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POST-PROCESSING OF COMPRESSED NOISY IMAGES USING BM3D FILTER 
 

Acquired images are often noisy. Since the amount of such images increases, they should be compressed where 

lossy compression is often applied for several reasons. Such compression is associated with the phenomena of 

specific image filtering due to lossy compression and the possible existence of an optimal operation point (OOP). 

However, such filtering is not perfect, and residual noise can be quite intensive even if an image is compressed 

at the so-called optimal operation point. Then, additional post-filtering can be applied. Thus, the basic subject 

of this paper is the post-processing of noisy images compressed in a lossy manner. The main goal of this paper 

is to consider the possible application of a block-matching 3-dimensional (BM3D) filter to images corrupted by 
additive white Gaussian noise compressed by a better portable graphics (BPG) coder with a compression ratio 

smaller than that for the optimal operation point and in OOP neighborhood. The tasks of this paper are to 

analyze the efficiency of compressed image post-processing depending on noise intensity, image complexity, 

coder compression parameter Q, and filter threshold parameter β according to different quality metrics and to 

provide practical recommendations on setting the filter and coder parameters. The main result is that the post-

processing efficiency decreases when the coder compression parameter increases and becomes negligible for a 

coder compression parameter slightly larger than its value for OOP. The post-processing efficiency is larger for 

simpler structure images and larger noise intensity. Compressed image quality due to post-processing improves 

according to the standard criterion peak signal-to-noise ratio and visual quality metrics. For larger coder com-

pression parameters, the optimal threshold shifts toward smaller values. In conclusion, we demonstrate the ef-

ficiency of post-processing and show that the BM3D filter outperforms the standard discrete cosine-based (DCT) 
filter. We also provide recommendations for filter parameter setting. We also outline possible research direc-

tions for the future. 

 

Keywords: lossy compression; noisy images; coders; quality metrics; post-filtering. 

 

1. Introduction 

 
Nowadays images are acquired by numerous types 

of imaging systems and are employed in agricul-

ture [1, 2], technology [3, 4], medicine [5, 6], and every-

day life [7]. As the number of acquired images steadily 

grows, there is also a stable tendency for the image aver-

age size to increase. Therefore, there is a necessity for 

efficient image compression for their transfer via com-

munication lines and storage. There exist lossless [8] and 

lossy [9, 10] image compression methods. 

Lossless compression does not introduce losses into 

compressed images, but the compression ratio (CR) is of-

ten inappropriate. Therefore, lossy compression tech-

niques have been widely applied. Because they introduce 

losses, a trade-off between the compressed image qual-

ity [11], CR, and other characteristics should be 

reached [12, 13]. Visual quality can be consid-

ered [11, 14], image classification [15, 16], and object 

detection aspects can be important [17].  

In many practical situations, it is assumed (or it is 

supposed by default) that the images to be compressed 

are noise-free [9, 14]. Then, rate-distortion curves have 

monotonous behavior, and using them, it is possible to 

provide a desired CR or a desired quality (according to a 

given metric) or an appropriate trade-off between 

them [12, 14]. Meanwhile, there are many practical situ-

ations where images to be compressed are corrupted by 

noise [18, 19].  This occurs for optical [19] and medi-

cal [4] images obtained under complex conditions as well 

as for synthetic aperture radar images [2]. Lossy com-

pression in this case has certain specific features [20, 21]. 

The first is a specific noise filtering effect (although it is 

less than the denoising effect of conventional filtering of 

noisy images) [20, 22]. The second is the possible exist-

ence of the so-called optimal operation point, i.e., such a 

value of the parameter that controls compression (PCC) 

for a given encoder that the compressed image is maxi-

mally close to the corresponding noise-free one accord-

ing to a chosen quality (similarity) metric [23].   Lossy 

compression in the optimal operation point (OOP), if it 

exists, has two advantages. First, a rather high CR, which 

is considerably larger than that for lossless compression, 

is usually provided. Second, the compressed image qual-

ity is higher than that for uncompressed noisy images. If 

OOP does not exist, then a more “careful” lossy compres-

sion is recommended [23].  

Recently, it has been shown that compressed noisy 

images can be efficiently post-processed to additionally 

improve their quality [24, 25]. For this purpose, a discrete 
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cosine transform (DCT) based filter [24, 26] has been ap-

plied to noisy images compressed by a better portable 

graphics (BPG) coder [27], which is one of the best mod-

ern coders. The following has been demonstrated. First, 

post-filtering can efficiently improve image quality, es-

pecially for Q (that serves as PCC for the BPG-coder) 

smaller than Q that corresponds to OOP (QOOP) and for 

images of relatively simple structure corrupted by inten-

sive noise. Second, the DCT-based filter properties can 

be varied by a parameter β used in the threshold setting; 

optimal values of this parameter can be found, and the 

general tendency is that optimal β decreases if Q becomes 

larger, image complexity increases, and noise intensity 

reduces.  

Meanwhile, the DCT-based filter is not the 

best [28]. In particular, the block-matching 3-dimen-

sional (BM3D) filter [28] can perform better in tradi-

tional denoising applications according to both conven-

tional and visual quality metrics. This allows the expec-

tation that the BM3D filter can efficiently cope with re-

sidual noise in the post-processing of lossy compressed 

noisy images.        

Thus, the goal of this paper is to analyze the BM3D 

applicability for removing the residual noise in noisy im-

ages compressed by the BPG coder. If its efficiency is 

confirmed, then the secondary goal is to propose how to 

set the filter parameters optimally.  

The paper is organized as follows. The problem of 

denoising lossy compressed noisy images is refreshed in 

Section 2. Preliminary analysis of BM3D filter applica-

bility to post-processing is performed in Section 3. A 

more detailed analysis results are presented in Section 4 

and discussed in Section 5. Finally, the Conclusions fol-

low.  
 

2. Problem statement and existing 

approaches 
 

2.1. Problem statement 
 

From the very beginning, let us describe our im-

age/noise model and the requirements for processing 

such images, where lossy compression is the main step. 

Suppose we have an image corrupted by additive white 

Gaussian noise (AWGN):  

 

Iij
n = Iij

true + nij,                            (1) 

 

where Iij
n is the noisy ij-th pixel value, Iij

true denotes the 

true ij-th pixel value, and nij is the noise. It is assumed 

that AWGN has zero mean and variance σ2 that is known 

in advance or accurately pre-estimated by some known 

blind method [29, 30]. Note that we start by considering 

the AWGN model for two reasons. First, it is the model 

often used in studies dealing with image  

denoising [26, 28] and lossy compression of noisy im-

ages [21, 23]. Second, before studying more complex 

noise models, it is worth considering the AWGN model 

as a starting point. Note also that, in simulations and pre-

liminary studies, we assume having the true image and 

adding the noise artificially, In other words, we have 

three images: the true, noisy, and compressed  

({Iij
c , i = 1, … , I; j = 1, … J}) ones where I and J define the 

image size. If the compressed image is post-filtered, then 

we also have also the image {Iij
pf

, i = 1, … , I; j = 1, … J}. 

In fact, we have to compare the quality of noisy, com-

pressed, and post-filtered images and other parameters 

for them (e.g., CR, computational efficiency of their ob-

taining) to understand the best strategy. Here we mean 

that the following strategies are possible:  

1) to have the original (noisy, uncompressed or 

compressed in a lossless manner) image;  

2) to obtain the image compressed with a certain Q;  

3) to obtain the image compressed with a certain Q 

and then post-processed with a certain filter and certain 

parameters of this filter.    

In our preliminary analysis, we need test images and 

criteria for their quality. Usually, in analysis, at least two 

images of different complexity are employed, where one 

should have a quite simple structure and the second has 

to be rather complex. Similar to [24], we use the simple 

structure image Frisco (Fig. 1, a) and the complex struc-

ture image Fr03 (Fig. 1, b), both of which are grayscale.  
 

 
a 

 
b 

Fig. 1. Two grayscale test images of different  

complexity used in our study: Frisco (a) and Fr03 (b) 
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Since we have the true image 𝐈⬚
𝐭𝐫𝐮𝐞  that can be 

treated as a reference, the quality of images 𝐈⬚
𝐧  , 𝐈⬚

𝐜 , and 

𝐈
⬚

𝐩𝐟
 can be determined using full-reference metrics (quan-

titative criteria). Let us use the peak signal-to-noise ratio 

(PSNR) for the beginning. Fig. 2 presents three images: 

𝐈⬚
𝐧 for σ2 = 100 (Fig. 2, a), 𝐈⬚

𝐜  for Q=27, where Q is the 

parameter that controls compression (PCC) for the BPG 

coder (Fig. 2, b), and the results of its post-processing by 

the DCT-based filter with the hard threshold  

T = 2.3σ⬚, i. e. β = 2.3 (Fig. 2, c). 
 

 
a 

 
b 

 
c 

Fig. 2. Noisy (σ2 = 100) (a), compressed (Q=27) (b), 

and DCT-filtered (β = 2.3) (c) images 

As one can see, noise for the image in Fig. 2, a is 

visible, especially in homogeneous regions 

(PSNR=28.1 dB; recall that for PSNR<35 dB the distor-

tions are usually visible). Lossless compression of this 

image is almost useless since CR is only slightly larger 

than unity (e.g., for Zip it equals to 1.005 and, for Rar, 

CR= 1.003). Compression with Q=27 (Fig. 2, b) leads to 

PSNR=28.27 dB and CR=3.22, i.e. to the better quality 

of the compressed image compared to the noisy image 

quality (according to PSNR metric) and considerably bet-

ter CR. A small noise-filtering effect is observed. Finally, 

the post-filtering leads to even considerably better result. 

Clearly, the CR is the same as in the previous case (post-

filtering is applied to decompressed images) but the qual-

ity after decompression is significantly better 

(PSNR=37.22 dB).     

Interesting dependence describing the peculiarities 

of lossy compression of noisy images are shown in Fig-

ures 3 and 4. Here we show the improvement or degrada-

tion of image quality depending on CR, where a larger 

CR corresponds to a larger Q (although dependences of 

CR on Q are very individual and are greatly influenced 

by image and noise properties). The improvement or deg-

radation is expressed as  

 

        δPSNRcn(Q) = PSNRc(Q) − PSNRn  ,       (2) 

 

δPSNRpfn(Q) = PSNRpf(Q) − PSNRn  ,     (3) 

 

where PSNRn , PSNRc(Q) , and PSNRpf(Q)  are PSNR 

values for noisy, compressed, and post-filtered images, 

respectively; the latter two are functions of Q.  

Let us start by considering the dependence for the 

image Fr03. The dependence δPSNRcn(Q) start from ap-

proximately 0 for CR about 3 and then behaves in a 

slightly different manner depending on noise variance. 

For σ2 = 50  (Fig. 3,a), there is a maximum observed for 

a CR of approximately 9, then δPSNRcn(Q)  monoton-

ically decreases with Q increasing. Moreover, the values 

of δPSNRcn(Q) become negative, i.e., the compressed 

image quality is worse than the noisy image quality. For 

σ2 = 100  (Fig. 3,b) and σ2 = 200  (Fig. 3,c), there are 

obvious maxima of δPSNRcn(Q)  observed for CR≈12 

and CR≈18, respectively. These are optimal operation 

points that occur for  

 

QОOP = 15+20lg(σ),                        (4)  

 

i.e. QОOP =35 for σ2 = 100 and QОOP =38 for σ2 = 200 

[24]. Expression (4) means that the probable OOP posi-

tion can be determined under the condition of known or 

accurately pre-estimated noise standard deviation. The 

results in [23] demonstrate that the existence of OOP for 

a given noisy image can be predicted with high accuracy.       



Methods and means of image processing 
 

103 

 
a 

 
b 

 
c 

Fig. 3. Dependences for the test image Fr03  

for noise variance equal to 50 (a), 100 (b), and 200 (c) 

 

This means that one can decide whether it is worth 

compressing an image with QOOP (4) before the execution 

of lossy compression or not.  

It is worth noting here that dependence 

δPSNRpfn(Q) has been obtained under the assumption 

that optimal β (that corresponds to maximal PSNR of 

post-processed image) is used.    

This dependence is monotonically decreasing irre-

spective of the noise variance. The analysis shows the 

following: 

1) δPSNRpfn(Q) is the largest for small CR (and, 

respectively, small Q) when the compressed image is 

very close to the noisy one and efficient post-processing 

(filtering of residual noise) is possible; for larger CR (and 

Q), residual noise becomes less intensive and its suppres-

sion is less efficient;  

2) the positive effect due to post-processing can be 

quite large; it exceeds 2 dB for σ2 = 50 , 3 dB for 

 σ2 = 100,  and 4 dB for σ2 = 200; 

3) if CR approximately corresponds to QOOP, the 

efficiency of post-processing is not large, it is about 

0.6 dB; after this, for larger CR (and Q), post-processing 

becomes useless.  

Analysis of data for the test image Frisco (Fig. 4) 

shows the following:   

1) the main conclusions coincide with those given 

above;  

2) the difference is that the effect of post-pro-

cessing characterized by δPSNRpfn(Q) −  δPSNRcn(Q)  

is larger: it exceeds 8 dB for σ2 = 50 , 9 dB for  

σ2 = 100,  and 10 dB for σ2 = 200; this is not surprising 

because, as known [19, 26, 28], the filtering efficiency 

depends on noise intensity and image complexity, which 

are higher for less complex images and greater intensity 

of the noise.  

It is also worth mentioning the tendency that opti-

mal β for the DCT-based filter decreases if Q increases.      

 

2.2. Possible solution 

 

In this paper, we analyze the coder and the filters 

that are among the best assuming that their combination 

produces the best outcomes (in general, different com-

pression techniques can be applied to noisy images 

[27, 31] and different filters can be used for post-pro-

cessing [32]). The BPG coder has the following ad-

vantage: it has considerably better performance com-

pared to JPEG and outperforms many modern coders, the 

BPG encoder is easy to use (its CCP Q can be only inte-

ger and varies in the limits from 1 to 51 (a larger Q leads 

to a higher CR and worse visual quality in compressing 

noise-free images). The BPG coder can process images 

presented in different formats with 8–14 bits. These were 

the reasons for our interest in the BPG coder.  

The filters that belong to the DCT-based family 

(https://webpages.tuni.fi/foi/) are attractive because of 

several important properties. First, DCT is a good data 

decorrelation transform approaching Karhunen-Loeve 

one. Second, there are versions of the DCT-based filters 

for different types of noise, including signal-dependent 

and spatially correlated ones that either use variance-sta-

bilizing transforms or adapt threshold calculation algo-

rithms to a noise type [33]. Third, the texture-preserving 

property of DCT-based filters is worth admitting [33].  

Finally, the DCT-based filter properties can be varied and 

optimized according to different criteria due to the  

possibility of varying parameters such as the block size,  
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a 

 
b 

  
c 

 

Fig. 4. Dependences for the test image Frisco  

for noise variance equal to 50 (a),  

100 (b), and 200 (c) 

 

threshold type, and aforementioned parameter β. While 

the default setting of β for hard threshold is 2.7 (T=2.7σ), 

it is possible to decrease β to provide better edge/de-

tail/texture preservation or better visual quality. Recall 

here that if the DCT-based filter is applied after lossy 

compression of a noisy image, we have a standard devi-

ation of residual noise σres<σ and, thus, the threshold 

should be smaller. Because we do not estimate σres after 

lossy compression, threshold reduction should be  

performed by diminishing β to provide quasi-optimal 

performance of the filter.          

The BM3D filter is the most advanced version of 

the DCT-based filters. It exploits not only the positive 

features of the DCT, but also the non-local approach [19, 

28] that presumes the search for similar patches (blocks) 

and their joint denoising. Due to these modifications, the 

BM3D filter usually provides a higher output PSNR than 

the standard DCT filter with fully overlapping 8×8 pixel 

blocks and a hard threshold. In addition, the BM3D filter 

is characterized by better visual quality of output images 

due to better edge/detail/texture preservation. Finally, 

similar to the standard DCT-based filter, it is possible to 

manipulate the filter properties by varying β. These are 

the main reasons for our expectation that the BM3D filter 

can be efficient for the considered application.         

 

3. Preliminary analysis  

of the BM3D filter applicability 
 

First, let us check whether or not the positive effect 

of post-filtering occurs and whether there is dependence 

of post-processing efficiency on β, σ, and Q. For this pur-

pose, we obtained dependences  PSNRpf(β)  for fixed  

σ2 = 100 and several values of Q in the range from 28 

to 40. Some of them for the test image Fr03 are presented 

in Fig. 5. Recall that Q=36 approximately corresponds to 

optimal operation point.  

The main tendencies are the same as those observed 

for the standard DCT-based coder. First, for Q equal to 

28, 32, and 36, there are obvious maxima for β that shift 

toward smaller values of β if Q increases. Meanwhile, 

there is no maximum for  PSNRpf(β)  if Q=40, i.e. if 

Q>QOOP. In addition, the values of  PSNRpf(β)  are 

smaller than PSNRn, i.e., the quality of compressed and 

processed images is lower than that of noisy images. 

Post-processing is thus useless.  

The maximum value of  PSNRpf(β) decreases if Q 

increases. It equals 31.5 dB for Q=28, to 31.0 dB for 

Q=32, and 29.9 dB for Q=36. This means that the BM3D 

filter performs well and can be used in post-processing. 

However, the post-processing efficiency significantly de-

pends on Q.   

Fig. 6 presents four dependences  PSNRpf(β)  for 

fixed  σ2 = 100 for the other test image. As one can see, 

the main tendencies are the same. The only difference is 

in the maximal values of PSNRpf(β) that are considera-

bly larger than those for the test image Fr03. The reason 

is that the test image Frisco has a simpler structure and, 

thus, can be denoised better. 

We are also interested in whether BM3D produce 

any benefits compared to the standard DCT-based filter? 

To partly answer this question, let us analyze data given 

in Table 1. 
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a 

 
b 

 
c 

 
d 

Fig. 5.  PSNRpf(β) for fixed  σ2 = 100  

and values of Q equal to 28 (a), 32 (b), 36 (c),  

and 40, image Fr03 

 
a 

 
b 

 
c 

 
d 

Fig. 6.  PSNRpf(β) for fixed  σ2 = 100  

and values of Q equal to 28 (a), 32 (b), 36 (c),  

and 40, image Frisco 
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Table 1  

Comparison of BM3D and standard DCT-based filters, 

σ2 = 100 , the test image Frisco 

Q 
Standard DCT filter BM3D filter 

βopt PSNRm βopt PSNRm 

24 2.8 37.45 3.0 37.93 

25 2.8 37.44 3.0 37.90 

26 2.8 37.42 2.9 37.86 

27 2.8 37.39 2.8 37.82 

28 2.7 37.35 2.8 37.77 

29 2.7 37.31 2.8 37.70 

30 2.7 37.21 2.8 37.60 

31 2.6 37.12 2.8 37.48 

32 2.6 37.01 2.7 37.32 

33 2.5 36.93 2.7 37.17 

34 2.3 36.80 2.4 36.97 

35 2.0 36.62 2.2 36.68 

36 1.8 36.27 1.7 36.33 

37 1.6 35.89 1.6 35.95 

38 1.6 35.43 1.5 35.48 

39 1.4 34.87 1.4 34.90 

40 1.4 34.30 1.0 34.32 
 

Here we present the values of βopt and maximal 

 PSNRpf (in dB) attained for βopt. As seen, the values of 

βopt for both filters are practically the same for a given Q. 

If Q is considerably smaller than QOOP (35 for the 

considered case), the optimal values of β practically do 

not change and are close to the optimal values recom-

mended for conventional denoising applications. How-

ever, starting from Q≈QOOP-5, βopt starts to decrease and 

is about 2.1 for Q≈QOOP.  

The values of PSNRm are different for the consid-

ered filters if Q≤QOOP. The largest difference is observed 

for Q<QOOP-5 and it reaches approximately 0.5 dB. This 

means that the BM3D filter is preferable.  

Similar studies have been carried out for σ2 = 50 

and σ2 = 200 as well as for the test image Fr03 for all 

three values of the noise variance. Very similar results 

were obtained. The observed tendency is that the benefits 

of the BM3D filter compared with the standard DCT-

based filter are larger for larger noise variance and sim-

pler structure images.   

  

4. Detailed analysis 
 

First, analysis of  PSNRpf(β, Q) can be performed 

using three-dimensional representations of these func-

tions. Fig. 7 shows two examples. They demonstrate two 

main tendencies:  

a) maximal values decrease if Q increases;  

b) βopt reduces if Q becomes larger.   

The metric PSNR is not the best in characterizing 

the visual quality of original and/or processed images 

[34]. Therefore, many other (visual quality) metrics have 

been proposed in recent years. Therefore, let us use one 

of them, namely PSNR-HVS-M (https://ponoma-

renko.info/psnrhvsm.htm) in our analysis (where HVS 

relates to human vision system and M to masking).    

 

 
a 

 
b 

Fig. 7. 3D representations of  PSNRpf(β, Q)  

for σ2 = 100 for the decompressed test  

images Frisco (a) and Fr03 (b) after post-processing  

by the BM3D filter 

 

This metric considers two important properties of 

the human vision system (HVS): less sensitivity to dis-

tortions in higher spatial frequencies than in low spatial 

frequencies and masking effect. In our case, it is also im-

portant that PSNR-HVS-M can be applied to grayscale 

images. Its values are larger than the corresponding 

PSNR if noise (distortions) is white and an essential 

masking effect occurs. In contrast, PSNR-HVS-M is 

smaller than PSNR if the distortions are close to spatially 

correlated noise and the masking effect is practically ab-

sent. PSNR-HVS-M is expressed in dB, where its larger 

values correspond to a better visual quality. PSNR-HVS-

M corresponds to practically invisible distortions if its 

value exceeds 41 dB.  

Fig. 8 presents dependence PSNR − HVS − Mpf(β) 

obtained for σ2 = 100  and four values of  

Q (28, 32, 36, and 40) for the test image Fr03. The plots 

are similar to the corresponding plots in Fig. 5. 

https://ponomarenko.info/psnrhvsm.htm
https://ponomarenko.info/psnrhvsm.htm
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a 

 
b 

 
c 

 
d 

Fig. 8.  PSNR − HVS − Mpf(β) for fixed  σ2 = 100  

and values of Q equal to 28 (a), 32 (b), 36 (c),  

and 40 (d), image Fr03 

 

Again, there are obvious maxima for Q=28 and 32 

(Figures 8, a and 8, b, respectively) observed for βopt of 

about 2.3. Meanwhile, for Q = 36 ≈ QOOP, the maximum 

exists but its value (31.6 dB) is significantly smaller than 

that for Q = 28 (33.8 dB) and Q = 32 (33.2 dB). Besides, 

βopt for Q = 36 has shifted to 1.7. 

This means that post-processing is efficient and 

worth applying for Q≈QOOP-3. For larger Q, post-pro-

cessing efficiency decreases rapidly as Q grows. 

Fig. 9 shoes the dependence  PSNR − HVS −

Mpf(β) obtained for σ2 = 100 and four values of Q (28, 

32, 36, and 40) for the test image Frisco. The first obser-

vation is that the dependence is similar to the correspond-

ing dependence  PSNRpf(β) in Fig. 6 as well as depend-

ences  PSNR − HVS − Mpf(β)  in Fig. 8 for the other test 

image. The specific features are as follows. First, larger 

maximal values are provided than those for the corre-

sponding data in Fig. 8. This approach deals with less 

complexity of the image Frisco and, thus, better effi-

ciency of its lossy compression and denoising. Second, 

for the same Q and β,  PSNR − HVS − Mpf  values are, in 

general, larger for the test image Frisco. Meanwhile, the 

conclusion is the same – it is not worth compressing im-

ages with Q>QOOP where QOOP is described by expression 

(4) and it is useless to perform post-processing in this 

case. In fact, compression with Q>QOOP can be reasona-

ble (used) only if for QOOP a desired CR is not produced.  

We are also interested in whether the BM3D filter 

produces a better visual quality of post-processed images 

compared to the standard DCT-based filter. For this pur-

pose, the data for the metric  PSNR − HVS − Mpf  have 

been collected and are presented in Table 2. As seen, 

BM3D shows better performance for Q≤QOOP-3. Then, 

the difference reduces and, for Q≥QOOP, post-processing 

by any of the considered filters becomes useless.  

The cases of other test images and other values of 

noise variance have also been studied. The observed 

tendencies and conclusions are the same as above. The 

benefit of using the BM3D filter is greater for simpler 

structure images (Frisco in our case) and for larger noise 

intensity. For Q≤QOOP-3, it is possible to recommend us-

ing βopt=2.3 to provide the best visual quality. 

 

5. Discussion 
 

The analysis of the simulation data shows the fol-

lowing. The proposed approach can be helpful when im-

ages subject to compression are contaminated by inten-

sive noise. This often occurs in radar [2] and ultrasound 

medical [4] imaging as well as for optical images ac-

quired under poor illumination conditions [15]. Since the 

positive effect of post-filtering can be sufficiently large 

(PSNR and PSNR-HVS-M can be improved by several 

dB), it is worth providing the post-filtering option for sys-

tems that deal with processing of images of the aforemen-

tioned types where lossy compression is needed. 
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b 

 
c 

 
d 

Fig. 9.  PSNR − HVS − Mpf(β) for fixed  σ2 = 100  

and values of Q equal to 28 (a), 32 (b), 36 (c),  

and 40 (d), image Frisco 

Table 2  

Comparison of the BM3D and standard DCT-based  

filters, σ2 = 100, the test image Frisco, PSNR-HVS-M 

Q 
Standard DCT filter BM3D filter 

βopt PSNRm βopt PSNRm 

24 2.5 35.66 2.5 36.11 

25 2.5 35.64 2.5 36.08 

26 2.5 35.59 2.5 36.00 

27 2.5 35.53 2.5 35.93 

28 2.5 35.48 2.4 35.86 

29 2.4 35.40 2.3 35.79 

30 2.4 35.25 2.3 35.62 

31 2.4 35.14 2.3 35.47 

32 2.3 34.92 2.3 35.21 

33 2.2 34.77 2.3 34.98 

34 2.1 34.59 2.1 34.72 

35 1.9 34.33 2.0 34.31 

36 1.6 33.84 1.3 33.87 

37 1.5 33.36 1.3 33.41 

38 1.4 32.81 1.1 32.87 

39 1.2 32.09 1.0 32.11 

40 1.1 31.30 1.0 31.32 

  

The proposed method has several limitations and 

should be further advanced. The principal limitation is 

that it is useless for Q≥QOOP. Denoising based on trained 

neural networks [6] may be helpful, but we have doubts 

because statistics of residual noise are very complex.  

Another problem deals with the simplified noise 

model used in our design. AWGN model is approxi-

mately adequate for optical imaging, but noise in radar 

and medical images is usually signal dependent. How-

ever, it is possible to overcome this problem by applying 

a proper variance stabilizing transform [25] before com-

pression and/or denoising. One more problematic point 

with AWGN model is that noise can be spatially corre-

lated. This case requires additional studies. 

One more assumption put into the basis of our de-

sign is that noise statistics is known in advance. In this 

sense, we can state that there exist blind methods that can 

perform estimation of noise properties accurately 

enough [29].       

Our studies have also shown that post-filtering per-

formance depends on image complexity. This means that 

image and noise properties have to be incorporated into 

the decision of whether it is worth performing post-filter-

ing of compressed noisy images and what should be the 

filter parameters.             

 

6. Conclusions 
 

In this paper, we have considered the problem of 

post-processing noisy images compressed in a lossy man-

ner by the BPG coder. It is shown that post-processing 
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can be efficient under the following conditions: 

a) the parameter that controls compression is 

smaller than QOOP determined by (4);  

b) noise intensity is quite high;  

c) image complexity is not large;  

d) an efficient filter is applied;  

e) its parameters are adapted to the properties of re-

sidual noise. 

It is demonstrated that the BM3D filter with an op-

timal threshold is more efficient than the standard  

DCT-based filter for the PCC Q ≤ QOOP-3 in terms of con-

ventional and visual quality metrics. The difference ac-

cording to PSNR can reach 0.5 dB and such a difference 

could be expected from other studies dealing with de-

noising efficiency. If the computational efficiency of 

post-filtering is not of prime importance, the use of the 

BM3D filter with the recommended threshold parameter 

is expedient.       

For the PCC Q ≥ QOOP, the post-filtering is practi-

cally useless. This recommendation can be incorporated 

in automatic multistage processing of noisy images if 

there are some restrictions on the provided CR.     

The basic limitations of the proposed approach and 

used AWGN model have been discussed. In the future, it 

will be reasonable to consider other types of noise and 

some other types of filters. Multichannel images are also 

worth considering. It is also worth using visual quality 

metrics that consider human vision attention (saliency 

maps) [35, 36].     
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ПОСТ-ОБРОБКА СТИСНУТИХ ЗАШУМЛЕНИХ ЗОБРАЖЕНЬ ФІЛЬТРОМ BM3D 

Володимир Ребров, Володимир Лукін 

Отримані зображення часто бувають спотворені шумом. Оскільки кількість таких зображень збільшу-

ється, їх слід стискати і внаслідок кількох причин часто застосовується стиск із втратами. Таке стиснення 

пов’язане з ефектами специфічної фільтрації зображень внаслідок стиснення з втратами та можливим існу-

ванням оптимальної робочої точки (ОРТ). Однак така фільтрація не є ідеальною, і залишковий шум може бути 

досить інтенсивним, навіть якщо зображення стискується в так званій оптимальній робочій точці. Для покра-

щення якості зображення можна застосувати додаткову пост-фільтрацію. Таким чином, основним предметом 

статті є пост-обробка зашумлених зображень, стиснутих із втратами. Основна мета статті – розглянути мож-

ливість застосування тривимірного фільтра блочного зіставлення (BM3D) до зображень, спотворених адити-

вним білим гаусівським шумом, стиснутим кращим кодером better portable graphics (BPG) зі ступенем стис-

нення меншим, ніж для оптимальної робочої точки та в околиці ОРТ. Завдання даної статті — проаналізувати 

ефективність пост-обробки стиснених зображень залежно від інтенсивності шуму, складності зображення, 

параметра кодера Q, що керує стисненням, та параметра фільтра β, що визначає поріг, за різними метриками 

якості, дати практичні рекомендації щодо налаштування параметрів фільтра та кодера. Основний результат 

полягає в тому, що ефективність пост-обробки знижується зі збільшенням значення параметра, що керує сти-

сненням (ПКС), і стає незначною для ПКС трохи більшого, ніж ПКС для ОРТ. Ефективність є вищою для 

зображень з більш простою структурою і більшою інтенсивністю шуму. Якість стисненого зображення за 

рахунок пост-обробки покращується відповідно до стандартного критерію пікового відношення сигнал-шум 

та за візуальними показниками якості. При більшому ПКС оптимальне значення порогу зміщується у бік мен-

ших значень. Як висновки продемонстровано ефективність пост-обробки та показано, що BM3D-фільтр пра-

цює краще, ніж стандартний ДКП-фільтр. Також надано рекомендації щодо налаштування параметрів філь-

тра. Також окреслені можливі напрямки досліджень на майбутнє. 

Ключові слова: стиснення з втратами; зашумлені зображення; кодери; показники якості; пост-фільтра-

ція. 
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