Cyber physical systems and Internet of Things

127

UDC 004.415.5

Yuriy MANZHQOS, Yevheniia SOKOLOVA

doi: 10.32620/reks.2024.1.11

National Aerospace University ""Kharkiv Aviation Institute”, Kharkiv, Ukraine

A TYPE SYSTEM FOR FORMAL VERIFICATION
OF CYBER-PHYSICAL SYSTEMS C/C++ SOFTWARE

The subject: This study focuses on improving the quality of Cyber-Physical System (CPS) software by eliminat-
ing incorrect usage of units of measurement and orientation in C/C++ programs. Incorrect usage often leads to
critical errors that conventional systems cannot effectively prevent. Manual examination of code using dimen-
sional and orientation analysis can detect these errors in physical equations, but these methods become imprac-
tical when dealing with complex physical computations. Objectives: As suggested by Siano, the proposed ap-
proach uses physical quantities and prefixes defined by the International System of Units and orientation oper-
ations on physical objects. The elaborated system incorporates dimensional and orientation analysis and met-
aprogramming techniques. The methods used are dimensional & orientational analysis and metaprogramming.
The following results were obtained: ensuring consistency of the units, incorporating orientation operations into
the programming model for accurately handling physical object rotations and alignments, and using Siano’s
work to precisely manipulate object orientation, thereby reducing the likelihood of orientation-related errors.
Checking physical dimensions and orientations during the compilation stage identifies potential software defects
before code execution, thereby reducing debugging time and lowering the cost of addressing issues later in
development. The elaborated system represents a crucial step towards safer and more dependable Cyber-Phys-
ical System applications. This approach allows us to identify approximately 90% of incorrect usage of program
variables; additionally, it detects over 50% of erroneous operations during compilation and execution of large-
scale programs in real-world conditions. Conclusions. Scientific novelty: it proposed and developed a special-
ized C++-type library for formal compile-time software verification of Cyber-Physical Systems software. The
proposed C++-type library leverages dimensional and orientational analysis to enhance software quality, reli-
ability, and real-time formal verification. Although the proposed method for formal verification is not tailor-
made for cyber-physical objects and systems, given its primary focus on software-level concerns, it does exhibit
adaptability for verifying general-purpose software that incorporates various physical parameters. This versa-
tility extends to diverse domains such as educational, gaming, and simulation software.

Keywords: Cyber-Physical Systems; dimensional analysis; formal verification; orientational analysis; software
quality; type system.

challenge motivated our study, which focuses on a
specialized C++ type library that enables compile-time

1. Introduction

Cyber-Physical Systems (CPS) are pivotal in mod-
ern society, delivering many benefits and applications
that profoundly impact our daily lives. Notably, they
drive the transformation of manufacturing processes,
propelling Industry 4.0 [1] and setting the stage for the
impending Industry 5.0 [2] revolution through automa-
tion [3], connectivity [4], and data-driven decision-mak-
ing [5]. This leads to increased productivity, reduced
downtime, and more agile production processes [6]. This
can lead to better resource allocation, cost savings, and
improved outcomes [7]. Therefore, the proposed study
aims to utilize a specialized library for formal software
verification.

1.1. Motivation

Implementing compile-time orientation and dimen-
sional checking can be challenging, particularly as soft-
ware reliability and quality requirements increase. This

checking for the usage of various System International
(SI) units physical quantities, including different orienta-
tions and Sl decimal prefixes.

1.2. State of the art

CPS technologies: facilitate monitoring and manag-
ing environmental factors such as air quality, water us-
age, and energy consumption, promoting sustainability
and minimizing environmental impact [8]; are pivotal in
healthcare, enabling remote patient monitoring, telemed-
icine, and wearable health devices for more effective de-
livery [9], personalized treatment plans, and improved
patient outcomes [10]; are pivotal in advancing smart in-
frastructure for cities and homes [11], integrating trans-
portation, energy, waste management, and public ser-
vices for more efficient urban living; enhance automa-
tion, energy efficiency, and remote control, providing
heightened convenience and comfort; and in agriculture

© Yuriy Manzhos, Yevheniia Sokolova, 2024

128

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

monitor soil and weather and optimize practices for
higher yields and resource efficiency, while CPS enables
precise control of irrigation, fertilization, and pest man-
agement, further enhancing productivity and resource use
[12]; in educational environments to create interactive
learning experiences and research platforms. It provides
hands-on learning opportunities in robotics, automation,
and control systems [13].

CPS is at the heart of autonomous vehicle technol-
ogy, enabling self-driving cars, drones, and other forms
of transportation [14]. This can revolutionize mobility,
improve safety, and reduce traffic congestion [15]. Avia-
tion systems such as aircraft and Unmanned aerial vehi-
cles (UAV) are CPS with several interacting automated
control modules [16]. In aerospace, CPS is crucial for the
operation of modern aircraft, including fly-by-wire sys-
tems, autopilots, and flight control systems. In UAVs,
managing energy consumption is vital. This often in-
volves employing adaptive data compression methods to
minimize transmission overhead [17]. It ensures safe and
efficient air travel.

CPS enhances energy efficiency in smart grids [18],
reduces environmental impact, and seamlessly integrates
renewable sources [19]. CPS is applied in defense sys-
tems, including UAVs, military robotics, and surveil-
lance, to enhance situational awareness, intelligence
gathering, and mission execution [20].

Ensuring the accuracy and reliability of CPS soft-
ware is crucial for secure and reliable operation, as CPS
systems involve a combination of hardware, firmware,
communication protocols, and cloud services [21]. The
following steps and techniques can be employed for the
verification of CPS software [22]: Requirements Specifi-
cation [23]; Functional Testing; Formal Verification
(FV) [24]; Simulation and Testing; Code Reviews and
Inspections; Static Code Analysis; Documentation Veri-
fication; Compliance with Standards and Regulations.

FV isarigorous mathematical technique that proves
that a system (including its hardware and software com-
ponents) satisfies specific properties or requirements.
When applied to CPS software, FV offers several bene-
fits: FV instills high confidence in critical safety proper-
ties, which are vital for safety-critical CPS applications
[25]; FV methods validate real-time properties, ensuring
critical tasks meet timing requirements [26]; FV provides
stability and performance of control algorithms in CPS
[27]; Coupling formal methods with model-based design
ensures accurate representation of system requirements
and design [28]; FV spots flaws, inconsistencies, and am-
biguities in specifications pre-implementation saving
time and resources [29]; safety-critical domains often ne-
cessitate FV for demonstrating compliance with stand-
ards [30].

FV boosts confidence by detecting errors beyond
testing, vital in complex systems such as autonomous

vehicles. It complements testing methods and is applied
selectively to critical components due to time and exper-
tise constraints.

CPS applications, as well as scientific applications,
heavily rely on the use of measurement units such as me-
ters, seconds, Kilograms, and so on (as specified in the SI
system). Some software faults occurred during develop-
ment because of incorrect physical quantities and system
unit usage [31]. An illustrative instance of a software
fault arising from the erroneous use of physical quantities
occurred with the Therac-25 radiation therapy machine
in the 1980s. In the 1983 Gimli Glider incident, an Air
Canada Boeing 767 experienced a fuelling error during
maintenance when converting from imperial to metric
units. The incorrect conversion factor resulted in the air-
craft being loaded with only half the necessary fuel. Dur-
ing the 1991 Gulf War, the Patriot missile defence system
experienced a critical software fault due to the system's
internal clock measurement in tenths of a second, result-
ing in cumulative errors and inaccurate missile position
calculations [32]. In the 1999 Mars Climate Orbiter mis-
sion, a critical software fault arose from incorrect unit
conversion, causing the spacecraft to enter the atmos-
phere of Mars at an inadequate altitude and destroy it
[33].

Physical unit and Orientation checking is of utmost
importance in satellite and UAV (Unmanned Aerial Ve-
hicle) software testing for several critical reasons: En-
sures consistent and correct usage of units of measure-
ment, preventing errors that may result from incompati-
ble units in calculations; Unit and orientation checking
enhances code readability and maintainability by clearly
defining units and orientations, making it easier for de-
velopers to understand and debug the code; Physical unit
checking is crucial in avoiding costly errors in critical
systems, as incorrect units can lead to catastrophic fail-
ures, and implementing this check early in development
helps prevent potentially life-threatening situations;
Compile-time checking for correct usage reduces debug-
ging efforts by addressing potential issues before deploy-
ment, saving time and effort in later stages of develop-
ment. Ensuring accurate mathematical operations with
physical quantities is crucial in precision-dependent sci-
entific and engineering applications.

Accurate orientation checking is vital in aerospace
and defence for tasks such as flight simulation, missile
guidance, and satellite positioning, as well as for prevent-
ing drift in inertial navigation systems. It is essential for
precise positioning and heading of satellites and UAVS,
ensuring that they stay on the intended trajectories and
avoid collisions. Proper orientation checking is critical
for safety and equipment preservation, playing a funda-
mental role in stabilizing and controlling the attitude of
satellites and UAVs relative to Earth or other reference

Cyber physical systems and Internet of Things

129

points, and is crucial for risk reduction in congested or
restricted airspace.

Incorporating physical unit, orientation, and dimen-
sion checking is crucial for verifying software correct-
ness, reliability, and safety, especially in domains reliant
on precise measurements. This practice plays a vital role
in satellite and UAV development, ensuring platform and
payload compatibility, safety, and reliability, which is
pivotal for aerospace mission success. As stated in [34],
simple dimensional analysis is essential for identifying
relevant quantities in specific problems.

Our article [35] stated that GitHub hosts over 2 GB
of UAV-related C/C++ source code. Physical unit check-
ing in software ensures consistent and accurate use of
measurement units throughout the program. Numerous
specialized libraries are available for implementing this
process:

Boost.Units is a C++ library [36] designed to pre-
cisely manage physical quantities and units, enabling
custom unit definitions with compile-time error detection
for unit-related concerns. It was first included in Boost
1.36.0, which was released in 2008. Benri, a C++ library
created by Jan in 2018, focuses on compile-time check-
ing of physical quantities. Benri provides extensive sup-
port for various systems of units, physical constants,
mathematical operations, and affine spaces [37]. Mp-
units, a compile-time enabled Modern C++ library by
Mateusz Pusz in 2020, provides compile-time dimen-
sional analysis and unit/quantity manipulation [38].
PHYSUNITS-CT-CPP11, a C++ library based on the
work of Michael Kenniston from 2001, expanded, and
adapted for C++11 and C++14 by Martin Moene [39] in
2020, is a header-only library that provides compile-time
dimensional analysis and unit/quantity manipulation and
conversion.

Orientation checking, which is essential in com-
puter graphics and robotics, involves operations such as
unit quaternion normalization to maintain the validity of
orientation representations. Here are C/C++ librar-
ies/tools for this purpose:

Eigen is a C++ template library for linear algebra,
written in 2021, which includes support for quaternions.
It provides functions for quaternion operations, including
normalization [40]; GLM (OpenGL Mathematics) is a
C++ library for graphics programming, offering func-
tions, structures, and support for quaternions, including
normalization [41]; Quaternion library for C is A basic
quaternion library written in C by Martin Weigel in 2018.
This library implements the most basic quaternion calcu-
lations [42].

We need new tools for formal verification based on
diverse principles because diversifying verification
methods allows for an increase in software quality.

Unfortunately, standard-type systems do not en-
force the proper use of physical dimensions and

orientations, leaving room for potential errors and incon-
sistencies. To address this challenge, physicists and engi-
neers often employ dimensional analysis [43] to verify
the dimensional unit correctness of quantities in equa-
tions. Dimensional analysis assumes that each physical
quantity has a well-defined, fixed unit of measure, requir-
ing the units on both sides of the equation to match.
While dimensional analysis is useful, it can be challeng-
ing for non-physicists. Many physical equations involve
complex computations, making it difficult to accurately
track the flow of units throughout the calculations. The
manual application of dimensional analysis to programs
that involve such equations can further intensify the com-
plexity.

According to [44], 38 of the most comprehensive
and well-developed open-source libraries provide built-
in support for units and dimensions in software develop-
ment. In [45], Steve McKee classified the many software
solutions measurement units checking. Steve proposed
software development based on Units of Measurement.

Similarly, orientational analysis [46, 47] assumes
that each physical quantity has a meaningful, fixed orien-
tation in space, and it requires the orientations on both
sides of an equation to align [48]. Similar to dimensional
analysis, orientational analysis can be challenging, espe-
cially for individuals without a strong physics back-
ground. Complex computations in physical equations
make it difficult to accurately trace the flow of units and
orientations. Therefore, manually applying dimensional
and orientational analysis to programs involving such
equations can be even more daunting.

In summary, ensuring the correctness of physical
dimensional units and orientations is essential for CPS
and scientific applications. The limitations of the stand-
ard-type system in enforcing these constraints make it
necessary to incorporate methods like dimensional anal-
ysis and orientational analysis. However, manually ap-
plying these analyses to programs that involve complex
equations can be intricate and time-consuming, high-
lighting the need for more efficient and automated ap-
proaches to ensure the accuracy and reliability of these
applications.

1.3. Obijectives and methodology

This paper presents a novel specialized type library
(TL) to facilitate the formal verification of C++ software
at compile-time and run-time. By leveraging this library,
developers can enhance the reliability and correctness of
their C++ programs through rigorous verification tech-
niques. Benefits of the proposed library:

— Extensibility: The library allows for easy expan-
sion to accommodate new domains and physical quanti-
ties;

130

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

— Addition of orientation to quantities: The library
enables the inclusion of orientation information for the
quantities;

— Adaptive use of prefixes: The library allows for
the adaptive use of prefixes for units, enabling flexibility
in expressing quantities.

As Siano suggested, the proposed approach uses
physical quantities and prefixes defined by SI and orien-
tation operations on physical objects. The elaborated
C++ type system incorporates dimensional and orienta-
tion analysis and metaprogramming techniques. The
methods used are dimensional & orientational analysis
and metaprogramming.

The TL introduces a set of specialized types that en-
force specific constraints and properties during program
execution. These types enable compile-time verification
by utilizing static analysis techniques to detect potential
errors and inconsistencies in the code before execution.
By catching these issues early, developers can prevent
runtime errors and enhance the overall robustness of their
software.

Furthermore, the TL extends its functionality to
run-time (real-time) verification. During program execu-
tion, the library dynamically checks the validity of the
program's state and behavior against the defined con-
straints. This dynamic verification process provides an
additional safety net, ensuring that the software adheres
to the intended specifications and behaves as expected.

The library's formal verification capabilities enable
developers to reason about their C++ programs more rig-
orously and systematically. Providing a higher level of
assurance make it possible to detect and prevent various
types of errors, including type mismatches, undefined be-
havior, and violations of specified invariants. This signif-
icantly reduces the risk of bugs, improves the code qual-
ity, and enhances the overall reliability of the software.
In addition to its verification features, TL integrates
seamlessly into the C++ development workflow. It pro-
vides clear and expressive interfaces that allow develop-
ers to specify constraints and properties concisely and
readably. The library also offers extensive documenta-
tion and support, making it accessible to developers with
varying levels of expertise in formal verification.

By adopting this TL, C++ developers can elevate
the quality of their software by incorporating formal ver-
ification techniques into their development process. By
combining the advantages of compile-time and run-time
verification, the library offers a comprehensive approach
to ensure the correctness and robustness of C++ software,
ultimately leading to increased confidence in its reliabil-
ity and improved software quality.

The objectives of the investigation are:

— develop a novel specialized type library (TL) for
formal verification of C++ software at compile-time and

run-time, enhancing reliability and correctness, while en-
suring extensibility by accommodating new domains,
physical quantities, and orientation information;

— incorporate dimensional and orientation analysis,
along with metaprogramming techniques, into the C++
type system;

— implement both compile-time and run-time veri-
fication to detect errors, check program validity, and ele-
vate software quality;

—seamlessly integrate the TL into the C++ develop-
ment workflow for rigorous reasoning about programs
and improved code quality.

The structure of this paper is as follows:

1. Describes the software verification model used in
the study, including its key components and methodolo-
gies (subsection 2.1).

2. Explains the fundamental principles underlying
the specialized TL, including its design considerations
and core functionalities (subsection 2.2).

3. Details the implementation of operators and func-
tion wrappers within the TL framework, highlighting the
use of templates for flexibility and efficiency (subsection
2.3).

4. Provides guidelines and examples for using the
TL in C++ software development, demonstrating its
practical application and benefits (subsection 2.4).

5. Outlines the verification process for the TL, in-
cluding both compile-time and run-time verification
techniques employed to ensure its correctness and relia-
bility (subsection 2.5).

6. This section presents the findings of the study,
including empirical results and insights gained from the
implementation and verification of the TL (section 3).

7. Summarizes the key findings of the study and dis-
cusses their implications for C++ software development
and formal verification practices (section 4).

8. Suggests potential avenues for future research
and development in the field of formal verification and
C++ software engineering, building upon the findings of
the current study (section 5).

2. Materials and Methods

2.1. Software verification model

The proposed TL will enable the formal verification
of the embedded software. Integrating TL into the soft-
ware development process ensures the correctness and
reliability of the software's behavior and its interactions
with the physical world. TL's capability to manage phys-
ical dimensions, units, and orientations offers a potent
tool for static checking and validation, thereby reducing
the risk of errors and enhancing the overall quality of the
embedded software.

Cyber physical systems and Internet of Things

131

The software formal verification model employs in-
variants checking to ensure dimension and orientation
homogeneity (see Fig. 1). By enforcing these invariants,
and the model proves that the software components and
operations maintain consistent physical dimensions and
orientations throughout their execution. This approach
guarantees the integrity of calculations and prevents in-
compatible combinations of quantities, resulting in more
reliable and accurate software behavior. The TL is crucial
in supporting this verification process by providing the
necessary tools and mechanisms to enforce and validate
dimension and orientation consistency.

The software verification process involves several
steps. Based on the technical documentation, the first step
is to set the physical dimensions and orientations of the
input and output SW variables. This is done by using the
source code of every function as the body of a method of
a special testing class.

The second step involves modifying the C++ source
code by overriding standard data types to match the phys-
ical dimensions and orientation of the input and output
variables.

In the third step, a standard compiler detects SW de-
fects, such as violations of dimensional and/or orienta-
tional homogeneity. After modifying the SW units, the
modified units are compiled again.

In the fourth step, the test cases are used for soft-
ware testing after compiling and linking editing. The test
cases' negative results indicate dimensional and/or orien-
tational homogeneity violations. This allows for modifi-
cation of the source code to correct any detected issues.
The test cases also allow for checking the correctness of
different pointer operations during dynamic linking in
C++.

In the fifth and final step, after software verification,

invariant checking can be performed in real time to en-
sure that the software is operating correctly.

Overall, this software verification process provides
a reliable and effective method for detecting and correct-
ing dimensional and orientational homogeneity viola-
tions in C++ code, ensuring high-quality and reliable
software.

2.2. Key Principles of Type Library

The International System of Units (SI) consists of
seven base units: the amount of substance, current,
length, luminous intensity, mass, time, and thermody-
namic temperature and dimensionless symbol. Each base
unit is associated with a unit symbol and a dimension
symbol. According to the Siano convention [46, 47],
length is commonly understood to possess a fixed orien-
tation in space and is categorized as orientationless, x-
oriented, y-oriented, or z-oriented. This orientation is de-
fined by the symbol "O" (Table 1). In SI, each physical
quantity is defined as the product of base units raised to
certain powers. These base units serve as the fundamental
building blocks for expressing various measurements.

When Sl units are used, physical values are associ-
ated with specific subject areas (SA). In cases where a
dimension has an orientation, the corresponding value
can have one of the following directions: {0, X, Y, Z}. A
value of 0 indicates an orientationless quantity, while X,
Y, and Z denote values oriented in the respective direc-
tions. For instance, quantities such as force and accelera-
tion fall into this category. On the other hand, certain
physical values, including mass and current, are consid-
ered to be orientationless. This means that they do not
possess a specific direction associated with them.

A CPS [Physical —
II"{;'+ .-:-d. dimensions & > Test cases
SO+ code . .
| Dn-:mil_q_unn —~
—1
Usage of TL
for
Compil Linking &
[modification of] =3 R) SN : II:E — Testing == | Usage SW
the source oafimg
code

A i_

Compile time
checking

T

Y ¥

Test cases resulis

Real time result

checking checking

Fig. 1. Functional model of software formal verification

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

132
Table 1
Base Units of SI & Dimensionless Unit
. Unit [Sym- | Dimension
St unit bol] symbol
Amount Of Substance [mol] N
Current [A] |
Length [m] LO
Luminous Intensity [cd] J
Mass [ka] M
Time [s] T
Thermodynamic
Temperature [K] ©
Dimensionless [1] 0]

Table 2 and Table 3 offer a comprehensive compi-
lation of the common units of measurement used across
diverse subject areas

Table 2
Units of Measurement for Quantities
in the Subject Area of "Geometry"

Quantity Unit [Symbol],{Dimension}
Area [m?], {L2 O}

Aspect Ratio [1], {1}
Curvature [1/m], {L-1 O}
Perimeter [m], {L}

Plane Angle [rad], {O}

Solid Angle [Sr], {1}

Surface Area [m2], {L2 O}
Volume [m3], {L3}

Table 3
Units of Measurement for Quantities
in the Subject Area of "Optics and Photometry"

Quantity Unit [Symbol], {Dimension}
[lluminance [Ix], {L2JO}
Luminance [cd/m?], {L-2JO}

Luminous Efficacy [Im /W], {T3L*ML}

Luminous Energy [Ims], {TJ}
Luminous Exposure [Ix s], {TL-2JO}
Luminous flux or
Luminous power [cd sr], 13}
Optical Power [1/m], {LO}
Refractive Index [1], {O}

These tables serve as valuable references, allowing
users to conveniently access and apply the appropriate
units in their respective fields of study or work. We can
create similar tables for different subject areas covered,
encompassing Chemistry, Density & Concentration,
Electricity & Magnetism, Flow, Physics and Thermody-
namics, etc. Importantly, these tables should be consid-
ered a foundation, providing a starting point for users to

expand upon based on their specific requirements and
subject areas of interest. Users are encouraged to aug-
ment the list to accommodate their unique needs and en-
sure comprehensive coverage within their chosen do-
main.

According to these subject areas, we have more than
80 different orientationless physical quantities and more
than 60 oriented physical quantities.

To implement compile-time software formal verifi-
cation, we need to create a total of 320
(80 + 60 x 4) different C++ classes. Considering both di-
mension and orientation homogeneity, we must create
overloading operators for product and division between
these 320 classes, resulting in a total of 320 x 320 x 2
operators. When dealing with expressions that involve
the product of multiple values (n-values), it is necessary
to overload the product and division operators to accom-
modate the varying number of operands. In total, 2 x 320
X n overloads will be required for these operators.
Clearly, such a TL would be considerably complex and
substantial in size. However, the advantage of using this
TL is that it enables the execution of formal verification
during compile time.

A common approach to representing units is to uti-
lise exponent vectors based on base units (as shown in
Table 1) and unit factors. For instance, the dimension of
an orientationless unit of force is T-2L*M?, which can be
represented as [-2, 1, 1, 0, 0, 0, 0] using exponent vectors.
On the other hand, an oriented force has dimension
T2LIMIO, where O can take values of I, Iy, or |, repre-
senting the orientation inthe x =1, y = 2, or z = 3 direc-
tion, respectively. For example, the x-oriented force has
vector = [-2, 1, 1, 0, 0, 0, 0, 1]; the orientationless quan-
tity, such as mass, has an orientation of lo. We can distin-
guish between quantities with the same dimension but
different orientations by employing both orientational
and dimensional analysis. For example, it considers en-
ergy [Newton x meter] and torque [Newton x meter].

Thus, arithmetic operations on units can be simpli-
fied to vector additions, subtractions, or comparisons.
These operations can be performed only on physical
guantities with the same dimension or corresponding to
vectors with identical coordinates. In other words, units
with matching exponent vectors can be directly added,
subtracted, or compared using these operations.

However, complications arise when dealing with
the product and division of physical quantities. For ori-
entationless quantities, we can simply add or subtract
their corresponding exponent vectors to obtain the result-
ing vector. However, for orientated quantities, determin-
ing the resulting vector requires more than simply adding
or subtracting the exponent vectors. We also need to con-
sider Siano's rules, which help define the orientation of
the resulting vector [46, 47]. Siano demonstrated that ori-

Cyber physical systems and Internet of Things

133

entational symbols have an algebra defined by the multi-
plication table for the orientation symbols, which is as
follows:

N

@

—
S
—
S
—
>
—
<
— et i | et
< N

>

and rules:
I,

=L =l
y ZlZ

Based on the above, the product of two orientated
physical quantities has an orientation as follows:

Lol = Lo = Lo loly, = L1, =1,

O]

Lol = Ll = L, L, = L1, = 1,1, = 1.

However, a common approach to representing units
is to utilise exponent vectors based on base units and unit
factors, which has some constraint: we may realize soft-
ware formal verification only in run time.

To enable the use of compile-time formal verifica-
tion, we present TL that encompasses the key compo-
nents designed to enhance the verification process. The
TL comprises several essential classes, including the
"PNSD_SI" class for facilitating operations with Sl pre-
fixes (e.g., nano, milli, giga, etc.). This class enables
seamless handling of units of different magnitudes.

Another integral component of TL is the "Printing"
class, which provides comprehensive control over output
formatting. This class empowers developers to customize
the display of results, ensuring a clear and informative
representation of data.

Additionally, the TL incorporates a template class
called "PhysicalVariable" that plays a vital role in dimen-
sional analysis and orientational analysis operations. This
class allows for the precise handling of physical quanti-
ties, considering both their dimensions and orientations.
Moreover, the "PhysicalVariable" class inherits essential
functions from the "Printing" class, enabling seamless in-
tegration of output control capabilities.

The architecture of the TL is depicted in Fig. 2,
which showcases the relationships and dependencies be-
tween the classes. The template class "PhysicalVariable"
serves as a powerful tool for creating various C++ classes
that correspond to specific physical quantities (

Table 2 and Table 3) [49]. This template class, com-
bined with metaprogramming [50] techniques, forms the
foundation of a library that enables the generation of new
types at compile time [51].

To simplify the creation of these classes, the library
provides special pre-processor macros that leverage the

"PhysicalVariable" template. These macros facilitate the
generation of C++ classes during the compilation pro-
cess. The use of these macros is straightforward: devel-
opers define the desired quantity name, unit name, unit
symbol, and a vector representing the dimensions based
on the basis dimensions T (time), L (length), M (mass), |
(electric current), 0 (thermodynamic temperature), N
(amount of substance), and J (luminous intensity) (see
Table 1).

For instance, the following macro invocation cre-
ates a class named "Density," representing the orienta-
tionless physical quantity of density:

createSomeUnit(Density, "kilogram per cubic
metre”, "kg / m3", 0, -3,1,0, 0, 0, 0).

The next macro allows the creation of four C++
classes: "Area" (representing orientationless quantities),
"AreaX" (representing x-oriented quantities), "AreaY"
(representing y-oriented quantities), and "AreaZ" (repre-
senting z-oriented quantities):

createSomeUnitOXYZ(Area, "square meter",
"m2",0,2,0,0,0,0,0).

Developers can easily generate the necessary C++
classes for their desired physical quantities by employing
these macros in the development process. This stream-
lined approach leverages the power of metaprogramming
and compile-time generation to create a comprehensive
library of types that accurately represent physical quanti-
ties and their orientations.

Table 2 and Table 3 show that each generated class
is mapped to a specific subject area. Each subject area is
associated with a C++ namespace. These namespaces are
included within the SI namespace (see Fig. 3).

The mapping of each generated class to a specific
subject area, as described in

Table 2 and Table 3, is achieved through association
with a dedicated C++ namespace. This approach ensures
that classes related to Chemistry, Optics, Photometry,
etc. These subject-specific namespaces are encapsulated
within the SI namespace to maintain a well-structured
codebase. This hierarchical structure promotes modular-
ity, clarity, and ease of navigation within the codebase,
facilitating efficient development and maintenance of the
library.

2.3. Implementation of Operators
and Function Wrappers Using Templates

The proposed library adheres to the principles of ho-
mogeneity in physical dimensions and orientations by en-
suring that the left and right operands have equal dimen-
sions and orientations. The assignment operators (=, +=,
-=) are function members within the template class.

134 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)
Printi
rntng PNSD_SI
int printPrefix .
string name
int print ti
int printQuantity string symbol
int printDi i
' prt imension double decimal
Printing() PNSD ST prefixList [25]
v?rtual vo?d resetl?rintPreﬁx() PNSD_SI()
virtual void setPrintPrefixName() PNSD_ SI(stri trine. doubl
virtual void setPrintPrefixSymbol() PNSD_SI(iS' cﬁ"g, i_ n(;g, ‘t:)lu €)
virtual void resetPrintQuantity() _SI findPrefix(double v)
virtual void setPrintQuantityName()
virtual void setPrintQuantitySymbol()
virtual void resetPrintDimensionName()
virtual void setPrintDimension()
virtual void setPrintDimensionSymbol()
[e :
s, m, kg, a, k, '
' mol, ¢, o : IntegerExpression ‘
PhysicalVariable ==~~~ " " "7TTTTTTTTTTTTTTTOOS
double currentValue;
enum {second=s}; enum {metre=m};
enum {kilogramm=kg}; enum {ampere=a};
enum {kelvin=k}; enum {mole=mol};
enum {candela=c}; enum {orientation=o};
Physical Variable ()
PhysicalVariable (double v)
Physical Variable (double v, const double p)
operator=...operator +=...operator -=...
operator *=... operator /=...
Fig. 2. Architecture of the Specialized Type Library
template functions are employed with template class ar-
SI guments. These operators utilize the Siano conventions
(see expressions 1 and 2).
Base Units The multiplication and division operators are also
5 - defined as template functions that utilize template class
Chemistry SI ensity ectricity arguments and adhere to the Siano conventions. These

Concentratrion SI | [Magnetism SI

Flow_SI Geomerty SI Mechanics SI
Opics . Thermo-
Ph 1
Photometry SI ysies S dymamics SI

Fig. 3. SI namespace structure

For the conditional operators (>, >=, ==, !=, <=,<),

as well as the addition (+) and subtraction (-) operators,

operators enable proper handling of physical quantities
during calculations.

The compound assignment operators (*=, /=) re-
quire a dimensionless right operand. To preserve the di-
mension and orientation of the result, these operators are
defined as template function members.

The implementation of this library provides a sig-
nificant advantage in terms of unit testing, integration
testing, and regression testing. The effectiveness of static
checking during compilation reduces the time required

Cyber physical systems and Internet of Things 135

for these testing activities. By catching errors and incon- template <int num>

sistencies at compile time, developers can identify and struct powN{ enum { np=num }; };

address issues early in the development process, improv- template

ing software quality and reducing debugging efforts. <intT,intL, int M, intl,int 8, int N, intJ, int O, int n>
Overall, the proposed library ensures consistency, PhysicalVariable

accuracy, and efficiency by enforcing physical dimen-
sions and orientations homogeneity and leveraging static
checking during compilation.

Worapper functions are utilized with template argu-
ments to accommodate the dimensionless and
orientationless arguments of the exp and log functions.
These wrapper functions aim to ensure that the correct
version of the exp and log functions is called for the Phys-
icalVariable instances. Here are the improved versions of
the wrapper functions:

double exp(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv)
{ return ::exp(pv.value()); }
double log(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv)
{ return ::log(pv.value()); }

By specifying the template argument <0, 0,0, 0, 0, 0, 0, 0>,
the wrappers ensure that only dimensionless and orienta-
tionless instances of PhysicalVariable can be passed as
arguments to the exp and log functions. In this way, the
correct mathematical operations can be applied to these
specific instances, guaranteeing the accuracy and integ-
rity of the calculations.

These wrapper functions are crucial in maintaining
the consistency and correctness of operations involving
dimensionless and orientationless quantities within the
proposed library.

To handle the square root function (sqrt) within the
template framework, we created a wrapper function that
correctly takes the dimensions of the result.

template <int T, int L, int M, int I, int 6, int N, int J>
PhysicalVariable < T/2, L/2, M/2,1/,6 /2,N/2,J/2, 0, 0>
sgrt(PhysicalVariable < T, L, M, |, K, N, J, 0> p)

{ return

PhysicalVariable < T/2, L/2, M/2, I/, K/2, N/2, J/2, 0>
(::sart(p.value()));}

This wrapper function takes a PhysicalVariable in-
stance as an argument, where the dimensions are repre-
sented by the template parameters T, L, M, I, 6, N, J, and
O. The sgrt function calculates the square root of the
value stored in the PhysicalVariable instance. Creates a
new PhysicalVariable instance with dimensions halved
for each base unit.

To create a function wrapper for x" or pow(x, n),
where x represents a dimensioned and orientational value
and n is an integral number, the following struct template,
function template, and macro can be used:

< T*n, L*n, M*n, [*n, 6*n, N*n, J*n, (O*n)%2>
powPhysicalVariable(PhysicalVariable
<T,L,M, L 60,N,J, O>left, powN< n>)
{return PhysicalVariable
< T*n, L*n, M*n, [*n, 6*n, N*n, J*n, (O*n)%2>
(::pow(left.value(), n)); }

#define pow(x,y) powPhysicalVariable(x, powN<y>())

This implementation allows the calculation of the
power of a dimensioned and orientational value (x) raised
to an integral exponent (n).

To handle trigonometric functions (sine, cosine,
tangent, arcsine, arccosine) within the template frame-
work, we created wrapper functions that correctly take
the dimensions of the result.

#define X Sl::Geometry_Sl::PlaneAngleX
#define Y Sl::Geometry_Sl::PlaneAngleY
#define Z Sl::Geometry_Sl::PlaneAngleZ
#define cosXYZ(L) double cos(L pv)

{ return ::cos(pv.value());}

cosXYZ(X) cosXYZ(Y) cosXYZ(Z)
#define FXYZ(F,L)\

Dimensionless##L
F(Sl::Geometry_Sl::PlaneAngle##L pv)\

{ return Dimensionless##L (::F(pv.value())) ;}
FXYZ(sin, X) FXYZ(sin, Y) FXYZ(sin, Z)
FXYZ(tan, X) FXYZ(tan, Y) FXYZ(tan, Z)
double acos(Dimensionless pv)

{ return ::acos(pv.value()); }

X asinx(double v){ return X(::asin(v)); }
Y asiny(double v){ return Y(::asin(v)); }
Z asinz(double v){ return Z(::asin(v)); }

X asinx(Dimensionless v)

{ return X(::asin(v.value())); }

Y asiny(Dimensionless v)

{ return Y(::asin(v.value())); }

Z asinz(Dimensionless v)

{ return Z(::asin(v.value())); }

2.4. Using the Type Library

Using TL is a straightforward process. In your C++
file, include the necessary namespaces to access the de-
sired subject areas. Here is an example of SI namespace
and its subnamespaces:

using namespace Sl;

using namespace Sl::Optics_Photometry_SlI;
using namespace Sl::Electricity_Magnetism_Sl;
using namespace Sl:: Thermodynamics_SI;

136

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

By including these namespaces, you can access the
classes and functionality related to each subject area. It
allows you to use the units, perform calculations, and lev-
erage the features provided by the TL.

We can create an alias for a long or nested
namespace using the namespace aliasing feature as fol-
lows:

namespace ZSI = Sl::Electricity_Magnetism_SI;
int main() {

ZSl::Capacitance c;

/I Use the alias to access the classes

return O;

}

This modular approach allows users to extend and
organize subnamespaces structured, resulting in en-
hanced code reusability and maintainability.

By dividing the functionality into subnamespaces,
developers can logically group related classes and func-
tions, making it easier to locate and reuse code across dif-
ferent projects. In addition, it promotes a modular design
where each subnamespace can be independently ex-
tended or modified without affecting other parts of the
codebase.

Furthermore, this approach enhances the code or-
ganization making it more intuitive and understandable.
Developers can navigate through the codebase more effi-
ciently by understanding the purpose and scope of each
subnamespace.

This modular approach fosters better code manage-
ment, encourages code reuse, and facilitates future mod-
ifications and enhancements. It is a powerful technique
for structuring and maintaining complex projects effec-
tively.

2.5. Verification of the C++ Type Library

Based on Table 1, we have eight base units. Further-
more, our TL covers specific Subject Areas (see Table 4).
Every physical quantity corresponds to a distinct C++
class generated by TL. The distinct physical quantities
used in the program determines the number of generated
classes. These classes have various overloaded operators
that facilitate arithmetic, mathematical, and logical oper-
ations.

To verify the functionality of the TL, dedicated C++
units were created for each Subject Area. Special Test
Cases were generated for verification operations with dif-
ferent physical quantities. Cartesian products of Subject
Avreas defined the operands of this operation. Additional
calculation errors based on dimensionality checks were
eliminated using operation templates and classes. Further
24 tests were conducted to verify the use of Sl prefixes.

Table 4
Units of Measurement for Quantities
in the Subject Areas

Subject Areas Numer of quatities
Chemistry 11
Density & Concentration 7
Electricity & Magnetism 31
Flow 7
Geometry 8
Mechanics 31
Optics and Photometry 8
Physics 15
Thermodynamics 21

Each physical quantity in our software system cor-
responds to a C++ class specifically designed for this pur-
pose. These classes are generated using a special tem-
plate. Each object of these classes occupies 24 bytes of
memory. Of these, 8 bytes are allocated for storing the
current value, whereas an additional 16 bytes are used to
store information about the physical dimension and ori-
entation. A detailed breakdown of memory usage by the
executable file is provided in Table 5.

Table 5
Memory usage by the executable file

Subject Areas testing Executable file, KB
Without physical values 67
Usage TL without physical

’ values o 1198
Base S| quantity 1254
Geometry 1319
Optics and Photometry 1444
Chemistry 1540
Density & Concentration 1612
Flow 1659
Mechanics 2010
Thermodynamics 2202
Physics 2288
Electricity & Magnetism 2758
Additional tests of cout 2771
Software 1 1694
Software 2 1697

During Subject Areas testing (see Table 5), subject
area physical quantities were used as extended test vari-
ables. For example, for testing Geometry quantities, use
Sl base units and Geometry quantities, etc. The number
of physical quantities in the subject area rather than by
the number of program variables with the same physical
quantity determines increasing the executable file size.
All tested programs used 6800 KB of RAM. Software 1
encompasses all Sl base units and incorporates all physi-
cal quantities within the subject areas of Geometry and

Cyber physical systems and Internet of Things

137

Physics. Software 2 includes all SI base units and encom-
passes all physical quantities in the subject areas Geom-
etry and Physics, along with an additional 30,000 varia-
bles corresponding to different physical quantities, re-
quiring 7500 KB of RAM.

This section will focus on verifying the Geome-
try_SI namespace as an example. Let us consider the op-
erations with the Length and Area classes within the Ge-
ometry_SI namespace as follows:

LengthO 10(2); // orientationless 10=2[m]
LengthX Ix(3); // X-oriented Ix =3[m]
LengthY ly(4); // Y-oriented ly =4[m]
LengthZ 1z(5); // Z-oriented Iz =5[m]

Area a(100),b; // orientationless a =100[m2],b
AreaX ax(200); // X-oriented ax =200[m2]
AreaY ay(300); // Y-oriented ay =300 [m2]
AreaZ az(400); // Z—-oriented az =400 [m2]

/I calculation of new values of areas

a =10*10; // a=100is correct

ax =1y * Iz; /] ax= 20 is correct

ay = Ix * Iz; /l ay= 15 is correct

az=Ix*ly; /l az =12 is correct

b = Ix *Iz; // orientational error is not correct!!!
double k = 10;

az *=k; /l'is correct az= 120

ay/=k; /liscorrectaz=1.5

In the above code, we create instances of the Area and
Length classes, representing quantities with different ori-
entations.

In the next example, we check the operations in-
volving the Curvature class (Optics Photometry SI
namespace) and Length class (Geometry_SI namespace).

Curvature c(1); /forientationless c=1[1/m]
CurvatureX cx(1);//X-oriented cx=1[1/m]
CurvatureY cy(2);//Y-oriented cy=1[1/m]
CurvatureZ cz(3); //Z-oriented cz=1[1/m]
LengthO LO(2); // orientationless L0=2[m]
LengthX Lx(3); // X-oriented Lx =3[m]

cx =L0/ LX; //dimension error!!

cx = 1.0/ Lx;

Ix=1.0*Lx;

Now let us proceed with the verification of trigono-
metric functions within the TL:

Dimensionless dI(1), dix(1), dly(1), diz(1);

PlaneAngle pa0(1); //[radian rad 1=0]
PlaneAngleX pax(1); //[radian rad 1=x]
PlaneAngleY pay(2); //[radian rad I=y]

PlaneAngleZ paz(1); //[radianrad 1=z]

double Icosd = cos(1.25), Isind = sin(1.25),
Itan =tan(1.25),
acosd = acos(1.25), asind = asin(1.25);

Dimensionless Icosx = cos(pax),
Icosy = cos(pay), Icosz = cos(paz);

DimensionlessX Isinx = sin(pax), Itanx = tan(pax);
DimensionlessY Isiny = sin(pay), Itany = tan(pay);
DimensionlessZ Isinz = sin(paz), Itanz = tan(paz);

PlaneAngleX acosx = acos(dlx),
asinxd = asinx(dl);
PlaneAngleY acosy = acos(dly),
asinyd = asiny(dl);
PlaneAngleZ acosz = acos(dlz),
asinzd = asinz(dl);

double d0 = sin(pa); //compile errors!!!

double dx = sin(pax); //compile errors!!!
double dy = sin(pay); // compile errors!!!
double dz = sin(paz); // compile errors!!!

The provided code snippet focuses on verifying spe-
cific classes within the Geometry SI namespace. How-
ever, similar checks were conducted for all other classes
and operations within the TL to ensure their correctness
and adherence to the defined rules and principles.

Sl defines a set of prefixes of physical values. The
provided code defines a list of prefixes used in the Sl to
denote physical values. Each prefix is associated with a
name, symbol, and the corresponding decimal factor:

const PNSD_SI prefixList[24] = {
{"quetta","Q", 130 }, {"ronna", "R", 1e27},
{"yotta", "Y", 1e24},...

{"zepto", "z", 1e-21}, {"yocto", "y", le-24},
{"ronto", "r", 1e-27}, {"quecto", "q", 1e-30} };

In the following code example, we observe the use
of prefixes for initializing physical quantities:

Mass m(15., prefix::micro);// m=1.5 * 10 [kg]
Mass m2(20.,nano); // m2=2 108 [kq]

The proposed library has special methods for print-
ing physical values and prefixes.

In the following Fig. 4, you can observe the output
of physical quantities with different settings: printing
prefixes (without prefix, name, symbol), printing quanti-
ties (without quantity, name, symbol), and printing di-
mensions (without dimension and dimension vector).

This comprehensive output process ensures the re-
liability verification of the CPS-embedded software.

138

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

The proposed TL was developed with the assistance
of Microsoft Visual Studio Community 2022 Version
17.1.2. This widely used development environment
played a crucial role in the elaboration and creation of the
TL, ensuring compatibility and leveraging the powerful
features and tools provided by Visual Studio for efficient
development and implementation.

il=1 h["A"]i2=2 nano["ampere"][s0 m0 kg0 Al KO mo10 cd0]
i2=4 nano["ampere"][sO m0 kg0 Al KO mol0 cd0]

12=1 hecto["ampere”][sO m0 kg0 Al KO mol10 cd0]

edf=1.2 ["coulomb per square metre"]

b=2.2e-11

ri=1 quecto["ohm"][s-3 m2 kgl A-2 KO mol10 cd0]

r2=0.01 quecto["ohm"][s-3 m2 kgl A-2 KO mo10 cd0]

ri=1 kilo["ohm"][s-3 m2 kgl A-2 KO mo10 cd0]

Fig. 4. Fragment physical quantities output

The thorough verification process ensures the relia-
bility, accuracy, and effectiveness of the TL implementa-
tion across diverse subject areas and namespaces. This
process instills confidence in the TL's functionality and
usability, making it a dependable tool for software devel-
opment and related tasks.

3. Results and Discussion

This article introduces a groundbreaking C++-type
library based on metaprogramming. This innovative li-
brary incorporates Sl prefixes and dimensional analysis
and integrates orientational analysis, demonstrating its
remarkable effectiveness in identifying software defects.
The proposed method requires additional memory. For
instance, a program without TL requires only 100 KB,
whereas using TL extends the executable file size to 1-3
MB.

Notably, it has demonstrated the capability to iden-
tify over 60% of software defects [17], including those
stemming from incorrect usage of variables, operations,
Sl prefixes, and C++ functions. These results suggest that
this library has substantial potential as a valuable tool for
software development.

However, it is essential to acknowledge that no sin-
gle library can detect all software defects. Therefore,
while the proposed library, based on Sl, shows promise,
it requires thorough evaluation and comparison with
other library types based on different system units.

Furthermore, this study proposed a software verifi-
cation model that leverages the type library for formal
CPS software verification during compile time and
runtime. This approach represents a significant advance-
ment in ensuring the reliability and safety of CPS soft-
ware, making a crucial contribution to this evolving field.

Although the proposed method for formal verifica-
tion is not specifically tailored for cyber-physical objects
and systems, given its primary focus on software-level

concerns, it does demonstrate adaptability for verifying
general-purpose software that incorporates various phys-
ical parameters. This versatility extends across diverse
domains, such as educational, gaming, and simulation
software.

4. Conclusions

This article introduces a novel C++ type library
based on software invariants for formal verification. The
proposed TL leverages both dimensional and orienta-
tional analysis to enhance the software quality. Employ-
ing two independent formal software verification meth-
ods offers diverse and robust verification capabilities,
leading to improved software quality.

The proposed software verification model relies on
the use of software invariants. Although this approach
has certain drawbacks, such as the requirement to deter-
mine the physical dimensions and orientation of variables
during compile time and increased compilation time, it
still provides significant advantages over human manual
error detection. TL empowers compilers to efficiently
identify errors, making it a valuable tool in software de-
velopment.

On the other hand, the proposed model has several
notable advantages. It enhances programmer productiv-
ity by eliminating the need to troubleshoot dimensional
and orientational errors during runtime. TL enables com-
prehensive analysis of the software’s dimensional and
orientational correctness, covering the compile and run-
time phases. It ensures the correct usage of software var-
iables and operations and verifies the arguments of func-
tions and procedures.

The proposed TL seamlessly integrates with any
modern C++ compilers, enabling formal software verifi-
cation at compile-time. It enhances software reliability by
introducing additional checks during dynamic linking
and facilitates real-time formal verification.

Although the proposed method for formal verifica-
tion is not customized explicitly for cyber-physical ob-
jects and systems, as its primary emphasis lies on soft-
ware-level considerations, its adaptability shines when
verifying general-purpose software that integrates a spec-
trum of physical parameters. This versatility traverses
many domains, including educational, gaming, simula-
tion software, and beyond, demonstrating its broad ap-
plicability across diverse industries and applications.

The effectiveness of the proposed TL was demon-
strated through the analysis of real-world software for un-
screwed aerial vehicles (drones) on GitHub. It success-
fully detected 90% of incorrect uses of software variables
and over 50% of incorrect operations, resulting in an
overall conditional probability of defect detection of 60%
[17]. Because using TL extends the executable file size

Cyber physical systems and Internet of Things

139

by 1-3 MB, further research is necessary to explore meth-
ods for reducing this memory extension.

These results highlight the efficacy of the proposed
software verification model in identifying software de-
fects and reinforcing software reliability.

5. Directions for further research

Overall, the proposed C++ type library
demonstrates a high detection rate, potentially reducing
testing time and improving reliability and software qual-
ity. This approach is effective for formal verification dur-
ing compile time and supplementary verification in real-
time scenarios. The library shows promise in enhancing
the reliability of custom software; however, further re-
search and the development of additional methods are
necessary to comprehensively evaluate the reliability of
custom software. Furthermore, additional research is re-
quired to explore strategies for reducing memory usage.

Contributions of authors: conceptualization —
Yuriy Manzhos; methodology, software, validation, for-
mal analysis, resource — Yuriy Manzhos, Yevheniia
Sokolova; data curation — Yuriy Manzhos; writing —
original draft preparation, writing — review and editing,
visualization — Yuriy Manzhos, Yevheniia Sokolova;
supervision — Yuriy Manzhos; project administration —
Yevheniia Sokolova.

Conflicts of interest
The authors declare no conflict of interest.

Financing
This study received no external funding.

Data availability
Data will be made available upon reasonable re-
quest

Use of Artificial Intelligence
The authors confirm that they used artificial intelli-
gence technologies solely to check the grammar of the
English text.

All authors have read and agreed to the published
version of this manuscript.

References

1. Vasylenko, O., Ivchenko, S., & Snizhnoi, H.
Design of information and measurement systems within
the Industry 4.0 paradigm. Radioelectronic and Com-
puter Systems, 2023, no. 1, pp. 45-54. DOI:
10.32620/reks.2023.1.04.

2. Valette, E., El-Haouzi, H. B., & Demesure, G.
Industry 5.0 and its technologies: A systematic literature
review upon the human place into IoT - and CPS-based
industrial systems. Computers & Industrial Engineering,
2023, vol. 184. DOI: 10.1016/j.cie.2023.109426.

3. Schneider, G. F., Wicaksono, H., & Ovtcharova,
J. Virtual engineering of cyber-physical automation sys-
tems: The case of control logic. Advanced engineering
informatics, 2019, no. 39, pp. 127-143. DOI:
10.1016/j.a€i.2018.11.009.

4. Manzos, Y., & Sokolova, Y. The method of data
compression in Internet of Things communication. Radi-
oelectronic and Computer Systems, 2020, no. 4, pp. 57-
67. DOI:10.32620/reks.2020.4.05 (In Ukrainian)

5. Olaniyi, O., Okunleye, O. J., & Olabanji, S. O.
Advancing Data-Driven Decision-Making in Smart Cit-
ies through Big Data Analytics: A Comprehensive Re-
view of Existing Literature. Current Journal of Applied
Science and Technology, 2023, vol. 42, iss. 25, pp. 10-
18. DOI: 10.9734/CJAST/2023/v42i254181.

6. Maskuriy, R., Selamat, A., Ali, K. N,
Maresova, P., & Krejcar, O. Industry 4.0 for the Con-
struction Industry — How Ready Is the Industry? Applied
Sciences, 2019, vol. 9, no.14, article no. 2819. DOI:
10.3390/app9142819.

7. Miskiewicz, R., & Wolniak, R. Practical Appli-
cation of the Industry 4.0 Concept in a Steel Company.
Sustainability, 2020, vol. 12, no. 14, article no. 5776.
DOI: 10.3390/s5u12145776.

8. Mane, V. Environmental Monitoring Using In-
ternet of Things. International Journal of Electrical and
Computer Engineering, 2022, vol. 11, iss. 1, pp. 2-9.
DOI: 10.15662/1JAREEIE.2022.1101015.

9. Rayan, R. A., Tsagkaris, C., & Iryna, R. B. The
Internet of Things for Healthcare: Applications, Selected
Cases and Challenges. 10T in Healthcare and Ambient
Assisted Living. Studies in Computational Intelligence,
2021, vol. 933, pp. 1-15. DOI: 10.1007/978-981-15-
9897-5_1.

10. Strelkina, A. Information technology for de-
pendability assessment and providing of healthcare 10T
systems. Radioelectronic and Computer Systems, 2019,
no. 3, pp. 48-54. DOI:10.32620/reks.2019.3.05. (In
Ukrainian).

11.Syed, A. S., Sierra-Sosa, D., Kumar, A, &
Elmaghraby, A. lIoT in Smart Cities: A Survey of Tech-
nologies, Practices and Challenges. Smart Cities, 2021,
no. 4(2), pp. 429-475. DOI: 10.3390/smartcities4020024.

12. Deepak, V., Mishra, A., & Mishra, K. Role of
10T in introducing Smart Agriculture. International Re-
search. Journal of Engineering and Technology (IRJET),
2022, no. 9, pp. 883-887.

13. Mourtzis, D., Vlachou, K., Dimitrakopoulos, G.,
& Zogopoulos, V. Cyber-Physical Systems and Educa-
tion 4.0 — The Teaching Factory 4.0 Concept. Procedia

https://doi.org/10.32620/reks.2023.1.04
https://www.base-search.net/Search/Results?lookfor=aut:%27El-Haouzi%2C+Hind+Bril%27&refid=dcrecuk
https://www.base-search.net/Search/Results?lookfor=aut:%27Demesure%2C+Guillaume%27&refid=dcrecuk
https://www.sciencedirect.com/journal/computers-and-industrial-engineering/vol/184/suppl/C
https://doi.org/10.1016/j.aei.2018.11.009
https://doi.org/10.32620/reks.2020.4.05
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=6075480
https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=6129375

140

Radioelectronic and Computer Systems, 2024, no. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Manufacturing, 2018, no. 23, pp. 129-134. DOI:
10.1016/j.promfg.2018.04.005.

14. Tsiatsis, V., Karnouskos, S., Holler, J., Boyle,
D., & Mulligan, C. Chapter 16 - Autonomous Vehicles
and Systems of Cyber-Physical Systems. Internet of
Things, 2019, pp. 299-305. DOI: 10.1016/B978-0-12-
814435-0.00029-8.

15. Alsulami, A. A., Abu Al-Haija, Q., Alturki, B.,
Algahtani, A., & Alsini, R. Security Strategy for Auton-
omous Vehicle Cyber-Physical Systems Using Transfer
Learning. Journal of Cloud Computing, 2023, vol. 12, ar-
ticle no. 181. DOI: 10.21203/rs.3.rs-2301648/v1.

16.Banerjee, A., Maity, A, Gupta, S. K, &
Lamrani, I. Statistical Conformance Checking of Avia-
tion Cyber-Physical Systems by Mining Physics Guided
Models. Proceedings of the 2023 Aerospace Conference,
Big Sky, MT, USA, IEEE, 2023, pp. 1-8, DOI:
10.1109/AER055745.2023.10115613.

17.Manzhos, Y., & Sokolova, Y. A Method of 10T
Information Compression. International Journal of Com-
puting, 2022, vol. 21, iss. 1, pp. 100-110. DOI:
10.47839/ijc.21.1.2523.

18. Fursov, ., Yamkowyi, K., & Shmatko, O. Smart
Grid and wind generators: an overview of cyber threats
and vulnerabilities of power supply networks. Radioelec-
tronic and Computer Systems, 2022, no. 4, pp. 50-63.
DOI: 10.32620/reks.2022.4.04.

19.Smadi, A. A., Ajao, B. T., Johnson, B. K., Lei,
H., Chakhchoukh, Y., & Abu Al-Haija, Q. A Compre-
hensive Survey on Cyber-Physical Smart Grid Testbed
Architectures: Requirements and Challenges. Electron-
ics, 2021, vol. 10, no. 9, article no. 1043. DOI:
10.3390/electronics10091043.

20.Kang, B., Seo, K.-M., & Kim, T. G. Model-
Based Design of Defense Cyber-Physical Systems to An-
alyze Mission Effectiveness and Network Performance.
IEEE Access, 2019, vol. 7, no. 1, pp. 42063-42080. DOI:
10.1109/ACCESS.2019.2907566.

21. Wisniewski, R., Bazydlo, G., Szczesniak, P.,
Grobelna, I., & Wojnakowski, M. Design and Verifica-
tion of Cyber-Physical Systems Specified by Petri Nets —
A Case Study of a Direct Matrix Converter. Mathematics,
2019, wvol. 7, no. 9, article no. 812. DOI:
10.3390/math7090812.

22.Cordeiro, L. C., de Lima Filho, E. B., & Bessa,
I. V. Survey on automated symbolic verification and its
application for synthesizing cyber-physical systems. IET
Cyber-Physical Systems: Theory & Applications, 2019,
vol. 5, iss. 1, pp. 1-24. DOI: 10.1049/iet-cps.2018.5006.

23.Grobelna, 1., Wisniewski, R., & Wojnakowski,
M. Specification of Cyber-Physical Systems with the Ap-
plication of Interpreted Nets. Proceedings of the IECON
2019 - 45th Annual Conference of the IEEE Industrial
Electronics Society, Lisbon, Portugal, IEEE, 2019, pp.
5887-5891. DOI: 10.1109/IECON.2019.8926908.

24.Luckeneder, C., & Kaindl, H. A case study of
systematic top-down design of cyber-physical models
with integrated validation and formal verification. Pro-
ceedings of the 34th ACM/SIGAPP Symposium on Ap-
plied Computing (SAC '19). Association for Computing
Machinery, New York, NY, USA, 2019, pp. 1828-1836.
DOI: 10.1145/3297280.3297460.

25. Bernardeschi, C., Domenici, A., & Saponara, S.
Formal Verification in the Loop to Enhance Verification
of Safety-Critical Cyber-physical Systems. Electronic
Communications of the EASST, 2019, vol. 77, pp. 1-9.
DOI: 10.14279/tuj.eceasst.77.1106.1050.

26.Misson, H. A., Gongalves F. S., & Becker, L. B.
Applying Integrated Formal Methods on CPS Design,
Proceedings of the IX Brazilian Symposium on Compu-
ting Systems Engineering (SBESC), Natal, Brazil, 2019,
pp. 1-8. DOI: 10.1109/SBESC49506.2019.9046084.

27.Grobelna, 1. Formal Verification of Control
Modules in Cyber-Physical Systems. Sensors, 2020, vol.
20, no.18, article no. 5154. DOI: 10.3390/s20185154.

28.Garro, A., Vaccaro, V., Dutré, S., & Stegen, J.
Cyber-Physical Systems engineering: model-based solu-
tions. Proceedings of the SummerSim-SCSC 2019, Ber-
lin, Germany, 2019, Society for Modeling and Simula-
tion International (SCS). Available at:
https://scs.org/wp-content/uploads/2020/02/CYBER-
PHYSICAL-SYSTEMS-ENGINEERING-MODEL-
BASED-SOLUTIONS.pdf (accessed 24 July 2019).

29. Wisniewski, R., Bazydlo, G., Szczesniak, P.,
Grobelna, I., & Wojnakowski, M. Design and Verifica-
tion of Cyber-Physical Systems Specified by Petri Nets —
A Case Study of a Direct Matrix Converter. Mathematics,
2019, wvol. 7, no. 9, article no. 812. DOI:
10.3390/math7090812.

30. Nikolakis, N., Maratos, V., & Makris, S. A
Cyber-Physical System (CPS) approach for safe human-
robot collaboration in a shared workplace. Robotics and
Computer-Integrated Manufacturing, 2019, vol. 56, pp.
233-243. DOI: 10.1016/j.rcim.2018.10.003.

31.The Incredible Story of the Gimli Glider. Simple
Flying. Available at; https://thedailywtf.com/articles/the-
therac-25-incident (accessed 6 August 2023).

32.The Patriot Missile Failure. Awvailable at:
https://www-users.cse.umn.edu/~arnold/disasters/pa-
triot.html (accessed 23 August 2000).

33.Stephenson, A. G., LaPiana, L. S.; Mulville, D.
R., Rutledge, P. J., Bauer, F. H., Folta, D., Dukeman, G.
A., Sackheim, R., & Norvig, P. Mars Climate Orbiter
Mishap Investigation Board Phase | Report NASA.
Available at: chrome-extension://efaidnbmnnnibpcaj-
pcglclefindmkaj/https:/llis.nasa.gov/llis_lib/pdf/
1009464mainl_0641-mr.pdf. (accessed 10 November
1999).

34.Hall, B. Software representation of measured
physical quantities. Series on Advanced in Mathematics

https://journalofcloudcomputing.springeropen.com/
https://doi.org/10.21203/rs.3.rs-2301648/v1

Cyber physical systems and Internet of Things

141

for Applied Sciences. Advanced Mathematical and Com-
putational Tools in Metrology and Testing XII, 2021, vol.
90, pp. 273-284. DOI: 10.1142/9789811242380_0016.

35.Manzhos, Y., & Sokolova, Y. A Software Veri-
fication Method for the Internet of Things and Cyber-
Physical Systems. Computation, 2023, no. 11 (7), article
no. 135. DOI: 10.3390/computation11070135.

36.Schabel, M. C., & Watanabe, S. Chapter 42.
Boost.Units 1.1.0. Available at: https://www.boost.org/
doc/libs/1_83_0/doc/html/boost_units.html. (accessed
17 August 2003).

37.Benri is a C++ library for compile time check-
ing of physical quantities. Available at:
https://github.com/jansende/benri (accessed 4 October
2019).

38.Pusz, M. A C++ Approach to Physical Units.
Available at: https://www.open-std.org/jtcl/sc22/
wg21/docs/papers/2020/p1935r2.html#biblio-nic_units
(accessed 13 January 2020).

39. Moene, M., Huebl, A., Reinhold, S., & Pilz, T.
PhysUnits-CT-Cppll (compile time). Available at:
https://github.com/martinmoene/PhysUnits-CT-Cpp11.
(accessed 24 May 2020).

40.Eigen is a C++ template library for linear alge-
bra: matrices, vectors, numerical solvers, and related al-
gorithms. Awvailable at: https://eigen.tuxfamily.org/in-
dex.php?title=Main_Page. (accessed 18 August 2021).

41.0penGl Mathematics (GLM). Available at:
Available at: https://github.com/g-truc/glm (accessed 13
April 2020).

42.Weige, M. Quaternion Library for C. Available
at: https://github.com/MartinWeigel/Quaternion (ac-
cessed 16 May 2022).

43.Mahoney, J. F. Dimensional Analysis. Procedia
Manufacturing, 2019, vol. 38, pp. 694-701. DOI:
10.1016/j.promfg.2020.01.094.

44.McKeever, S. Unit of measurement libraries,
their popularity and suitability. Software: Practice and
Experience, 2021, vol. 51, iss. 4, pp. 711-734. DOI:
10.1002/spe.2926.

45. McKeever, S. Acknowledging Implementation
Trade-Offs When Developing with Units of Measure-
ment. Communications in Computer and Information
Science, 2023, vol. 1708, pp. 25-47. DOI: 10.1007/978-
3-031-38821-7_2.

46.Siano, D. B. Orientational Analysis — A Supple-
ment to Dimensional Analysis. Journal of the Franklin
Institute, 1985, vol. 320, iss. 6, pp. 267-283. DOI:
10.1016/0016-0032(85)90031-6.

47.Siano, D. B. Orientational analysis, tensor anal-
ysis and the group properties of the SI supplementary
units. Journal of the Franklin Institute, 1985, vol. 320,
iss. 6, pp. 285-302. DOI: 10.1016/0016-0032(85)90032-
8.

48.Dos Santos, L. F. Orientational Analysis of the
Vesic’s Bearing Capacity of Shallow Foundations. Soils
Rocks, 2020, vol. 43, pp. 3-9. DOI: 10.28927/SR.431003.

49. Sutter, H. Metaclasses: Generative C++. Avail-
able at: http://www.open-std.org/jtcl/sc22/wg21/
docs/papers/2018/p0707r3.pdf. (accessed 11 February
2018).

50.Sutton, A. Metaprogramming. Available at:
https://www.open-std.org/jtcl/sc22/wg21/docs/pa-
pers/2020/p2237r0.pdf. (accessed 15 October 2020).

51. Working Draft, Standard for Programming Lan-
guage C++. Available at: https://isocpp.org/files/pa-
pers/N4928.pdf. (accessed 22 May 2023).

Received 23.10.2023, Accepted 20.02.2024

CUCTEMA THUIIB VIS ®OPMAJIbHOI BEPU®IKAIIIT
C/C++ ITPOI'PAMHOTI'O 3ABE3IIEYEHHS KIBEP®IBUYHUX CUCTEM

HOpiii Manorcoc, Eezenia Coxonosa

HexopekTHe BUKOPUCTAHHSI OMUHUIL BUMIPIOBaHHs Ta opieHTaliil y nporpamax C/C++ miist kibepi3naHuX CH-
CT€M YacTO MPU3BOAUTH 0 KPUTHYHHX IOMIUIOK, SKi 3BHYAiHI CHCTEMH THIIIB HE MOXYTh €(PEKTHBHO 3aMOOITTH.
Pyganuii aHami3 Komy 3a JOMOMOT0I0 PO3MipPHOTO Ta OPi€HTALIHHOTO aHAJI3y MOYKE BUSBHTH IIi IOMIJIKH B (PI3FIHIX
PIBHSIHHSIX, ajie TIPH poOOTI 31 CKIaTHUMHU (Hi3UYHUMHU OOYUCIICHHSIMH, Il METO/IM CTAIOTh HEMPAaKTHYHUMU. MU 3a-
MIPOIIOHYBAJIH MAX1J, SIKMI 0a3yeThCsl HA BUKOPUCTAHHI (Bi3MYHMX BENUYUH, BU3HAUCHNX MIXKHAPOIHOK CHCTEMOKO
OIUHUIIb Ta OIIEPAIlisIMHU 3 Opi€HTaIli€r0 Pi3UUHNX 00'€KTIB, K 1€ 3ampornonyBaB CiaHo. Ileft miaxix 3a6e3neuye of-
HOPIAHICTh OMUHUIE. []0IaTKOBO, BKIIFOUSHHS OIIEPAIliii 3 OPIEHTAIIEI0 B MOJIENb IPOrPaMyBaHHS € BaKIIUBUM IS
TOYHOT'O YIIPABIiHHSA 00epTaHHIM 1 BHPiBHIOBAaHHAM (hi3smuHMX 00'eKTiB. IIpakTiyHi pexoMeHaarii, HaaHi poOOTor0
CiaHO H03BOJSIOTH TOYHO MAHIITYIIOBATH OPIEHTAINEI0 00'€KTIB, 3MEHITYIOYH HMOBIPHICTH TIOMIJIOK, TIOB'SI3aHUX 3
opienrariero. [Insxom mepeBipku Gi3mIHUX PO3MipHOCTEH 1 Opi€HTAaMil HA eTarmi KOMITUISII, TOTEHIIHHI TeQeKTH
MPOrpaMHOro 3a0e3IeueHHs BUSBIAIOTHCS 10 BUKOHAHHS Kony. Lle 3MeHIIye yac Hajaro[pKeHHs Ta 3HIKYE BUTPATH
HA BHIIPABIICHHS MPOOJIEeM Ha MI3HIMIMX eTanax po3poOiieHHs. 3amporoOHOBaHa CHCTEMa THIIIB, sIKa BKITIOYA€ B cebe
PpO3MIipHHI Ta Opi€eHTAIIHAI aHAII3, a TAKO)K METOIM METalpOrpaMyBaHHS, IPEACTABIISIE COOOI0 BYKIMBAN KPOK Y
HanpsIMKy OinbIn Oe3medHux Ta HaxiiHuX Kibepdiznannx cucreM. Lleit miaxin no3Bomsie BUABUTH NpHOIU3HO 90%

https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://dl.acm.org/author/McKeever%2C+Steve
https://doi.org/10.28927/SR.431003

142 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, no. 1(109) ISSN 2663-2012 (online)

HETPaBUILHOTO BUKOPHCTaHHS 3MIHHUX ITporpamMu Ta noHas 50% IMOMMIIKOBHX OTeparlii sK i1 9ac KOMITUISIIT, TaK
1 i1 Yac BUKOHAHHSI BEIMKOMACIITa0HMX IPOrpaM B pealIbHUX YMOBAaX. 3alporioHOBaHU MeTo | popMasibHOI BepH-
¢ikanii He crieniaabHO aTaNTOBAHUM s Kibep(hi3muHuX 00'€KTIB Ta CHCTEM, BPaXOBYIOUH HOTO0 OCHOBHY YBary Jo
mpo0JIeM Ha PiBHI MPOrPaMHOI0 3a0C3TEUCHHS, BiH IEMOHCTPYE aJalTHBHICTh JUISI TEPEBIPKU 3aralbHOIPH3HAYC-
HOT'O MPOrPaMHOro 3a0e3MedeHHs, sIke BKIIIoYae pisHOMaHiTHI (izndHi mapamerpu. Ll yHiBepcalbHICTh ITOMIHMPIO-
€ThCs Ha Pi3HI chepH, Taki sK OCBITHE, IrpOBE Ta CUMYJIALIIHE IpOrpaMHe 3a0e3IeUeHHs, cepe/l 1HIIHX.

KarouoBi ciaoBa: ¢opmanbHa Bepu(ikaiis;, aHami3 po3MipHOCTEH; OpieHTAIlliiHHN aHai3; CUCTeMa THUIIIB;
Kibepdi3uuHi cucTeMH; SIKICTh IIPOrPaMHOro 3a0e3MeYeHHS.

Mamn:xoc IOpiii CemeHoBMY — KaHJA. T€XH. HAyK, JIOI., JOL. Kad. iHKeHepii mporpamMHoro 3abe3nedeHHs,
Hanionanshuii aepokocMiuHui yHiBepcuteT iM. M. €.)KykoBcbkoro «XapkiBcbkuid ABianiiiauii [nctutyT», Xapkis,
VYkpaina.

CoxkosioBa €Brenis BitagiiBHa — kanja. TexH. Hayk, JIOL., Jom. Kad. iHXeHepii IporpaMHOro 3abe3redeHHsl,
Hanionanshuii aepokocMiuHuii yHiBepcuteT iM. M. €. J)KykoBcbkoro «XapkiBcbkuid ABianiitauii [HctutyT», Xapkis,
VYkpaina.

Yuriy Manzhos — Ph.D. in Information Technologies, Associate Professor at the Department of Software Engi-
neering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: y.manzhos@khai.edu, ORCID: 0000-0002-4910-7285.

Yevheniia Sokolova — Ph.D. in Information Technologies, Associate Professor at the Department of Software
Engineering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: y.sokolova@khai.edu, ORCID: 0000-0002-1497-4987.

