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The subject: This study focuses on improving the quality of Cyber-Physical System (CPS) software by eliminat-
ing incorrect usage of units of measurement and orientation in C/C++ programs. Incorrect usage often leads to 

critical errors that conventional systems cannot effectively prevent. Manual examination of code using dimen-

sional and orientation analysis can detect these errors in physical equations, but these methods become imprac-

tical when dealing with complex physical computations. Objectives: As suggested by Siano, the proposed ap-

proach uses physical quantities and prefixes defined by the International System of Units and orientation oper-

ations on physical objects. The elaborated system incorporates dimensional and orientation analysis and met-

aprogramming techniques. The methods used are dimensional & orientational analysis and metaprogramming. 

The following results were obtained: ensuring consistency of the units, incorporating orientation operations into 

the programming model for accurately handling physical object rotations and alignments, and using Siano’s 

work to precisely manipulate object orientation, thereby reducing the likelihood of orientation-related errors. 

Checking physical dimensions and orientations during the compilation stage identifies potential software defects 
before code execution, thereby reducing debugging time and lowering the cost of addressing issues later in 

development. The elaborated system represents a crucial step towards safer and more dependable Cyber-Phys-

ical System applications. This approach allows us to identify approximately 90% of incorrect usage of program 

variables; additionally, it detects over 50% of erroneous operations during compilation and execution of large-

scale programs in real-world conditions. Conclusions. Scientific novelty: it proposed and developed a special-

ized C++-type library for formal compile-time software verification of Cyber-Physical Systems software. The 

proposed C++-type library leverages dimensional and orientational analysis to enhance software quality, reli-

ability, and real-time formal verification. Although the proposed method for formal verification is not tailor-

made for cyber-physical objects and systems, given its primary focus on software-level concerns, it does exhibit 

adaptability for verifying general-purpose software that incorporates various physical parameters. This versa-

tility extends to diverse domains such as educational, gaming, and simulation software. 

 
Keywords: Cyber-Physical Systems; dimensional analysis; formal verification; orientational analysis; software 

quality; type system. 

 

1. Introduction 

Cyber-Physical Systems (CPS) are pivotal in mod-

ern society, delivering many benefits and applications 

that profoundly impact our daily lives. Notably, they 

drive the transformation of manufacturing processes, 

propelling Industry 4.0 [1] and setting the stage for the 

impending Industry 5.0 [2] revolution through automa-

tion [3], connectivity [4], and data-driven decision-mak-

ing [5]. This leads to increased productivity, reduced 

downtime, and more agile production processes [6]. This 

can lead to better resource allocation, cost savings, and 

improved outcomes [7]. Therefore, the proposed study 

aims to utilize a specialized library for formal software 

verification. 

 

1.1. Motivation 

 

Implementing compile-time orientation and dimen-

sional checking can be challenging, particularly as soft-

ware reliability and quality requirements increase. This 

challenge motivated our study, which focuses on a  

specialized C++ type library that enables compile-time 

checking for the usage of various System International 

(SI) units physical quantities, including different orienta-

tions and SI decimal prefixes. 

 

1.2. State of the art 

 

CPS technologies: facilitate monitoring and manag-

ing environmental factors such as air quality, water us-

age, and energy consumption, promoting sustainability 

and minimizing environmental impact [8]; are pivotal in 

healthcare, enabling remote patient monitoring, telemed-

icine, and wearable health devices for more effective de-

livery [9], personalized treatment plans, and improved 

patient outcomes [10]; are pivotal in advancing smart in-

frastructure for cities and homes [11], integrating trans-

portation, energy, waste management, and public ser-

vices for more efficient urban living; enhance automa-

tion, energy efficiency, and remote control, providing 

heightened convenience and comfort; and in agriculture  
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monitor soil and weather and optimize practices for 

higher yields and resource efficiency, while CPS enables 

precise control of irrigation, fertilization, and pest man-

agement, further enhancing productivity and resource use 

[12]; in educational environments to create interactive 

learning experiences and research platforms. It provides 

hands-on learning opportunities in robotics, automation, 

and control systems [13]. 

CPS is at the heart of autonomous vehicle technol-

ogy, enabling self-driving cars, drones, and other forms 

of transportation [14]. This can revolutionize mobility, 

improve safety, and reduce traffic congestion [15]. Avia-

tion systems such as aircraft and Unmanned aerial vehi-

cles (UAV) are CPS with several interacting automated 

control modules [16]. In aerospace, CPS is crucial for the 

operation of modern aircraft, including fly-by-wire sys-

tems, autopilots, and flight control systems. In UAVs, 

managing energy consumption is vital. This often in-

volves employing adaptive data compression methods to 

minimize transmission overhead [17]. It ensures safe and 

efficient air travel. 

CPS enhances energy efficiency in smart grids [18], 

reduces environmental impact, and seamlessly integrates 

renewable sources [19]. CPS is applied in defense sys-

tems, including UAVs, military robotics, and surveil-

lance, to enhance situational awareness, intelligence 

gathering, and mission execution [20]. 

Ensuring the accuracy and reliability of CPS soft-

ware is crucial for secure and reliable operation, as CPS 

systems involve a combination of hardware, firmware, 

communication protocols, and cloud services [21]. The 

following steps and techniques can be employed for the 

verification of CPS software [22]: Requirements Specifi-

cation [23]; Functional Testing; Formal Verification 

(FV) [24]; Simulation and Testing; Code Reviews and 

Inspections; Static Code Analysis; Documentation Veri-

fication; Compliance with Standards and Regulations. 

FV is a rigorous mathematical technique that proves 

that a system (including its hardware and software com-

ponents) satisfies specific properties or requirements. 

When applied to CPS software, FV offers several bene-

fits: FV instills high confidence in critical safety proper-

ties, which are vital for safety-critical CPS applications 

[25]; FV methods validate real-time properties, ensuring 

critical tasks meet timing requirements [26]; FV provides 

stability and performance of control algorithms in CPS 

[27]; Coupling formal methods with model-based design 

ensures accurate representation of system requirements 

and design [28]; FV spots flaws, inconsistencies, and am-

biguities in specifications pre-implementation saving 

time and resources [29]; safety-critical domains often ne-

cessitate FV for demonstrating compliance with stand-

ards [30]. 

FV boosts confidence by detecting errors beyond 

testing, vital in complex systems such as autonomous  

vehicles. It complements testing methods and is applied 

selectively to critical components due to time and exper-

tise constraints. 

CPS applications, as well as scientific applications, 

heavily rely on the use of measurement units such as me-

ters, seconds, kilograms, and so on (as specified in the SI 

system). Some software faults occurred during develop-

ment because of incorrect physical quantities and system 

unit usage [31]. An illustrative instance of a software 

fault arising from the erroneous use of physical quantities 

occurred with the Therac-25 radiation therapy machine 

in the 1980s. In the 1983 Gimli Glider incident, an Air 

Canada Boeing 767 experienced a fuelling error during 

maintenance when converting from imperial to metric 

units. The incorrect conversion factor resulted in the air-

craft being loaded with only half the necessary fuel. Dur-

ing the 1991 Gulf War, the Patriot missile defence system 

experienced a critical software fault due to the system's  

internal clock measurement in tenths of a second, result-

ing in cumulative errors and inaccurate missile position 

calculations [32]. In the 1999 Mars Climate Orbiter mis-

sion, a critical software fault arose from incorrect unit 

conversion, causing the spacecraft to enter the atmos-

phere of Mars at an inadequate altitude and destroy it 

[33]. 

Physical unit and Orientation checking is of utmost 

importance in satellite and UAV (Unmanned Aerial Ve-

hicle) software testing for several critical reasons: En-

sures consistent and correct usage of units of measure-

ment, preventing errors that may result from incompati-

ble units in calculations; Unit and orientation checking 

enhances code readability and maintainability by clearly 

defining units and orientations, making it easier for de-

velopers to understand and debug the code; Physical unit 

checking is crucial in avoiding costly errors in critical 

systems, as incorrect units can lead to catastrophic fail-

ures, and implementing this check early in development 

helps prevent potentially life-threatening situations; 

Compile-time checking for correct usage reduces debug-

ging efforts by addressing potential issues before deploy-

ment, saving time and effort in later stages of develop-

ment. Ensuring accurate mathematical operations with 

physical quantities is crucial in precision-dependent sci-

entific and engineering applications. 

Accurate orientation checking is vital in aerospace 

and defence for tasks such as flight simulation, missile 

guidance, and satellite positioning, as well as for prevent-

ing drift in inertial navigation systems. It is essential for 

precise positioning and heading of satellites and UAVs, 

ensuring that they stay on the intended trajectories and 

avoid collisions. Proper orientation checking is critical 

for safety and equipment preservation, playing a funda-

mental role in stabilizing and controlling the attitude of 

satellites and UAVs relative to Earth or other reference 
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points, and is crucial for risk reduction in congested or 

restricted airspace. 

Incorporating physical unit, orientation, and dimen-

sion checking is crucial for verifying software correct-

ness, reliability, and safety, especially in domains reliant 

on precise measurements. This practice plays a vital role 

in satellite and UAV development, ensuring platform and 

payload compatibility, safety, and reliability, which is 

pivotal for aerospace mission success. As stated in [34], 

simple dimensional analysis is essential for identifying 

relevant quantities in specific problems. 

Our article [35] stated that GitHub hosts over 2 GB 

of UAV-related C/C++ source code. Physical unit check-

ing in software ensures consistent and accurate use of 

measurement units throughout the program. Numerous 

specialized libraries are available for implementing this 

process: 

Boost.Units is a C++ library [36] designed to pre-

cisely manage physical quantities and units, enabling 

custom unit definitions with compile-time error detection 

for unit-related concerns. It was first included in Boost 

1.36.0, which was released in 2008. Benri, a C++ library 

created by Jan in 2018, focuses on compile-time check-

ing of physical quantities. Benri provides extensive sup-

port for various systems of units, physical constants, 

mathematical operations, and affine spaces [37]. Mp-

units, a compile-time enabled Modern C++ library by 

Mateusz Pusz in 2020, provides compile-time dimen-

sional analysis and unit/quantity manipulation [38]. 

PHYSUNITS-CT-CPP11, a C++ library based on the 

work of Michael Kenniston from 2001, expanded, and 

adapted for C++11 and C++14 by Martin Moene [39] in 

2020, is a header-only library that provides compile-time 

dimensional analysis and unit/quantity manipulation and 

conversion. 

Orientation checking, which is essential in com-

puter graphics and robotics, involves operations such as 

unit quaternion normalization to maintain the validity of 

orientation representations. Here are C/C++ librar-

ies/tools for this purpose: 

Eigen is a C++ template library for linear algebra, 

written in 2021, which includes support for quaternions. 

It provides functions for quaternion operations, including 

normalization [40]; GLM (OpenGL Mathematics) is a 

C++ library for graphics programming, offering func-

tions, structures, and support for quaternions, including 

normalization [41]; Quaternion library for C is A basic 

quaternion library written in C by Martin Weigel in 2018. 

This library implements the most basic quaternion calcu-

lations [42].  

We need new tools for formal verification based on 

diverse principles because diversifying verification 

methods allows for an increase in software quality. 

Unfortunately, standard-type systems do not en-

force the proper use of physical dimensions and  

orientations, leaving room for potential errors and incon-

sistencies. To address this challenge, physicists and engi-

neers often employ dimensional analysis [43] to verify 

the dimensional unit correctness of quantities in equa-

tions. Dimensional analysis assumes that each physical 

quantity has a well-defined, fixed unit of measure, requir-

ing the units on both sides of the equation to match. 

While dimensional analysis is useful, it can be challeng-

ing for non-physicists. Many physical equations involve 

complex computations, making it difficult to accurately 

track the flow of units throughout the calculations. The 

manual application of dimensional analysis to programs 

that involve such equations can further intensify the com-

plexity. 

According to [44], 38 of the most comprehensive 

and well-developed open-source libraries provide built-

in support for units and dimensions in software develop-

ment. In [45], Steve McKee classified the many software 

solutions measurement units checking. Steve proposed 

software development based on Units of Measurement. 

Similarly, orientational analysis [46, 47] assumes 

that each physical quantity has a meaningful, fixed orien-

tation in space, and it requires the orientations on both 

sides of an equation to align [48]. Similar to dimensional 

analysis, orientational analysis can be challenging, espe-

cially for individuals without a strong physics back-

ground. Complex computations in physical equations 

make it difficult to accurately trace the flow of units and 

orientations. Therefore, manually applying dimensional 

and orientational analysis to programs involving such 

equations can be even more daunting. 

In summary, ensuring the correctness of physical 

dimensional units and orientations is essential for CPS 

and scientific applications. The limitations of the stand-

ard-type system in enforcing these constraints make it 

necessary to incorporate methods like dimensional anal-

ysis and orientational analysis. However, manually ap-

plying these analyses to programs that involve complex 

equations can be intricate and time-consuming, high-

lighting the need for more efficient and automated ap-

proaches to ensure the accuracy and reliability of these 

applications. 

 

1.3. Objectives and methodology 

 

This paper presents a novel specialized type library 

(TL) to facilitate the formal verification of C++ software 

at compile-time and run-time. By leveraging this library, 

developers can enhance the reliability and correctness of 

their C++ programs through rigorous verification tech-

niques. Benefits of the proposed library: 

– Extensibility: The library allows for easy expan-

sion to accommodate new domains and physical quanti-

ties; 
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– Addition of orientation to quantities: The library 

enables the inclusion of orientation information for the 

quantities; 

– Adaptive use of prefixes: The library allows for 

the adaptive use of prefixes for units, enabling flexibility 

in expressing quantities. 

As Siano suggested, the proposed approach uses 

physical quantities and prefixes defined by SI and orien-

tation operations on physical objects. The elaborated 

C++ type system incorporates dimensional and orienta-

tion analysis and metaprogramming techniques. The 

methods used are dimensional & orientational analysis 

and metaprogramming. 

The TL introduces a set of specialized types that en-

force specific constraints and properties during program 

execution. These types enable compile-time verification 

by utilizing static analysis techniques to detect potential 

errors and inconsistencies in the code before execution. 

By catching these issues early, developers can prevent 

runtime errors and enhance the overall robustness of their 

software. 

Furthermore, the TL extends its functionality to 

run-time (real-time) verification. During program execu-

tion, the library dynamically checks the validity of the 

program's state and behavior against the defined con-

straints. This dynamic verification process provides an 

additional safety net, ensuring that the software adheres 

to the intended specifications and behaves as expected. 

The library's formal verification capabilities enable 

developers to reason about their C++ programs more rig-

orously and systematically. Providing a higher level of 

assurance make it possible to detect and prevent various 

types of errors, including type mismatches, undefined be-

havior, and violations of specified invariants. This signif-

icantly reduces the risk of bugs, improves the code qual-

ity, and enhances the overall reliability of the software. 

In addition to its verification features, TL integrates 

seamlessly into the C++ development workflow. It pro-

vides clear and expressive interfaces that allow develop-

ers to specify constraints and properties concisely and 

readably. The library also offers extensive documenta-

tion and support, making it accessible to developers with 

varying levels of expertise in formal verification. 

By adopting this TL, C++ developers can elevate 

the quality of their software by incorporating formal ver-

ification techniques into their development process. By 

combining the advantages of compile-time and run-time 

verification, the library offers a comprehensive approach 

to ensure the correctness and robustness of C++ software, 

ultimately leading to increased confidence in its reliabil-

ity and improved software quality. 

The objectives of the investigation are: 

– develop a novel specialized type library (TL) for 

formal verification of C++ software at compile-time and 

run-time, enhancing reliability and correctness, while en-

suring extensibility by accommodating new domains, 

physical quantities, and orientation information;  

– incorporate dimensional and orientation analysis, 

along with metaprogramming techniques, into the C++ 

type system;  

– implement both compile-time and run-time veri-

fication to detect errors, check program validity, and ele-

vate software quality; 

– seamlessly integrate the TL into the C++ develop-

ment workflow for rigorous reasoning about programs 

and improved code quality. 

The structure of this paper is as follows: 

1. Describes the software verification model used in 

the study, including its key components and methodolo-

gies (subsection 2.1). 

2. Explains the fundamental principles underlying 

the specialized TL, including its design considerations 

and core functionalities (subsection 2.2). 

3. Details the implementation of operators and func-

tion wrappers within the TL framework, highlighting the 

use of templates for flexibility and efficiency (subsection 

2.3). 

4. Provides guidelines and examples for using the 

TL in C++ software development, demonstrating its 

practical application and benefits (subsection 2.4). 

5. Outlines the verification process for the TL, in-

cluding both compile-time and run-time verification 

techniques employed to ensure its correctness and relia-

bility (subsection 2.5). 

6. This section presents the findings of the study, 

including empirical results and insights gained from the 

implementation and verification of the TL (section 3). 

7. Summarizes the key findings of the study and dis-

cusses their implications for C++ software development 

and formal verification practices (section 4). 

8. Suggests potential avenues for future research 

and development in the field of formal verification and 

C++ software engineering, building upon the findings of 

the current study (section 5). 

 

2. Materials and Methods 

 

2.1. Software verification model 

 

The proposed TL will enable the formal verification 

of the embedded software. Integrating TL into the soft-

ware development process ensures the correctness and 

reliability of the software's behavior and its interactions 

with the physical world. TL's capability to manage phys-

ical dimensions, units, and orientations offers a potent 

tool for static checking and validation, thereby reducing 

the risk of errors and enhancing the overall quality of the 

embedded software. 
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The software formal verification model employs in-

variants checking to ensure dimension and orientation 

homogeneity (see Fig. 1). By enforcing these invariants, 

and the model proves that the software components and 

operations maintain consistent physical dimensions and 

orientations throughout their execution. This approach 

guarantees the integrity of calculations and prevents in-

compatible combinations of quantities, resulting in more 

reliable and accurate software behavior. The TL is crucial 

in supporting this verification process by providing the 

necessary tools and mechanisms to enforce and validate 

dimension and orientation consistency. 

The software verification process involves several 

steps. Based on the technical documentation, the first step 

is to set the physical dimensions and orientations of the 

input and output SW variables. This is done by using the 

source code of every function as the body of a method of 

a special testing class. 

The second step involves modifying the C++ source 

code by overriding standard data types to match the phys-

ical dimensions and orientation of the input and output 

variables. 

In the third step, a standard compiler detects SW de-

fects, such as violations of dimensional and/or orienta-

tional homogeneity. After modifying the SW units, the 

modified units are compiled again. 

In the fourth step, the test cases are used for soft-

ware testing after compiling and linking editing. The test 

cases' negative results indicate dimensional and/or orien-

tational homogeneity violations. This allows for modifi-

cation of the source code to correct any detected issues. 

The test cases also allow for checking the correctness of 

different pointer operations during dynamic linking in 

C++. 

In the fifth and final step, after software verification, 

invariant checking can be performed in real time to en-

sure that the software is operating correctly. 

Overall, this software verification process provides 

a reliable and effective method for detecting and correct-

ing dimensional and orientational homogeneity viola-

tions in C++ code, ensuring high-quality and reliable 

software. 

 

2.2. Key Principles of Type Library 

 

The International System of Units (SI) consists of 

seven base units: the amount of substance, current, 

length, luminous intensity, mass, time, and thermody-

namic temperature and dimensionless symbol. Each base 

unit is associated with a unit symbol and a dimension 

symbol. According to the Siano convention [46, 47], 

length is commonly understood to possess a fixed orien-

tation in space and is categorized as orientationless, x-

oriented, y-oriented, or z-oriented. This orientation is de-

fined by the symbol "O" (Table 1).  In SI, each physical 

quantity is defined as the product of base units raised to 

certain powers. These base units serve as the fundamental 

building blocks for expressing various measurements. 

When SI units are used, physical values are associ-

ated with specific subject areas (SA). In cases where a 

dimension has an orientation, the corresponding value 

can have one of the following directions: {0, X, Y, Z}. A 

value of 0 indicates an orientationless quantity, while X, 

Y, and Z denote values oriented in the respective direc-

tions. For instance, quantities such as force and accelera-

tion fall into this category. On the other hand, certain 

physical values, including mass and current, are consid-

ered to be orientationless. This means that they do not 

possess a specific direction associated with them. 

 

 
 

Fig. 1. Functional model of software formal verification 
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Table 1 

Base Units of SI & Dimensionless Unit 

SI unit 
Unit [Sym-

bol] 

Dimension 

symbol 

Amount Of Substance [mol] N 

Current [A] I 

Length [m] LO 

Luminous Intensity [cd] J 

Mass [kg] M 

Time [s] T 

Thermodynamic 

Temperature 
[K] Θ 

Dimensionless  [1] O 

 

Table 2 and Table 3 offer a comprehensive compi-

lation of the common units of measurement used across 

diverse subject areas 

 

Table 2 

Units of Measurement for Quantities  

in the Subject Area of "Geometry" 

Quantity Unit [Symbol],{Dimension} 

Area [m2], {L2 O} 
Aspect Ratio [1], {1} 

Curvature [1/m], {L-1 O} 
Perimeter [m], {L} 

Plane Angle [rad], {O} 
Solid Angle [Sr], {1} 
Surface Area [m2], {L2 O} 

Volume [m3], {L3} 
 

Table 3 

Units of Measurement for Quantities  

in the Subject Area of "Optics and Photometry" 

Quantity Unit [Symbol], {Dimension} 

Illuminance [lx], {L-2JO} 
Luminance [cd/m2], {L-2JO} 

Luminous Efficacy [lm /W], {T3L-4M-1J} 
Luminous Energy [lm s], {TJ} 

Luminous Exposure [lx s], {TL-2JO} 
Luminous flux or 

Luminous power 
[cd sr], {J} 

Optical Power [1/m], {L-1O} 
Refractive Index [1], {O} 

 

These tables serve as valuable references, allowing 

users to conveniently access and apply the appropriate 

units in their respective fields of study or work. We can 

create similar tables for different subject areas covered, 

encompassing Chemistry, Density & Concentration, 

Electricity & Magnetism, Flow, Physics and Thermody-

namics, etc. Importantly, these tables should be consid-

ered a foundation, providing a starting point for users to 

expand upon based on their specific requirements and 

subject areas of interest. Users are encouraged to aug-

ment the list to accommodate their unique needs and en-

sure comprehensive coverage within their chosen do-

main. 

According to these subject areas, we have more than 

80 different orientationless physical quantities and more 

than 60 oriented physical quantities. 

To implement compile-time software formal verifi-

cation, we need to create a total of 320  

(80 + 60 x 4) different C++ classes. Considering both di-

mension and orientation homogeneity, we must create 

overloading operators for product and division between 

these 320 classes, resulting in a total of 320 x 320 x 2 

operators. When dealing with expressions that involve 

the product of multiple values (n-values), it is necessary 

to overload the product and division operators to accom-

modate the varying number of operands. In total, 2 x 320 

x n overloads will be required for these operators. 

Clearly, such a TL would be considerably complex and 

substantial in size. However, the advantage of using this 

TL is that it enables the execution of formal verification 

during compile time. 

A common approach to representing units is to uti-

lise exponent vectors based on base units (as shown in 

Table 1) and unit factors. For instance, the dimension of 

an orientationless unit of force is T-2L1M1, which can be 

represented as [-2, 1, 1, 0, 0, 0, 0] using exponent vectors. 

On the other hand, an oriented force has dimension 

T-2L1M1O, where O can take values of lx, ly, or lz, repre-

senting the orientation in the x ≡ 1, y ≡ 2, or z ≡ 3 direc-

tion, respectively. For example, the x-oriented force has 

vector = [-2, 1, 1, 0, 0, 0, 0, 1]; the orientationless quan-

tity, such as mass, has an orientation of l0. We can distin-

guish between quantities with the same dimension but 

different orientations by employing both orientational 

and dimensional analysis. For example, it considers en-

ergy [Newton x meter] and torque [Newton x meter]. 

Thus, arithmetic operations on units can be simpli-

fied to vector additions, subtractions, or comparisons. 

These operations can be performed only on physical 

quantities with the same dimension or corresponding to 

vectors with identical coordinates. In other words, units 

with matching exponent vectors can be directly added, 

subtracted, or compared using these operations. 

However, complications arise when dealing with 

the product and division of physical quantities. For ori-

entationless quantities, we can simply add or subtract 

their corresponding exponent vectors to obtain the result-

ing vector. However, for orientated quantities, determin-

ing the resulting vector requires more than simply adding 

or subtracting the exponent vectors. We also need to con-

sider Siano's rules, which help define the orientation of 

the resulting vector [46, 47]. Siano demonstrated that ori-
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entational symbols have an algebra defined by the multi-

plication table for the orientation symbols, which is as 

follows: 
 

  l0 lx ly lz 

(1) 

 l0 l0 lx ly lz 

 lx lx l0 lz ly 

 ly ly lz l0 lx 

 lz lz ly lx l0 

and rules:

 

l0 =
l

l0
 lx =

l

lx
 

 

ly =
l

ly
 lz =

l

lz
 

 

Based on the above, the product of two orientated 

physical quantities has an orientation as follows: 

 

l0lx = lxl0 = lx, l0ly = lyl0 = ly, 
(2) 

l0lz = lzl0 = lz, lxlx = lyly = lzlz = l0. 

 

However, a common approach to representing units 

is to utilise exponent vectors based on base units and unit 

factors, which has some constraint: we may realize soft-

ware formal verification only in run time. 

To enable the use of compile-time formal verifica-

tion, we present TL that encompasses the key compo-

nents designed to enhance the verification process. The 

TL comprises several essential classes, including the 

"PNSD_SI" class for facilitating operations with SI pre-

fixes (e.g., nano, milli, giga, etc.). This class enables 

seamless handling of units of different magnitudes. 

Another integral component of TL is the "Printing" 

class, which provides comprehensive control over output 

formatting. This class empowers developers to customize 

the display of results, ensuring a clear and informative 

representation of data. 

Additionally, the TL incorporates a template class 

called "PhysicalVariable" that plays a vital role in dimen-

sional analysis and orientational analysis operations. This 

class allows for the precise handling of physical quanti-

ties, considering both their dimensions and orientations. 

Moreover, the "PhysicalVariable" class inherits essential 

functions from the "Printing" class, enabling seamless in-

tegration of output control capabilities. 

The architecture of the TL is depicted in Fig. 2, 

which showcases the relationships and dependencies be-

tween the classes. The template class "PhysicalVariable" 

serves as a powerful tool for creating various C++ classes 

that correspond to specific physical quantities ( 

Table 2 and Table 3) [49]. This template class, com-

bined with metaprogramming [50] techniques, forms the 

foundation of a library that enables the generation of new 

types at compile time [51]. 

To simplify the creation of these classes, the library 

provides special pre-processor macros that leverage the 

"PhysicalVariable" template. These macros facilitate the 

generation of C++ classes during the compilation pro-

cess. The use of these macros is straightforward: devel-

opers define the desired quantity name, unit name, unit 

symbol, and a vector representing the dimensions based 

on the basis dimensions T (time), L (length), M (mass), I 

(electric current), θ (thermodynamic temperature), N 

(amount of substance), and J (luminous intensity) (see 

Table 1). 

For instance, the following macro invocation cre-

ates a class named "Density," representing the orienta-

tionless physical quantity of density: 
 

createSomeUnit(Density, "kilogram per cubic 

metre", "kg / m3", 0, -3, 1, 0, 0, 0, 0). 
 

The next macro allows the creation of four C++ 

classes: "Area" (representing orientationless quantities), 

"AreaX" (representing x-oriented quantities), "AreaY" 

(representing y-oriented quantities), and "AreaZ" (repre-

senting z-oriented quantities): 
 

createSomeUnit0XYZ(Area, "square meter", 

"m2", 0, 2, 0, 0, 0, 0, 0). 

 

Developers can easily generate the necessary C++ 

classes for their desired physical quantities by employing 

these macros in the development process. This stream-

lined approach leverages the power of metaprogramming 

and compile-time generation to create a comprehensive 

library of types that accurately represent physical quanti-

ties and their orientations. 

Table 2 and Table 3 show that each generated class 

is mapped to a specific subject area. Each subject area is 

associated with a C++ namespace. These namespaces are 

included within the SI namespace (see Fig. 3). 

The mapping of each generated class to a specific 

subject area, as described in  

Table 2 and Table 3, is achieved through association 

with a dedicated C++ namespace. This approach ensures 

that classes related to Chemistry, Optics, Photometry, 

etc. These subject-specific namespaces are encapsulated 

within the SI namespace to maintain a well-structured 

codebase. This hierarchical structure promotes modular-

ity, clarity, and ease of navigation within the codebase, 

facilitating efficient development and maintenance of the 

library. 

 

2.3. Implementation of Operators  

and Function Wrappers Using Templates 
 

The proposed library adheres to the principles of ho-

mogeneity in physical dimensions and orientations by en-

suring that the left and right operands have equal dimen-

sions and orientations. The assignment operators (=, +=, 

-=) are function members within the template class. 
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Fig. 2. Architecture of the Specialized Type Library 

 

 
Fig. 3. SI namespace structure 

 

For the conditional operators (>, >=, ==, !=, <=,<), 

as well as the addition (+) and subtraction (-) operators, 

template functions are employed with template class ar-

guments. These operators utilize the Siano conventions 

(see expressions 1 and 2). 

The multiplication and division operators are also 

defined as template functions that utilize template class 

arguments and adhere to the Siano conventions. These 

operators enable proper handling of physical quantities 

during calculations. 

The compound assignment operators (*=, /=) re-

quire a dimensionless right operand. To preserve the di-

mension and orientation of the result, these operators are 

defined as template function members. 

The implementation of this library provides a sig-

nificant advantage in terms of unit testing, integration 

testing, and regression testing. The effectiveness of static 

checking during compilation reduces the time required 
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for these testing activities. By catching errors and incon-

sistencies at compile time, developers can identify and 

address issues early in the development process, improv-

ing software quality and reducing debugging efforts. 

Overall, the proposed library ensures consistency, 

accuracy, and efficiency by enforcing physical dimen-

sions and orientations homogeneity and leveraging static 

checking during compilation. 

Wrapper functions are utilized with template argu-

ments to accommodate the dimensionless and  

orientationless arguments of the exp and log functions. 

These wrapper functions aim to ensure that the correct 

version of the exp and log functions is called for the Phys-

icalVariable instances. Here are the improved versions of 

the wrapper functions: 

 

double exp(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv) 

{ return ::exp(pv.value()); } 

double log(PhysicalVariable <0, 0, 0, 0, 0, 0, 0, 0>pv) 

{ return ::log(pv.value()); } 

 

By specifying the template argument <0, 0, 0, 0, 0, 0, 0, 0>, 

the wrappers ensure that only dimensionless and orienta-

tionless instances of PhysicalVariable can be passed as 

arguments to the exp and log functions. In this way, the 

correct mathematical operations can be applied to these 

specific instances, guaranteeing the accuracy and integ-

rity of the calculations. 

These wrapper functions are crucial in maintaining 

the consistency and correctness of operations involving 

dimensionless and orientationless quantities within the 

proposed library. 

To handle the square root function (sqrt) within the 

template framework, we created a wrapper function that 

correctly takes the dimensions of the result. 

 

template < int T, int L, int M, int I, int θ, int N, int J> 

PhysicalVariable < T/2, L/2, M/2, I/, θ /2, N/2, J/2, 0, 0> 

sqrt(PhysicalVariable < T, L, M, I, K, N, J, 0> p) 

{ return 

 PhysicalVariable < T/2, L/2, M/2, I/, K/2, N/2, J/2, 0> 

(::sqrt(p.value()));} 

 

This wrapper function takes a PhysicalVariable in-

stance as an argument, where the dimensions are repre-

sented by the template parameters T, L, M, I, θ, N, J, and 

O. The sqrt function calculates the square root of the 

value stored in the PhysicalVariable instance. Creates a 

new PhysicalVariable instance with dimensions halved 

for each base unit. 

To create a function wrapper for xn or pow(x, n), 

where x represents a dimensioned and orientational value 

and n is an integral number, the following struct template, 

function template, and macro can be used: 

 

template <int num> 

struct powN{ enum { np = num }; }; 

template  

< int T, int L, int M, int I, int θ, int N, int J, int O, int n> 

PhysicalVariable 

< T*n, L*n, M*n, I*n, θ*n, N*n, J*n, (O*n)%2> 

powPhysicalVariable(PhysicalVariable  

< T, L, M, I, θ, N, J, O > left, powN< n>) 

{ return   PhysicalVariable  

< T*n, L*n, M*n, I*n, θ*n, N*n, J*n, (O*n)%2> 

(::pow(left.value(), n)); } 

#define pow(x,y) powPhysicalVariable( x, powN<y>()) 
 

This implementation allows the calculation of the 

power of a dimensioned and orientational value (x) raised 

to an integral exponent (n).  

To handle trigonometric functions (sine, cosine, 

tangent, arcsine, arccosine) within the template frame-

work, we created wrapper functions that correctly take 

the dimensions of the result. 

 

#define X SI::Geometry_SI::PlaneAngleX 

#define Y SI::Geometry_SI::PlaneAngleY 

#define Z SI::Geometry_SI::PlaneAngleZ 

#define cosXYZ(L) double cos(L pv)  

{ return ::cos(pv.value());} 

cosXYZ(X)  cosXYZ(Y) cosXYZ(Z)  

#define FXYZ(F,L)\ 

Dimensionless##L 

F(SI::Geometry_SI::PlaneAngle##L pv)\ 

{ return Dimensionless##L (::F(pv.value())) ;} 

FXYZ(sin, X) FXYZ(sin, Y) FXYZ(sin, Z) 

FXYZ(tan, X) FXYZ(tan, Y) FXYZ(tan, Z)  

double acos(Dimensionless pv) 

{ return ::acos(pv.value()); } 

X  asinx(double v){ return X(::asin(v)); } 

Y  asiny(double v){ return Y(::asin(v)); } 

Z  asinz(double v){ return Z(::asin(v)); } 

X  asinx(Dimensionless v)  

{ return X(::asin(v.value())); } 

Y  asiny(Dimensionless v) 

{ return Y(::asin(v.value())); } 

Z  asinz(Dimensionless v) 

{ return Z(::asin(v.value())); } 

 

2.4. Using the Type Library 
 

Using TL is a straightforward process. In your C++ 

file, include the necessary namespaces to access the de-

sired subject areas. Here is an example of SI namespace 

and its subnamespaces: 
 

using namespace SI; 

using namespace SI::Optics_Photometry_SI; 

using namespace SI::Electricity_Magnetism_SI; 

using namespace SI::Thermodynamics_SI; 
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By including these namespaces, you can access the 

classes and functionality related to each subject area. It 

allows you to use the units, perform calculations, and lev-

erage the features provided by the TL. 

We can create an alias for a long or nested 

namespace using the namespace aliasing feature as fol-

lows: 

 

namespace ZSI = SI::Electricity_Magnetism_SI; 

int main() { 

    ZSI::Capacitance c; 

    // Use the alias to access the classes 

     return 0; 

} 

 

This modular approach allows users to extend and 

organize subnamespaces structured, resulting in en-

hanced code reusability and maintainability. 

By dividing the functionality into subnamespaces, 

developers can logically group related classes and func-

tions, making it easier to locate and reuse code across dif-

ferent projects. In addition, it promotes a modular design 

where each subnamespace can be independently ex-

tended or modified without affecting other parts of the 

codebase. 

Furthermore, this approach enhances the code or-

ganization making it more intuitive and understandable. 

Developers can navigate through the codebase more effi-

ciently by understanding the purpose and scope of each 

subnamespace. 

This modular approach fosters better code manage-

ment, encourages code reuse, and facilitates future mod-

ifications and enhancements. It is a powerful technique 

for structuring and maintaining complex projects effec-

tively. 

 

2.5. Verification of the C++ Type Library 

 

Based on Table 1, we have eight base units. Further-

more, our TL covers specific Subject Areas (see Table 4). 

Every physical quantity corresponds to a distinct C++ 

class generated by TL. The distinct physical quantities 

used in the program determines the number of generated 

classes. These classes have various overloaded operators 

that facilitate arithmetic, mathematical, and logical oper-

ations. 

To verify the functionality of the TL, dedicated C++ 

units were created for each Subject Area. Special Test 

Cases were generated for verification operations with dif-

ferent physical quantities. Cartesian products of Subject 

Areas defined the operands of this operation. Additional 

calculation errors based on dimensionality checks were 

eliminated using operation templates and classes. Further 

24 tests were conducted to verify the use of SI prefixes. 

 

Table 4 

Units of Measurement for Quantities  

in the Subject Areas 

Subject Areas Numer of quatities 

Chemistry 11 

Density & Concentration 7 

Electricity & Magnetism 31 

Flow 7 

Geometry 8 

Mechanics 31 

Optics and Photometry 8 

Physics 15 

Thermodynamics 21 

 

Each physical quantity in our software system cor-

responds to a C++ class specifically designed for this pur-

pose. These classes are generated using a special tem-

plate. Each object of these classes occupies 24 bytes of 

memory. Of these, 8 bytes are allocated for storing the 

current value, whereas an additional 16 bytes are used to 

store information about the physical dimension and ori-

entation. A detailed breakdown of memory usage by the 

executable file is provided in Table 5. 

 

Table 5 

Memory usage by the executable file 

Subject Areas testing Executable file, KB 

Without physical values 67 

Usage TL without physical 

values 
1198 

Base SI quantity 1254 

Geometry 1319 

Optics and Photometry 1444 

Chemistry 1540 

Density & Concentration 1612 

Flow 1659 

Mechanics 2010 

Thermodynamics 2202 

Physics 2288 

Electricity & Magnetism 2758 

Additional tests of cout 2771 

Software 1 1694 

Software 2 1697 

 

During Subject Areas testing (see Table 5), subject 

area physical quantities were used as extended test vari-

ables. For example, for testing Geometry quantities, use 

SI base units and Geometry quantities, etc. The number 

of physical quantities in the subject area rather than by 

the number of program variables with the same physical 

quantity determines increasing the executable file size. 

All tested programs used 6800 KB of RAM. Software 1  

encompasses all SI base units and incorporates all physi-

cal quantities within the subject areas of Geometry and 
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Physics. Software 2 includes all SI base units and encom-

passes all physical quantities in the subject areas Geom-

etry and Physics, along with an additional 30,000 varia-

bles corresponding to different physical quantities, re-

quiring 7500 KB of RAM. 

This section will focus on verifying the Geome-

try_SI namespace as an example. Let us consider the op-

erations with the Length and Area classes within the Ge-

ometry_SI namespace as follows: 

 

Length0  l0(2);  // orientationless  l0=2[m]  

LengthX lx(3); // X-oriented lx =3[m ]  

LengthY ly(4); // Y-oriented ly =4[m ] 

LengthZ lz(5); // Z-oriented lz =5[m ] 

 

Area  a(100),b; // orientationless a =100[m2],b 

AreaX ax(200); // X-oriented  ax =200[m2 ]  

AreaY ay(300); // Y-oriented  ay =300 [m2]   

AreaZ az(400);  // Z–oriented  az =400 [m2] 

 

// calculation of new values of areas 

a  = l0 * l0;     //   a= 100 is correct 

ax = ly * lz; // ax= 20 is correct 

ay = lx * lz; // ay= 15 is correct 

az = lx * ly; // az = 12 is correct  

b = lx *lz; // orientational error is not correct!!! 

double k = 10; 

az *= k;       // is correct az= 120 

ay /= k;       // is correct az= 1.5 

 

In the above code, we create instances of the Area and 

Length classes, representing quantities with different ori-

entations. 

In the next example, we check the operations in-

volving the Curvature class (Optics Photometry_SI 

namespace) and Length class (Geometry_SI namespace). 

 

Curvature  c(1); //orientationless  c=1[1/m] 

CurvatureX cx(1);//X-oriented cx=1[1/m] 

CurvatureY cy(2);//Y-oriented cy=1[1/m] 

CurvatureZ cz(3); //Z-oriented cz=1[1/m] 

Length0  L0(2);  // orientationless  L0=2[m]  

LengthX Lx(3); // X-oriented Lx =3[m ]  

cx =L0 / LX;  //dimension error!! 

cx = l.0 / Lx;   

lx = 1.0 * Lx; 

 

Now let us proceed with the verification of trigono-

metric functions within the TL: 

 

Dimensionless  dl(1), dlx(1), dly(1),  dlz(1); 

PlaneAngle  pa0(1);    //[radian rad l=0] 

PlaneAngleX pax(1); //[radian rad l=x] 

PlaneAngleY pay(2); //[radian rad l=y] 

PlaneAngleZ paz(1); //[radian rad l=z] 

  

double lcosd = cos(1.25), lsind  = sin(1.25), 

ltan  = tan(1.25),  

acosd = acos(1.25), asind = asin(1.25); 

 

Dimensionless lcosx  = cos(pax), 

lcosy = cos(pay), lcosz = cos(paz); 

 

DimensionlessX lsinx = sin(pax), ltanx = tan(pax); 

DimensionlessY lsiny = sin(pay), ltany = tan(pay); 

DimensionlessZ lsinz = sin(paz), ltanz = tan(paz); 

 

PlaneAngleX acosx = acos(dlx),  

asinxd = asinx(dl); 

PlaneAngleY acosy = acos(dly),  

asinyd = asiny(dl); 

PlaneAngleZ acosz = acos(dlz), 

asinzd = asinz(dl); 

 

double d0 = sin(pa);  //compile errors!!!  

double dx = sin(pax); //compile errors!!!  

double dy = sin(pay); // compile errors!!! 

double dz = sin(paz); // compile errors!!! 

 

The provided code snippet focuses on verifying spe-

cific classes within the Geometry_SI namespace. How-

ever, similar checks were conducted for all other classes 

and operations within the TL to ensure their correctness 

and adherence to the defined rules and principles.  

SI defines a set of prefixes of physical values. The 

provided code defines a list of prefixes used in the SI to 

denote physical values. Each prefix is associated with a 

name, symbol, and the corresponding decimal factor:  

 

const PNSD_SI prefixList[24] = { 

{"quetta","Q", 1e30 },  {"ronna", "R", 1e27}, 

{"yotta", "Y", 1e24},… 

{"zepto", "z", 1e-21},  {"yocto",  "y", 1e-24}, 

{"ronto", "r", 1e-27},  {"quecto", "q", 1e-30} }; 

 

In the following code example, we observe the use 

of prefixes for initializing physical quantities: 

 

Mass m(15., prefix::micro);// m=1.5 * 10-5 [kg] 

Mass m2(20.,nano); // m2=2 10-8 [kg] 

 

The proposed library has special methods for print-

ing physical values and prefixes. 

In the following Fig. 4, you can observe the output 

of physical quantities with different settings: printing 

prefixes (without prefix, name, symbol), printing quanti-

ties (without quantity, name, symbol), and printing di-

mensions (without dimension and dimension vector). 

This comprehensive output process ensures the re-

liability verification of the CPS-embedded software. 



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2024, no. 1(109)               ISSN 2663-2012 (online) 
138 

The proposed TL was developed with the assistance 

of Microsoft Visual Studio Community 2022 Version 

17.1.2. This widely used development environment 

played a crucial role in the elaboration and creation of the 

TL, ensuring compatibility and leveraging the powerful 

features and tools provided by Visual Studio for efficient 

development and implementation. 

 

 
 

Fig. 4. Fragment physical quantities output 

 

The thorough verification process ensures the relia-

bility, accuracy, and effectiveness of the TL implementa-

tion across diverse subject areas and namespaces. This 

process instills confidence in the TL's functionality and 

usability, making it a dependable tool for software devel-

opment and related tasks. 

 

3. Results and Discussion 
 

This article introduces a groundbreaking C++-type 

library based on metaprogramming. This innovative li-

brary incorporates SI prefixes and dimensional analysis 

and integrates orientational analysis, demonstrating its 

remarkable effectiveness in identifying software defects. 

The proposed method requires additional memory. For 

instance, a program without TL requires only 100 KB, 

whereas using TL extends the executable file size to 1-3 

MB. 

Notably, it has demonstrated the capability to iden-

tify over 60% of software defects [17], including those 

stemming from incorrect usage of variables, operations, 

SI prefixes, and C++ functions. These results suggest that 

this library has substantial potential as a valuable tool for 

software development. 

However, it is essential to acknowledge that no sin-

gle library can detect all software defects. Therefore, 

while the proposed library, based on SI, shows promise, 

it requires thorough evaluation and comparison with 

other library types based on different system units. 

Furthermore, this study proposed a software verifi-

cation model that leverages the type library for formal 

CPS software verification during compile time and 

runtime. This approach represents a significant advance-

ment in ensuring the reliability and safety of CPS soft-

ware, making a crucial contribution to this evolving field. 

Although the proposed method for formal verifica-

tion is not specifically tailored for cyber-physical objects 

and systems, given its primary focus on software-level 

concerns, it does demonstrate adaptability for verifying 

general-purpose software that incorporates various phys-

ical parameters. This versatility extends across diverse 

domains, such as educational, gaming, and simulation 

software. 

 

4. Conclusions 
 

This article introduces a novel C++ type library 

based on software invariants for formal verification. The 

proposed TL leverages both dimensional and orienta-

tional analysis to enhance the software quality. Employ-

ing two independent formal software verification meth-

ods offers diverse and robust verification capabilities, 

leading to improved software quality. 

The proposed software verification model relies on 

the use of software invariants. Although this approach 

has certain drawbacks, such as the requirement to deter-

mine the physical dimensions and orientation of variables 

during compile time and increased compilation time, it 

still provides significant advantages over human manual 

error detection. TL empowers compilers to efficiently 

identify errors, making it a valuable tool in software de-

velopment. 

On the other hand, the proposed model has several 

notable advantages. It enhances programmer productiv-

ity by eliminating the need to troubleshoot dimensional 

and orientational errors during runtime. TL enables com-

prehensive analysis of the software’s dimensional and 

orientational correctness, covering the compile and run-

time phases. It ensures the correct usage of software var-

iables and operations and verifies the arguments of func-

tions and procedures. 

The proposed TL seamlessly integrates with any 

modern C++ compilers, enabling formal software verifi-

cation at compile-time. It enhances software reliability by 

introducing additional checks during dynamic linking 

and facilitates real-time formal verification. 

Although the proposed method for formal verifica-

tion is not customized explicitly for cyber-physical ob-

jects and systems, as its primary emphasis lies on soft-

ware-level considerations, its adaptability shines when 

verifying general-purpose software that integrates a spec-

trum of physical parameters. This versatility traverses 

many domains, including educational, gaming, simula-

tion software, and beyond, demonstrating its broad ap-

plicability across diverse industries and applications. 

The effectiveness of the proposed TL was demon-

strated through the analysis of real-world software for un-

screwed aerial vehicles (drones) on GitHub. It success-

fully detected 90% of incorrect uses of software variables 

and over 50% of incorrect operations, resulting in an 

overall conditional probability of defect detection of 60% 

[17]. Because using TL extends the executable file size 
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by 1-3 MB, further research is necessary to explore meth-

ods for reducing this memory extension. 

These results highlight the efficacy of the proposed 

software verification model in identifying software de-

fects and reinforcing software reliability. 

 

5. Directions for further research 
 

Overall, the proposed C++ type library  

demonstrates a high detection rate, potentially reducing 

testing time and improving reliability and software qual-

ity. This approach is effective for formal verification dur-

ing compile time and supplementary verification in real-

time scenarios. The library shows promise in enhancing 

the reliability of custom software; however, further re-

search and the development of additional methods are 

necessary to comprehensively evaluate the reliability of 

custom software. Furthermore, additional research is re-

quired to explore strategies for reducing memory usage. 
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СИСТЕМА ТИПІВ ДЛЯ ФОРМАЛЬНОЇ ВЕРИФІКАЦІЇ  

C/C++ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ КІБЕРФІЗИЧНИХ СИСТЕМ  

Юрій Манжос, Євгенія Соколова 

Некоректне використання одиниць вимірювання та орієнтації у програмах C/C++ для кіберфізичних си-

стем часто призводить до критичних помилок, які звичайні системи типів не можуть ефективно запобігти. 

Ручний аналіз коду за допомогою розмірного та орієнтаційного аналізу може виявити ці помилки в фізичних 

рівняннях, але при роботі зі складними фізичними обчисленнями, ці методи стають непрактичними. Ми за-

пропонували підхід, який базується на використанні фізичних величин, визначених Міжнародною системою 

одиниць та операціями з орієнтацією фізичних об'єктів, як це запропонував Сіано. Цей підхід забезпечує од-

норідність одиниць. Додатково, включення операцій з орієнтацією в модель програмування є важливим для 

точного управління обертанням і вирівнюванням фізичних об'єктів. Практичні рекомендації, надані роботою 

Сіано дозволяють точно маніпулювати орієнтацією об'єктів, зменшуючи ймовірність помилок, пов'язаних з 

орієнтацією. Шляхом перевірки фізичних розмірностей і орієнтацій на етапі компіляції, потенційні дефекти 

програмного забезпечення виявляються до виконання коду. Це зменшує час налагодження та знижує витрати 

на виправлення проблем на пізніших етапах розроблення. Запропонована система типів, яка включає в себе 

розмірний та орієнтаційний аналіз, а також методи метапрограмування, представляє собою важливий крок у 

напрямку більш безпечних та надійних кіберфізичних систем. Цей підхід дозволяє виявити приблизно 90% 

https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://github.com/martinmoene/PhysUnits-CT-Cpp11
https://dl.acm.org/author/McKeever%2C+Steve
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неправильного використання змінних програми та понад 50% помилкових операцій як під час компіляції, так 

і під час виконання великомасштабних програм в реальних умовах. Запропонований метод формальної вери-

фікації не спеціально адаптований для кіберфізичних об'єктів та систем, враховуючи його основну увагу до 

проблем на рівні програмного забезпечення, він демонструє адаптивність для перевірки загальнопризначе-

ного програмного забезпечення, яке включає різноманітні фізичні параметри. Ця універсальність поширю-

ється на різні сфери, такі як освітнє, ігрове та симуляційне програмне забезпечення, серед інших. 

Ключові слова: формальна верифікація; аналіз розмірностей; орієнтаційний аналіз; система типів;  

кіберфізичні системи; якість програмного забезпечення. 

 

 

Манжос Юрій Семенович – канд. техн. наук, доц., доц. каф. інженерії програмного забезпечення,  

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський Авіаційний Інститут», Харків, 

Україна. 
Соколова Євгенія Віталіївна – канд. техн. наук, доц., доц. каф. інженерії програмного забезпечення, 

Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський Авіаційний Інститут», Харків, 

Україна. 
 

 

Yuriy Manzhos – Ph.D. in Information Technologies, Associate Professor at the Department of Software Engi-

neering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,  

e-mail: y.manzhos@khai.edu, ORCID: 0000-0002-4910-7285. 

Yevheniia Sokolova – Ph.D. in Information Technologies, Associate Professor at the Department of Software 

Engineering and Business, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,  

e-mail: y.sokolova@khai.edu, ORCID: 0000-0002-1497-4987. 


