
Cyber physical systems and Internet of Things

127

UDC 004.415.5 doi: 10.32620/reks.2024.1.11

Yuriy MANZHOS, Yevheniia SOKOLOVA

National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine

A TYPE SYSTEM FOR FORMAL VERIFICATION

OF CYBER-PHYSICAL SYSTEMS C/C++ SOFTWARE

The subject: This study focuses on improving the quality of Cyber-Physical System (CPS) software by eliminat-
ing incorrect usage of units of measurement and orientation in C/C++ programs. Incorrect usage often leads to

critical errors that conventional systems cannot effectively prevent. Manual examination of code using dimen-

sional and orientation analysis can detect these errors in physical equations, but these methods become imprac-

tical when dealing with complex physical computations. Objectives: As suggested by Siano, the proposed ap-

proach uses physical quantities and prefixes defined by the International System of Units and orientation oper-

ations on physical objects. The elaborated system incorporates dimensional and orientation analysis and met-

aprogramming techniques. The methods used are dimensional & orientational analysis and metaprogramming.

The following results were obtained: ensuring consistency of the units, incorporating orientation operations into

the programming model for accurately handling physical object rotations and alignments, and using Siano’s

work to precisely manipulate object orientation, thereby reducing the likelihood of orientation-related errors.

Checking physical dimensions and orientations during the compilation stage identifies potential software defects
before code execution, thereby reducing debugging time and lowering the cost of addressing issues later in

development. The elaborated system represents a crucial step towards safer and more dependable Cyber-Phys-

ical System applications. This approach allows us to identify approximately 90% of incorrect usage of program

variables; additionally, it detects over 50% of erroneous operations during compilation and execution of large-

scale programs in real-world conditions. Conclusions. Scientific novelty: it proposed and developed a special-

ized C++-type library for formal compile-time software verification of Cyber-Physical Systems software. The

proposed C++-type library leverages dimensional and orientational analysis to enhance software quality, reli-

ability, and real-time formal verification. Although the proposed method for formal verification is not tailor-

made for cyber-physical objects and systems, given its primary focus on software-level concerns, it does exhibit

adaptability for verifying general-purpose software that incorporates various physical parameters. This versa-

tility extends to diverse domains such as educational, gaming, and simulation software.

Keywords: Cyber-Physical Systems; dimensional analysis; formal verification; orientational analysis; software

quality; type system.

1. Introduction

Cyber-Physical Systems (CPS) are pivotal in mod-

ern society, delivering many benefits and applications

that profoundly impact our daily lives. Notably, they

drive the transformation of manufacturing processes,

propelling Industry 4.0 [1] and setting the stage for the

impending Industry 5.0 [2] revolution through automa-

tion [3], connectivity [4], and data-driven decision-mak-

ing [5]. This leads to increased productivity, reduced

downtime, and more agile production processes [6]. This

can lead to better resource allocation, cost savings, and

improved outcomes [7]. Therefore, the proposed study

aims to utilize a specialized library for formal software

verification.

1.1. Motivation

Implementing compile-time orientation and dimen-

sional checking can be challenging, particularly as soft-

ware reliability and quality requirements increase. This

challenge motivated our study, which focuses on a

specialized C++ type library that enables compile-time

checking for the usage of various System International

(SI) units physical quantities, including different orienta-

tions and SI decimal prefixes.

1.2. State of the art

CPS technologies: facilitate monitoring and manag-

ing environmental factors such as air quality, water us-

age, and energy consumption, promoting sustainability

and minimizing environmental impact [8]; are pivotal in

healthcare, enabling remote patient monitoring, telemed-

icine, and wearable health devices for more effective de-

livery [9], personalized treatment plans, and improved

patient outcomes [10]; are pivotal in advancing smart in-

frastructure for cities and homes [11], integrating trans-

portation, energy, waste management, and public ser-

vices for more efficient urban living; enhance automa-

tion, energy efficiency, and remote control, providing

heightened convenience and comfort; and in agriculture

 Yuriy Manzhos, Yevheniia Sokolova, 2024

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
128

monitor soil and weather and optimize practices for

higher yields and resource efficiency, while CPS enables

precise control of irrigation, fertilization, and pest man-

agement, further enhancing productivity and resource use

[12]; in educational environments to create interactive

learning experiences and research platforms. It provides

hands-on learning opportunities in robotics, automation,

and control systems [13].

CPS is at the heart of autonomous vehicle technol-

ogy, enabling self-driving cars, drones, and other forms

of transportation [14]. This can revolutionize mobility,

improve safety, and reduce traffic congestion [15]. Avia-

tion systems such as aircraft and Unmanned aerial vehi-

cles (UAV) are CPS with several interacting automated

control modules [16]. In aerospace, CPS is crucial for the

operation of modern aircraft, including fly-by-wire sys-

tems, autopilots, and flight control systems. In UAVs,

managing energy consumption is vital. This often in-

volves employing adaptive data compression methods to

minimize transmission overhead [17]. It ensures safe and

efficient air travel.

CPS enhances energy efficiency in smart grids [18],

reduces environmental impact, and seamlessly integrates

renewable sources [19]. CPS is applied in defense sys-

tems, including UAVs, military robotics, and surveil-

lance, to enhance situational awareness, intelligence

gathering, and mission execution [20].

Ensuring the accuracy and reliability of CPS soft-

ware is crucial for secure and reliable operation, as CPS

systems involve a combination of hardware, firmware,

communication protocols, and cloud services [21]. The

following steps and techniques can be employed for the

verification of CPS software [22]: Requirements Specifi-

cation [23]; Functional Testing; Formal Verification

(FV) [24]; Simulation and Testing; Code Reviews and

Inspections; Static Code Analysis; Documentation Veri-

fication; Compliance with Standards and Regulations.

FV is a rigorous mathematical technique that proves

that a system (including its hardware and software com-

ponents) satisfies specific properties or requirements.

When applied to CPS software, FV offers several bene-

fits: FV instills high confidence in critical safety proper-

ties, which are vital for safety-critical CPS applications

[25]; FV methods validate real-time properties, ensuring

critical tasks meet timing requirements [26]; FV provides

stability and performance of control algorithms in CPS

[27]; Coupling formal methods with model-based design

ensures accurate representation of system requirements

and design [28]; FV spots flaws, inconsistencies, and am-

biguities in specifications pre-implementation saving

time and resources [29]; safety-critical domains often ne-

cessitate FV for demonstrating compliance with stand-

ards [30].

FV boosts confidence by detecting errors beyond

testing, vital in complex systems such as autonomous

vehicles. It complements testing methods and is applied

selectively to critical components due to time and exper-

tise constraints.

CPS applications, as well as scientific applications,

heavily rely on the use of measurement units such as me-

ters, seconds, kilograms, and so on (as specified in the SI

system). Some software faults occurred during develop-

ment because of incorrect physical quantities and system

unit usage [31]. An illustrative instance of a software

fault arising from the erroneous use of physical quantities

occurred with the Therac-25 radiation therapy machine

in the 1980s. In the 1983 Gimli Glider incident, an Air

Canada Boeing 767 experienced a fuelling error during

maintenance when converting from imperial to metric

units. The incorrect conversion factor resulted in the air-

craft being loaded with only half the necessary fuel. Dur-

ing the 1991 Gulf War, the Patriot missile defence system

experienced a critical software fault due to the system's

internal clock measurement in tenths of a second, result-

ing in cumulative errors and inaccurate missile position

calculations [32]. In the 1999 Mars Climate Orbiter mis-

sion, a critical software fault arose from incorrect unit

conversion, causing the spacecraft to enter the atmos-

phere of Mars at an inadequate altitude and destroy it

[33].

Physical unit and Orientation checking is of utmost

importance in satellite and UAV (Unmanned Aerial Ve-

hicle) software testing for several critical reasons: En-

sures consistent and correct usage of units of measure-

ment, preventing errors that may result from incompati-

ble units in calculations; Unit and orientation checking

enhances code readability and maintainability by clearly

defining units and orientations, making it easier for de-

velopers to understand and debug the code; Physical unit

checking is crucial in avoiding costly errors in critical

systems, as incorrect units can lead to catastrophic fail-

ures, and implementing this check early in development

helps prevent potentially life-threatening situations;

Compile-time checking for correct usage reduces debug-

ging efforts by addressing potential issues before deploy-

ment, saving time and effort in later stages of develop-

ment. Ensuring accurate mathematical operations with

physical quantities is crucial in precision-dependent sci-

entific and engineering applications.

Accurate orientation checking is vital in aerospace

and defence for tasks such as flight simulation, missile

guidance, and satellite positioning, as well as for prevent-

ing drift in inertial navigation systems. It is essential for

precise positioning and heading of satellites and UAVs,

ensuring that they stay on the intended trajectories and

avoid collisions. Proper orientation checking is critical

for safety and equipment preservation, playing a funda-

mental role in stabilizing and controlling the attitude of

satellites and UAVs relative to Earth or other reference

Cyber physical systems and Internet of Things

129

points, and is crucial for risk reduction in congested or

restricted airspace.

Incorporating physical unit, orientation, and dimen-

sion checking is crucial for verifying software correct-

ness, reliability, and safety, especially in domains reliant

on precise measurements. This practice plays a vital role

in satellite and UAV development, ensuring platform and

payload compatibility, safety, and reliability, which is

pivotal for aerospace mission success. As stated in [34],

simple dimensional analysis is essential for identifying

relevant quantities in specific problems.

Our article [35] stated that GitHub hosts over 2 GB

of UAV-related C/C++ source code. Physical unit check-

ing in software ensures consistent and accurate use of

measurement units throughout the program. Numerous

specialized libraries are available for implementing this

process:

Boost.Units is a C++ library [36] designed to pre-

cisely manage physical quantities and units, enabling

custom unit definitions with compile-time error detection

for unit-related concerns. It was first included in Boost

1.36.0, which was released in 2008. Benri, a C++ library

created by Jan in 2018, focuses on compile-time check-

ing of physical quantities. Benri provides extensive sup-

port for various systems of units, physical constants,

mathematical operations, and affine spaces [37]. Mp-

units, a compile-time enabled Modern C++ library by

Mateusz Pusz in 2020, provides compile-time dimen-

sional analysis and unit/quantity manipulation [38].

PHYSUNITS-CT-CPP11, a C++ library based on the

work of Michael Kenniston from 2001, expanded, and

adapted for C++11 and C++14 by Martin Moene [39] in

2020, is a header-only library that provides compile-time

dimensional analysis and unit/quantity manipulation and

conversion.

Orientation checking, which is essential in com-

puter graphics and robotics, involves operations such as

unit quaternion normalization to maintain the validity of

orientation representations. Here are C/C++ librar-

ies/tools for this purpose:

Eigen is a C++ template library for linear algebra,

written in 2021, which includes support for quaternions.

It provides functions for quaternion operations, including

normalization [40]; GLM (OpenGL Mathematics) is a

C++ library for graphics programming, offering func-

tions, structures, and support for quaternions, including

normalization [41]; Quaternion library for C is A basic

quaternion library written in C by Martin Weigel in 2018.

This library implements the most basic quaternion calcu-

lations [42].

We need new tools for formal verification based on

diverse principles because diversifying verification

methods allows for an increase in software quality.

Unfortunately, standard-type systems do not en-

force the proper use of physical dimensions and

orientations, leaving room for potential errors and incon-

sistencies. To address this challenge, physicists and engi-

neers often employ dimensional analysis [43] to verify

the dimensional unit correctness of quantities in equa-

tions. Dimensional analysis assumes that each physical

quantity has a well-defined, fixed unit of measure, requir-

ing the units on both sides of the equation to match.

While dimensional analysis is useful, it can be challeng-

ing for non-physicists. Many physical equations involve

complex computations, making it difficult to accurately

track the flow of units throughout the calculations. The

manual application of dimensional analysis to programs

that involve such equations can further intensify the com-

plexity.

According to [44], 38 of the most comprehensive

and well-developed open-source libraries provide built-

in support for units and dimensions in software develop-

ment. In [45], Steve McKee classified the many software

solutions measurement units checking. Steve proposed

software development based on Units of Measurement.

Similarly, orientational analysis [46, 47] assumes

that each physical quantity has a meaningful, fixed orien-

tation in space, and it requires the orientations on both

sides of an equation to align [48]. Similar to dimensional

analysis, orientational analysis can be challenging, espe-

cially for individuals without a strong physics back-

ground. Complex computations in physical equations

make it difficult to accurately trace the flow of units and

orientations. Therefore, manually applying dimensional

and orientational analysis to programs involving such

equations can be even more daunting.

In summary, ensuring the correctness of physical

dimensional units and orientations is essential for CPS

and scientific applications. The limitations of the stand-

ard-type system in enforcing these constraints make it

necessary to incorporate methods like dimensional anal-

ysis and orientational analysis. However, manually ap-

plying these analyses to programs that involve complex

equations can be intricate and time-consuming, high-

lighting the need for more efficient and automated ap-

proaches to ensure the accuracy and reliability of these

applications.

1.3. Objectives and methodology

This paper presents a novel specialized type library

(TL) to facilitate the formal verification of C++ software

at compile-time and run-time. By leveraging this library,

developers can enhance the reliability and correctness of

their C++ programs through rigorous verification tech-

niques. Benefits of the proposed library:

– Extensibility: The library allows for easy expan-

sion to accommodate new domains and physical quanti-

ties;

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
130

– Addition of orientation to quantities: The library

enables the inclusion of orientation information for the

quantities;

– Adaptive use of prefixes: The library allows for

the adaptive use of prefixes for units, enabling flexibility

in expressing quantities.

As Siano suggested, the proposed approach uses

physical quantities and prefixes defined by SI and orien-

tation operations on physical objects. The elaborated

C++ type system incorporates dimensional and orienta-

tion analysis and metaprogramming techniques. The

methods used are dimensional & orientational analysis

and metaprogramming.

The TL introduces a set of specialized types that en-

force specific constraints and properties during program

execution. These types enable compile-time verification

by utilizing static analysis techniques to detect potential

errors and inconsistencies in the code before execution.

By catching these issues early, developers can prevent

runtime errors and enhance the overall robustness of their

software.

Furthermore, the TL extends its functionality to

run-time (real-time) verification. During program execu-

tion, the library dynamically checks the validity of the

program's state and behavior against the defined con-

straints. This dynamic verification process provides an

additional safety net, ensuring that the software adheres

to the intended specifications and behaves as expected.

The library's formal verification capabilities enable

developers to reason about their C++ programs more rig-

orously and systematically. Providing a higher level of

assurance make it possible to detect and prevent various

types of errors, including type mismatches, undefined be-

havior, and violations of specified invariants. This signif-

icantly reduces the risk of bugs, improves the code qual-

ity, and enhances the overall reliability of the software.

In addition to its verification features, TL integrates

seamlessly into the C++ development workflow. It pro-

vides clear and expressive interfaces that allow develop-

ers to specify constraints and properties concisely and

readably. The library also offers extensive documenta-

tion and support, making it accessible to developers with

varying levels of expertise in formal verification.

By adopting this TL, C++ developers can elevate

the quality of their software by incorporating formal ver-

ification techniques into their development process. By

combining the advantages of compile-time and run-time

verification, the library offers a comprehensive approach

to ensure the correctness and robustness of C++ software,

ultimately leading to increased confidence in its reliabil-

ity and improved software quality.

The objectives of the investigation are:

– develop a novel specialized type library (TL) for

formal verification of C++ software at compile-time and

run-time, enhancing reliability and correctness, while en-

suring extensibility by accommodating new domains,

physical quantities, and orientation information;

– incorporate dimensional and orientation analysis,

along with metaprogramming techniques, into the C++

type system;

– implement both compile-time and run-time veri-

fication to detect errors, check program validity, and ele-

vate software quality;

– seamlessly integrate the TL into the C++ develop-

ment workflow for rigorous reasoning about programs

and improved code quality.

The structure of this paper is as follows:

1. Describes the software verification model used in

the study, including its key components and methodolo-

gies (subsection 2.1).

2. Explains the fundamental principles underlying

the specialized TL, including its design considerations

and core functionalities (subsection 2.2).

3. Details the implementation of operators and func-

tion wrappers within the TL framework, highlighting the

use of templates for flexibility and efficiency (subsection

2.3).

4. Provides guidelines and examples for using the

TL in C++ software development, demonstrating its

practical application and benefits (subsection 2.4).

5. Outlines the verification process for the TL, in-

cluding both compile-time and run-time verification

techniques employed to ensure its correctness and relia-

bility (subsection 2.5).

6. This section presents the findings of the study,

including empirical results and insights gained from the

implementation and verification of the TL (section 3).

7. Summarizes the key findings of the study and dis-

cusses their implications for C++ software development

and formal verification practices (section 4).

8. Suggests potential avenues for future research

and development in the field of formal verification and

C++ software engineering, building upon the findings of

the current study (section 5).

2. Materials and Methods

2.1. Software verification model

The proposed TL will enable the formal verification

of the embedded software. Integrating TL into the soft-

ware development process ensures the correctness and

reliability of the software's behavior and its interactions

with the physical world. TL's capability to manage phys-

ical dimensions, units, and orientations offers a potent

tool for static checking and validation, thereby reducing

the risk of errors and enhancing the overall quality of the

embedded software.

Cyber physical systems and Internet of Things

131

The software formal verification model employs in-

variants checking to ensure dimension and orientation

homogeneity (see Fig. 1). By enforcing these invariants,

and the model proves that the software components and

operations maintain consistent physical dimensions and

orientations throughout their execution. This approach

guarantees the integrity of calculations and prevents in-

compatible combinations of quantities, resulting in more

reliable and accurate software behavior. The TL is crucial

in supporting this verification process by providing the

necessary tools and mechanisms to enforce and validate

dimension and orientation consistency.

The software verification process involves several

steps. Based on the technical documentation, the first step

is to set the physical dimensions and orientations of the

input and output SW variables. This is done by using the

source code of every function as the body of a method of

a special testing class.

The second step involves modifying the C++ source

code by overriding standard data types to match the phys-

ical dimensions and orientation of the input and output

variables.

In the third step, a standard compiler detects SW de-

fects, such as violations of dimensional and/or orienta-

tional homogeneity. After modifying the SW units, the

modified units are compiled again.

In the fourth step, the test cases are used for soft-

ware testing after compiling and linking editing. The test

cases' negative results indicate dimensional and/or orien-

tational homogeneity violations. This allows for modifi-

cation of the source code to correct any detected issues.

The test cases also allow for checking the correctness of

different pointer operations during dynamic linking in

C++.

In the fifth and final step, after software verification,

invariant checking can be performed in real time to en-

sure that the software is operating correctly.

Overall, this software verification process provides

a reliable and effective method for detecting and correct-

ing dimensional and orientational homogeneity viola-

tions in C++ code, ensuring high-quality and reliable

software.

2.2. Key Principles of Type Library

The International System of Units (SI) consists of

seven base units: the amount of substance, current,

length, luminous intensity, mass, time, and thermody-

namic temperature and dimensionless symbol. Each base

unit is associated with a unit symbol and a dimension

symbol. According to the Siano convention [46, 47],

length is commonly understood to possess a fixed orien-

tation in space and is categorized as orientationless, x-

oriented, y-oriented, or z-oriented. This orientation is de-

fined by the symbol "O" (Table 1). In SI, each physical

quantity is defined as the product of base units raised to

certain powers. These base units serve as the fundamental

building blocks for expressing various measurements.

When SI units are used, physical values are associ-

ated with specific subject areas (SA). In cases where a

dimension has an orientation, the corresponding value

can have one of the following directions: {0, X, Y, Z}. A

value of 0 indicates an orientationless quantity, while X,

Y, and Z denote values oriented in the respective direc-

tions. For instance, quantities such as force and accelera-

tion fall into this category. On the other hand, certain

physical values, including mass and current, are consid-

ered to be orientationless. This means that they do not

possess a specific direction associated with them.

Fig. 1. Functional model of software formal verification

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
132

Table 1

Base Units of SI & Dimensionless Unit

SI unit
Unit [Sym-

bol]

Dimension

symbol

Amount Of Substance [mol] N

Current [A] I

Length [m] LO

Luminous Intensity [cd] J

Mass [kg] M

Time [s] T

Thermodynamic

Temperature
[K] Θ

Dimensionless [1] O

Table 2 and Table 3 offer a comprehensive compi-

lation of the common units of measurement used across

diverse subject areas

Table 2

Units of Measurement for Quantities

in the Subject Area of "Geometry"

Quantity Unit [Symbol],{Dimension}

Area [m2], {L2 O}
Aspect Ratio [1], {1}

Curvature [1/m], {L-1 O}
Perimeter [m], {L}

Plane Angle [rad], {O}
Solid Angle [Sr], {1}
Surface Area [m2], {L2 O}

Volume [m3], {L3}

Table 3

Units of Measurement for Quantities

in the Subject Area of "Optics and Photometry"

Quantity Unit [Symbol], {Dimension}

Illuminance [lx], {L-2JO}
Luminance [cd/m2], {L-2JO}

Luminous Efficacy [lm /W], {T3L-4M-1J}
Luminous Energy [lm s], {TJ}

Luminous Exposure [lx s], {TL-2JO}
Luminous flux or

Luminous power
[cd sr], {J}

Optical Power [1/m], {L-1O}
Refractive Index [1], {O}

These tables serve as valuable references, allowing

users to conveniently access and apply the appropriate

units in their respective fields of study or work. We can

create similar tables for different subject areas covered,

encompassing Chemistry, Density & Concentration,

Electricity & Magnetism, Flow, Physics and Thermody-

namics, etc. Importantly, these tables should be consid-

ered a foundation, providing a starting point for users to

expand upon based on their specific requirements and

subject areas of interest. Users are encouraged to aug-

ment the list to accommodate their unique needs and en-

sure comprehensive coverage within their chosen do-

main.

According to these subject areas, we have more than

80 different orientationless physical quantities and more

than 60 oriented physical quantities.

To implement compile-time software formal verifi-

cation, we need to create a total of 320

(80 + 60 x 4) different C++ classes. Considering both di-

mension and orientation homogeneity, we must create

overloading operators for product and division between

these 320 classes, resulting in a total of 320 x 320 x 2

operators. When dealing with expressions that involve

the product of multiple values (n-values), it is necessary

to overload the product and division operators to accom-

modate the varying number of operands. In total, 2 x 320

x n overloads will be required for these operators.

Clearly, such a TL would be considerably complex and

substantial in size. However, the advantage of using this

TL is that it enables the execution of formal verification

during compile time.

A common approach to representing units is to uti-

lise exponent vectors based on base units (as shown in

Table 1) and unit factors. For instance, the dimension of

an orientationless unit of force is T-2L1M1, which can be

represented as [-2, 1, 1, 0, 0, 0, 0] using exponent vectors.

On the other hand, an oriented force has dimension

T-2L1M1O, where O can take values of lx, ly, or lz, repre-

senting the orientation in the x ≡ 1, y ≡ 2, or z ≡ 3 direc-

tion, respectively. For example, the x-oriented force has

vector = [-2, 1, 1, 0, 0, 0, 0, 1]; the orientationless quan-

tity, such as mass, has an orientation of l0. We can distin-

guish between quantities with the same dimension but

different orientations by employing both orientational

and dimensional analysis. For example, it considers en-

ergy [Newton x meter] and torque [Newton x meter].

Thus, arithmetic operations on units can be simpli-

fied to vector additions, subtractions, or comparisons.

These operations can be performed only on physical

quantities with the same dimension or corresponding to

vectors with identical coordinates. In other words, units

with matching exponent vectors can be directly added,

subtracted, or compared using these operations.

However, complications arise when dealing with

the product and division of physical quantities. For ori-

entationless quantities, we can simply add or subtract

their corresponding exponent vectors to obtain the result-

ing vector. However, for orientated quantities, determin-

ing the resulting vector requires more than simply adding

or subtracting the exponent vectors. We also need to con-

sider Siano's rules, which help define the orientation of

the resulting vector [46, 47]. Siano demonstrated that ori-

Cyber physical systems and Internet of Things

133

entational symbols have an algebra defined by the multi-

plication table for the orientation symbols, which is as

follows:

 l0 lx ly lz

(1)

 l0 l0 lx ly lz

 lx lx l0 lz ly

 ly ly lz l0 lx

 lz lz ly lx l0

and rules:

l0 =
l

l0
 lx =

l

lx

ly =
l

ly
 lz =

l

lz

Based on the above, the product of two orientated

physical quantities has an orientation as follows:

l0lx = lxl0 = lx, l0ly = lyl0 = ly,
(2)

l0lz = lzl0 = lz, lxlx = lyly = lzlz = l0.

However, a common approach to representing units

is to utilise exponent vectors based on base units and unit

factors, which has some constraint: we may realize soft-

ware formal verification only in run time.

To enable the use of compile-time formal verifica-

tion, we present TL that encompasses the key compo-

nents designed to enhance the verification process. The

TL comprises several essential classes, including the

"PNSD_SI" class for facilitating operations with SI pre-

fixes (e.g., nano, milli, giga, etc.). This class enables

seamless handling of units of different magnitudes.

Another integral component of TL is the "Printing"

class, which provides comprehensive control over output

formatting. This class empowers developers to customize

the display of results, ensuring a clear and informative

representation of data.

Additionally, the TL incorporates a template class

called "PhysicalVariable" that plays a vital role in dimen-

sional analysis and orientational analysis operations. This

class allows for the precise handling of physical quanti-

ties, considering both their dimensions and orientations.

Moreover, the "PhysicalVariable" class inherits essential

functions from the "Printing" class, enabling seamless in-

tegration of output control capabilities.

The architecture of the TL is depicted in Fig. 2,

which showcases the relationships and dependencies be-

tween the classes. The template class "PhysicalVariable"

serves as a powerful tool for creating various C++ classes

that correspond to specific physical quantities (

Table 2 and Table 3) [49]. This template class, com-

bined with metaprogramming [50] techniques, forms the

foundation of a library that enables the generation of new

types at compile time [51].

To simplify the creation of these classes, the library

provides special pre-processor macros that leverage the

"PhysicalVariable" template. These macros facilitate the

generation of C++ classes during the compilation pro-

cess. The use of these macros is straightforward: devel-

opers define the desired quantity name, unit name, unit

symbol, and a vector representing the dimensions based

on the basis dimensions T (time), L (length), M (mass), I

(electric current), θ (thermodynamic temperature), N

(amount of substance), and J (luminous intensity) (see

Table 1).

For instance, the following macro invocation cre-

ates a class named "Density," representing the orienta-

tionless physical quantity of density:

createSomeUnit(Density, "kilogram per cubic

metre", "kg / m3", 0, -3, 1, 0, 0, 0, 0).

The next macro allows the creation of four C++

classes: "Area" (representing orientationless quantities),

"AreaX" (representing x-oriented quantities), "AreaY"

(representing y-oriented quantities), and "AreaZ" (repre-

senting z-oriented quantities):

createSomeUnit0XYZ(Area, "square meter",

"m2", 0, 2, 0, 0, 0, 0, 0).

Developers can easily generate the necessary C++

classes for their desired physical quantities by employing

these macros in the development process. This stream-

lined approach leverages the power of metaprogramming

and compile-time generation to create a comprehensive

library of types that accurately represent physical quanti-

ties and their orientations.

Table 2 and Table 3 show that each generated class

is mapped to a specific subject area. Each subject area is

associated with a C++ namespace. These namespaces are

included within the SI namespace (see Fig. 3).

The mapping of each generated class to a specific

subject area, as described in

Table 2 and Table 3, is achieved through association

with a dedicated C++ namespace. This approach ensures

that classes related to Chemistry, Optics, Photometry,

etc. These subject-specific namespaces are encapsulated

within the SI namespace to maintain a well-structured

codebase. This hierarchical structure promotes modular-

ity, clarity, and ease of navigation within the codebase,

facilitating efficient development and maintenance of the

library.

2.3. Implementation of Operators

and Function Wrappers Using Templates

The proposed library adheres to the principles of ho-

mogeneity in physical dimensions and orientations by en-

suring that the left and right operands have equal dimen-

sions and orientations. The assignment operators (=, +=,

-=) are function members within the template class.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
134

Fig. 2. Architecture of the Specialized Type Library

Fig. 3. SI namespace structure

For the conditional operators (>, >=, ==, !=, <=,<),

as well as the addition (+) and subtraction (-) operators,

template functions are employed with template class ar-

guments. These operators utilize the Siano conventions

(see expressions 1 and 2).

The multiplication and division operators are also

defined as template functions that utilize template class

arguments and adhere to the Siano conventions. These

operators enable proper handling of physical quantities

during calculations.

The compound assignment operators (*=, /=) re-

quire a dimensionless right operand. To preserve the di-

mension and orientation of the result, these operators are

defined as template function members.

The implementation of this library provides a sig-

nificant advantage in terms of unit testing, integration

testing, and regression testing. The effectiveness of static

checking during compilation reduces the time required

Cyber physical systems and Internet of Things

135

for these testing activities. By catching errors and incon-

sistencies at compile time, developers can identify and

address issues early in the development process, improv-

ing software quality and reducing debugging efforts.

Overall, the proposed library ensures consistency,

accuracy, and efficiency by enforcing physical dimen-

sions and orientations homogeneity and leveraging static

checking during compilation.

Wrapper functions are utilized with template argu-

ments to accommodate the dimensionless and

orientationless arguments of the exp and log functions.

These wrapper functions aim to ensure that the correct

version of the exp and log functions is called for the Phys-

icalVariable instances. Here are the improved versions of

the wrapper functions:

double exp(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv)

{ return ::exp(pv.value()); }

double log(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv)

{ return ::log(pv.value()); }

By specifying the template argument <0, 0, 0, 0, 0, 0, 0, 0>,

the wrappers ensure that only dimensionless and orienta-

tionless instances of PhysicalVariable can be passed as

arguments to the exp and log functions. In this way, the

correct mathematical operations can be applied to these

specific instances, guaranteeing the accuracy and integ-

rity of the calculations.

These wrapper functions are crucial in maintaining

the consistency and correctness of operations involving

dimensionless and orientationless quantities within the

proposed library.

To handle the square root function (sqrt) within the

template framework, we created a wrapper function that

correctly takes the dimensions of the result.

template < int T, int L, int M, int I, int θ, int N, int J>

PhysicalVariable < T/2, L/2, M/2, I/, θ /2, N/2, J/2, 0, 0>

sqrt(PhysicalVariable < T, L, M, I, K, N, J, 0> p)

{ return

 PhysicalVariable < T/2, L/2, M/2, I/, K/2, N/2, J/2, 0>

(::sqrt(p.value()));}

This wrapper function takes a PhysicalVariable in-

stance as an argument, where the dimensions are repre-

sented by the template parameters T, L, M, I, θ, N, J, and

O. The sqrt function calculates the square root of the

value stored in the PhysicalVariable instance. Creates a

new PhysicalVariable instance with dimensions halved

for each base unit.

To create a function wrapper for xn or pow(x, n),

where x represents a dimensioned and orientational value

and n is an integral number, the following struct template,

function template, and macro can be used:

template <int num>

struct powN{ enum { np = num }; };

template

< int T, int L, int M, int I, int θ, int N, int J, int O, int n>

PhysicalVariable

< T*n, L*n, M*n, I*n, θ*n, N*n, J*n, (O*n)%2>

powPhysicalVariable(PhysicalVariable

< T, L, M, I, θ, N, J, O > left, powN< n>)

{ return PhysicalVariable

< T*n, L*n, M*n, I*n, θ*n, N*n, J*n, (O*n)%2>

(::pow(left.value(), n)); }

#define pow(x,y) powPhysicalVariable(x, powN<y>())

This implementation allows the calculation of the

power of a dimensioned and orientational value (x) raised

to an integral exponent (n).

To handle trigonometric functions (sine, cosine,

tangent, arcsine, arccosine) within the template frame-

work, we created wrapper functions that correctly take

the dimensions of the result.

#define X SI::Geometry_SI::PlaneAngleX

#define Y SI::Geometry_SI::PlaneAngleY

#define Z SI::Geometry_SI::PlaneAngleZ

#define cosXYZ(L) double cos(L pv)

{ return ::cos(pv.value());}

cosXYZ(X) cosXYZ(Y) cosXYZ(Z)

#define FXYZ(F,L)\

Dimensionless##L

F(SI::Geometry_SI::PlaneAngle##L pv)\

{ return Dimensionless##L (::F(pv.value())) ;}

FXYZ(sin, X) FXYZ(sin, Y) FXYZ(sin, Z)

FXYZ(tan, X) FXYZ(tan, Y) FXYZ(tan, Z)

double acos(Dimensionless pv)

{ return ::acos(pv.value()); }

X asinx(double v){ return X(::asin(v)); }

Y asiny(double v){ return Y(::asin(v)); }

Z asinz(double v){ return Z(::asin(v)); }

X asinx(Dimensionless v)

{ return X(::asin(v.value())); }

Y asiny(Dimensionless v)

{ return Y(::asin(v.value())); }

Z asinz(Dimensionless v)

{ return Z(::asin(v.value())); }

2.4. Using the Type Library

Using TL is a straightforward process. In your C++

file, include the necessary namespaces to access the de-

sired subject areas. Here is an example of SI namespace

and its subnamespaces:

using namespace SI;

using namespace SI::Optics_Photometry_SI;

using namespace SI::Electricity_Magnetism_SI;

using namespace SI::Thermodynamics_SI;

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
136

By including these namespaces, you can access the

classes and functionality related to each subject area. It

allows you to use the units, perform calculations, and lev-

erage the features provided by the TL.

We can create an alias for a long or nested

namespace using the namespace aliasing feature as fol-

lows:

namespace ZSI = SI::Electricity_Magnetism_SI;

int main() {

 ZSI::Capacitance c;

 // Use the alias to access the classes

 return 0;

}

This modular approach allows users to extend and

organize subnamespaces structured, resulting in en-

hanced code reusability and maintainability.

By dividing the functionality into subnamespaces,

developers can logically group related classes and func-

tions, making it easier to locate and reuse code across dif-

ferent projects. In addition, it promotes a modular design

where each subnamespace can be independently ex-

tended or modified without affecting other parts of the

codebase.

Furthermore, this approach enhances the code or-

ganization making it more intuitive and understandable.

Developers can navigate through the codebase more effi-

ciently by understanding the purpose and scope of each

subnamespace.

This modular approach fosters better code manage-

ment, encourages code reuse, and facilitates future mod-

ifications and enhancements. It is a powerful technique

for structuring and maintaining complex projects effec-

tively.

2.5. Verification of the C++ Type Library

Based on Table 1, we have eight base units. Further-

more, our TL covers specific Subject Areas (see Table 4).

Every physical quantity corresponds to a distinct C++

class generated by TL. The distinct physical quantities

used in the program determines the number of generated

classes. These classes have various overloaded operators

that facilitate arithmetic, mathematical, and logical oper-

ations.

To verify the functionality of the TL, dedicated C++

units were created for each Subject Area. Special Test

Cases were generated for verification operations with dif-

ferent physical quantities. Cartesian products of Subject

Areas defined the operands of this operation. Additional

calculation errors based on dimensionality checks were

eliminated using operation templates and classes. Further

24 tests were conducted to verify the use of SI prefixes.

Table 4

Units of Measurement for Quantities

in the Subject Areas

Subject Areas Numer of quatities

Chemistry 11

Density & Concentration 7

Electricity & Magnetism 31

Flow 7

Geometry 8

Mechanics 31

Optics and Photometry 8

Physics 15

Thermodynamics 21

Each physical quantity in our software system cor-

responds to a C++ class specifically designed for this pur-

pose. These classes are generated using a special tem-

plate. Each object of these classes occupies 24 bytes of

memory. Of these, 8 bytes are allocated for storing the

current value, whereas an additional 16 bytes are used to

store information about the physical dimension and ori-

entation. A detailed breakdown of memory usage by the

executable file is provided in Table 5.

Table 5

Memory usage by the executable file

Subject Areas testing Executable file, KB

Without physical values 67

Usage TL without physical

values
1198

Base SI quantity 1254

Geometry 1319

Optics and Photometry 1444

Chemistry 1540

Density & Concentration 1612

Flow 1659

Mechanics 2010

Thermodynamics 2202

Physics 2288

Electricity & Magnetism 2758

Additional tests of cout 2771

Software 1 1694

Software 2 1697

During Subject Areas testing (see Table 5), subject

area physical quantities were used as extended test vari-

ables. For example, for testing Geometry quantities, use

SI base units and Geometry quantities, etc. The number

of physical quantities in the subject area rather than by

the number of program variables with the same physical

quantity determines increasing the executable file size.

All tested programs used 6800 KB of RAM. Software 1

encompasses all SI base units and incorporates all physi-

cal quantities within the subject areas of Geometry and

Cyber physical systems and Internet of Things

137

Physics. Software 2 includes all SI base units and encom-

passes all physical quantities in the subject areas Geom-

etry and Physics, along with an additional 30,000 varia-

bles corresponding to different physical quantities, re-

quiring 7500 KB of RAM.

This section will focus on verifying the Geome-

try_SI namespace as an example. Let us consider the op-

erations with the Length and Area classes within the Ge-

ometry_SI namespace as follows:

Length0 l0(2); // orientationless l0=2[m]

LengthX lx(3); // X-oriented lx =3[m]

LengthY ly(4); // Y-oriented ly =4[m]

LengthZ lz(5); // Z-oriented lz =5[m]

Area a(100),b; // orientationless a =100[m2],b

AreaX ax(200); // X-oriented ax =200[m2]

AreaY ay(300); // Y-oriented ay =300 [m2]

AreaZ az(400); // Z–oriented az =400 [m2]

// calculation of new values of areas

a = l0 * l0; // a= 100 is correct

ax = ly * lz; // ax= 20 is correct

ay = lx * lz; // ay= 15 is correct

az = lx * ly; // az = 12 is correct

b = lx *lz; // orientational error is not correct!!!

double k = 10;

az *= k; // is correct az= 120

ay /= k; // is correct az= 1.5

In the above code, we create instances of the Area and

Length classes, representing quantities with different ori-

entations.

In the next example, we check the operations in-

volving the Curvature class (Optics Photometry_SI

namespace) and Length class (Geometry_SI namespace).

Curvature c(1); //orientationless c=1[1/m]

CurvatureX cx(1);//X-oriented cx=1[1/m]

CurvatureY cy(2);//Y-oriented cy=1[1/m]

CurvatureZ cz(3); //Z-oriented cz=1[1/m]

Length0 L0(2); // orientationless L0=2[m]

LengthX Lx(3); // X-oriented Lx =3[m]

cx =L0 / LX; //dimension error!!

cx = l.0 / Lx;

lx = 1.0 * Lx;

Now let us proceed with the verification of trigono-

metric functions within the TL:

Dimensionless dl(1), dlx(1), dly(1), dlz(1);

PlaneAngle pa0(1); //[radian rad l=0]

PlaneAngleX pax(1); //[radian rad l=x]

PlaneAngleY pay(2); //[radian rad l=y]

PlaneAngleZ paz(1); //[radian rad l=z]

double lcosd = cos(1.25), lsind = sin(1.25),

ltan = tan(1.25),

acosd = acos(1.25), asind = asin(1.25);

Dimensionless lcosx = cos(pax),

lcosy = cos(pay), lcosz = cos(paz);

DimensionlessX lsinx = sin(pax), ltanx = tan(pax);

DimensionlessY lsiny = sin(pay), ltany = tan(pay);

DimensionlessZ lsinz = sin(paz), ltanz = tan(paz);

PlaneAngleX acosx = acos(dlx),

asinxd = asinx(dl);

PlaneAngleY acosy = acos(dly),

asinyd = asiny(dl);

PlaneAngleZ acosz = acos(dlz),

asinzd = asinz(dl);

double d0 = sin(pa); //compile errors!!!

double dx = sin(pax); //compile errors!!!

double dy = sin(pay); // compile errors!!!

double dz = sin(paz); // compile errors!!!

The provided code snippet focuses on verifying spe-

cific classes within the Geometry_SI namespace. How-

ever, similar checks were conducted for all other classes

and operations within the TL to ensure their correctness

and adherence to the defined rules and principles.

SI defines a set of prefixes of physical values. The

provided code defines a list of prefixes used in the SI to

denote physical values. Each prefix is associated with a

name, symbol, and the corresponding decimal factor:

const PNSD_SI prefixList[24] = {

{"quetta","Q", 1e30 }, {"ronna", "R", 1e27},

{"yotta", "Y", 1e24},…

{"zepto", "z", 1e-21}, {"yocto", "y", 1e-24},

{"ronto", "r", 1e-27}, {"quecto", "q", 1e-30} };

In the following code example, we observe the use

of prefixes for initializing physical quantities:

Mass m(15., prefix::micro);// m=1.5 * 10-5 [kg]

Mass m2(20.,nano); // m2=2 10-8 [kg]

The proposed library has special methods for print-

ing physical values and prefixes.

In the following Fig. 4, you can observe the output

of physical quantities with different settings: printing

prefixes (without prefix, name, symbol), printing quanti-

ties (without quantity, name, symbol), and printing di-

mensions (without dimension and dimension vector).

This comprehensive output process ensures the re-

liability verification of the CPS-embedded software.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
138

The proposed TL was developed with the assistance

of Microsoft Visual Studio Community 2022 Version

17.1.2. This widely used development environment

played a crucial role in the elaboration and creation of the

TL, ensuring compatibility and leveraging the powerful

features and tools provided by Visual Studio for efficient

development and implementation.

Fig. 4. Fragment physical quantities output

The thorough verification process ensures the relia-

bility, accuracy, and effectiveness of the TL implementa-

tion across diverse subject areas and namespaces. This

process instills confidence in the TL's functionality and

usability, making it a dependable tool for software devel-

opment and related tasks.

3. Results and Discussion

This article introduces a groundbreaking C++-type

library based on metaprogramming. This innovative li-

brary incorporates SI prefixes and dimensional analysis

and integrates orientational analysis, demonstrating its

remarkable effectiveness in identifying software defects.

The proposed method requires additional memory. For

instance, a program without TL requires only 100 KB,

whereas using TL extends the executable file size to 1-3

MB.

Notably, it has demonstrated the capability to iden-

tify over 60% of software defects [17], including those

stemming from incorrect usage of variables, operations,

SI prefixes, and C++ functions. These results suggest that

this library has substantial potential as a valuable tool for

software development.

However, it is essential to acknowledge that no sin-

gle library can detect all software defects. Therefore,

while the proposed library, based on SI, shows promise,

it requires thorough evaluation and comparison with

other library types based on different system units.

Furthermore, this study proposed a software verifi-

cation model that leverages the type library for formal

CPS software verification during compile time and

runtime. This approach represents a significant advance-

ment in ensuring the reliability and safety of CPS soft-

ware, making a crucial contribution to this evolving field.

Although the proposed method for formal verifica-

tion is not specifically tailored for cyber-physical objects

and systems, given its primary focus on software-level

concerns, it does demonstrate adaptability for verifying

general-purpose software that incorporates various phys-

ical parameters. This versatility extends across diverse

domains, such as educational, gaming, and simulation

software.

4. Conclusions

This article introduces a novel C++ type library

based on software invariants for formal verification. The

proposed TL leverages both dimensional and orienta-

tional analysis to enhance the software quality. Employ-

ing two independent formal software verification meth-

ods offers diverse and robust verification capabilities,

leading to improved software quality.

The proposed software verification model relies on

the use of software invariants. Although this approach

has certain drawbacks, such as the requirement to deter-

mine the physical dimensions and orientation of variables

during compile time and increased compilation time, it

still provides significant advantages over human manual

error detection. TL empowers compilers to efficiently

identify errors, making it a valuable tool in software de-

velopment.

On the other hand, the proposed model has several

notable advantages. It enhances programmer productiv-

ity by eliminating the need to troubleshoot dimensional

and orientational errors during runtime. TL enables com-

prehensive analysis of the software’s dimensional and

orientational correctness, covering the compile and run-

time phases. It ensures the correct usage of software var-

iables and operations and verifies the arguments of func-

tions and procedures.

The proposed TL seamlessly integrates with any

modern C++ compilers, enabling formal software verifi-

cation at compile-time. It enhances software reliability by

introducing additional checks during dynamic linking

and facilitates real-time formal verification.

Although the proposed method for formal verifica-

tion is not customized explicitly for cyber-physical ob-

jects and systems, as its primary emphasis lies on soft-

ware-level considerations, its adaptability shines when

verifying general-purpose software that integrates a spec-

trum of physical parameters. This versatility traverses

many domains, including educational, gaming, simula-

tion software, and beyond, demonstrating its broad ap-

plicability across diverse industries and applications.

The effectiveness of the proposed TL was demon-

strated through the analysis of real-world software for un-

screwed aerial vehicles (drones) on GitHub. It success-

fully detected 90% of incorrect uses of software variables

and over 50% of incorrect operations, resulting in an

overall conditional probability of defect detection of 60%

[17]. Because using TL extends the executable file size

Cyber physical systems and Internet of Things

139

by 1-3 MB, further research is necessary to explore meth-

ods for reducing this memory extension.

These results highlight the efficacy of the proposed

software verification model in identifying software de-

fects and reinforcing software reliability.

5. Directions for further research

Overall, the proposed C++ type library

demonstrates a high detection rate, potentially reducing

testing time and improving reliability and software qual-

ity. This approach is effective for formal verification dur-

ing compile time and supplementary verification in real-

time scenarios. The library shows promise in enhancing

the reliability of custom software; however, further re-

search and the development of additional methods are

necessary to comprehensively evaluate the reliability of

custom software. Furthermore, additional research is re-

quired to explore strategies for reducing memory usage.

Contributions of authors: conceptualization –

Yuriy Manzhos; methodology, software, validation, for-

mal analysis, resource – Yuriy Manzhos, Yevheniia

Sokolova; data curation – Yuriy Manzhos; writing –

original draft preparation, writing – review and editing,

visualization – Yuriy Manzhos, Yevheniia Sokolova;

supervision – Yuriy Manzhos; project administration –

Yevheniia Sokolova.

Conflicts of interest

The authors declare no conflict of interest.

Financing

This study received no external funding.

Data availability

Data will be made available upon reasonable re-

quest

Use of Artificial Intelligence

The authors confirm that they used artificial intelli-

gence technologies solely to check the grammar of the

English text.

All authors have read and agreed to the published

version of this manuscript.

References

1. Vasylenko, O., Ivchenko, S., & Snizhnoi, H.

Design of information and measurement systems within

the Industry 4.0 paradigm. Radioelectronic and Com-

puter Systems, 2023, no. 1, pp. 45-54. DOI:

10.32620/reks.2023.1.04.

2. Valette, E., El-Haouzi, H. B., & Demesure, G.

Industry 5.0 and its technologies: A systematic literature

review upon the human place into IoT - and CPS-based

industrial systems. Computers & Industrial Engineering,

2023, vol. 184. DOI: 10.1016/j.cie.2023.109426.

3. Schneider, G. F., Wicaksono, H., & Ovtcharova,

J. Virtual engineering of cyber-physical automation sys-

tems: The case of control logic. Advanced engineering

informatics, 2019, no. 39, pp. 127-143. DOI:

10.1016/j.aei.2018.11.009.

4. Manzos, Y., & Sokolova, Y. The method of data

compression in Internet of Things communication. Radi-

oelectronic and Computer Systems, 2020, no. 4, pp. 57-

67. DOI:10.32620/reks.2020.4.05 (In Ukrainian)

5. Olaniyi, O., Okunleye, O. J., & Olabanji, S. O.

Advancing Data-Driven Decision-Making in Smart Cit-

ies through Big Data Analytics: A Comprehensive Re-

view of Existing Literature. Current Journal of Applied

Science and Technology, 2023, vol. 42, iss. 25, pp. 10-

18. DOI: 10.9734/CJAST/2023/v42i254181.

6. Maskuriy, R., Selamat, A., Ali, K. N.,

Maresova, P., & Krejcar, O. Industry 4.0 for the Con-

struction Industry – How Ready Is the Industry? Applied

Sciences, 2019, vol. 9, no.14, article no. 2819. DOI:

10.3390/app9142819.

7. Miśkiewicz, R., & Wolniak, R. Practical Appli-

cation of the Industry 4.0 Concept in a Steel Company.

Sustainability, 2020, vol. 12, no. 14, article no. 5776.

DOI: 10.3390/su12145776.

8. Mane, V. Environmental Monitoring Using In-

ternet of Things. International Journal of Electrical and

Computer Engineering, 2022, vol. 11, iss. 1, pp. 2-9.

DOI: 10.15662/IJAREEIE.2022.1101015.

9. Rayan, R. A., Tsagkaris, C., & Iryna, R. B. The

Internet of Things for Healthcare: Applications, Selected

Cases and Challenges. IoT in Healthcare and Ambient

Assisted Living. Studies in Computational Intelligence,

2021, vol. 933, pp. 1-15. DOI: 10.1007/978-981-15-

9897-5_1.

10. Strelkina, А. Information technology for de-

pendability assessment and providing of healthcare IoT

systems. Radioelectronic and Computer Systems, 2019,

no. 3, pp. 48-54. DOI:10.32620/reks.2019.3.05. (In

Ukrainian).

11. Syed, A. S., Sierra-Sosa, D., Kumar, A., &

Elmaghraby, A. IoT in Smart Cities: A Survey of Tech-

nologies, Practices and Challenges. Smart Cities, 2021,

no. 4(2), pp. 429-475. DOI: 10.3390/smartcities4020024.

12. Deepak, V., Mishra, A., & Mishra, K. Role of

IOT in introducing Smart Agriculture. International Re-

search. Journal of Engineering and Technology (IRJET),

2022, no. 9, pp. 883-887.

13. Mourtzis, D., Vlachou, K., Dimitrakopoulos, G.,

& Zogopoulos, V. Cyber-Physical Systems and Educa-

tion 4.0 – The Teaching Factory 4.0 Concept. Procedia

https://doi.org/10.32620/reks.2023.1.04
https://www.base-search.net/Search/Results?lookfor=aut:%27El-Haouzi%2C+Hind+Bril%27&refid=dcrecuk
https://www.base-search.net/Search/Results?lookfor=aut:%27Demesure%2C+Guillaume%27&refid=dcrecuk
https://www.sciencedirect.com/journal/computers-and-industrial-engineering/vol/184/suppl/C
https://doi.org/10.1016/j.aei.2018.11.009
https://doi.org/10.32620/reks.2020.4.05
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=6075480
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=6129375

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
140

Manufacturing, 2018, no. 23, pp. 129-134. DOI:

10.1016/j.promfg.2018.04.005.

14. Tsiatsis, V., Karnouskos, S., Höller, J., Boyle,

D., & Mulligan, C. Chapter 16 - Autonomous Vehicles

and Systems of Cyber-Physical Systems. Internet of

Things, 2019, pp. 299-305. DOI: 10.1016/B978-0-12-

814435-0.00029-8.

15. Alsulami, A. A., Abu Al-Haija, Q., Alturki, B.,

Alqahtani, A., & Alsini, R. Security Strategy for Auton-

omous Vehicle Cyber-Physical Systems Using Transfer

Learning. Journal of Cloud Computing, 2023, vol. 12, ar-

ticle no. 181. DOI: 10.21203/rs.3.rs-2301648/v1.

16. Banerjee, A., Maity, A., Gupta, S. K., &

Lamrani, I. Statistical Conformance Checking of Avia-

tion Cyber-Physical Systems by Mining Physics Guided

Models. Proceedings of the 2023 Aerospace Conference,

Big Sky, MT, USA, IEEE, 2023, pp. 1-8, DOI:

10.1109/AERO55745.2023.10115613.

17. Manzhos, Y., & Sokolova, Y. A Method of IoT

Information Compression. International Journal of Com-

puting, 2022, vol. 21, iss. 1, pp. 100-110. DOI:

10.47839/ijc.21.1.2523.

18. Fursov, I., Yamkovyi, K., & Shmatko, O. Smart

Grid and wind generators: an overview of cyber threats

and vulnerabilities of power supply networks. Radioelec-

tronic and Computer Systems, 2022, no. 4, pp. 50-63.

DOI: 10.32620/reks.2022.4.04.

19. Smadi, A. A., Ajao, B. T., Johnson, B. K., Lei,

H., Chakhchoukh, Y., & Abu Al-Haija, Q. A Compre-

hensive Survey on Cyber-Physical Smart Grid Testbed

Architectures: Requirements and Challenges. Electron-

ics, 2021, vol. 10, no. 9, article no. 1043. DOI:

10.3390/electronics10091043.

20. Kang, B., Seo, K.-M., & Kim, T. G. Model-

Based Design of Defense Cyber-Physical Systems to An-

alyze Mission Effectiveness and Network Performance.

IEEE Access, 2019, vol. 7, no. 1, pp. 42063-42080. DOI:

10.1109/ACCESS.2019.2907566.

21. Wisniewski, R., Bazydło, G., Szcześniak, P.,

Grobelna, I., & Wojnakowski, M. Design and Verifica-

tion of Cyber-Physical Systems Specified by Petri Nets –

A Case Study of a Direct Matrix Converter. Mathematics,

2019, vol. 7, no. 9, article no. 812. DOI:

10.3390/math7090812.

22. Cordeiro, L. C., de Lima Filho, E. B., & Bessa,

I. V. Survey on automated symbolic verification and its

application for synthesizing cyber-physical systems. IET

Cyber-Physical Systems: Theory & Applications, 2019,

vol. 5, iss. 1, pp. 1-24. DOI: 10.1049/iet-cps.2018.5006.

23. Grobelna, I., Wiśniewski, R., & Wojnakowski,

M. Specification of Cyber-Physical Systems with the Ap-

plication of Interpreted Nets. Proceedings of the IECON

2019 - 45th Annual Conference of the IEEE Industrial

Electronics Society, Lisbon, Portugal, IEEE, 2019, pp.

5887-5891. DOI: 10.1109/IECON.2019.8926908.

24. Luckeneder, C., & Kaindl, H. A case study of

systematic top-down design of cyber-physical models

with integrated validation and formal verification. Pro-

ceedings of the 34th ACM/SIGAPP Symposium on Ap-

plied Computing (SAC '19). Association for Computing

Machinery, New York, NY, USA, 2019, pp. 1828-1836.

DOI: 10.1145/3297280.3297460.

25. Bernardeschi, C., Domenici, A., & Saponara, S.

Formal Verification in the Loop to Enhance Verification

of Safety-Critical Cyber-physical Systems. Electronic

Communications of the EASST, 2019, vol. 77, pp. 1–9.

DOI: 10.14279/tuj.eceasst.77.1106.1050.

26. Misson, H. A., Gonçalves F. S., & Becker, L. B.

Applying Integrated Formal Methods on CPS Design,

Proceedings of the IX Brazilian Symposium on Compu-

ting Systems Engineering (SBESC), Natal, Brazil, 2019,

pp. 1-8. DOI: 10.1109/SBESC49506.2019.9046084.

27. Grobelna, I. Formal Verification of Control

Modules in Cyber-Physical Systems. Sensors, 2020, vol.

20, no.18, article no. 5154. DOI: 10.3390/s20185154.

28. Garro, A., Vaccaro, V., Dutré, S., & Stegen, J.

Cyber-Physical Systems engineering: model-based solu-

tions. Proceedings of the SummerSim-SCSC 2019, Ber-

lin, Germany, 2019, Society for Modeling and Simula-

tion International (SCS). Available at:

https://scs.org/wp-content/uploads/2020/02/CYBER-

PHYSICAL-SYSTEMS-ENGINEERING-MODEL-

BASED-SOLUTIONS.pdf (accessed 24 July 2019).

29. Wisniewski, R., Bazydło, G., Szcześniak, P.,

Grobelna, I., & Wojnakowski, M. Design and Verifica-

tion of Cyber-Physical Systems Specified by Petri Nets –

A Case Study of a Direct Matrix Converter. Mathematics,

2019, vol. 7, no. 9, article no. 812. DOI:

10.3390/math7090812.

30. Nikolakis, N., Maratos, V., & Makris, S. A

Cyber-Physical System (CPS) approach for safe human-

robot collaboration in a shared workplace. Robotics and

Computer-Integrated Manufacturing, 2019, vol. 56, pp.

233-243. DOI: 10.1016/j.rcim.2018.10.003.

31. The Incredible Story of the Gimli Glider. Simple

Flying. Available at: https://thedailywtf.com/articles/the-

therac-25-incident (accessed 6 August 2023).

32. The Patriot Missile Failure. Available at:
https://www-users.cse.umn.edu/~arnold/disasters/pa-

triot.html (accessed 23 August 2000).

33. Stephenson, A. G., LaPiana, L. S.; Mulville, D.

R., Rutledge, P. J., Bauer, F. H., Folta, D., Dukeman, G.

A., Sackheim, R., & Norvig, P. Mars Climate Orbiter

Mishap Investigation Board Phase I Report NASA.

Available at: chrome-extension://efaidnbmnnnibpcaj-

pcglclefindmkaj/https://llis.nasa.gov/llis_lib/pdf/

1009464main1_0641-mr.pdf. (accessed 10 November

1999).

34. Hall, B. Software representation of measured

physical quantities. Series on Advanced in Mathematics

https://journalofcloudcomputing.springeropen.com/
https://doi.org/10.21203/rs.3.rs-2301648/v1

Cyber physical systems and Internet of Things

141

for Applied Sciences. Advanced Mathematical and Com-

putational Tools in Metrology and Testing XII, 2021, vol.

90, pp. 273-284. DOI: 10.1142/9789811242380_0016.

35. Manzhos, Y., & Sokolova, Y. A Software Veri-

fication Method for the Internet of Things and Cyber-

Physical Systems. Computation, 2023, no. 11 (7), article

no. 135. DOI: 10.3390/computation11070135.

36. Schabel, M. C., & Watanabe, S. Chapter 42.

Boost.Units 1.1.0. Available at: https://www.boost.org/

doc/libs/1_83_0/doc/html/boost_units.html. (accessed

17 August 2003).

37. Benri is a C++ library for compile time check-

ing of physical quantities. Available at:
https://github.com/jansende/benri (accessed 4 October

2019).

38. Pusz, M. A C++ Approach to Physical Units.

Available at: https://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2020/p1935r2.html#biblio-nic_units

(accessed 13 January 2020).

39. Moene, M., Huebl, A., Reinhold, S., & Pilz, T.

PhysUnits-CT-Cpp11 (compile time). Available at:

https://github.com/martinmoene/PhysUnits-CT-Cpp11.

(accessed 24 May 2020).

40. Eigen is a C++ template library for linear alge-

bra: matrices, vectors, numerical solvers, and related al-

gorithms. Available at: https://eigen.tuxfamily.org/in-

dex.php?title=Main_Page. (accessed 18 August 2021).

41. OpenGl Mathematics (GLM). Available at:

Available at: https://github.com/g-truc/glm (accessed 13

April 2020).

42. Weige, M. Quaternion Library for C. Available

at: https://github.com/MartinWeigel/Quaternion (ac-

cessed 16 May 2022).

43. Mahoney, J. F. Dimensional Analysis. Procedia

Manufacturing, 2019, vol. 38, pp. 694-701. DOI:

10.1016/j.promfg.2020.01.094.

44. McKeever, S. Unit of measurement libraries,

their popularity and suitability. Software: Practice and

Experience, 2021, vol. 51, iss. 4, pp. 711-734. DOI:

10.1002/spe.2926.

45. McKeever, S. Acknowledging Implementation

Trade-Offs When Developing with Units of Measure-

ment. Communications in Computer and Information

Science, 2023, vol. 1708, pp. 25-47. DOI: 10.1007/978-

3-031-38821-7_2.

46. Siano, D. B. Orientational Analysis – A Supple-

ment to Dimensional Analysis. Journal of the Franklin

Institute, 1985, vol. 320, iss. 6, pp. 267-283. DOI:

10.1016/0016-0032(85)90031-6.

47. Siano, D. B. Orientational analysis, tensor anal-

ysis and the group properties of the SI supplementary

units. Journal of the Franklin Institute, 1985, vol. 320,

iss. 6, pp. 285-302. DOI: 10.1016/0016-0032(85)90032-

8.

48. Dos Santos, L. F. Orientational Analysis of the

Vesic’s Bearing Capacity of Shallow Foundations. Soils

Rocks, 2020, vol. 43, pp. 3-9. DOI: 10.28927/SR.431003.

49. Sutter, H. Metaclasses: Generative C++. Avail-

able at: http://www.open-std.org/jtc1/sc22/wg21/

docs/papers/2018/p0707r3.pdf. (accessed 11 February

2018).

50. Sutton, A. Metaprogramming. Available at:

https://www.open-std.org/jtc1/sc22/wg21/docs/pa-

pers/2020/p2237r0.pdf. (accessed 15 October 2020).

51. Working Draft, Standard for Programming Lan-

guage C++. Available at: https://isocpp.org/files/pa-

pers/N4928.pdf. (accessed 22 May 2023).

Received 23.10.2023, Accepted 20.02.2024

СИСТЕМА ТИПІВ ДЛЯ ФОРМАЛЬНОЇ ВЕРИФІКАЦІЇ

C/C++ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ КІБЕРФІЗИЧНИХ СИСТЕМ

Юрій Манжос, Євгенія Соколова

Некоректне використання одиниць вимірювання та орієнтації у програмах C/C++ для кіберфізичних си-

стем часто призводить до критичних помилок, які звичайні системи типів не можуть ефективно запобігти.

Ручний аналіз коду за допомогою розмірного та орієнтаційного аналізу може виявити ці помилки в фізичних

рівняннях, але при роботі зі складними фізичними обчисленнями, ці методи стають непрактичними. Ми за-

пропонували підхід, який базується на використанні фізичних величин, визначених Міжнародною системою

одиниць та операціями з орієнтацією фізичних об'єктів, як це запропонував Сіано. Цей підхід забезпечує од-

норідність одиниць. Додатково, включення операцій з орієнтацією в модель програмування є важливим для

точного управління обертанням і вирівнюванням фізичних об'єктів. Практичні рекомендації, надані роботою

Сіано дозволяють точно маніпулювати орієнтацією об'єктів, зменшуючи ймовірність помилок, пов'язаних з

орієнтацією. Шляхом перевірки фізичних розмірностей і орієнтацій на етапі компіляції, потенційні дефекти

програмного забезпечення виявляються до виконання коду. Це зменшує час налагодження та знижує витрати

на виправлення проблем на пізніших етапах розроблення. Запропонована система типів, яка включає в себе

розмірний та орієнтаційний аналіз, а також методи метапрограмування, представляє собою важливий крок у

напрямку більш безпечних та надійних кіберфізичних систем. Цей підхід дозволяє виявити приблизно 90%

https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://dl.acm.org/author/McKeever%2C+Steve
https://doi.org/10.28927/SR.431003

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
142

неправильного використання змінних програми та понад 50% помилкових операцій як під час компіляції, так

і під час виконання великомасштабних програм в реальних умовах. Запропонований метод формальної вери-

фікації не спеціально адаптований для кіберфізичних об'єктів та систем, враховуючи його основну увагу до

проблем на рівні програмного забезпечення, він демонструє адаптивність для перевірки загальнопризначе-

ного програмного забезпечення, яке включає різноманітні фізичні параметри. Ця універсальність поширю-

ється на різні сфери, такі як освітнє, ігрове та симуляційне програмне забезпечення, серед інших.

Ключові слова: формальна верифікація; аналіз розмірностей; орієнтаційний аналіз; система типів;

кіберфізичні системи; якість програмного забезпечення.

Манжос Юрій Семенович – канд. техн. наук, доц., доц. каф. інженерії програмного забезпечення,

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський Авіаційний Інститут», Харків,

Україна.
Соколова Євгенія Віталіївна – канд. техн. наук, доц., доц. каф. інженерії програмного забезпечення,

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський Авіаційний Інститут», Харків,

Україна.

Yuriy Manzhos – Ph.D. in Information Technologies, Associate Professor at the Department of Software Engi-

neering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,

e-mail: y.manzhos@khai.edu, ORCID: 0000-0002-4910-7285.

Yevheniia Sokolova – Ph.D. in Information Technologies, Associate Professor at the Department of Software

Engineering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,

e-mail: y.sokolova@khai.edu, ORCID: 0000-0002-1497-4987.

