus commands.  

Thus, in the set of metamorphic viruses, 12 subsets 

separated by certain criteria were selected. These subsets 

include most types of metamorphic viruses, but their un-

ion is not an exhaustive set of metamorphic viruses. To 

conduct the experiment, we divided the data in 12 sub-

sets, and each subset was defined by an element or ele-

ments in the experiment.  

Let's define a set of metamorphic viruses as follows: 

 

ℌ = ⋃ ℌ𝔨
12
𝔨=1 .    (5) 

 

Let us denote the number of elements in the set ℌ 

as 𝔑ℌ, and similarly for subsets ℌ𝔨 we denote 𝔑ℌ𝔨   

(𝔨 = 1,2,… , 12). These designations were used when 

processing the results of the experiment and indicated the 

number of metamorphic viruses of a certain subset and 

the set as a whole, which were used for experimental re-

search. 

The purpose of the first stage of the experiment is 

to establish the reliability of the detection of metamor-

phic viruses developed by a multi-computer malware de-

tection system with metamorphic functionality, provided 

there is no information in the memory elements for the 

previous steps and, accordingly, without the involvement 

of the controller. That is, in the first experiment with the 

system, only the center of the system was involved in de-

termining the detection of a metamorphic virus [4]. In 

contrast to host systems, in the developed multi-computer 

malware detection system with metamorphic functional-

ity, efficiency improvement was achieved by increasing 

computing resources, using computer network capacity 

and features in the architecture of the multi-computer 

system itself. Metamorphic viruses can be detected by 

host systems without involving the rest of the computing 

resources of the network, and can also be detected by 

components of a multicomputer system without involv-

ing part of the entire system and the center of the system. 

In this case, the system components and their sensors per-

formed decision-making functions.  

Strategy at work [52] involved researching the ac-

tivities of malicious software in hosts, comparing them 

with each other, and making a general decision according 

to the received decisions. It includes a mechanism ac-

cording to which the system components assign a suspi-

cious status to the executed process, which is then con-

sidered by the rest of the components. The decision about 

whether a suspicious process is running on a host or on 

an individual host is made at a single system center. If an 

executable is running on only one host and not on the 

others, it is difficult to determine whether malicious ac-

tivity is present. However, such options were not investi-

gated in the setting of this experiment. Thus, in the first 

stage of the experiment, the multicomputer system itself 

was tested for the detection of metamorphic viruses, po-

sitioning it as a single sensor without a controller. 

The purpose of the next stages of the experiment is 

to establish the reliability of the detection of metamor-

phic viruses by the developed multi-computer malware 

detection system with metamorphic functionality, pro-

vided that there is information in the memory elements 

for the previous steps and, accordingly, with the involve-

ment of the controller. The second stage of the experi-

ment included the capabilities of the developed multi-

computer system using previous experience in detecting 

metamorphic viruses; however, this experience, which is 

formed on the information in the memory elements, was 

insignificant. Therefore, it is advisable to conduct a cer-

tain number of stages of experiments to achieve constant 

reliability in the detection of metamorphic viruses. 

Enough stages was defined as the number of stages at 
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which the detection reliability results were no longer im-

proved. When conducting experimental research, the 

number of stages needed to be determined. It was influ-

enced by the particularity of the architecture of the con-

troller and the mechanism for approving the decision of 

the system center embedded in it. 

During the experiment, the controller was config-

ured so that every third and sixth stage, when the effects 

were repeated, the second-ranked answer was chosen, 

and every ninth time the third-ranked answer was chosen. 

Then, the minimum number of stages of experiments 

from the initial one should be equal to ten because it was 

included in the first stage. In order to continue the re-

search after the tenth stage, nine experiments should be 

conducted to ensure compliance with stages two through 

ten, that is, to perform a full iteration. However, the num-

ber of stages may not necessarily be 10, 19, or 28. It can 

be different and determined by the fact that at two or three 

adjacent stages, depending on the formed requirements, 

the appropriate level of reliability of detection of meta-

morphic viruses was achieved. 

An important part of the experiment is a set of test 

samples of metamorphic viruses and their correct use be-

cause they all have functionality that involves implemen-

tation into executable PE files. To conduct the experi-

ment, we chose five different, but at the same time, those 

that have characteristic features of the class, metamor-

phic viruses for each of the subsets ℌ𝔨 (𝔨 = 1,2,… , 12). 

Their construction was performed artificially without in-

cluding malicious functionality. Thus, the number of 

samples of different metamorphic viruses used in the ex-

periment was sixty. The general pattern of all sixty met-

amorphic viruses was searched for an executable PE file 

and infect it with a type that defines one of the classes ℌ𝔨 

(𝔨 = 1,2,… , 12) and it must be of the same type as the 

executable metamorphic virus. 

Benign software, i.e., user programs, must also be 

executed during the experiment. We selected twenty-five 

computer stations in the corporate network that were lo-

cated in at least three of its segments. We turned off the 

rest of the computer stations.  

We installed the system components in each of 

them and performed its initial settings and start-up. When 

conducting a series of experiments at different stages of 

the installation of system components, we repeated the 

experiments to ensure their independence for all twelve 

types of metamorphic viruses, which are specified by the 

corresponding classes ℌ𝔨 (𝔨 = 1,2,… , 12).  

For each type of metamorphic virus, the multi-com-

puter system was not reinstalled. It accumulates 

knowledge in memory elements for use by the controller. 

Thus, the independence of the experiment was applied 

exclusively to classes ℌ𝔨 (𝔨 = 1,2,… , 12).  

In each of the twenty-five nodes in which the com-

ponents of the multicomputer system were installed, only 

system processes and one researched process were 

launched. In twenty-four nodes, twenty-four different 

processes were launched for execution, which were ori-

ented to the use of input–output to ensure the duration of 

execution.  

After a given custom process is fully executed, it is 

repeated until the experiment series is completed at the 

set time. A metamorphic virus was launched in a node. 

The time for conducting a series of experiments was de-

termined by considering the time spent on the execution 

of the metamorphic virus and the processing of events re-

lated to it in a multicomputer system.  

The time for all series of the experiment was the 

same and was determined experimentally during the pre-

vious series of the experiments. For a defined set of initial 

data of the planned experiment, we set the time for con-

ducting a series of experiments lasting 30 min.  

For the metamorphic virus, the same executable PE 

files were used as baits and as the targets of its attacks for 

further infection. These node-specific bait files had the 

same bit set but different names. They were placed in all 

directories and the root directory.  

All research was conducted in an isolated environ-

ment of the corporate network. After all experiments and 

experiments with classes were completed, the system 

software was reinstalled with the same settings in the 

computer stations. 

Conduct the experiment and the results of the 

experimental research. To conduct experimental stud-

ies with the developed multi-computer system, the spec-

ified executable programs were launched at the same 

time in each specified node of the corporate network. For 

this, the same launcher was used with the launch time set.  

The results of all series of experiments were sepa-

rately saved with log files and tables of memory ele-

ments.  

To evaluate the efficiency of the detection approach 

TPR – True Positive Rate, FPR – False Positive Rate, 

Precision, Recall, F1-score, and MCC metrics were in-

volved [56, 57]: 

 

TPR =
TP

TP+FN
∙ 100,                           (6) 

FPR =
FP

TN+FP
∙ 100,                                (7) 

SP =
TN

TP+FN
∙ 100,                                  (8) 

Precision =
TP

TP+FP
 ,                                 (9) 

Recall =
TP

TP+FN
 ,                                (10) 

F1 =
2∗Recall∗Precision

Recall+Precision
 ,                           (11) 

MCC =
TP∗TN−FP∗FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 ,        (12) 
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Matthews correlation coefficient (MCC) [56] is de-

fined from -1 to 1, where ±1 means full agreement or dis-

agreement, and a value of zero means no relationship. 

The phi coefficient has a maximum value determined by 

the distribution of two variables if one or both variables 

can take more than two values. 

The examples for 1st and 21st results of a series of 

experimental studies (total 46 stages) are presented in Ta-

ble 1. The experiment is stopped after the full completion 

of step 46 because the values obtained in steps 44-46 are 

close and reflect an improvement in the reliability of de-

tection compared with the previous steps. That is, the re-

quirements for stopping the experiment have been met. 

To process the results of the experimental studies, we 

used the ROC analysis technique [55].  

Examples of results of ROC analysis for 1st and 21st 

stages (total 46 stages) are given separately in Table 2. 

 

 

Table 1  

The results of the study on the accuracy of detection of metamorphic viruses at certain stages, considering  

all the features of artificially created class instances 

 

Table 2  

Examples of results of ROC analysis for 1st and 21st stages (total 46 stages) 

Stage TPR FPR Sp Precision Recall F1 MCC 

1 79.44 7.52 92.48 0.31 0.79 0.44 0.46 

… 
 

21 76.67 8.29 91.71 0.28 0.77 0.41 0.43 

… 

 

Table 2 shows the evaluation of the MCC value. 

The obtained results in table 2 confirm the appropriate 

level of the developed classifier of metamorphic viruses. 

The demonstration of the change in the values of the 

main indicators of the ROC analysis when performing the 

46 stages is shown in Fig. 9. 

In Fig. 9, a, the graph of the function shows the 

growth of the reliability value of detection of metamor-

phic viruses in the process of filling the system with in-

formation about its previous steps.  

The detection result of the developed multi-com-

puter system reached 90%, which is a sufficient basic in-

dicator.  

Fig. 9, b shows a graph for the false positive rate. 

The graph is descending, demonstrating the improvement 

in the system’s classification of programs that do not con-

tain metamorphic functionality.  

The percentage of false positives was 3%, and it im-

proved by about 6%, which confirms the need to use in-

formation about the results of the previous stages of de-

tection of metamorphic viruses.  

Similarly, Fig. 9, b and Fig. 9, c show the result of 

classification of programs without metamorphic func-

tionality and the result is about 97%, which is acceptable 

for further improvements of the developed multicom-

puter system. 

Stage 

Detec-

tion  

result 

Metamorphic virus class 

Total 
1 2 3 4 5 6 7 8 9 10 11 12 

1 

TP 11 10 13 13 12 12 13 12 12 12 11 12 143 

FN 4 5 2 2 3 3 2 3 3 3 4 3 37 

FP 34 27 20 20 19 33 35 32 29 21 28 27 325 

TN 326 333 340 340 341 327 325 328 331 339 332 333 3995 

… 
 

21 

TP 10 13 13 11 11 12 10 11 9 13 13 12 138 

FN 5 2 2 4 4 3 5 4 6 2 2 3 42 

FP 33 21 34 22 32 19 36 42 40 26 28 25 358 

TN 327 339 326 338 328 341 324 318 320 334 332 335 3962 

FN 4 4 3 6 2 4 2 3 2 4 6 4 44 

… 
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a)  b) 

 

 

c) 

Fig. 9. Graphs for functions from Table 2 

 

4.3. Discussion 

 

Let’s summarize all the results obtained at all stages 

into a single table of values from stages 1-46. As a result, 

we have received the sum of the values for each class of 

metamorphic viruses according to the indicators of the 

ROC analysis.  

At the first stages, these values were smaller, and at 

the last stages, they were larger, but this made it possible 

to assess the quality of the test samples of classes of met-

amorphic viruses.  

This was achieved by comparing the deviation of 

the indicator results from the average value. 

If the deviation is significant, then it is necessary to 

analyze instances of metamorphic viruses of the class in 

which the deviation is found, or to finalize the corre-

sponding subsystem of the multicomputer system.  

Table 3 shows the summary values of the results of 

the experiment. 

The arithmetic mean value of detection reliability 

for all classes and all series and stages of the experiment 

is equal TP = 75.46 %. The deviation from this value of 

all the values of the twelve classes does not exceed 3%; 

therefore, the created instances of classes of metamorphic 

viruses are correlated with each other. This is also con-

firmed by the values of the remaining indicators of the 

ROC analysis. 

Thus, according to the results of the conducted ex-

periment, it was established that the presence of the con-

troller in a multi-computer system provides improved de-

tection of metamorphic viruses with increasing number 

of applications. 
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Table 3  

Results of the study of individual types of artificially created instances of classes at all stages 

 

Conclusion and Future Work 

 

Thus, a conceptual model of multi-computer sys-

tems has been developed, in which, unlike known models 

of multi-computer systems, which are designed to ensure 

the functioning with their support of antivirus baits and 

traps for detecting malware and cyberattacks in corporate 

networks, as well as for prevention and countermeasures 

their penetration, in the conceptual model of multi-com-

puter systems a defining characteristic is introduced, 

which is responsible for the control of the decisions 

made, and the rest of the defining characteristics, which 

in the process of functioning of the systems should form 

the architecture of the system by independently synthe-

sizing a set of separate defining characteristics according 

to a closed route in the graph of defining characteristics 

in architecture of the systems, as well as specialized func-

tionality is allocated, which, compatible with the general 

part of the system, forms the system as the single sensor, 

which makes it possible to provide a variety of options 

for responses to the influence of intruders, cyberattacks 

and the functioning of malware, and also makes it possi-

ble not only to diversify the system due to its different 

architecture, but also ensures its stability when removing 

certain nodes in the corporate network and when combin-

ing specialized functionality with the general part of the 

system forms the system as the single sensor, which gen-

erally improves the effectiveness of countering malware 

and cyberattacks. 

Methods for detecting metamorphic viruses have 

been developed with the possibility of their implementa-

tion in the architecture of multicomputer systems with 

baits and traps in such a way that the system directly par-

ticipates in the detection procedure through its compo-

nents and makes a decision about the presence of meta-

morphic code in the executable PE file. 

The implementation of a multi-computer system for 

detecting malicious software with metamorphic function-

ality has been developed to demonstrate the ability to im-

plement the proposed conceptual architecture model and 

the developed methods of detecting metamorphic vi-

ruses. An experiment was set up regarding the function-

ing of a multi-computer system for detecting malicious 

software, and experimental studies were conducted with 

it in the part of studying the metamorphic code develop-

ment process to confirm the possibility of implementing 

the steps of the developed methods of detecting metamor-

phic viruses. In addition, an experiment was conducted 

regarding the effectiveness of detecting the metamorphic 

code of viruses, and relevant experimental studies were 

conducted. 

Based on the results of the work performed, the ef-

fectiveness of the detection of the metamorphic code of 

viruses by the developed multi-computer system was in-

vestigated and the presence of an improvement in detec-

tion was established. 

The directions of further work according to the 

conceptual model to ensure the functioning of multi-

computer systems from combined antivirus baits and 

traps and the decision-making controller for detecting 

malware and cyberattacks in corporate networks, it is 

necessary to develop a method of organizing the func-

tioning of such systems, as well as a method of organiz-

ing the functioning of combined antivirus baits and traps 

and methods of detecting malware and cyberattacks us-

ing combined antivirus baits and traps implemented in 

the architecture of such systems to improve detection ef-

ficiency, as well as spread the results of work to new 

types of malicious software. 

 

Authors Contribution 

Antonina Kashtalian analyzed the known methods 

of developing bait and traps, developed a conceptual 

model of multi-computer malware detection systems, 

participated in the development of the implementation of 

the detection system with metamorphic functionality, and 

designed and conducted experiments. 

Detection 

result 

Classes of metamorphic viruses 
Total 

1 2 3 4 5 6 7 8 9 10 11 12 

TP 510 520 519 511 517 515 535 519 520 540 501 541 6248 

FN 180 170 171 179 173 175 155 171 170 150 189 149 2032 

FP 1132 1151 1167 1115 1096 1214 1132 1228 1161 1164 1178 1117 13855 

TN 15428 15409 15393 15445 15464 15346 15428 15332 15399 15396 15382 15443 184865 

TPR 73.91 75.36 75.22 74.06 74.93 74.64 77.54 75.22 75.36 78.26 72.61 78.41 75.46 

FPR 6.84 6.95 7.05 6.73 6.62 7.33 6.84 7.42 7.01 7.03 7.11 6.75 6.97 

Precision 0.31 0.31 0.31 0.31 0.32 0.30 0.32 0.30 0.31 0.32 0.30 0.33 0.31 

Recall 0.74 0.75 0.75 0.74 0.75 0.75 0.78 0.75 0.75 0.78 0.73 0.78 0.75 

F1 0.44 0.44 0.44 0.44 0.45 0.43 0.45 0.43 0.44 0.45 0.42 0.46 0.44 

MCC 0.45 0.45 0.45 0.45 0.46 0.44 0.47 0.44 0.45 0.47 0.43 0.48 0.45 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 1(109)               ISSN 2663-2012 (online) 

172 

Sergii Lysenko participated in the formulation of 

the problem and purpose of the study, determined the 

strategy for developing methods for detecting metamor-

phic viruses, participated in the experimental design and 

verification of scientific results. 

Oleg Savenko formulated the research problem, de-

fined the conceptual provisions for the development, par-

ticipated in the experiment design, processed the experi-

ment results in terms of malware detection via the sys-

tem, and verified the scientific and practical results. 

Andrii Nicheporuk developed two methods for de-

tecting metamorphic viruses and participated in the de-

sign and processing of the experimental results. 

Tomas Sochor participated in the malware detec-

tion approach creation and verification of scientific re-

sults. 

Volodymyr Avsiyevych participated in the devel-

opment of the implementation of a multi-computer sys-

tem for detecting malware with metamorphic functional-

ity and conducted experiments to obtain the results of the 

study of metamorphic code. 

 

Conflict of interest 

The authors declare that they have no conflict of in-

terest in relation to this research, whether financial, per-

sonal, authorship or otherwise, that could affect the re-

search and its results presented in this paper. 

 

Financing 

This study was conducted without financial support. 

 

Data availability 

The manuscript has no associated data. 

 

Use of Artificial Intelligence  

The authors confirm that they did not use artificial 

intelligence technologies when creating the current 

study. 

 
All the authors have read and agreed to the pub-

lished version of this manuscript. 

 

References 

 
1. Markowsky, G. Savenko, O., Lysenko, S., & 

Nicheporuk, A. The technique for metamorphic viruses' 

detection based on its obfuscation features analysis. 
CEUR-WS, 2018, vol. 2104, pp. 680–687. 

2. Savenko, O., Lysenko, S., Nicheporuk, A., & 

Savenko, B. Metamorphic Viruses’ Detection Technique 

Based on the Equivalent Functional Block Search. 

CEUR-WS, 2017, vol. 1844, pp. 555–569. 

3. Savenko, O., Lysenko, S., Nicheporuk, A., & 

Savenko, B. Approach for the Unknown Metamorphic 

Virus Detection. Proceedings of the 8-th IEEE Interna-

tional Conference on Intelligent Data Acquisition and 

Advanced Computing Systems (IDAACS 2017), Bucha-

rest (Romania), September 21–23, 2017, Bucharest, 

2017, pp. 71–76. DOI:10.1109/IDAACS.2017.8095052. 

4. Kashtalian, A., Lysenko, S., Savenko, B., So-

chor, T., & Kysil, T. Principle and method of deception 

systems synthesizing for malware and computer attacks 

detection. Radioelectronic and Computer Systems, 2023, 

no. 4, pp. 112-151. DOI: 10.32620/reks.2023.4.10. 

5. Han, X., Kheir, N., & Balzarotti, D. Deception 
Techniques in Computer Security. ACM Computing Sur-

veys (CSUR), 2018, vol. 51, pp. 1-36. DOI: 

10.1145/3214305. 

6. Pawlick, J., Colbert, E., & Zhu, Q. A Game-the-

oretic Taxonomy and Survey of Defensive Deception for 

Cybersecurity and Privacy. ACM Computing Surveys 

(CSUR), 2018, vol. 52, pp. 1-28. DOI: 

10.48550/arXiv.1712.05441. 

7. Almeshekah, M. H., & Spafford, E. H. Cyber 

Security Deception. In: Jajodia, S., Subrahmanian, V., 

Swarup, V., Wang, C. (eds) Cyber Deception, Springer, 
Cham, 2016. DOI: 10.1007/978-3-319-32699-3_2. 

8. Chessa, M., Grossklags, J., & Loiseau, P. A 

Game-Theoretic Study on Non-monetary Incentives in 

Data Analytics Projects with Privacy Implications, 2015 

IEEE 28th Computer Security Foundations Symposium, 

Verona, Italy, 2015, pp. 90-104. DOI: 

10.1109/CSF.2015.14. 

9. Shokri, R. Privacy games: Optimal user-centric 

data obfuscation. Proc. Privacy Enhancing Technolo-

gies, 2015, vol. 2, pp. 299–315. DOI 10.1515/popets-

2015-0024. 

10. Pawlick, J., & Zhu, Q. A Stackelberg Game Per-
spective on the Conflict Between Machine Learning and 

Data Obfuscation. In IEEE Workshop on Inform. Foren-

sics and Security, 2016. Available at:  

https://arxiv.org/abs/1608.02546. (accessed 12.12.2023). 

11. Clark, A., Zhu, Q., Poovendran, R., & Basar, T. 

Deceptive routing in relay networks. In Decision and 

Game Theory for Security. Springer, 2012, pp. 171–185. 

DOI: 10.1007/978-3-642-34266-0_10. 

12. Lu, R., Lin, X., Luan, T. H., Liang, X., & Shen, 

X. Pseudonym changing at social spots: An effective 

strategy for location privacy in vanets. IEEE Trans Ve-
hicular Technol, 2012, vol. 61, iss. 1, pp. 86–96. DOI: 

10.1109/TVT.2011.2162864. 

13. Durkota, K., Lisy, V., Bosansky, B., & 

Kiekintveld, C. Optimal Network Security Hardening 

Using Attack Graph Games. In Intl. Joint Conf. on Arti-

ficial Intelligence, 2015, pp. 526–532. Available at: 

https://www.semanticscholar.org/paper/Optimal-Net-

work-Security-Hardening-Using-Attack-Durkota-

Lis%C3%BD/114c35ed4e6be9e556f36bed7af3bfe9fe92

09d9. (accessed 10.12.2023). 

14. Horak, K., Zhu, Q., & Bosansky, B. Manipulat-

ing Adversary’s Belief: A Dynamic Game Approach to 
Deception by Design in Network Security. In Decision 

and Game Theory for Security. Springer, 2017, pp. 273–

294. DOI: 10.1007/978-3-319-68711-7_15. 

https://doi.org/10.32620/reks.2023.4.10


Information security and functional safety 
 

173 

15. Al-Shaer, E. A Cyber Mutation: Metrics, Tech-

niques and Future Directions. In Proceedings of the 2016 

ACM Workshop on Moving Target Defense (MTD '16). 

Association for Computing Machinery, New York, NY, 

USA, 2016, vol. 1. DOI: 10.1145/2995272.2995285. 

16. Park, K., Woo, S., Moon, D., & Choi, H. Secure 

Cyber Deception Architecture and Decoy Injection to 

Mitigate the Insider Threat. Symmetry, 2018, vol. 10, iss. 

1, article no. 14. DOI: 10.3390/sym10010014. 

17. Kechao, L., & Xinli, X. OpenHIP Random Host 

Hopping in Network Layer. In International Conference 
on Education, Management and Information Technology 

(ICEMIT 2019), 2019. DOI: 10.25236/icemit.2019.048. 

18. Adili, M. T., Mohammadi, A., Manshaei, M. H. 

& Rahman, M. A. A cost-effective security management 

for clouds: A game-theoretic deception mechanism. 2017 

IFIP/IEEE Symposium on Integrated Network and Ser-

vice Management (IM). Lisbon, Portugal, 2017, pp. 98-

106. DOI: 10.23919/INM.2017.7987269. 

19. Reti, D., Fraunholz, D., Elzer, K., Schneider, K., 

& Schotten, H. D. Evaluating Deception and Moving 

Target Defense with Network Attack Simulation. In Pro-
ceedings of the 9th ACM Workshop on Moving Target 

Defense (MTD'22). Association for Computing Machin-

ery, New York, NY, USA, 2022, pp. 45–53. DOI: 

10.1145/3560828.3564006. 

20. Franco, J., Aris, A., Canberk, B., & Uluagac, 

A. S. A Survey of Honeypots and Honeynets for Internet 

of Things, Industrial Internet of Things, and Cyber-Phys-

ical Systems. arXiv:2108.02287v1 [cs.CR] 4 Aug 2021. 

Available at:  https://arxiv.org/pdf/2108.02287.pdf. (ac-

cessed 12.12.2023). 

21. Zielinski, D., & Kholidy, H. A. An Analysis of 

Honeypots and their Impact as a Cyber Deception Tactic 
arXiv:2301.00045v1 [cs.CR] 30 Dec 2022. Available at: 

https://doi.org/10.48550/arXiv.2301.00045. (accessed 

12.12.2023). 

22. Sochor, T., & Zuzcak, M. High-Interaction 

Linux Honeypot Architecture in Recent Perspective. In: 

Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Net-

works. CN 2016. Communications in Computer and In-

formation Science, 2016, vol. 608. Springer, Cham. DOI: 

10.1007/978-3-319-39207-3_11. 

23. Chovancová, E., & Ádám, N. A Clustered Hy-

brid Honeypot Architecture. Acta Polytechnica Hun-
garica, 2019, vol. 16, iss. 10, pp. 173-189. DOI: 

10.12700/APH.16.10.2019.10.11. 

24. Baykara, M., & Das, R. A novel honeypot based 

security approach for real-time intrusion detection and 

prevention systems. Journal of Information Security and 

Applications, 2018, vol. 41, pp. 103-116. DOI: 

10.1016/j.jisa.2018.06.004. 

25. Li, Y., Shi, L., & Feng, H. A Game-Theoretic 

Analysis for Distributed Honeypots. Future Internet, 

2019, vol. 11, iss. 3, article no. 65. DOI: 

10.3390/fi11030065. 

26. Fraunholz, D., Zimmermann, M., & Schotten, 
H. D. An adaptive honeypot configuration, deployment 

and maintenance strategy. 2017 19th International Con-

ference on Advanced Communication Technology 

(ICACT), 2017, pp. 53-57. DOI: 

10.23919/ICACT.2017.7890056. 

27. Wang, K., Du, M., Maharjan, S., & Sun, Y. Stra-

tegic Honeypot Game Model for Distributed Denial of 

Service Attacks in the Smart Grid. In IEEE Transactions 

on Smart Grid. Sept. 2017, vol. 8, no. 5, pp. 2474-2482, 

DOI: 10.1109/TSG.2017.2670144. 

28. Nasr, M., Zolfaghari, H., & Houmansadr, A. 

The Waterfall of Liberty: Decoy Routing Circumvention 

that Resists Routing Attacks. Proceedings of the 2017 

ACM SIGSAC Conference on Computer and Communi-
cations Security. 2017. DOI: 10.1145/3133956.3134075. 

29. Sadasivam, G. K., & Hota C. Scalable Honeypot 

Architecture for Identifying Malicious Network Activi-

ties. 2015 International Conference on Emerging Infor-

mation Technology and Engineering Solutions. Mahash-

tra, India, 2015, pp. 27-31. DOI: 

10.1109/EITES.2015.15. 

30. Kumar, S., Janet, B., & Eswari, R. Multi Plat-

form Honeypot for Generation of Cyber Threat Intelli-

gence. 2019 IEEE 9th International Conference on Ad-

vanced Computing (IACC). Tiruchirappalli, India, 2019, 
pp. 25-29. DOI: 10.1109/IACC48062.2019.8971584. 

31. You, J., Lv, S., Sun, Y., Wen, H., & Sun, L. 

HoneyVP: A Cost-Effective Hybrid Honeypot Architec-

ture for Industrial Control Systems. ICC 2021 - IEEE In-

ternational Conference on Communications, Montreal, 

QC, Canada, 2021, pp. 1-6, DOI: 

10.1109/ICC42927.2021.9500567. 

32. Ilg, N., Duplys, P., Sisejkovic, D., & Menth, M. 

A survey of contemporary open-source honeypots, 

frameworks, and tools. Journal of Network and Com-

puter Applications, 2023, vol. 220, article no. 103737, 

ISSN 1084-8045, DOI: 10.1016/j.jnca.2023.103737. 
33. Shabtai, A., Bercovitch, M., Rokach, L., Gal, 

Y., Elovici, Y., & Shmueli, E. Behavioral Study of Users 

When Interacting with Active Honeytokens. ACM Trans. 

Inf. Syst. Secur., 2016, vol. 18, iss. 3, article no. 9, pp. 1-

21. DOI:  10.1145/2854152. 

34. Juels, A., & Rivest, R. L. Honeywords: Making 

password-cracking detectable. In Proceedings of the 

2013 ACM SIGSAC conference on Computer & commu-

nications security, 2013, pp. 145–160. DOI: 

10.1145/2508859.2516671. 

35. Rrushi, J. L. NIC displays to thwart malware at-
tacks mounted from within the OS. Comput. Secur., 

2016, vol. 61, pp. 59–71. DOI: 

10.1016/j.cose.2016.05.002. 

36. Kaghazgaran, P., & Takabi, H. Toward an In-

sider Threat Detection Framework Using Honey Permis-

sions. Journal of Internet Services and Information Secu-

rity (JISIS), 2015, vol. 5, iss. 3. DOI: 

10.22667/JISIS.2015.08.31.019. 

37. Efendi, M. A., Ibrahim, Z. B., Zawawi, M. N., 

Rahim, F. A., Pahri, N. A., & Ismail, A. A Survey on De-

ception Techniques for Securing Web Application. 2019 

IEEE 5th Intl Conference on Big Data Security on Cloud 
(BigDataSecurity), IEEE Intl Conference on High Per-

formance and Smart Computing, (HPSC) and IEEE Intl 

Conference on Intelligent Data and Security (IDS). 2019, 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 1(109)               ISSN 2663-2012 (online) 

174 

pp. 328-331. DOI: 10.1109/BigDataSecurity-HPSC-

IDS.2019.00066. 

38. Onaolapo, J., Mariconti, E., & Stringhini, G. 

What Happens After You Are Pwnd: Understanding the 

Use of Leaked Webmail Credentials in the Wild. In Pro-

ceedings of the 2016 Internet Measurement Conference 

(IMC '16). Association for Computing Machinery, New 

York, NY, USA, 2016, pp. 65–79. DOI: 

10.1145/2987443.2987475. 

39. De Faveri, C., Moreira, A., & Amaral, V. Multi-

Paradigm Deception Modeling for Cyber Defense. The 
Journal of Systems & Software, 2018, vol. 141, pp. 32-

51. DOI: 10.1016/j.jss.2018.03.031. 

40. De Cristofaro, E., Friedman, A., Jourjon, G., Ali 

Kaafa, M. A., & Shafiq, M. Z. Paying for Likes? Under-

standing Facebook Like Fraud Using Honeypots. In Pro-

ceedings of the 2014 Conference on Internet Measure-

ment Conference (IMC '14). Association for Computing 

Machinery, New York, NY, USA, 2014, pp. 129-136. 

DOI: 10.1145/2663716.2663729. 

41. Almeshekah, M. H., & Spafford, E. H. Planning 

and Integrating Deception into Computer Security De-
fenses. In Proceedings of the 2014 New Security Para-

digms Workshop (NSPW '14). Association for Compu-

ting Machinery, New York, NY, USA, 2014, pp. 127–

138. DOI: 10.1145/2683467.2683482. 

42. Bercovitch, M., Renford, M., Hasson, L., Shab-

tai, A., Rokach, L., & Elovici, Y. HoneyGen: An auto-

mated honeytokens generator. Proceedings of 2011 IEEE 

International Conference on Intelligence and Security In-

formatics, Beijing, China, 2011, pp. 131-136. DOI: 

10.1109/ISI.2011.5984063. 

43. Matin, I. M. M., & Rahardjo, B. Malware De-

tection Using Honeypot and Machine Learning. 2019 7th 
International Conference on Cyber and IT Service Man-

agement (CITSM). Jakarta, Indonesia, 2019, pp. 1-4. 

DOI: 10.1109/CITSM47753.2019.8965419. 

44. Ahmed, J., Karpenko, A., Tarasyuk, O., Gor-

benko, A., & Sheikh-Akbari, A. Consistency issue and 

related trade-offs in distributed replicated systems and 

databases: a review. Radioelectronic and Computer Sys-

tems, 2023, no. 2. pp. 171-179. DOI: 

10.32620/reks.2023.2.14. 

45. Fursov, I., Yamkovyi, K., & Shmatko, O. Smart 

Grid and wind generators: an overview of cyber threats 
and vulnerabilities of power supply networks. Radioelec-

tronic and Computer Systems, 2022, vol. 4. pp. 50-63. 

DOI: 10.32620/reks.2022.4.04. 

46. Dovbysh, A., Liubchak, V., Shelehov, I., Si-

monovskiy, J., & Tenytska, A. Information-extreme ma-

chine learning of a cyber attack detection system. Radio-

electronic and Computer Systems, 2022, no. 3, pp. 121-

131. DOI: 10.32620/reks.2022.3.09. 

47. Morozova, O., Nicheporuk, A, Tetskyi, A., & 

Tkachov, V. Methods and technologies for ensuring cy-

bersecurity of industrial and web-oriented systems and 

networks. Radioelectronic and Computer Systems, 2021, 

no. 4, pp. 145-156. DOI: 10.32620/reks.2021.4.12. 

48. Moskalenko, V., Zarets'kyy, M., Moskalenko, 

A., Kudryavtsev, A., & Semashko, V. Multi-layer model 

and training method for malware traffic detection based 

on decision tree ensemble. Radioelectronic and Com-

puter Systems, 2020, no. 2, pp. 92-101. DOI: 

10.32620/reks.2020.2.08. 

49. Lysenko, S., Bobrovnikova, K., Shchuka, R., & 

Savenko, O. A Cyberattacks Detection Technique Based 

on Evolutionary Algorithms. 11th International Confer-
ence on Dependable Systems, Services and Technologies 

(DESSERT), 2020, vol. 1, pp. 127-132. DOI: 

10.1109/DESSERT50317.2020.9125016. 

50. Bobrovnikova, K., Lysenko, S., Savenko, B., 

Gaj, P., & Savenko, O. Technique for IoT malware de-

tection based on control flow graph analysis. Radioelec-

tronic and Computer Systems, 2022, no. 1, pp. 141–153. 

DOI: 10.32620/reks.2022.1.11. 

51. Savenko, B., Kashtalian, A., Lysenko, S., & 

Savenko, O. Malware Detection By Distributed Systems 

with Partial Centralization. 2023 IEEE 12th International 
Conference on Intelligent Data Acquisition and Ad-

vanced Computing Systems: Technology and Applica-

tions (IDAACS), Dortmund, Germany, 2023, pp. 265-

270. DOI: 10.1109/IDAACS58523.2023.10348773. 

52. Savenko, O., Lysenko, S., & Kryschuk, A. 

Multi-agent based approach of botnet detection in com-

puter systems. CCIS, 2012, vol. 291, pp. 171–180. DOI: 

10.1007/978-3-642-31217-5_19. 

53. Kleshch, K., & Shablii, V. Comparison of fuzzy 

search algorithms based on Damerau-Levenshtein au-

tomata on large data. Technology audit and production 

reserves, 2023, vol. 4, no. 2/72, pp. 27-32. DOI: 
10.15587/2706-5448.2023.286382. 

54. GDB: The GNU Project Debugger. Available 

at: https://www.sourceware.org/gdb/ (accessed 

06.12.2023). 

55. Powers, D. Evaluation: From Precision. Recall 

and F-Measure to ROC. Informedness. Markedness & 

Correlation. arXiv 2020. Available at: 

10.48550/arXiv.2010.16061. (accessed 06.12.2023). 

56. Chicco, D., & Jurman, G.  The Matthews corre-

lation coefficient (MCC) should replace the ROC AUC 

as the standard metric for assessing binary classification. 
BioData Mining, 2023, vol. 16, iss. 1, pp. 1-23. DOI: 

10.1186/s13040-023-00322-4. 

57. Savenko, B., Lysenko, S., Bobrovnikova, K., 

Savenko, O., & Markowsky, G. Detection DNS Tunnel-

ing Botnets. Proceedings of the 2021” IEEE 11th Inter-

national Conference on Intelligent Data Acquisition and 

Advanced Computing Systems: Technology and Applica-

tions (IDAACS), IDAACS’2021, Cracow, Poland, Sep-

tember 22-25, 2021. DOI: 

10.1109/IDAACS53288.2021.9661022.  

 
Received 05.01.2024. Accepted 20.02.2024 

 

 



Information security and functional safety 
 

175 

МУЛЬТИКОМП’ЮТЕРНІ СИСТЕМИ ВИЯВЛЕННЯ ЗЛОВМИСНОГО ПРОГРАМНОГО 

ЗАБЕЗПЕЧЕННЯ З МЕТАМОРФНИМ ФУНКЦІОНАЛОМ  

Антоніна Каштальян, Сергій Лисенко, Олег Савенко, Андрій Нічепорук,  

Томаш Сочор, Володимир Авсієвич  

Потреба в розробці нових систем виявлення та протидії шкідливому програмному забезпеченню зали-

шається актуальною. Окрім методів виявлення шкідливого програмного забезпечення, все більшої актуаль-

ності набуває потреба в розробці нових систем виявлення та протидії шкідливому програмному забезпеченню. 

Використання різноманітних систем виявлення та формування в них змінної архітектури значно підвищує 

ефективність виявлення, оскільки як для зловмисників при комп'ютерних атаках, так і для шкідливого про-

грамного забезпечення розуміння системи значно ускладнюється. Крім того, такі системи можуть містити 

приманки, пастки і, відповідно, модифіковані операційні середовища для обманного виконання програм з ме-
тою дослідження. У статті розроблено концептуальну модель багатокомп'ютерних систем, яка розроблена для 

забезпечення функціонування антивірусних приманок і пасток з метою виявлення шкідливого програмного 

забезпечення та комп'ютерних атак у корпоративних мережах. Запропонований підхід спрямований на запо-

бігання та протидію проникнення метаморфних вірусів. Представлено концептуальну модель багатокомп'ю-

терних систем та введено визначальну характеристику, яка відповідає за контроль рішень та інші визначальні 

характеристики системи. Розроблено методи виявлення метаморфних вірусів з можливістю їх реалізації в ар-

хітектурі мультикомп'ютерних систем з приманками та пастками таким чином, що система безпосередньо 

через свої компоненти долучається до здійснення виявлення та приймає рішення про наявність метаморфного 

коду у виконуваному файлі. Здійснено реалізацію багатокомп'ютерної системи виявлення шкідливого програ-

много забезпечення з метаморфним функціоналом для доведення спроможності реалізації запропонованої 

концептуальної архітектурної моделі та розроблених методів виявлення метаморфних вірусів. Поставлено 
експеримент з функціонування багатокомп'ютерної системи виявлення шкідливого програмного забезпечення 

та проведено експериментальні дослідження. Проведені експерименти включали виявлення метаморфних ві-

русів. Крім того, було поставлено експеримент щодо ефективності виявлення метаморфного коду вірусів та 

проведено відповідні експериментальні дослідження. Також було досліджено ефективність виявлення мета-

морфного коду вірусів розробленою багатокомп'ютерною системою та встановлено наявність покращеного 

виявлення. Напрямки подальшої роботи полягають у поширенні результатів роботи на нові типи шкідливого 

програмного забезпечення. 

Ключові слова: метаморфічний код; мультикомп'ютерні системи; кібербезпека; комп'ютерні віруси; 

шкідливе програмне забезпечення; виявлення шкідливого програмного забезпечення. 
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