
ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

6

UDC 004.414.23:510.637 doi: 10.32620/reks.2024.1.01

Serhii HOLUB, Volodymyr SALAPATOV, Vadym NEMCHENKO

Cherkasy State Technological University, Cherkasy, Ukraine

REPRESENTATION OF THE PROGRAM MODEL USING PREDICATES

The object of research in this article is the process of modeling programs and their subsequent development.

The purpose of this article is to develop a methodology for describing and building software models in the

form of nondeterministic finite automat. To achieve this goal, a task was set to improve the method for describ-

ing such models using predicates based on the MODEL CHECKING technology. The result of this article is a

method for describing and presenting program models directly according to the chosen algorithm using predi-

cates. If the program algorithm is chosen and described correctly, the resulting model should also be correct.

The model will be a non-deterministic state machine that will not require further checking, as provided by the
MODEL CHECKING technology. Structurally, the model will represent a special database, the processing of

which will allow turning the model into a program in any procedural programming language. When develop-

ing parallel programs that are widely used for control in aviation, land transport, military affairs, etc., two

additional states of the automaton are introduced into the model, which take into account the features of such

programs. Therefore, a state monitor is provided for access to shared resources and a state protocol to process

parallel branches of the program. To describe the algorithm of the program, we propose to present it in the

form of a connected sequence of certain actions using predicates with the use of extended temporal logic. This

description covers both the logic of the program and its branches and the specific actions at each location of
the program model. With the help of this methodology, a program model of a stack algorithm was developed,

which is the main component for the future automated system of processing the description of program models.

The program which was created according to this technology, is currently in the testing and verification stage.

The sequence of processing steps of such a model is shown in the example of a floating-point constant transla-

tion program. This program is also created using this technology in the target language assembly, has been

fully tested, and has shown its functionality. This description covers both the logic of the program with its

branches and the specific actions at each location of the application model. Conclusions: with a correct de-

scription of the program algorithm, an adequate model of it is built, with the help of which the program itself is
created in the target procedural programming language. Note that in the conditions of the rapid development

of management and control automation systems in various spheres of human activity, research on the creation

of reliable based on the description of their models is an urgent problem.

Keywords: model; predicate; temporal logic; an indeterminate finite automaton; procedural programming

language.

Introduction

Currently, the problem of proving the correctness of the

program is very relevant. It is impossible to formally

prove that the program was created correctly. Therefore,

the technique of creating adequate models of programs

based on their formal description has recently become

widespread. Proving the correctness of the model at the

formal level is quite possible. Therefore, the correctness

of the program will depend on its implementation ac-

cording to the model. Attempts to create methods of

formally proving the correctness of programs [1, 2]

turned out to be practically impossible, so modern

methods involve the creation of a program model and its

subsequent verification. MODEL CHECKING technol-

ogy involves [3 - 5] the creation of a model of the pro-

gram and its subsequent verification. Therefore, this

technology involves the use of a special program to

build a model of the program, and after building the

model, it must be tested by a special program - a verifi-

er, which establishes the correctness of logical connec-

tions between all parts of the program. This makes it

difficult to create models and purchase such additional

programs. After creating a program model, you can pro-

ceed directly to the creation of the program itself, and

this process may be automated. Formal proof of the cor-

rectness of the program is almost impossible to perform;

therefore, modern methods involve the creation of a

model of the program and its subsequent verification.

Creating reliable and correct programs is very im-

portant, especially in control systems for various critical

processes such as aircraft management, traffic, and mili-

tary affairs programs based on their models. For in-

stance, an error in the control program caused the acci-

dent of the BOING 737 in Indonesia in 2018 and in

Ethiopia in 2019. Because of an error in the control pro-

 Serhii Holub, Volodymyr Salapatov, Vadym Nemchenko, 2024

Intelligent information technologies

7

gram of some AIRBUS A350 models, the control sys-

tem must be rebooted every 149 h to prevent partial or

complete loss of functionality [6]. It is proposed to cre-

ate these models based on their description with extend-

ed temporal logic (TL) in the form of nondeterministic

finite automata (NDFA) [7]. Thus, the correctness of the

program depends on its implementation according to the

model. The subject of study is the improvement of the

technology for developing programme models and sub-

sequent conversion of these models into programs.

1. The current state of technologies

for the development of reliable programs

The task of the research presented in this article is

to improve the technology of building error-free pro-

grams, particularly parallel programs, based on their

models in the form of NDFA. Such attempts were first

proposed by Hoare [1] and then by Milner [2]. Hoare

proposed the introduction of some axioms with the help

of which to prove the correctness of programs. Such

technology turned out to be quite complex and confus-

ing and had no practical application. The same applies

to Milner’s proposal for his technology, which is asso-

ciated with an attempt to mathematically prove the cor-

rectness of programs. This method had no practical ap-

plication too. The rest of the technologies (structural

programming, modular programming, object-oriented

programming) allow you to improve and structure the

development of programs and are in no way related to

proving their correctness. The most modern technology

for building correct programs, which provides for their

verification and received practical application, was the

MODEL CHECKING technology. The disadvantage of

the MODEL CHECKING technology is the assembly of

the model based on the description of its individual

parts in the form of predicates. After that, the model

must be verified, i.e. control of compliance of the model

with its description in the form of specifications and

limitations.

Therefore, to avoid these shortcomings, this article

proposes performing a direct description of the entire

model using predicates. At the same time, the executive

part of the predicate is a list of certain actions in the

form of a sequence using temporal operators, and the

logical part describes the conditions for their execution.

This approach can also be applied to object-oriented

programming [9, 10] when creating classes. However,

when describing the software model, it is necessary to

be guided by the principles of structural programming.

The technology of structural programming involves the

selection of an appropriate mathematical model for the

program and the creation of its formal algorithm. Then,

in the next stage, the data are refined, their types are

determined, and the algorithm is presented in an inter-

mediate, more detailed pseudo-language. Thus, by ap-

plying the principles of structured programming and

using a modified TL, it is necessary to correctly de-

scribe the model of the program being designed. Then,

the model that will be created by this method corrected

and will not require further verification.

The resulting model can later be used to create the

desired program.

2. Research objectives

and an approach to the development

of reliable programs

The existing technology of program development

does not allow creation without errors. The only

MODEL CHECKING technology that allows you to do

this involves creating program models from the descrip-

tion of their individual parts. At the same time, the spe-

cial program forms a complete model, which must then

be checked by a special verifier program. This article

offers a direct description of the program model accord-

ing to the chosen algorithm. It is also proposed to fur-

ther develop the technology for building program mod-

els, creating their internal representation, and then trans-

forming them into programs in the target procedural

programming language. When describing the model, a

special database is formed in the form of an automaton

model with states and connections between them. The

description should be performed using predicates in a

certain format. Predicates allow you to describe the

conditions for transitioning to a certain state and the

actions that should be performed in this state. In the

future, the model in the form of a database should be

processed on all possible branches to create an internal

intermediate representation of the program. Such a rep-

resentation can be trans formed into a program in the

desired target programming language.

3. Creation of correct program models

The main mathematical model of this technology

is the Kripke structure [3], which represents the forms

of the automaton model:

М = (S, S0, R, AP, L),

where S – is the set of states of the model;

S0 – is the set of initial states of the model;

R = S х S – is the complete relationship between S,

that is, transitions from one state to another, which may

be possible;

AP – is a finite set of predicates;

L = 2АР – is a marking function, where each state

defines a set of true predicates.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

8

Therefore, it is quite natural to sequentially present

the description of the program model in the sequence of

interconnected predicates. At the same time, the de-

clarative part of the predicate must describe executive

actions, and its logical part – the condition for their exe-

cution. The result of the program model description is a

non-deterministic finite automaton.

The beginning of any algorithm of the program in

the form of state should begin with the definition of all

the data necessary for its operation. Next, in subsequent

states that determine the execution of the program, the

actions described in the state must be converted to

statements of the target programming language. Com-

pletion of the description of the state is defined as a cer-

tain part of the algorithm, which in the future should

end with a branch to move to other states and should be

transformed into branching operators.

3.1. Internal presentation of the model

and its processing

It is proposed to traverse the tree sequentially in

depth, i.e., after processing the first branch of the cur-

rent state and transitioning to it, the transition to the first

branch of the next state is performed, and the other

branches are not yet considered. Such a sequential pro-

cess during the traversal of the automaton tree must be

performed until we reach a state in which there has al-

ready been a transition from other states or to a final

state. Then, after the processing of all subsequent

branches of such states is completed, it is necessary to

return to the previous state and again proceed to the

processing of branches from this state. To completely

bypass the tree model, all its branches must be pro-

cessed. Such a sequential complete traversal of the au-

tomaton program model tree is shown in Figure 1,

which shows how, after processing in the Si state, the

transition to the Sj state is performed, and then to the

marked or final state, from which the return to the Sj

state and the processing of its next branches are per-

formed.

Then, from this state, the return to the state Si is

shown. Next, if in the Sk state all branches are pro-

cessed, there is a transition to the Si state, and only after

that there is a transition to the Sm state. Thus, with such

sequential processing of the states of the program model

tree with subsequent returns to the previous states from

the marked or final states, full processing is performed.

Previously, a simple database [7, 11 - 13] from two rela-

tions was proposed to represent and further process the

model, as shown in Figure 2. We define the state types

as start, end, protocol state, monitor state, and ordinary

states, which may or may not be marked.

Fig. 1. Sequential processing

of the automaton tree states

Fig. 2. Structure of the program model database

The identifier of the state Id_state determines its

sequence number, and the Type attribute determines the

type of vertex state. If there are multiple exits from this

vertex, the Id_state attribute points to the Id_state (cur-

rent) of the transition vertex. If the entrance to the peak

has already taken place, the condition of such a peak

should be marked to prevent readvancement in the pro-

cess of bypassing the tree from other states. To com-

pletely bypass all possible branches of the automaton

model, after processing the next tree branch, it is neces-

sary to return to the previous penultimate state of the

automaton and proceed to processing the next in the list

of transition to another state and continue traversing the

new route. When processing all possible branches of

transitions from each current state, it is necessary to

return to the previous state and continue traversing the

tree from the next branch of the state of the previous

level. That is, after completing the processing of the

next branch of the automaton tree, it is necessary to per-

form a step back from the current vertex at the last tran-

sition. This process is an analysis into deep and is dis-

played as follows.

Si (Pj) → Sj;

Si ← (Pj) Sj;

Si (Pk) → Sk.

(1)

Intelligent information technologies

9

where Si(Pj) is a state of the automaton model, in which

it passes on condition Pj.

Here the transition from the state Si under the con-

dition Pj to the vertex Sj is conditionally shown. If the

bypass of the next branch at the vertex Sj is completed,

then the return to the previous vertex Si is performed

according to the connection under the condition Pj.

Then, the next exit from state Si under the following

condition Pk is reviewed and the transition under this

condition to the state Sk is performed. The Si state will

be considered fully processed if all its outputs are pro-

cessed and must be marked. The Id_state (current) at-

tribute with respect to CONNECT is associated with the

current transition state. Thus, by moving along the lev-

els in the forward and reverse directions and moving to

other branches, you can completely bypass the automa-

ton tree. The condition for completing a complete by-

pass of the automaton tree model is that all states are

marked. The proposed database on the one hand is a

complete description of the automaton model of the

program, and on the other – with the help of the Mark

attribute allows you to mark processed states and per-

form a complete bypass of the automaton tree model.

The List_of_actions attribute of the MAIN master rela-

tion is MEMO data, i.e. a string of indefinite length in

which the sequence of actions in the specified state must

be described. Similarly, the Condition attribute of the

CONNECT relation is data of type MEMO [11 - 13]

and describes the condition of transition to this state of

the model. Thus, each state in the MAIN relation can be

associated with several vertices in the CONNECT rela-

tion, because the NDFA model involves some transi-

tions from one state to another.

State types include initial states, monitor states,

protocol states, final states, and ordinary states. Initial

states define data with their types and possible initial

values. Monitor states are characterized by access to a

shared resource and the presence of a semaphore varia-

ble that indicates that the resource is busy. Therefore,

the monitor states independently check the occupancy

of the resource, occupy it, and use it. Then, the process

releases this resource. The main condition of this ap-

proach is the availability to have access of parallel

branches or threads to semaphores and shared resources.

That is, these data must be global. End states indicate

the completion of the program and sometimes return

control to the operating system. Although most control

programs are cyclical, transitions to handling emergen-

cy states are possible when certain restrictions are

checked.

3.2. Research on models of parallel programs

For programs with parallel threads, it is necessary

to consider access to a common resource and parallel

execution of several threads. The states of the protocols

must wait for the completion of all parallel threads to

continue the execution of the algorithm; otherwise, the

state of the protocol will be in a waiting state. Because

states of monitor are associated with shared resources

and associated semaphores, the database of the model

description is extended by another relation COMRES

with the following structure, where present variable of

the semaphore type – Sem (Fig. 3).

Fig. 3. Extended structure of the database

Attribute Id_state is the access key for communi-

cation with relation MAIN. At the same time, each pro-

cess can capture a shared resource, and if it is free, its

processing and subsequent release. In this case, the

Resource and Sem are parts of the monitor integrated

into the process of processing the current state of the

automaton model. The Resource attribute is a reference

to the shared resource, and the Sem attribute is a sema-

phore variable that controls whether the shared resource

is occupied. Thus, states the states that need a common

resource must themselves ensure the capture of the

common resource and its subsequent release. The pres-

ence of such states is determined by the data type as

semaphores. In the monitor states, at the beginning of

the execution of certain actions, they provide for the

capture of a shared resource, then perform its processing

and then release the shared resource. Because the cap-

ture and release of a shared resource is controlled by a

special semaphore variable, it is advisable to build the

control of the semaphore variable into the correspond-

ing states. The capture and release of a common re-

source can be indicated by the virtual operators

LOCK(COMRES, SEM) and FREE(SEM) in the de-

scription. The COMRES parameter refers to a shared

resource, and the SEM parameter refers to a semaphore

variable. These links must be available to all parallel

threads or branches. The monitor states are presented in

Figure 4, which shows the input streams or processes Si,

Sj, Sk. Such monitor instructions are built into the opera-

tors of some modern programming languages, and ac-

cess to RESOURCE and SEM-type data is implemented

through the Smon state.

States in which a shared resource is accessed must

be surrounded by the resource capture

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

10

LOCK(RESOURCE, SEM) and resource release

FREE(SEM) operators specified above. The generalized

structure of such a state has the following form

COMRES DW <DATA>

SEM DB 0

 .

 .

 LOCK(RESOURCE, SEM)

 ; resource processing

 FREE(SEM)

Fig. 4. State-monitor

The final states complete the execution of the algo-

rithm and provide for the transfer of control to the oper-

ating system. The initial states of the model have an

unconditional start (true) of the algorithm. To define a

state type, the corresponding reference to the shared

resource must be defined specially. A semaphore varia-

ble must be attached to it. In the process of traversing all

branches of the tree of the model of NGFA you need to

convert the List of actions attributes of the MAIN and

Condition attribute of the CONNECT relation into a

sequence of operators of the procedural target pro-

gramming language.

Protocol states wait for parallel branches to com-

plete before performing proceeding actions. In the case

of protocol states, processing is performed after the exe-

cution of parallel branches of the algorithm model is

completed before continuing with certain actions; oth-

erwise, this state will be in a waiting state, for which the

wait keyword is used in Figure 5, which shows the input

parallel streams Si, Sj, Sk.

In the process of traversal, the mathematical for-

mulas of the description of actions for each state, as

well as the description of the logical conditions of tran-

sitions to other states are transformed into a sequence of

operators in the selected procedural programming lan-

guage. The condition for exiting the protocol state is the

completion of actions in all parallel threads. This trans-

formation is a process of translation from the model

description language into the target procedural pro-

gramming language.

Fig. 5. State-protocol

The traversal of the model tree should be per-

formed from the initial state (set of states) and move

along the branches of the tree graph, checking the ap-

propriate conditions of transition to another state. When

the automaton moves from any state to several other

states, it is necessary to sequentially process all transi-

tions to these states and move to the next state, starting

with the transition that is the first in the list of transi-

tions. To prevent re-entry into the state that has already

been processed, and to stop traversing the automaton

tree on its current branch, it is necessary to mark this

state in the Mark attribute. If when checking the state of

the transition it turns out that it is marked, the pro-

cessing of wood on this branch is stopped and the return

to the previous state is performed. The second condition

for stopping the processing of the next branch of the

automaton tree is the transition to the final state of the

automaton in its presence. The fact is that cyclic pro-

grams of the final state may not be except for emergen-

cies, which should be provided in the description of the

program model.

3.3. Results

Thus, when processing the description of the soft-

ware model, the model itself is first created in the form

of NDFA, which is presented in the form of a special

database. In the future, the model should be converted

into a program in target program language. Transitions

in each state in any procedural programming language

must be implemented by branch operators. The move-

ment in the process of traversing the automaton tree is

consistent with depth, and for a possible return to a cer-

tain state, the return address must be saved. A conven-

ient mechanism for this is the stack. In this case, when

successively moving to the depth of the return address,

it will be consistently stored in the stack. At the end of

the processing of the next branch of the automaton

model of the program is the return to the previous state

and the processing of the next branch. Formulas (1) il-

lustrate the return from the state that completes the pro-

cessing of any branch of the automaton model to the

Intelligent information technologies

11

previous state. Assume that this state has several transi-

tions to other states under conditions (P1, P2,… Pn), then

the transition from this state to the previous level state is

possible if all its transitions under conditions (P1, P2,…

Pn) are processed. In this case, such a state in relation to

MAIN is marked in the Mark attribute, and in the case

of processing tree on other branches, the observed state

will indicate the completion of processing of the current

branch. In other words, if all transitions from the current

state are processed, this transition becomes marked.

Si ← (P1) Sj;

Si ← (P2) Sk;

………..

Si ← (Pn) Sl;

Mark(Si) = true.

(

(2)

Mark(Si) is an attribute of the database for state.

Formulas (2) illustrate the conditions for establishing

the Mark attribute in the Si state as marked, when all

branches (Sj, Sk,… Sl) of this state in the states

(Sj, Sk,… Sl) under the conditions respectively

(P1, P2,… Pn) are already processed. At the end of the

current branch model processing, the return address of

the previous state to which you will need to return re-

mains in the stack. Thus, sequential advancement into

deep with subsequent returns provides complete pro-

cessing of the program’s automaton model. The imple-

mentation of specific actions in each state of the autom-

aton is provided by translating the description in the

attribute List_of_actions of the MAIN relationship.

Transitions to other states are provided by translating

the description in all CONNECT attributes of the

CONNECT relationship related to the current state.

The description in the attributes List_of_actions

and Condition is performed in terms of modified tem-

poral logic (TL) [7] for all types of states and can be

converted into a sequence of operators of the target pro-

cedural programming language. Branching from each

current state into other states, as already mentioned,

should be performed as a reference to parts of the algo-

rithm model. If all branches from the current state are

processed, the return to the previous state should be

performed as a return from the subroutine. In this case,

the return address will be stored in the stack each time,

as it is implemented in all programming languages.

Therefore, sequential advancement in the processing of

the automaton program tree will ensure correct return to

all previous states according to the description model.

Thus, lower-level state processing routines are nested

upper-level routines.

Earlier in [7], it was shown how monitor-states and

protocol-states can be used to describe parallel program

models, which greatly simplifies model verification, as

suggested in MODEL CHECKING technology and pre-

vious work.

The technology for developing an automaton tree

model of the program based on its description and sub-

sequent processing to convert the model into a program

is presented in Fig. 6.

Fig. 6. Technology of creating a program

by building an automaton model

The description of the program model must be per-

formed in terms of modified temporary logic. Because

of this description, a program model is created in the

form of an indeterminate finite automaton, which is

presented as a special database. The structure of data-

base relationships allows you to perform complete pro-

cessing of the model tree and directly create a program

in the desired target procedural programming language.

The description of the program model must be per-

formed in terms of the modified TL. Because of this

description, a program model is created in the form of

NDFA, which is presented as a special database. The

structure of database relationships allows you to per-

form a complete processing of the model tree of the

program and go to the application of the target pro-

gramming language.

This technology can also be used to describe diffi-

cult classes using object-oriented programming. Pro-

cessing of List_of_actions and Condition attributes in

MAIN and CONNECT relations is a translation process

to which it is appropriate to apply the stack algorithm

[7, 14], which involves processing the description de-

pending on the priority of description actions. This

technology can also be used to describe complex classes

using object-oriented programming. Processing of

List_of_actions and Condition attributes in MAIN and

CONNECT relations is a translation process to which it

is appropriate to apply the stack algorithm [7, 14, 15],

which involves processing the description depending on

the priority of description actions. o classes when using

object-oriented programming. Processing of

List_of_actions and Condition attributes in MAIN and

CONNECT relations is a translation process to which it

is appropriate to apply the stack algorithm [7, 14],

which involves processing the description depending on

the priority of description actions. As noted, in the de-

velopment of parallel programs, special states are used.

It is a state-monitor that provides access to shared re-

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

12

sources and a state-protocol that allows parallel threads

of the algorithm to be executed.

Currently, in Cherkassy State Technological Uni-

versity is working to create software to describe and

process program models for this technology. In particu-

lar, a stack algorithm for processing the description of

actions for the List_of_actions and Condition attributes

in the MAIN and CONNECT relations was developed

and implemented.

4. Example

Consider an example of the translation of a con-

stant of the type FLOAT POINT. To begin with, we will

describe in detail the means of describing the model. As

mentioned, we use a predicate apparatus for this. In fact,

the predicate itself consists of a logical part, which we

surround with curly brackets, and an executive part,

which we surround with square brackets. Inside the ex-

ecutive part of the predicates are allowed internal predi-

cates, which must be surrounded by parentheses.

Among the operators in the conditional part, the relation

operators (>, <, =, <>,> =, <=) are used to organize

transitions to other states of the automatic model.

Arithmetic operators (+, -, *, /) are used in expressions

as elements of operators. Expressions can be present

both in the operators of the conditional part and in the

operators of the executive part. This example uses the

virtual functions fild and cstod, the first converting an

INTEGER number to FLOAT POINT and the second

converting a symbol of the digit to its value. Otherwise,

the keyword is also used as a condition that is the oppo-

site of the previous condition. In addition, in case of an

error, its code is generated for the subsequent output of

the error type. The temporal operators U(ntil) and

(ne)X(t) are also used in the operators of the executive

part, which ensure the cyclic execution of the sequence

of actions and their sequential execution. In addition, go

to <label> transition operators are used to organize tran-

sitions to other states. Both the conditional parts of

predicates and their executive parts can be marked with

labels. The label should end with a colon (:). The con-

sistent use of U operators ensures the implementation of

the choice under several conditions. It is also permissi-

ble to use both standard and special functions. The latter

must be described separately and end with a ret return

operator. So, having chosen first the general model of

the algorithm, and going step by step to the final model,

we will try to describe it with the means described

above.

Here is an example of the description of the con-

stant FLOAT POINT.

1. {true}[buff; i=1,sum=0,count=0,const=0,dig,

coder: intger; fsign=0, fneg=0, fexp=0, fdot=0:byte];

2. m4: {buff(i) = ’+’} [fsign=1, goto m1]

U {buff(1) = ’-’} [fsign=1, fneg=1, goto m1] U

{buff(1) =’.’} [({fexp=1} [coder=cod1, goto error]

U {otherwise}[fdot=1, goto m1]]

U (m2: {buff(i)=cyf}[dig=cstod(buff(i)),

sum=sum*10+dig, {sum>smax}[coder=cod2,

goto eror]] |

(m3: {fdot=1} [goto m1]) U {otherwise} [goto m1])

U ({buff(i) = (‘E’ | ‘e’)} ({fexp=1} [coder=cod3,

goto error] U ({otherwise}[fexp=1] |

{true}[const=fild(sum)] | {fneg=1} [const= - const,

fneg=0] | {true} [call fin, i++, {i>=max} [stop]]

U {oterwise}[fsign=0, fdot=0, sum=0, goto m1]);

3. m1: {true} [i++ {i>=max} [call fin, stop]

U {othewise}[{fexp=1} [{sum=0} [stop]

U ({sum>0} [const=const*10, sum=sum-1] |

{true}[stop]) U ({sum<0} [const=const/10,

sum=sum-1]) Х{true}[stop] U ({fdot=1} [goto m2]

U {otherwise} [goto m3]];

4. error: {true} [goto m1]

The first line of the description presents the initial

data: buff – a buffer where the FLOAT POINT constant

should be placed in symbolic form, where i is an indica-

tor of the position of the constant symbol in the buffer,

sum – the initial value of the integer constant, count – a

counter of fractional digits, const – initial the value of

the converted constant in the format EXTENDED,

fsign, fexp, fneg, fdot = 0 – flags of the sign, exponen-

tial part and fractional point. The variable coder is de-

signed to place the code of a possible error, cod1 –

when the dot appears again, cod2 – if many digits are

used to define the FLOAT POINT constant, cod3 –

when the symbol of the exponential part appears again.

The second line describes the actions required to

recognize the sign (state 1), fractional point (state 2),

decimal digit (state 3), exponential part (state 4), and

error (state 7). State 5 detects an overflow of digits. The

third line describes the transition to the analysis of the

next symbol of the constant with the transition to the

analysis of the next symbol (state 1), and in the case of

processing the exponential part – to state 4. The fourth

line describes the conversion of the constant from the

INTEGER format to the FLOAT POINT format

(state 8). All actions in the above states are represented

in the description, and labels from the description are

given in front of the corresponding states for the transfer

of control. The automaton model for processing

program of the FLOAT POINT constant is shown

in Fig. 7.

This program is a part of all compilers. Because

the application model fully corresponds to its descrip-

tion, the next step of checking, as required by the

MODEL CHECKING technology, is not required.

Intelligent information technologies

13

Fig. 7. Automated model for processing program of the FLOAT POINT constant

The program implementation of this example in

accordance with the obtained automaton model as part

of the compiler must be implemented in the

ASSEMBLER language. Such implementation was car-

ried out at the Department of Software of Automated

Systems of the Cherkasy State Technological Universi-

ty. The program fully demonstrated its error-free opera-

tion. This technology has also been used to create paral-

lel programs using shared resources and parallel thread,

The second line describes the actions for recogniz-

ing the sign (state 1), fractional dot (state 2), decimal

digit (state 3), exponential part (state 4), and error (state

7). State 5 reveals an excess of the number of digits.

The third line describes the transition to the analysis of

the next symbol of the constant with the transition to the

analysis of the next symbol (state 1), and in the case of

exponential part processing – to state 4. The fourth line

describes the conversion of the constant from

INTEGER format to FLOAT POINT format (state 9).

All actions in the above states are presented in the de-

scription, and the labels from the description are given

before the corresponding states. This program must be

part of the work of all translators and interpreters. Be-

cause the model of the program fully corresponds to its

description, the next step of verification, as required by

MODEL CHECKING technology is not required.

The advantages of this technology are that the cre-

ation of the program algorithm model is performed di-

rectly in its description. Therefore, with a correct de-

scription of the model, the model itself will also be cor-

rect, and unlike Model Checking technology, it does not

require further verification. Note that before the exact

description of the model is made, several intermediate

steps must be performed. That is, first, you should cre-

ate a general model, then gradually refine the model,

adjust and finally form an accurate model. In the past,

this procedure was performed by a group of problem

solvers – algorithmists, and then the task was trans-

ferred to programmers. The proposed technology for

creating models and their subsequent processing will

significantly speed up the process of developing reliable

programs.

The technology considered for creating program

models by describing them based on the modified TL,

with the correct description of the program model, al-

lows you to obtain a suitable program model in the form

of a NDFA and avoid the verification step. According to

such a model, the process of transition from a model to

one's own programming in the target language becomes

transparent and understandable. The process of trans-

forming the program model can be implemented on the

basis of the stack algorithm [7, 14, 15]. Figure 8 ex-

plains how an application model description is trans-

formed into a database model. Only the presentation of

the first three states of the program model is shown,

indicating their numbers according to the model graph.

Transition from one state to another is performed

through a binding relation.

The main relation of each state in the executive

part of the predicate in the field List_of_actions (type

MEMO) contains a list of actions that should be per-

formed in this state according to the description of the

model. The binding relation is provided by the section

of the conditional part of the Condition predicate (of the

MEMO type). The complete model of the program in

the form of a database can be presented in a similar

manner. The actions in the List_of_actions and Condi-

tion sections must be converted to statements in the tar-

get procedural programming language. In the case of

automation of the process of conversion of the men-

tioned areas, that is, their translation, the process of de-

scribing the program model directly into the program

will not require a verification step, as provided by the

MODEL CHECKING technology. For this purpose, the

stack algorithm can be applied, when a pair of lexemes

is revealed during the lexical analysis – a data lexeme

and an action lexeme [7]. Action lexemes are assigned

priorities according to which the conversion process is

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

14

performed. Simultaneously, additional temporal logic

operators will have a lower priority than the rest of the

operators, which will allow the final conversion of the

description into the operators of the target programming

language. The use of parentheses, which are given the

highest priority, allows you to change priorities during

processing. This is achieved because the description of

the algorithm model of the program is created consist-

ently exactly as it was done at one time by algorithmists

and passed the project of the program model to pro-

grammers. At the same time, the final verification of the

program will consist only of the agreement of data types

regarding their compatibility in the program.

Fig. 8. Part of database of program model

5. Discussion

The proposed technology for developing program

models allows the creation of such a model when de-

scribing it in the form of a special database. This model

can then be turned into a program in the chosen proce-

dural programming language, which is a new step to-

wards the automation of program development. Means

for developing parallel programs in the form of status

monitors and status protocols have been created.

Compared with the most modern MODEL

CHECKING technology, this technology does not re-

quire special programs for creating a model and its sub-

sequent verification. This allows you to create correct

programs if the model is correctly described. This is

precisely the scientific novelty of this work. From a

practical point of view, the proposed modeling and

software development technology will accelerate the

development of reliable programs. If this technology is

put into industrial use, it will significantly speed up var-

ious computer developments. From the point of view of

development prospects, they consist, first of all, in the

development of software support for the proposed tech-

nology. Further development of this technology is the

development of a translation program from the descrip-

tion language to the operators of the programming lan-

guage. In addition, when using the technology for dif-

ferent target programming languages, it is advisable to

develop the transformation of the model into an inter-

mediate form from which the transition to the target

programming language is possible. To this should be

added the development of the subroutine library. All of

this together opens wide prospects for the further devel-

opment of this technology.

Conclusions

The proposed technology for developing models of

the programs allows you to create such models when

describing them in the form of a special database. This

model can then be turned into a program in the chosen

procedural programming language, which is a new step

towards the automation of program development.

Means for developing parallel programs in the form of

status monitors and status protocols have been created.

Compared with the most modern MODEL

CHECKING technology, this technology does not re-

quire special programs for creating a model and its sub-

sequent verification. This allows you to create correct

programs if the model is correctly described. This is

precisely the scientific novelty of this study. From a

practical point of view, the proposed modeling and

software development technology will accelerate the

development of reliable programs. If this technology is

put into industrial use, it will significantly speed up var-

ious computer developments. From the point of view of

development prospects, they consist, first of all, in the

development of software support for the proposed tech-

nology. Further development of this technology is the

development of a translation program from the descrip-

tion language to the operators of the programming lan-

guage. In addition, when using the technology for dif-

ferent target programming languages, it is advisable to

develop the transformation of the model into an inter-

mediate form from which the transition to the target

programming language is possible. To this should be

added the development of the developed subroutine

library. All of this together opens wide prospects for the

further development of this technology.

Intelligent information technologies

15

The main contribution of this research is the fur-

ther development of the idea of formal description and

creation of models of programs, followed by the crea-

tion of reliable error-free programs. Models are de-

scribed using predicates, resulting in an automaton

model in the form of an NDFA in a set of states with

connections. For parallel programs, additional states of

program models were proposed, which correctly syn-

chronize the execution of individual threads.

Author Contributions: a general method of pre-

senting a model and its processing in the form of a data-

base – Volodymyr Salapatov; definition of the monitor

state – Serhii Holub; definition of the protocol state –

Vadym Nemchenko.

Conflict of interest

The authors declare that they have no conflict of

interest in relation to this research, whether financial,

personal, authorship or otherwise, that could affect the

research and its results presented in this paper.

Financing

This research was conducted without financial

support.

Data availability

This work has associated data in the data reposito-

ry.

Use of Artificial Intelligence

The authors confirm that they did not use artificial

intelligence methods while creating the presented work.

All the authors have read and agreed to the pub-

lished version of this manuscript.

References

1. Hoare, C. A. R. Communicating sequential

processes. Prentice Hall International Publ., 2022.
260 p. Available at: http://www.usingcsp.com/

cspbook.pdf. (accessed 02.05.2023).

2. Milner, R. A Calculus of Communicating Sys-

tems. Book series: Lecture Notes in Computer Science.
Springer Berlin, Heidelberg, 1980, vol. 92, 174 p. DOI:

10.1007/3-540-10235-3. Available at: http://www.

lfcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-7/ECS-

LFCS-86-7.pdf. (accessed 02.05.2023).
3. Clarke, E. M., Gramberg, O., Kroening, D.,

Peled, D., & Veith, H. Model Checking. Second edition.

MIT Press Publ., 2018. 424 p. ISBN 0262349450.

Available at: https://books.google.com.ua/books?

id=qJl8DwAAQBAJ. (accessed 02.05.2023).

4. Zhang, Y. Ji, P.-F., Zhu, P.-W., Peng, P., Li, H.-

W., & Jiang, J.-H. Parallel Software-Based Self-Testing

with Bounded Model Checking for Kilo-Core

Networks-on-Chip. Journal of Computer Science and

Technology, 2014, vol. 38, pp. 405-421. DOI:

10.1007/s11390-022-2553-3.

5. Grobelna, I., Grobelny, M., & Adamski, M.

Model checking of UML activity diagrams in logic con-

trollers design. Advances in Intelligent Systems and

Computing, 2014, vol. 286, pp. 233–242. DOI:

10.1007/978-3-319-07013-1_22.

6. Oshibka v PO Airbus A350 vynuzhdayet pere-
zagruzhat' sistemy samoletov kazhdyye 149 chasov

[Airbus A350 software bug forces aircraft systems to

reboot every 149 hours]. Available at:

https://internetua.com/oshibka-v-po-airbus-a350-

vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-

csasov. (accessed 02.05.2023). (in Russian).

7. Salapatov, V. I. Poryadok opysu i obrobky hrafa

avtomatnoyi modeli [Order of the description and pro-

cessing of the program automaton model graph]. Ma-

tematychni mashyny i systemy – Mathematical Ma-
chines and Systems, 2021, no 3, pp. 121-125. DOI:

10.34121/1028-9763-2021-3-121-125. (in Ukrainian).

8. Rumbaugh, J., Jakobson, I., & Booch, G. The

Unified Modeling Language Reference Manual. Addi-

son Wesley Longman, 1999, 568 p. ISBN 0-201-30998-

X. Available at: https://idsi.md/files/file/referinte_utile

_studenti/The%20Unified%20Modeling%20Language

%20Reference%20Manual.pdf. (accessed 02.05.2023).
9. Lafore, R. Ob"yektno-oriyentirovannoye pro-

grammirovaniye v S++ [Object-oriented programming

in C++]. SPb, Piter Publ., 2004. 928 p. (in Russian).

10. Eliens, A. Printsipy Obʺyektno-oriyentiro-

vannoy razrabotki programm. 2-ye izdaniye [Principles

of Object-Oriented Software Development Second Edi-

tion]. Sankt-Peterburg, Vil'yams Publ., 2002. 496 p.

ISBN 5-8459-0233-9. (in Russian).
11. Omelʹchenko, L. N., & Shevyakova, D. A.

Samouchitel' Visual FoxPro 9.0 [Visual FoxPro 9.0

tutorial]. Sankt-Peterburg, BKHV-Peterburg Publ.,

2005. 608 p. (in Russian).

12. Pasichnyk, V. V., & Reznychenko, V. A.

Orhanizatsiya baz danykh ta znanʹ [Organization of

databases and knowledge]. Kyiv, BHV Publ., 2006.

384 p. Available at: https://www.twirpx.com/
file/1174516/. (accessed 02.05.2023). (in Ukrainian).

13. Garsia-Molina, H., Ullman, J. D., & Widom, J.

Database System Implementation. United States Ed Edi-

tion, Prentice Hall, 1999. 653 p. ISBN-13: 978-

0130402646.

14. Hopсroft, D. E., Motwani, R., & Ullman, J. D.

Introduction to Automata Theory, Languages and Com-

putation. 3rd Edition. Pearson Education Publ., 2006.
535 p. Available at: https://e.famnit.upr.si/pluginfile.

php/636821/mod_page/content/8/Automata.pdf. (ac-

cessed 02.05.2023).

15. Konversʹkyy, A. Ye. Lohika (tradytsiyna i

suchasna). Pidruchnyk dlya studentiv vyshchykh

navchalʹnykh zakladiv [Logic (traditional and modern).

The textbook for university students]. Kyiv, Tsentr uch-

bovoyi literatury Publ., 2008. 536 p. ISBN 978-966-
364-735-7. (in Ukrainian).

javascript:void(0)
javascript:void(0)
https://www.scopus.com/authid/detail.uri?authorId=36518652600
https://www.scopus.com/authid/detail.uri?authorId=15076754800
https://www.scopus.com/authid/detail.uri?authorId=7005229686
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

16

Received 18.06.2023, Accepted 20.02.2024

ПОДАННЯ МОДЕЛІ ПРОГРАМИ ЗА ДОПОМОГОЮ ПРЕДИКАТІВ

Сергій Голуб, Володимир Салапатов,

Вадим Немченко

Запропоновано розв’язок вирішення проблеми підвищення надійності та позбавлення від помилок

комп’ютерних програм за рахунок створення їх адекватних моделей та побудові на їх основі, власне, про-

грам. Отримані результати дозволяють позбавитись можливих помилок при побудові різних програм, зо-
крема критичних програм управління в авіації, наземному транспорті, військовій справі тощо. Об’єктом до-

слідження є процес побудови моделей програм за допомогою модифікованої темпоральної логіки. Метою

даної роботи є розробка методу побудови адекватних моделей програм, за допомогою яких можна ство-

рювати самі програми на цільовій процедурній мові програмування. На відміну від існуючої технології

MODEL CHECKING цей метод не потребує кроку верифікації моделі. Це дозволяє спростити процес побу-

дови моделі програми і самої програми, усунути помилки у програмах та підвищити їх надійність. Цей но-

вий крок у напрямку автоматизації процесів розробки комп’ютерних програм підвищеної надійності, що

якраз і складає наукову новизну цієї роботи. Опис моделі програми охоплює як логіку програми з її розга-
луженнями, так і конкретні дії у кожному місці моделі програми. У результаті такого опису створюється

модель програми у вигляді невизначеного скінченного автомату, яка, у разі коректного його опису, дозволяє

розробляти коректні моделі і у подальшому програми. Формально модель представлена за допомогою

спеціальної бази даних, де опис дій у кожному стані, а також умови переходу в інші стани, задаються у ви-

гляді даних типу MEMO, тобто у вигляді рядка символів невизначеної довжини. Модель, по суті, представ-

ляє детальну блок-схему алгоритму майбутньої програми у вигляді автоматної моделі. У кожному стані з

використанням темпоральної логіки повністю описується послідовність дій, які мають програмно реалізува-

тися і виконуватися у ньому. Для перетворення такої моделі програми треба виконати повний обхід дерева
моделі програми та виконати реалізацію програми на одній із цільових процедурних мов програмування

відповідно до вимог технічного завдання. Особливо важливою у цьому підході є можливість створювати

паралельні програми шляхом застосування опису спеціальних станів моделі програми, а саме стану-

монітору та стану-протоколу. Перший забезпечує доступ до спільних ресурсів кількох процесів, а другий

забезпечує паралельне виконання кількох незалежних програмних потоків. Таким чином, розроблено новий

підхід у створенні надійних, безпомилкових програм шляхом побудови її моделі. При побудові програмної

моделі за запропонованим методом вдається уникнути етапу додаткової верифікації цієї моделі, оскільки

при коректному описі моделі програми коректною буде і сама програма. При використанні об’єктно-
орієнтованого програмування метод дозволяє створювати класи і відповідні програми. Подальшій розвиток

запропонованої технології полягає в автоматизації перетворення моделй програм у програми на цільовій

мові програмування. Експериментальні застосування цієї технології у Черкаському державному технологіч-

ному університеті підтвердили ефективність запропонованої технології для створення надійного програмно-

го забезпечення без помилок та дозволяють рекомендувати її у практичних розробках і впроваджувати у

навчальному процесі.

Ключові слова: модель; предикат; темпоральна логіка; невизначений скінченний автомат; процедурна

мова програмування.

Голуб Сергій Васильович – д-р техн. наук, проф., зав. каф. програмного забезпечення

автоматизованих систем, Черкаський державний технологічний університет, Черкаси, Україна.

Салапатов Володимир Іванович – канд. техн. наук, доц., доц. каф. програмного забезпечення

автоматизованих систем, Черкаський державний технологічний університет, Черкаси, Україна.

Немченко Вадим В’ячеславович – канд. техн. наук, доц. каф. програмного забезпечення

автоматизованих систем, Черкаський державний технологічний університет, Черкаси, Україна.

Serhii Holub – Doctor of Technical Sciences, Professor, Head of the Automated Systems Software Depart-

ment, Cherkasy State Technological University, Cherkasy, Ukraine,

e-mail: s.holub@chdtu.edu.ua, ORCID: 0000-0002-5523-6120, Scopus Author ID: 57204158669.

Volodymyr Salapatov – PhD, Associate Professor, Associate Professor at the Software Support of Automated

Systems Department, Cherkasy State Technological University, Cherkasy, Ukraine,

e-mail: v.salapatov@chdtu.edu.ua, ORCID: 0000-0001-7567-637X, Scopus Author ID: 6506988429.
Vadym Nemchenko – PhD, Associate Professor at the Software Support of Automated Systems Department,

Cherkasy State Technological University, Cherkasy, Ukraine,

e-mail: v.nemchenko@chdtu.edu.ua, ORCID: 0000-0003-2262-719X.

