Radioelectronic and Computer Systems, 2024, No. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

UDC 004.414.23:510.637

doi: 10.32620/reks.2024.1.01

Serhii HOLUB, Volodymyr SALAPATOV, Vadym NEMCHENKO

Cherkasy State Technological University, Cherkasy, Ukraine

REPRESENTATION OF THE PROGRAM MODEL USING PREDICATES

The object of research in this article is the process of modeling programs and their subsequent development.
The purpose of this article is to develop a methodology for describing and building software models in the
form of nondeterministic finite automat. To achieve this goal, a task was set to improve the method for describ-
ing such models using predicates based on the MODEL CHECKING technology. The result of this article is a
method for describing and presenting program models directly according to the chosen algorithm using predi-
cates. If the program algorithm is chosen and described correctly, the resulting model should also be correct.
The model will be a non-deterministic state machine that will not require further checking, as provided by the
MODEL CHECKING technology. Structurally, the model will represent a special database, the processing of
which will allow turning the model into a program in any procedural programming language. When develop-
ing parallel programs that are widely used for control in aviation, land transport, military affairs, etc., two
additional states of the automaton are introduced into the model, which take into account the features of such
programs. Therefore, a state monitor is provided for access to shared resources and a state protocol to process
parallel branches of the program. To describe the algorithm of the program, we propose to present it in the
form of a connected sequence of certain actions using predicates with the use of extended temporal logic. This
description covers both the logic of the program and its branches and the specific actions at each location of
the program model. With the help of this methodology, a program model of a stack algorithm was developed,
which is the main component for the future automated system of processing the description of program models.
The program which was created according to this technology, is currently in the testing and verification stage.
The sequence of processing steps of such a model is shown in the example of a floating-point constant transla-
tion program. This program is also created using this technology in the target language assembly, has been
fully tested, and has shown its functionality. This description covers both the logic of the program with its
branches and the specific actions at each location of the application model. Conclusions: with a correct de-
scription of the program algorithm, an adequate model of it is built, with the help of which the program itself is
created in the target procedural programming language. Note that in the conditions of the rapid development
of management and control automation systems in various spheres of human activity, research on the creation
of reliable based on the description of their models is an urgent problem.

Keywords: model; predicate; temporal logic; an indeterminate finite automaton; procedural programming
language.

build a model of the program, and after building the
model, it must be tested by a special program - a verifi-

Introduction

Currently, the problem of proving the correctness of the
program is very relevant. It is impossible to formally
prove that the program was created correctly. Therefore,
the technique of creating adequate models of programs
based on their formal description has recently become
widespread. Proving the correctness of the model at the
formal level is quite possible. Therefore, the correctness
of the program will depend on its implementation ac-
cording to the model. Attempts to create methods of
formally proving the correctness of programs [1, 2]
turned out to be practically impossible, so modern
methods involve the creation of a program model and its
subsequent verification. MODEL CHECKING technol-
ogy involves [3 - 5] the creation of a model of the pro-
gram and its subsequent verification. Therefore, this
technology involves the use of a special program to

er, which establishes the correctness of logical connec-
tions between all parts of the program. This makes it
difficult to create models and purchase such additional
programs. After creating a program model, you can pro-
ceed directly to the creation of the program itself, and
this process may be automated. Formal proof of the cor-
rectness of the program is almost impossible to perform;
therefore, modern methods involve the creation of a
model of the program and its subsequent verification.
Creating reliable and correct programs is very im-
portant, especially in control systems for various critical
processes such as aircraft management, traffic, and mili-
tary affairs programs based on their models. For in-
stance, an error in the control program caused the acci-
dent of the BOING 737 in Indonesia in 2018 and in
Ethiopia in 2019. Because of an error in the control pro-

© Serhii Holub, Volodymyr Salapatov, Vadym Nemchenko, 2024

Intelligent information technologies

gram of some AIRBUS A350 models, the control sys-
tem must be rebooted every 149 h to prevent partial or
complete loss of functionality [6]. It is proposed to cre-
ate these models based on their description with extend-
ed temporal logic (TL) in the form of nondeterministic
finite automata (NDFA) [7]. Thus, the correctness of the
program depends on its implementation according to the
model. The subject of study is the improvement of the
technology for developing programme models and sub-
sequent conversion of these models into programs.

1. The current state of technologies
for the development of reliable programs

The task of the research presented in this article is
to improve the technology of building error-free pro-
grams, particularly parallel programs, based on their
models in the form of NDFA. Such attempts were first
proposed by Hoare [1] and then by Milner [2]. Hoare
proposed the introduction of some axioms with the help
of which to prove the correctness of programs. Such
technology turned out to be quite complex and confus-
ing and had no practical application. The same applies
to Milner’s proposal for his technology, which is asso-
ciated with an attempt to mathematically prove the cor-
rectness of programs. This method had no practical ap-
plication too. The rest of the technologies (structural
programming, modular programming, object-oriented
programming) allow you to improve and structure the
development of programs and are in no way related to
proving their correctness. The most modern technology
for building correct programs, which provides for their
verification and received practical application, was the
MODEL CHECKING technology. The disadvantage of
the MODEL CHECKING technology is the assembly of
the model based on the description of its individual
parts in the form of predicates. After that, the model
must be verified, i.e. control of compliance of the model
with its description in the form of specifications and
limitations.

Therefore, to avoid these shortcomings, this article
proposes performing a direct description of the entire
model using predicates. At the same time, the executive
part of the predicate is a list of certain actions in the
form of a sequence using temporal operators, and the
logical part describes the conditions for their execution.
This approach can also be applied to object-oriented
programming [9, 10] when creating classes. However,
when describing the software model, it is necessary to
be guided by the principles of structural programming.
The technology of structural programming involves the
selection of an appropriate mathematical model for the
program and the creation of its formal algorithm. Then,
in the next stage, the data are refined, their types are
determined, and the algorithm is presented in an inter-

mediate, more detailed pseudo-language. Thus, by ap-
plying the principles of structured programming and
using a modified TL, it is necessary to correctly de-
scribe the model of the program being designed. Then,
the model that will be created by this method corrected
and will not require further verification.

The resulting model can later be used to create the
desired program.

2. Research objectives
and an approach to the development
of reliable programs

The existing technology of program development
does not allow creation without errors. The only
MODEL CHECKING technology that allows you to do
this involves creating program models from the descrip-
tion of their individual parts. At the same time, the spe-
cial program forms a complete model, which must then
be checked by a special verifier program. This article
offers a direct description of the program model accord-
ing to the chosen algorithm. It is also proposed to fur-
ther develop the technology for building program mod-
els, creating their internal representation, and then trans-
forming them into programs in the target procedural
programming language. When describing the model, a
special database is formed in the form of an automaton
model with states and connections between them. The
description should be performed using predicates in a
certain format. Predicates allow you to describe the
conditions for transitioning to a certain state and the
actions that should be performed in this state. In the
future, the model in the form of a database should be
processed on all possible branches to create an internal
intermediate representation of the program. Such a rep-
resentation can be trans formed into a program in the
desired target programming language.

3. Creation of correct program models

The main mathematical model of this technology
is the Kripke structure [3], which represents the forms
of the automaton model:

M = (S, SO; R! AP! L)!

where S — is the set of states of the model;

So — is the set of initial states of the model;

R =S x S —is the complete relationship between S,
that is, transitions from one state to another, which may
be possible;

AP —is a finite set of predicates;

L = 24" —is a marking function, where each state
defines a set of true predicates.

Radioelectronic and Computer Systems, 2024, No. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Therefore, it is quite natural to sequentially present
the description of the program model in the sequence of
interconnected predicates. At the same time, the de-
clarative part of the predicate must describe executive
actions, and its logical part — the condition for their exe-
cution. The result of the program model description is a
non-deterministic finite automaton.

The beginning of any algorithm of the program in
the form of state should begin with the definition of all
the data necessary for its operation. Next, in subsequent
states that determine the execution of the program, the
actions described in the state must be converted to
statements of the target programming language. Com-
pletion of the description of the state is defined as a cer-
tain part of the algorithm, which in the future should
end with a branch to move to other states and should be
transformed into branching operators.

3.1. Internal presentation of the model
and its processing

It is proposed to traverse the tree sequentially in
depth, i.e., after processing the first branch of the cur-
rent state and transitioning to it, the transition to the first
branch of the next state is performed, and the other
branches are not yet considered. Such a sequential pro-
cess during the traversal of the automaton tree must be
performed until we reach a state in which there has al-
ready been a transition from other states or to a final
state. Then, after the processing of all subsequent
branches of such states is completed, it is necessary to
return to the previous state and again proceed to the
processing of branches from this state. To completely
bypass the tree model, all its branches must be pro-
cessed. Such a sequential complete traversal of the au-
tomaton program model tree is shown in Figure 1,
which shows how, after processing in the Si state, the
transition to the Sj state is performed, and then to the
marked or final state, from which the return to the Sj
state and the processing of its next branches are per-
formed.

Then, from this state, the return to the state Si is
shown. Next, if in the Sk state all branches are pro-
cessed, there is a transition to the Si state, and only after
that there is a transition to the Sm state. Thus, with such
sequential processing of the states of the program model
tree with subsequent returns to the previous states from
the marked or final states, full processing is performed.
Previously, a simple database [7, 11 - 13] from two rela-
tions was proposed to represent and further process the
model, as shown in Figure 2. We define the state types
as start, end, protocol state, monitor state, and ordinary
states, which may or may not be marked.

Fig. 1. Sequential processing
of the automaton tree states

P; * \
Py

MAIN CONNECT

Id state Id state (current)
Type Condition

List of actions Next Id state
Mark

Fig. 2. Structure of the program model database

The identifier of the state Id_state determines its
sequence number, and the Type attribute determines the
type of vertex state. If there are multiple exits from this
vertex, the Id_state attribute points to the Id_state (cur-
rent) of the transition vertex. If the entrance to the peak
has already taken place, the condition of such a peak
should be marked to prevent readvancement in the pro-
cess of bypassing the tree from other states. To com-
pletely bypass all possible branches of the automaton
model, after processing the next tree branch, it is neces-
sary to return to the previous penultimate state of the
automaton and proceed to processing the next in the list
of transition to another state and continue traversing the
new route. When processing all possible branches of
transitions from each current state, it is necessary to
return to the previous state and continue traversing the
tree from the next branch of the state of the previous
level. That is, after completing the processing of the
next branch of the automaton tree, it is necessary to per-
form a step back from the current vertex at the last tran-
sition. This process is an analysis into deep and is dis-
played as follows.

Si(P)—S;;
Si—(P) Sj; 1)
Si (Pk) — Sk.

Intelligent information technologies

where Si(P;) is a state of the automaton model, in which
it passes on condition P;.

Here the transition from the state S; under the con-
dition P; to the vertex S; is conditionally shown. If the
bypass of the next branch at the vertex S; is completed,
then the return to the previous vertex S; is performed
according to the connection under the condition P;.
Then, the next exit from state S; under the following
condition P is reviewed and the transition under this
condition to the state Sk is performed. The S; state will
be considered fully processed if all its outputs are pro-
cessed and must be marked. The Id_state (current) at-
tribute with respect to CONNECT is associated with the
current transition state. Thus, by moving along the lev-
els in the forward and reverse directions and moving to
other branches, you can completely bypass the automa-
ton tree. The condition for completing a complete by-
pass of the automaton tree model is that all states are
marked. The proposed database on the one hand is a
complete description of the automaton model of the
program, and on the other — with the help of the Mark
attribute allows you to mark processed states and per-
form a complete bypass of the automaton tree model.
The List_of actions attribute of the MAIN master rela-
tion is MEMO data, i.e. a string of indefinite length in
which the sequence of actions in the specified state must
be described. Similarly, the Condition attribute of the
CONNECT relation is data of type MEMO [11 - 13]
and describes the condition of transition to this state of
the model. Thus, each state in the MAIN relation can be
associated with several vertices in the CONNECT rela-
tion, because the NDFA model involves some transi-
tions from one state to another.

State types include initial states, monitor states,
protocol states, final states, and ordinary states. Initial
states define data with their types and possible initial
values. Monitor states are characterized by access to a
shared resource and the presence of a semaphore varia-
ble that indicates that the resource is busy. Therefore,
the monitor states independently check the occupancy
of the resource, occupy it, and use it. Then, the process
releases this resource. The main condition of this ap-
proach is the availability to have access of parallel
branches or threads to semaphores and shared resources.
That is, these data must be global. End states indicate
the completion of the program and sometimes return
control to the operating system. Although most control
programs are cyclical, transitions to handling emergen-
cy states are possible when certain restrictions are
checked.

3.2. Research on models of parallel programs

For programs with parallel threads, it is necessary
to consider access to a common resource and parallel

execution of several threads. The states of the protocols
must wait for the completion of all parallel threads to
continue the execution of the algorithm; otherwise, the
state of the protocol will be in a waiting state. Because
states of monitor are associated with shared resources
and associated semaphores, the database of the model
description is extended by another relation COMRES
with the following structure, where present variable of
the semaphore type — Sem (Fig. 3).

MAIN CONNECT
Type l,__——* [d_state (current)
List of actions Condition

Mark ' Next Id state
RESOURSE

I Id_state | Resource Sem]

Fig. 3. Extended structure of the database

Attribute Id_state is the access key for communi-
cation with relation MAIN. At the same time, each pro-
cess can capture a shared resource, and if it is free, its
processing and subsequent release. In this case, the
Resource and Sem are parts of the monitor integrated
into the process of processing the current state of the
automaton model. The Resource attribute is a reference
to the shared resource, and the Sem attribute is a sema-
phore variable that controls whether the shared resource
is occupied. Thus, states the states that need a common
resource must themselves ensure the capture of the
common resource and its subsequent release. The pres-
ence of such states is determined by the data type as
semaphores. In the monitor states, at the beginning of
the execution of certain actions, they provide for the
capture of a shared resource, then perform its processing
and then release the shared resource. Because the cap-
ture and release of a shared resource is controlled by a
special semaphore variable, it is advisable to build the
control of the semaphore variable into the correspond-
ing states. The capture and release of a common re-
source can be indicated by the virtual operators
LOCK(COMRES, SEM) and FREE(SEM) in the de-
scription. The COMRES parameter refers to a shared
resource, and the SEM parameter refers to a semaphore
variable. These links must be available to all parallel
threads or branches. The monitor states are presented in
Figure 4, which shows the input streams or processes S;,
Si» Sk. Such monitor instructions are built into the opera-
tors of some modern programming languages, and ac-
cess to RESOURCE and SEM-type data is implemented
through the Spyon State.

States in which a shared resource is accessed must
be surrounded by the resource capture

10

Radioelectronic and Computer Systems, 2024, No. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

LOCK(RESOURCE, SEM) and resource release
FREE(SEM) operators specified above. The generalized
structure of such a state has the following form

COMRES DW <DATA>
SEM DB 0

LOCK(RESOURCE, SEM)
; resource processing
FREE(SEM)

wait
o

Fig. 4. State-monitor

The final states complete the execution of the algo-
rithm and provide for the transfer of control to the oper-
ating system. The initial states of the model have an
unconditional start (true) of the algorithm. To define a
state type, the corresponding reference to the shared
resource must be defined specially. A semaphore varia-
ble must be attached to it. In the process of traversing all
branches of the tree of the model of NGFA you need to
convert the List of actions attributes of the MAIN and
Condition attribute of the CONNECT relation into a
sequence of operators of the procedural target pro-
gramming language.

Protocol states wait for parallel branches to com-
plete before performing proceeding actions. In the case
of protocol states, processing is performed after the exe-
cution of parallel branches of the algorithm model is
completed before continuing with certain actions; oth-
erwise, this state will be in a waiting state, for which the
wait keyword is used in Figure 5, which shows the input
parallel streams S;, Sj, Sk.

In the process of traversal, the mathematical for-
mulas of the description of actions for each state, as
well as the description of the logical conditions of tran-
sitions to other states are transformed into a sequence of
operators in the selected procedural programming lan-
guage. The condition for exiting the protocol state is the
completion of actions in all parallel threads. This trans-
formation is a process of translation from the model
description language into the target procedural pro-

gramming language.

Fig. 5. State-protocol

The traversal of the model tree should be per-
formed from the initial state (set of states) and move
along the branches of the tree graph, checking the ap-
propriate conditions of transition to another state. When
the automaton moves from any state to several other
states, it is necessary to sequentially process all transi-
tions to these states and move to the next state, starting
with the transition that is the first in the list of transi-
tions. To prevent re-entry into the state that has already
been processed, and to stop traversing the automaton
tree on its current branch, it is necessary to mark this
state in the Mark attribute. If when checking the state of
the transition it turns out that it is marked, the pro-
cessing of wood on this branch is stopped and the return
to the previous state is performed. The second condition
for stopping the processing of the next branch of the
automaton tree is the transition to the final state of the
automaton in its presence. The fact is that cyclic pro-
grams of the final state may not be except for emergen-
cies, which should be provided in the description of the
program model.

3.3. Results

Thus, when processing the description of the soft-
ware model, the model itself is first created in the form
of NDFA, which is presented in the form of a special
database. In the future, the model should be converted
into a program in target program language. Transitions
in each state in any procedural programming language
must be implemented by branch operators. The move-
ment in the process of traversing the automaton tree is
consistent with depth, and for a possible return to a cer-
tain state, the return address must be saved. A conven-
ient mechanism for this is the stack. In this case, when
successively moving to the depth of the return address,
it will be consistently stored in the stack. At the end of
the processing of the next branch of the automaton
model of the program is the return to the previous state
and the processing of the next branch. Formulas (1) il-
lustrate the return from the state that completes the pro-
cessing of any branch of the automaton model to the

Intelligent information technologies

11

previous state. Assume that this state has several transi-
tions to other states under conditions (P1, P2,... Pn), then
the transition from this state to the previous level state is
possible if all its transitions under conditions (P4, Po,...
Pn) are processed. In this case, such a state in relation to
MAIN is marked in the Mark attribute, and in the case
of processing tree on other branches, the observed state
will indicate the completion of processing of the current
branch. In other words, if all transitions from the current
state are processed, this transition becomes marked.

Si—(P)S;

Si — (P2) Sk;

Si — (Po) Si @
Mark(S;) = true.

Mark(S;) is an attribute of the database for state.
Formulas (2) illustrate the conditions for establishing
the Mark attribute in the Si state as marked, when all
branches (Sj, Sk,... Si) of this state in the states
(Sjy Sk.... Si) under the conditions respectively
(P1, Po,... Pp) are already processed. At the end of the
current branch model processing, the return address of
the previous state to which you will need to return re-
mains in the stack. Thus, sequential advancement into
deep with subsequent returns provides complete pro-
cessing of the program’s automaton model. The imple-
mentation of specific actions in each state of the autom-
aton is provided by translating the description in the
attribute List_of actions of the MAIN relationship.
Transitions to other states are provided by translating
the description in all CONNECT attributes of the
CONNECT relationship related to the current state.

The description in the attributes List of actions
and Condition is performed in terms of modified tem-
poral logic (TL) [7] for all types of states and can be
converted into a sequence of operators of the target pro-
cedural programming language. Branching from each
current state into other states, as already mentioned,
should be performed as a reference to parts of the algo-
rithm model. If all branches from the current state are
processed, the return to the previous state should be
performed as a return from the subroutine. In this case,
the return address will be stored in the stack each time,
as it is implemented in all programming languages.
Therefore, sequential advancement in the processing of
the automaton program tree will ensure correct return to
all previous states according to the description model.
Thus, lower-level state processing routines are nested
upper-level routines.

Earlier in [7], it was shown how monitor-states and
protocol-states can be used to describe parallel program
models, which greatly simplifies model verification, as

suggested in MODEL CHECKING technology and pre-
vious work.

The technology for developing an automaton tree
model of the program based on its description and sub-
sequent processing to convert the model into a program

is presented in Fig. 6.

Descrip- Develop Pro- Target
tion of ofthe || cessing (| pro-
the pro- [®| model models gram
gram
model

Fig. 6. Technology of creating a program
by building an automaton model

The description of the program model must be per-
formed in terms of modified temporary logic. Because
of this description, a program model is created in the
form of an indeterminate finite automaton, which is
presented as a special database. The structure of data-
base relationships allows you to perform complete pro-
cessing of the model tree and directly create a program
in the desired target procedural programming language.
The description of the program model must be per-
formed in terms of the modified TL. Because of this
description, a program model is created in the form of
NDFA, which is presented as a special database. The
structure of database relationships allows you to per-
form a complete processing of the model tree of the
program and go to the application of the target pro-
gramming language.

This technology can also be used to describe diffi-
cult classes using object-oriented programming. Pro-
cessing of List_of actions and Condition attributes in
MAIN and CONNECT relations is a translation process
to which it is appropriate to apply the stack algorithm
[7, 14], which involves processing the description de-
pending on the priority of description actions. This
technology can also be used to describe complex classes
using object-oriented programming. Processing of
List_of actions and Condition attributes in MAIN and
CONNECT relations is a translation process to which it
is appropriate to apply the stack algorithm [7, 14, 15],
which involves processing the description depending on
the priority of description actions. o classes when using
object-oriented programming. Processing of
List_of actions and Condition attributes in MAIN and
CONNECT relations is a translation process to which it
is appropriate to apply the stack algorithm [7, 14],
which involves processing the description depending on
the priority of description actions. As noted, in the de-
velopment of parallel programs, special states are used.
It is a state-monitor that provides access to shared re-

12

Radioelectronic and Computer Systems, 2024, No. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

sources and a state-protocol that allows parallel threads
of the algorithm to be executed.

Currently, in Cherkassy State Technological Uni-
versity is working to create software to describe and
process program models for this technology. In particu-
lar, a stack algorithm for processing the description of
actions for the List_of actions and Condition attributes
in the MAIN and CONNECT relations was developed
and implemented.

4. Example

Consider an example of the translation of a con-
stant of the type FLOAT POINT. To begin with, we will
describe in detail the means of describing the model. As
mentioned, we use a predicate apparatus for this. In fact,
the predicate itself consists of a logical part, which we
surround with curly brackets, and an executive part,
which we surround with square brackets. Inside the ex-
ecutive part of the predicates are allowed internal predi-
cates, which must be surrounded by parentheses.
Among the operators in the conditional part, the relation
operators (>, <, =, <>> =, <=) are used to organize
transitions to other states of the automatic model.
Arithmetic operators (+, -, *, /) are used in expressions
as elements of operators. Expressions can be present
both in the operators of the conditional part and in the
operators of the executive part. This example uses the
virtual functions fild and cstod, the first converting an
INTEGER number to FLOAT POINT and the second
converting a symbol of the digit to its value. Otherwise,
the keyword is also used as a condition that is the oppo-
site of the previous condition. In addition, in case of an
error, its code is generated for the subsequent output of
the error type. The temporal operators U(ntil) and
(ne)X(t) are also used in the operators of the executive
part, which ensure the cyclic execution of the sequence
of actions and their sequential execution. In addition, go
to <label> transition operators are used to organize tran-
sitions to other states. Both the conditional parts of
predicates and their executive parts can be marked with
labels. The label should end with a colon (:). The con-
sistent use of U operators ensures the implementation of
the choice under several conditions. It is also permissi-
ble to use both standard and special functions. The latter
must be described separately and end with a ret return
operator. So, having chosen first the general model of
the algorithm, and going step by step to the final model,
we will try to describe it with the means described
above.

Here is an example of the description of the con-
stant FLOAT POINT.

1. {true}[buff; i=1,sum=0,count=0,const=0,dig,
coder: intger; fsign=0, fneg=0, fexp=0, fdot=0:byte];

2. m4: {buff(i) ="+’} [fsign=1, goto m1]
U {buff(1) ="-"} [fsign=1, fneg=1, goto m1] U
{buff(1) ="."} [({fexp=1} [coder=codl, goto error]
U {otherwise}[fdot=1, goto m1]]
U (m2: {buff(i)=cyf}[dig=cstod(buff(i)),
sum=sum*10+dig, {sum>smax}[coder=cod?2,
goto eror]] |
(m3: {fdot=1} [goto m1]) U {otherwise} [goto m1])
U ({buff(i) = (‘E’ | ‘e”)} ({fexp=1} [coder=cod3,
goto error] U ({otherwise}[fexp=1] |
{true}const=fild(sum)] | {fneg=1} [const= - const,
fneg=0] | {true} [call fin, i++, {i>=max} [stop]]
U {oterwise}[fsign=0, fdot=0, sum=0, goto m1]);
3. ml: {true} [i++ {i>=max} [call fin, stop]
U {othewise}[{fexp=1} [{sum=0} [stop]
U ({sum>0} [const=const*10, sum=sum-1] |
{true}stop]) U ({sum<Q} [const=const/10,
sum=sum-1]) X{true}[stop] U ({fdot=1} [goto m2]
U {otherwise} [goto m3]];
4. error: {true} [goto m1]

The first line of the description presents the initial
data: buff — a buffer where the FLOAT POINT constant
should be placed in symbolic form, where i is an indica-
tor of the position of the constant symbol in the buffer,
sum — the initial value of the integer constant, count — a
counter of fractional digits, const — initial the value of
the converted constant in the format EXTENDED,
fsign, fexp, fneg, fdot = 0 — flags of the sign, exponen-
tial part and fractional point. The variable coder is de-
signed to place the code of a possible error, codl —
when the dot appears again, cod2 — if many digits are
used to define the FLOAT POINT constant, cod3 —
when the symbol of the exponential part appears again.

The second line describes the actions required to
recognize the sign (state 1), fractional point (state 2),
decimal digit (state 3), exponential part (state 4), and
error (state 7). State 5 detects an overflow of digits. The
third line describes the transition to the analysis of the
next symbol of the constant with the transition to the
analysis of the next symbol (state 1), and in the case of
processing the exponential part — to state 4. The fourth
line describes the conversion of the constant from the
INTEGER format to the FLOAT POINT format
(state 8). All actions in the above states are represented
in the description, and labels from the description are
given in front of the corresponding states for the transfer
of control. The automaton model for processing
program of the FLOAT POINT constant is shown
in Fig. 7.

This program is a part of all compilers. Because
the application model fully corresponds to its descrip-
tion, the next step of checking, as required by the
MODEL CHECKING technology, is not required.

Intelligent information technologies

13

o

ee‘a
b

Voo

Fig. 7. Automated model for processing program of the FLOAT POINT constant

The program implementation of this example in
accordance with the obtained automaton model as part
of the compiler must be implemented in the
ASSEMBLER language. Such implementation was car-
ried out at the Department of Software of Automated
Systems of the Cherkasy State Technological Universi-
ty. The program fully demonstrated its error-free opera-
tion. This technology has also been used to create paral-
lel programs using shared resources and parallel thread,

The second line describes the actions for recogniz-
ing the sign (state 1), fractional dot (state 2), decimal
digit (state 3), exponential part (state 4), and error (state
7). State 5 reveals an excess of the number of digits.
The third line describes the transition to the analysis of
the next symbol of the constant with the transition to the
analysis of the next symbol (state 1), and in the case of
exponential part processing — to state 4. The fourth line
describes the conversion of the constant from
INTEGER format to FLOAT POINT format (state 9).
All actions in the above states are presented in the de-
scription, and the labels from the description are given
before the corresponding states. This program must be
part of the work of all translators and interpreters. Be-
cause the model of the program fully corresponds to its
description, the next step of verification, as required by
MODEL CHECKING technology is not required.

The advantages of this technology are that the cre-
ation of the program algorithm model is performed di-
rectly in its description. Therefore, with a correct de-
scription of the model, the model itself will also be cor-
rect, and unlike Model Checking technology, it does not
require further verification. Note that before the exact
description of the model is made, several intermediate
steps must be performed. That is, first, you should cre-
ate a general model, then gradually refine the model,
adjust and finally form an accurate model. In the past,
this procedure was performed by a group of problem
solvers — algorithmists, and then the task was trans-
ferred to programmers. The proposed technology for

creating models and their subsequent processing will
significantly speed up the process of developing reliable
programs.

The technology considered for creating program
models by describing them based on the modified TL,
with the correct description of the program model, al-
lows you to obtain a suitable program model in the form
of a NDFA and avoid the verification step. According to
such a model, the process of transition from a model to
one's own programming in the target language becomes
transparent and understandable. The process of trans-
forming the program model can be implemented on the
basis of the stack algorithm [7, 14, 15]. Figure 8 ex-
plains how an application model description is trans-
formed into a database model. Only the presentation of
the first three states of the program model is shown,
indicating their numbers according to the model graph.
Transition from one state to another is performed
through a binding relation.

The main relation of each state in the executive
part of the predicate in the field List of actions (type
MEMO) contains a list of actions that should be per-
formed in this state according to the description of the
model. The binding relation is provided by the section
of the conditional part of the Condition predicate (of the
MEMO type). The complete model of the program in
the form of a database can be presented in a similar
manner. The actions in the List_of actions and Condi-
tion sections must be converted to statements in the tar-
get procedural programming language. In the case of
automation of the process of conversion of the men-
tioned areas, that is, their translation, the process of de-
scribing the program model directly into the program
will not require a verification step, as provided by the
MODEL CHECKING technology. For this purpose, the
stack algorithm can be applied, when a pair of lexemes
is revealed during the lexical analysis — a data lexeme
and an action lexeme [7]. Action lexemes are assigned
priorities according to which the conversion process is

14

Radioelectronic and Computer Systems, 2024, No. 1(109)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

performed. Simultaneously, additional temporal logic
operators will have a lower priority than the rest of the
operators, which will allow the final conversion of the
description into the operators of the target programming
language. The use of parentheses, which are given the
highest priority, allows you to change priorities during
processing. This is achieved because the description of
the algorithm model of the program is created consist-
ently exactly as it was done at one time by algorithmists
and passed the project of the program model to pro-
grammers. At the same time, the final verification of the
program will consist only of the agreement of data types
regarding their compatibility in the program.

Id_stale

Type

List_of actions

Mark Id_state (current)
Id state (current) Condition
/ Next Id state
Condition
Next Id state J
Id_state
Type

List_of actions

Id_. state T

=

Type
List_of actions

Id_state (current)

Mark

Condition
Next Id state

Id_state (current)
L]
Condition Id_state
Next Id state L~ -
Type

List_of_actions

Mark

Fig. 8. Part of database of program model
5. Discussion

The proposed technology for developing program
models allows the creation of such a model when de-
scribing it in the form of a special database. This model
can then be turned into a program in the chosen proce-
dural programming language, which is a new step to-
wards the automation of program development. Means
for developing parallel programs in the form of status
monitors and status protocols have been created.

Compared with the most modern MODEL
CHECKING technology, this technology does not re-
quire special programs for creating a model and its sub-
sequent verification. This allows you to create correct

programs if the model is correctly described. This is
precisely the scientific novelty of this work. From a
practical point of view, the proposed modeling and
software development technology will accelerate the
development of reliable programs. If this technology is
put into industrial use, it will significantly speed up var-
ious computer developments. From the point of view of
development prospects, they consist, first of all, in the
development of software support for the proposed tech-
nology. Further development of this technology is the
development of a translation program from the descrip-
tion language to the operators of the programming lan-
guage. In addition, when using the technology for dif-
ferent target programming languages, it is advisable to
develop the transformation of the model into an inter-
mediate form from which the transition to the target
programming language is possible. To this should be
added the development of the subroutine library. All of
this together opens wide prospects for the further devel-
opment of this technology.

Conclusions

The proposed technology for developing models of
the programs allows you to create such models when
describing them in the form of a special database. This
model can then be turned into a program in the chosen
procedural programming language, which is a new step
towards the automation of program development.
Means for developing parallel programs in the form of
status monitors and status protocols have been created.

Compared with the most modern MODEL
CHECKING technology, this technology does not re-
quire special programs for creating a model and its sub-
sequent verification. This allows you to create correct
programs if the model is correctly described. This is
precisely the scientific novelty of this study. From a
practical point of view, the proposed modeling and
software development technology will accelerate the
development of reliable programs. If this technology is
put into industrial use, it will significantly speed up var-
ious computer developments. From the point of view of
development prospects, they consist, first of all, in the
development of software support for the proposed tech-
nology. Further development of this technology is the
development of a translation program from the descrip-
tion language to the operators of the programming lan-
guage. In addition, when using the technology for dif-
ferent target programming languages, it is advisable to
develop the transformation of the model into an inter-
mediate form from which the transition to the target
programming language is possible. To this should be
added the development of the developed subroutine
library. All of this together opens wide prospects for the
further development of this technology.

Intelligent information technologies

15

The main contribution of this research is the fur-
ther development of the idea of formal description and
creation of models of programs, followed by the crea-
tion of reliable error-free programs. Models are de-
scribed using predicates, resulting in an automaton
model in the form of an NDFA in a set of states with
connections. For parallel programs, additional states of
program models were proposed, which correctly syn-
chronize the execution of individual threads.

Author Contributions: a general method of pre-
senting a model and its processing in the form of a data-
base — Volodymyr Salapatov; definition of the monitor
state — Serhii Holub; definition of the protocol state —
Vadym Nemchenko.

Conflict of interest
The authors declare that they have no conflict of
interest in relation to this research, whether financial,
personal, authorship or otherwise, that could affect the
research and its results presented in this paper.

Financing
This research was conducted without financial
support.

Data availability
This work has associated data in the data reposito-

ry.

Use of Artificial Intelligence
The authors confirm that they did not use artificial
intelligence methods while creating the presented work.

All the authors have read and agreed to the pub-
lished version of this manuscript.

References

1. Hoare, C. A.R. Communicating sequential
processes. Prentice Hall International Publ., 2022.
260 p. Available at: http://www.usingcsp.com/
cspbook.pdf. (accessed 02.05.2023).

2. Milner, R. A Calculus of Communicating Sys-
tems. Book series: Lecture Notes in Computer Science.
Springer Berlin, Heidelberg, 1980, vol. 92, 174 p. DOI:
10.1007/3-540-10235-3. Available at: http://www.
Ifcs.inf.ed.ac.uk/reports/86/ECS-LFCS-86-7/ECS-
LFCS-86-7.pdf. (accessed 02.05.2023).

3. Clarke, E. M., Gramberg, O., Kroening, D.,
Peled, D., & Veith, H. Model Checking. Second edition.
MIT Press Publ., 2018. 424 p. ISBN 0262349450.
Available at: https://books.google.com.ua/books?
id=qJISBDWAAQBAJ. (accessed 02.05.2023).

4. Zhang, Y. Ji, P.-F., Zhu, P.-W., Peng, P., Li, H.-
W., & Jiang, J.-H. Parallel Software-Based Self-Testing
with Bounded Model Checking for Kilo-Core

Networks-on-Chip. Journal of Computer Science and
Technology, 2014, wvol. 38, pp. 405-421. DOI:
10.1007/s11390-022-2553-3.

5. Grobelna, 1., Grobelny, M., & Adamski, M.
Model checking of UML activity diagrams in logic con-
trollers design. Advances in Intelligent Systems and
Computing, 2014, vol. 286, pp. 233-242. DOI:
10.1007/978-3-319-07013-1_22.

6. Oshibka v PO Airbus A350 vynuzhdayet pere-
zagruzhat' sistemy samoletov kazhdyye 149 chasov
[Airbus A350 software bug forces aircraft systems to
reboot every 149 hours]. Available at:
https://internetua.com/oshibka-v-po-airbus-a350-
vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-
csasov. (accessed 02.05.2023). (in Russian).

7. Salapatov, V. I. Poryadok opysu i obrobky hrafa
avtomatnoyi modeli [Order of the description and pro-
cessing of the program automaton model graph]. Ma-
tematychni mashyny i systemy — Mathematical Ma-
chinesand Systems, 2021, no 3, pp. 121-125. DOI:
10.34121/1028-9763-2021-3-121-125. (in Ukrainian).

8. Rumbaugh, J., Jakobson, 1., & Booch, G. The
Unified Modeling Language Reference Manual. Addi-
son Wesley Longman, 1999, 568 p. ISBN 0-201-30998-
X. Available at: https://idsi.md/files/file/referinte_utile
_studenti/The%20Unified%20Modeling%20Language
%20Reference%20Manual.pdf. (accessed 02.05.2023).

9. Lafore, R. Ob"yektno-oriyentirovannoye pro-
grammirovaniye v S++ [Object-oriented programming
in C++]. SPb, Piter Publ., 2004. 928 p. (in Russian).

10. Eliens, A. Printsipy Ob"yektno-oriyentiro-
vannoy razrabotki programm. 2-ye izdaniye [Principles
of Object-Oriented Software Development Second Edi-
tion]. Sankt-Peterburg, Vil'yams Publ., 2002. 496 p.
ISBN 5-8459-0233-9. (in Russian).

11. Omel'chenko, L. N., & Shevyakova, D. A.
Samouchitel' Visual FoxPro 9.0 [Visual FoxPro 9.0
tutorial]. Sankt-Peterburg, BKHV-Peterburg Publ.,
2005. 608 p. (in Russian).

12. Pasichnyk, V.V., & Reznychenko, V. A.
Orhanizatsiva baz danykh ta znan' [Organization of
databases and knowledge]. Kyiv, BHV Publ., 2006.
384p. Available at: https://www.twirpx.com/
file/1174516/. (accessed 02.05.2023). (in Ukrainian).

13. Garsia-Molina, H., Ullman, J. D., & Widom, J.
Database System Implementation. United States Ed Edi-
tion, Prentice Hall, 1999. 653 p. ISBN-13: 978-
0130402646.

14. Hopcroft, D. E., Motwani, R., & Ullman, J. D.
Introduction to Automata Theory, Languages and Com-
putation. 3 Edition. Pearson Education Publ., 2006.
535p. Available at: https://e.famnit.upr.si/pluginfile.
php/636821/mod_page/content/8/ Automata.pdf. (ac-
cessed 02.05.2023).

15. Konvers'’kyy, A. Ye. Lohika (tradytsiyna i
suchasna). Pidruchnyk dlya studentiv vyshchykh
navchal'nykh zakladiv [Logic (traditional and modern).
The textbook for university students]. Kyiv, Tsentr uch-
bovoyi literatury Publ., 2008. 536 p. ISBN 978-966-
364-735-7. (in Ukrainian).

javascript:void(0)
javascript:void(0)
https://www.scopus.com/authid/detail.uri?authorId=36518652600
https://www.scopus.com/authid/detail.uri?authorId=15076754800
https://www.scopus.com/authid/detail.uri?authorId=7005229686
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov
https://internetua.com/oshibka-v-po-airbus-a350-vynujdaet-perezagrujat-sistemy-samoletov-kajdye-149-csasov

16 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2024, No. 1(109) ISSN 2663-2012 (online)

Received 18.06.2023, Accepted 20.02.2024

INOJAHHSA MOJEJII ITPOI'PAMM 3A JOIIOMOI'OIO ITPE/IUKATIB

Cepein I'onyo, Bonooumup Cananamos,
Baoum Hemuenko

3anporoHOBaHO PO3B’SI30K BUPIIICHHS MPOOJIEMH MiJABHINCHHS HAIIHHOCTI Ta TMO30aBJICHHS BiJl MOMIUIOK
KOMIT FOTEpHUX IIPOrpaM 3a paxyHOK CTBOPEHHS IX a/IeKBaTHUX Mojelneil Ta moOy/qoBi Ha X OCHOBI, BJIaCHE, IPO-
rpam. OTpuMaHi pe3yiabTaTH TO3BOJISIOTH 1T030aBUTHCh MOMKIIMBHX HMOMMJIOK NMPW MOOYMOBI Pi3HHUX MPOrpam, 30-
KpeMa KpUTHYHHX IporpaM YIpaBJIiHHS B aBiallii, HA3eMHOMY TPaHCIIOPTi, BIHCHKOBIH cripaBi Tomo. O0’€KToM s10-
CIIIJDKEHHS € Tporec Mo0yJ0BH MOAENel IporpaM 3a JOMOMOTrOK MOIH(IKOBaHOI TEMIOPAIBHOI JIOTiKH. MeToro
JlaHOi poOOTH € po3poOKa MeToay MoOyJOBH aJeKBaTHUX MOJIENEH mporpam, 3a JOIMOMOTOI0 SIKUX MOYKHA CTBO-
proBaTu caMi IporpaMu Ha LJIBOBiH TpONEnypHi MOBI mporpamyBaHHs. Ha BinMiHy BijJ icCHyr0u4oi TeXHOJOTIl
MODEL CHECKING ueit Mmeton He notpedye Kpoky Bepuddikariii mojeni. [le mo3Bossie cCipocTUTH mporiec mooy-
JIOBM MOJIENI NpOorpaMHu i caMoi mporpamu, yCyHYTH TIOMUJIKH Y TIporpaMax Ta MiJBHIIMTH iX HajiiHicTh. Llel Ho-
BUI KPOK Y HampsIMKy aBTOMAaTu3allii MpoleciB po3poOKH KOMIT'IOTEPHHX Mporpam IiABHIIEHOI HaIidHOCTI, 10
SIKpa3 1 CKJIaJia€ HayKOBY HOBH3HY IIi€l po6otu. OmUc MoJei MporpaMu OXOIUTIOE sIK JIOTIKY MporpaMu 3 il posra-
JY)KEHHSMH, TaK 1 KOHKPETHI i1 y KOXXHOMY Micli MOJEJl MporpaMu. Y pe3yiabTaTi TaKoro OMUCY CTBOPIOETHCS
MOJIEJIb MPOrPaMy Y BUIJIS/II HEBU3HAUYEHOTO0 CKIHUEHHOTO aBTOMATY, 5IKa, y Pa3i KOPEKTHOro HOro OMHUCY, JT03BOJISIE
PO3pOOIIATH KOPEKTHI MOJENi 1 y mojaiblioMy mporpamMu. ®opManbHO MOJAENb MpPEACTaBICHA 3a JOMOMOIOH
creniaibHOI 0a3u aHuX, 1€ ONKUC /il Yy KO)KHOMY CTaHi, a TAKO)XK YMOBH MEPEXOAY B iHIII CTaHH, 33JaI0ThCS Y BH-
rsini qaaux tuy MEMO, ToOTO y BUMIIsiAl psiika CHMBOJIB HEBU3HAUEHOI IOBXKHHU. MoJielnb, 1o CyTi, IpecTaB-
JISiE IeTalbHy OJIOK-CXeMY aJrOpUTMY MalOyTHBOI HpOrpamMH y BHIJISII aBTOMATHOI Mofenmi. Y KO)KHOMY CTaHi 3
BUKOPUCTAaHHSM TEMITOPAJIbHOI JIOTIKH MOBHICTIO OMUCYETHCS TOCIIIOBHICTD [, SIKi MalOTh MPOrpaMHO pealtizyBa-
TUCS 1 BUKOHYBATHCS Y HbOMY. JlJisi epeTBOpPEHHsI Takol MOZIeNl MmporpamMu Tpeda BUKOHATH MOBHHK 00XiJ| JepeBa
MOJIeNi TporpaMH Ta BHKOHATH peaji3allifo NporpaMy Ha OJHIM 13 LUILOBUX MPOLEAYPHHUX MOB NpOrpamyBaHHS
BIJIMOBIJTHO /10 BUMOT' TEXHIYHOro 3aBiaHHs. OCOOJMBO BaXKJIMBOI y IIOMY MiJXOJl € MOXJIHBICTh CTBOPIOBATH
napajiefibHi IpOrpaMu HUISIXOM 3aCTOCYBAaHHS OINKUCY CHELiaIbHUX CTaHIB MOZAENI TpOrpaMu, a came CTaHy-
MOHITOpY Ta CTaHy-poTokoiy. [lepimii 3abe3nedye AOCTYM A0 CHIJBHUX PECYPCIB KIIBKOX MPOLECIB, a APYTHil
3a0e3rneuye napanienbHe BUKOHAHHS KUTbKOX HE3aJIKHUX MPOrpaMHUX MOTOKIB. TakuMm 4MHOM, po3po0IIeHO HOBUI
MiAX11 Yy CTBOPEHHI HaAiMHUX, OE3IOMUIIKOBUX TPOrpaM HUisixoM no0ynosu i mozeni. [Ipu moOymoBi mporpaMHoi
MOJIeJIi 3a 3alpOIOHOBAHMM METOIOM BIAETHCS YHHUKHYTH €Tally J10JaTKOBOI Bepudikalii 1iei Moaesi, OCKiIbKU
NIPU KOPEKTHOMY OMHMCI MOl Nporpam KOpEeKTHOr Oyrne i cama mporpama. [Ipu BUKOpuCTaHHI 00’ €KTHO-
OpIEHTOBAHOrO MPOrpaMyBaHHs METOJ JI03BOJISIE CTBOPIOBATH KJIACH 1 BIAMOBIAHI nporpaMu. [lopanpluiii po3BUTOK
3aIlpOIOHOBAHOI TEXHOJIOTIT TOJsIrac B aBTOMATH3allil MEepeTBOPEHHS. MO IPOrpaM y MporpaMu Ha IIbOBId
MOBI TporpamyBaHHsi. ExcriepumenTasbHi 3acTocyBaHHs 1€l TexHonorii y UepkacbkoMy Jiep>KaBHOMY TEXHOJIOTI4-
HOMY YHIBEPCHUTETI MiATBEPHIN e(eKTUBHICTh 3aMPOIOHOBAHOT TEXHOJIOTIT Uil CTBOPEHHSI HAAIMHOTO POrPaMHO-
ro 3a0e3meueHHs 0e3 MOMMIIOK Ta JO3BOJSIOTH PEKOMEHAYBATH ii y NMPAaKTHYHUX PO3poOKax i BIPOBAIKYBATH Y
HaBYaJILHOMY TMPOIIECi.

KunrodoBi cioBa: Mozens, npenukaT; TEMIIOpalbHa JOTiKa; HeBU3HAYEHHI CKIHUCHHHUH aBTOMAT; MpoLeaypHa
MOBa IIPOrpaMyBaHHSL.

Tony6 Cepriii BacuiboBuu — 1a-p TexH. Hayk, npod., 3aB. Kad. MpOrpaMHOro 3abe3rnedeHHs
ABTOMATH30BAaHMX CHUCTeM, UepKachKuid Jep KaBHUN TEXHOJIOTIYHAN yHiBepcuTeT, Yepkacu, Ykpaina.

CananatoB Bononumup IBaHOBMY — KaHA. TeXH. HAyK, JOIM., JOI. Kad. IPOrpaMHOro 3abe3NeucHHS
ABTOMATH30BaHUX cUcTeM, UepKachKui Aep>KaBHUI TEXHOJIOTIYHUHN yHiBepcHTeT, Yepkacu, Ykpaina.

Hemuyenko Baaum B’sauyeciaBoBHY — KaHA. TEXH. HayK, JOI. Kad. mporpamMHOro 3abe3medeHHs
ABTOMATH30BAaHUX cUcTeM, UepKachKuii Aep KaBHUI TEXHOJIOTIYHAHN yHiBepcUTeT, Yepkacu, Ykpaina.

Serhii Holub — Doctor of Technical Sciences, Professor, Head of the Automated Systems Software Depart-
ment, Cherkasy State Technological University, Cherkasy, Ukraine,
e-mail: s.holub@chdtu.edu.ua, ORCID: 0000-0002-5523-6120, Scopus Author ID: 57204158669.

Volodymyr Salapatov — PhD, Associate Professor, Associate Professor at the Software Support of Automated
Systems Department, Cherkasy State Technological University, Cherkasy, Ukraine,
e-mail: v.salapatov@chdtu.edu.ua, ORCID: 0000-0001-7567-637X, Scopus Author 1D: 6506988429.

Vadym Nemchenko — PhD, Associate Professor at the Software Support of Automated Systems Department,
Cherkasy State Technological University, Cherkasy, Ukraine,
e-mail: v.nemchenko@chdtu.edu.ua, ORCID: 0000-0003-2262-719X.

