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POST-PROCESSING OF COMPRESSED NOISY IMAGES USING BM3D FILTER

Acquired images are often noisy. Since the amount of such images increases, they should be compressed where
lossy compression is often applied for several reasons. Such compression is associated with the phenomena of
specific image filtering due to lossy compression and the possible existence of an optimal operation point (OOP).
However, such filtering is not perfect, and residual noise can be quite intensive even if an image is compressed
at the so-called optimal operation point. Then, additional post-filtering can be applied. Thus, the basic subject
of this paper is the post-processing of noisy images compressed in a lossy manner. The main goal of this paper
is to consider the possible application of a block-matching 3-dimensional (BM3D) filter to images corrupted by
additive white Gaussian noise compressed by a better portable graphics (BPG) coder with a compression ratio
smaller than that for the optimal operation point and in OOP neighborhood. The tasks of this paper are to
analyze the efficiency of compressed image post-processing depending on noise intensity, image complexity,
coder compression parameter Q, and filter threshold parameter g according to different quality metrics and to
provide practical recommendations on setting the filter and coder parameters. The main result is that the post-
processing efficiency decreases when the coder compression parameter increases and becomes negligible for a
coder compression parameter slightly larger than its value for OOP. The post-processing efficiency is larger for
simpler structure images and larger noise intensity. Compressed image quality due to post-processing improves
according to the standard criterion peak signal-to-noise ratio and visual quality metrics. For larger coder com-
pression parameters, the optimal threshold shifts toward smaller values. In conclusion, we demonstrate the ef-
ficiency of post-processing and show that the BM3D filter outperforms the standard discrete cosine-based (DCT)
filter. We also provide recommendations for filter parameter setting. We also outline possible research direc-

tions for the future.
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1. Introduction

Nowadays images are acquired by numerous types
of imaging systems and are employed in agricul-
ture [1, 2], technology [3, 4], medicine [5, 6], and every-
day life [7]. As the number of acquired images steadily
grows, there is also a stable tendency for the image aver-
age size to increase. Therefore, there is a necessity for
efficient image compression for their transfer via com-
munication lines and storage. There exist lossless [8] and
lossy [9, 10] image compression methods.

Lossless compression does not introduce losses into
compressed images, but the compression ratio (CR) is of-
ten inappropriate. Therefore, lossy compression tech-
niques have been widely applied. Because they introduce
losses, a trade-off between the compressed image qual-
ity [11], CR, and other characteristics should be
reached [12, 13]. Visual quality can be consid-
ered [11, 14], image classification [15, 16], and object
detection aspects can be important [17].

In many practical situations, it is assumed (or it is
supposed by default) that the images to be compressed
are noise-free [9, 14]. Then, rate-distortion curves have
monotonous behavior, and using them, it is possible to
provide a desired CR or a desired quality (according to a

given metric) or an appropriate trade-off between
them [12, 14]. Meanwhile, there are many practical situ-
ations where images to be compressed are corrupted by
noise [18, 19]. This occurs for optical [19] and medi-
cal [4] images obtained under complex conditions as well
as for synthetic aperture radar images [2]. Lossy com-
pression in this case has certain specific features [20, 21].
The first is a specific noise filtering effect (although it is
less than the denoising effect of conventional filtering of
noisy images) [20, 22]. The second is the possible exist-
ence of the so-called optimal operation point, i.e., such a
value of the parameter that controls compression (PCC)
for a given encoder that the compressed image is maxi-
mally close to the corresponding noise-free one accord-
ing to a chosen quality (similarity) metric [23]. Lossy
compression in the optimal operation point (OOP), if it
exists, has two advantages. First, a rather high CR, which
is considerably larger than that for lossless compression,
is usually provided. Second, the compressed image qual-
ity is higher than that for uncompressed noisy images. If
OOP does not exist, then amore “careful” lossy compres-
sion is recommended [23].

Recently, it has been shown that compressed noisy
images can be efficiently post-processed to additionally
improve their quality [24, 25]. For this purpose, a discrete
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cosine transform (DCT) based filter [24, 26] has been ap-
plied to noisy images compressed by a better portable
graphics (BPG) coder [27], which is one of the best mod-
ern coders. The following has been demonstrated. First,
post-filtering can efficiently improve image quality, es-
pecially for Q (that serves as PCC for the BPG-coder)
smaller than Q that corresponds to OOP (Qoor) and for
images of relatively simple structure corrupted by inten-
sive noise. Second, the DCT-based filter properties can
be varied by a parameter  used in the threshold setting;
optimal values of this parameter can be found, and the
general tendency is that optimal 8 decreases if Q becomes
larger, image complexity increases, and noise intensity
reduces.

Meanwhile, the DCT-based filter is not the
best [28]. In particular, the block-matching 3-dimen-
sional (BM3D) filter [28] can perform better in tradi-
tional denoising applications according to both conven-
tional and visual quality metrics. This allows the expec-
tation that the BM3D filter can efficiently cope with re-
sidual noise in the post-processing of lossy compressed
noisy images.

Thus, the goal of this paper is to analyze the BM3D
applicability for removing the residual noise in noisy im-
ages compressed by the BPG coder. If its efficiency is
confirmed, then the secondary goal is to propose how to
set the filter parameters optimally.

The paper is organized as follows. The problem of
denoising lossy compressed noisy images is refreshed in
Section 2. Preliminary analysis of BM3D filter applica-
bility to post-processing is performed in Section 3. A
more detailed analysis results are presented in Section 4
and discussed in Section 5. Finally, the Conclusions fol-
low.

2. Problem statement and existing
approaches

2.1. Problem statement

From the very beginning, let us describe our im-
age/noise model and the requirements for processing
such images, where lossy compression is the main step.
Suppose we have an image corrupted by additive white
Gaussian noise (AWGN):

IH = I;’]'rue + l’lij, (1)

where I} is the noisy ij-th pixel value, If/"® denotes the
true ij-th pixel value, and nj; is the noise. It is assumed
that AWGN has zero mean and variance o2 that is known
in advance or accurately pre-estimated by some known
blind method [29, 30]. Note that we start by considering
the AWGN model for two reasons. First, it is the model
often used in studies dealing with image

denoising [26, 28] and lossy compression of noisy im-
ages [21, 23]. Second, before studying more complex
noise models, it is worth considering the AWGN model
as a starting point. Note also that, in simulations and pre-
liminary studies, we assume having the true image and
adding the noise artificially, In other words, we have
three images: the true, noisy, and compressed
{I§i=1,..,L;j=1,..]}) ones where I and J define the

image size. If the compressed image is post-filtered, then
we also have also the image {I?,i=1,..,I;j =1, )

ij ’
In fact, we have to compare the quality of noisy, com-
pressed, and post-filtered images and other parameters
for them (e.g., CR, computational efficiency of their ob-
taining) to understand the best strategy. Here we mean
that the following strategies are possible:

1) to have the original (noisy, uncompressed or
compressed in a lossless manner) image;

2) to obtain the image compressed with a certain Q;

3) to obtain the image compressed with a certain Q
and then post-processed with a certain filter and certain
parameters of this filter.

In our preliminary analysis, we need test images and
criteria for their quality. Usually, in analysis, at least two
images of different complexity are employed, where one
should have a quite simple structure and the second has
to be rather complex. Similar to [24], we use the simple
structure image Frisco (Fig. 1, a) and the complex struc-
ture image Fr03 (Fig. 1, b), both of which are grayscale.

~

Fig. 1. Two grayscale test images of different
complexity used in our study: Frisco (a) and Fr03 (b)
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1”! can be determined using full-reference metrics (quan-

titative criteria). Let us use the peak signal-to-noise ratio
(PSNR) for the beginning. Fig. 2 presents three images:
™for o2 = 100 (Fig. 2, a), If; for Q=27, where Q is the
parameter that controls compression (PCC) for the BPG
coder (Fig. 2, b), and the results of its post-processing by

the DCT-based filter with the hard threshold

Fig. 2. Noisy (6 = 100) (a), compressed (Q=27) (b),
and DCT-filtered (B = 2.3) (c) images

As one can see, noise for the image in Fig. 2, a is
visible,  especially in  homogeneous  regions
(PSNR=28.1 dB; recall that for PSNR<35 dB the distor-
tions are usually visible). Lossless compression of this
image is almost useless since CR is only slightly larger
than unity (e.g., for Zip it equals to 1.005 and, for Rar,
CR=1.003). Compression with Q=27 (Fig. 2, b) leads to
PSNR=28.27 dB and CR=3.22, i.e. to the better quality
of the compressed image compared to the noisy image
quality (according to PSNR metric) and considerably bet-
ter CR. A small noise-filtering effect is observed. Finally,
the post-filtering leads to even considerably better result.
Clearly, the CR is the same as in the previous case (post-
filtering is applied to decompressed images) but the qual-
ity after decompression is significantly better
(PSNR=37.22 dB).

Interesting dependence describing the peculiarities
of lossy compression of noisy images are shown in Fig-
ures 3 and 4. Here we show the improvement or degrada-
tion of image quality depending on CR, where a larger
CR corresponds to a larger Q (although dependences of
CR on Q are very individual and are greatly influenced
by image and noise properties). The improvement or deg-
radation is expressed as

8PSNR,,(Q) = PSNR.(Q) — PSNR,, , (2)

8PSNR,,(Q) = PSNR,¢(Q) —PSNR,, , (3)

where PSNR,,, PSNR.(Q), and PSNR¢(Q) are PSNR
values for noisy, compressed, and post-filtered images,
respectively; the latter two are functions of Q.

Let us start by considering the dependence for the
image Fr03. The dependence §PSNR, (Q) start from ap-
proximately O for CR about 3 and then behaves in a
slightly different manner depending on noise variance.
For 62 = 50 (Fig. 3,a), there is a maximum observed for
a CR of approximately 9, then SPSNR_,(Q) monoton-
ically decreases with Q increasing. Moreover, the values
of 8PSNR.,(Q) become negative, i.e., the compressed
image quality is worse than the noisy image quality. For
0% =100 (Fig. 3,b) and 6 = 200 (Fig. 3,c), there are
obvious maxima of 8PSNR.,(Q) observed for CR=12
and CR=~18, respectively. These are optimal operation
points that occur for

Qoor = 15+201g(o), (4)

i.e. Qoor =35 for 62 = 100 and Qoop =38 for 6> = 200
[24]. Expression (4) means that the probable OOP posi-
tion can be determined under the condition of known or
accurately pre-estimated noise standard deviation. The
results in [23] demonstrate that the existence of OOP for
a given noisy image can be predicted with high accuracy.
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Fig. 3. Dependences for the test image Fr03

for noise variance equal to 50 (a), 100 (b), and 200 (c)

This means that one can decide whether it is worth
compressing an image with Qoop (4) before the execution
of lossy compression or not.

It is worth noting here that dependence
8PSNR,¢, (Q) has been obtained under the assumption
that optimal B (that corresponds to maximal PSNR of
post-processed image) is used.

This dependence is monotonically decreasing irre-
spective of the noise variance. The analysis shows the
following:

1) 8PSNR4,(Q) is the largest for small CR (and,
respectively, small Q) when the compressed image is

very close to the noisy one and efficient post-processing
(filtering of residual noise) is possible; for larger CR (and
Q), residual noise becomes less intensive and its suppres-
sion is less efficient;

2) the positive effect due to post-processing can be
quite large; it exceeds 2 dB for 62 =50, 3 dB for
0? =100, and 4 dB for 62 = 200;

3) if CR approximately corresponds to Qoop, the
efficiency of post-processing is not large, it is about
0.6 dB; after this, for larger CR (and Q), post-processing
becomes useless.

Analysis of data for the test image Frisco (Fig. 4)
shows the following:

1) the main conclusions coincide with those given
above;

2) the difference is that the effect of post-pro-
cessing characterized by 8PSNR 4, (Q) — 8PSNR,(Q)
is larger: it exceeds 8 dB for 62 =50, 9 dB for
02 =100, and 10 dB for 62 = 200; this is not surprising
because, as known [19, 26, 28], the filtering efficiency
depends on noise intensity and image complexity, which
are higher for less complex images and greater intensity
of the noise.

It is also worth mentioning the tendency that opti-
mal f for the DCT-based filter decreases if Q increases.

2.2. Possible solution

In this paper, we analyze the coder and the filters
that are among the best assuming that their combination
produces the best outcomes (in general, different com-
pression techniques can be applied to noisy images
[27, 31] and different filters can be used for post-pro-
cessing [32]). The BPG coder has the following ad-
vantage: it has considerably better performance com-
pared to JPEG and outperforms many modern coders, the
BPG encoder is easy to use (its CCP Q can be only inte-
ger and varies in the limits from 1 to 51 (a larger Q leads
to a higher CR and worse visual quality in compressing
noise-free images). The BPG coder can process images
presented in different formats with 8-14 bits. These were
the reasons for our interest in the BPG coder.

The filters that belong to the DCT-based family
(https://webpages.tuni.fi/foi/) are attractive because of
several important properties. First, DCT is a good data
decorrelation transform approaching Karhunen-Loeve
one. Second, there are versions of the DCT-based filters
for different types of noise, including signal-dependent
and spatially correlated ones that either use variance-sta-
bilizing transforms or adapt threshold calculation algo-
rithms to a noise type [33]. Third, the texture-preserving
property of DCT-based filters is worth admitting [33].
Finally, the DCT-based filter properties can be varied and
optimized according to different criteria due to the
possibility of varying parameters such as the block size,
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Fig. 4. Dependences for the test image Frisco
for noise variance equal to 50 (a),
100 (b), and 200 (c)

threshold type, and aforementioned parameter g. While
the default setting of B for hard threshold is 2.7 (T=2.70c),
it is possible to decrease B to provide better edge/de-
tail/texture preservation or better visual quality. Recall
here that if the DCT-based filter is applied after lossy
compression of a noisy image, we have a standard devi-
ation of residual noise ors<c and, thus, the threshold
should be smaller. Because we do not estimate ores after
lossy compression, threshold reduction should be

performed by diminishing B to provide quasi-optimal
performance of the filter.

The BM3D filter is the most advanced version of
the DCT-based filters. It exploits not only the positive
features of the DCT, but also the non-local approach [19,
28] that presumes the search for similar patches (blocks)
and their joint denoising. Due to these modifications, the
BM3D filter usually provides a higher output PSNR than
the standard DCT filter with fully overlapping 8x8 pixel
blocks and a hard threshold. In addition, the BM3D filter
is characterized by better visual quality of output images
due to better edge/detail/texture preservation. Finally,
similar to the standard DCT-based filter, it is possible to
manipulate the filter properties by varying B. These are
the main reasons for our expectation that the BM3D filter
can he efficient for the considered application.

3. Preliminary analysis
of the BM3D filter applicability

First, let us check whether or not the positive effect
of post-filtering occurs and whether there is dependence
of post-processing efficiency on B, ¢, and Q. For this pur-
pose, we obtained dependences PSNR¢(B) for fixed
0? = 100 and several values of Q in the range from 28
to 40. Some of them for the test image Fr03 are presented
in Fig. 5. Recall that Q=36 approximately corresponds to
optimal operation point.

The main tendencies are the same as those observed
for the standard DCT-based coder. First, for Q equal to
28, 32, and 36, there are obvious maxima for [ that shift
toward smaller values of B if Q increases. Meanwhile,
there is no maximum for PSNR¢(B) if Q=40, i.e. if
Q>Qoor. In addition, the values of PSNR¢(B) are
smaller than PSNR,,, i.e., the quality of compressed and
processed images is lower than that of noisy images.
Post-processing is thus useless.

The maximum value of PSNR¢(B) decreases if Q
increases. It equals 31.5 dB for Q=28, to 31.0 dB for
Q=32, and 29.9 dB for Q=36. This means that the BM3D
filter performs well and can be used in post-processing.
However, the post-processing efficiency significantly de-
pends on Q.

Fig. 6 presents four dependences PSNR¢(j) for
fixed o2 = 100 for the other test image. As one can see,
the main tendencies are the same. The only difference is
in the maximal values of PSNR,¢(p) that are considera-
bly larger than those for the test image Fr03. The reason
is that the test image Frisco has a simpler structure and,
thus, can be denoised better.

We are also interested in whether BM3D produce
any benefits compared to the standard DCT-based filter?
To partly answer this question, let us analyze data given
in Table 1.
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Fig. 5. PSNR¢(B) for fixed o = 100
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Table 1
Comparison of BM3D and standard DCT-based filters,
0% =100, the test image Frisco

Standard DCT filter BM3D filter
Q Bopt PSNRn, Bopt PSNR,
24 2.8 37.45 3.0 37.93
25 2.8 37.44 3.0 37.90
26 2.8 37.42 2.9 37.86
27 2.8 37.39 2.8 37.82
28 2.7 37.35 2.8 37.77
29 2.7 37.31 2.8 37.70
30 2.7 37.21 2.8 37.60
31 2.6 37.12 2.8 37.48
32 2.6 37.01 2.7 37.32
33 25 36.93 2.7 37.17
34 2.3 36.80 2.4 36.97
35 2.0 36.62 2.2 36.68
36 1.8 36.27 17 36.33
37 1.6 35.89 1.6 35.95
38 1.6 35.43 15 35.48
39 1.4 34.87 1.4 34.90
40 1.4 34.30 1.0 34.32

Here we present the values of Boyr and maximal
PSNR (in dB) attained for Bopt. As seen, the values of
Bopt for both filters are practically the same for a given Q.

If Q is considerably smaller than Qoop (35 for the
considered case), the optimal values of B practically do
not change and are close to the optimal values recom-
mended for conventional denoising applications. How-
ever, starting from Q~Qoor-5, Popt Starts to decrease and
is about 2.1 for Q=Qoop.

The values of PSNRy, are different for the consid-
ered filters if Q<Qoop. The largest difference is observed
for Q<Qoop-5 and it reaches approximately 0.5 dB. This
means that the BM3D filter is preferable.

Similar studies have been carried out for 6? = 50
and o2 = 200 as well as for the test image Fr03 for all
three values of the noise variance. Very similar results
were obtained. The observed tendency is that the benefits
of the BM3D filter compared with the standard DCT-
based filter are larger for larger noise variance and sim-
pler structure images.

4. Detailed analysis

First, analysis of PSNR¢(f3,Q) can be performed
using three-dimensional representations of these func-
tions. Fig. 7 shows two examples. They demonstrate two
main tendencies:

a) maximal values decrease if Q increases;

b) Bopt reduces if Q becomes larger.

The metric PSNR is not the best in characterizing
the visual quality of original and/or processed images

[34]. Therefore, many other (visual quality) metrics have
been proposed in recent years. Therefore, let us use one
of them, namely PSNR-HVS-M (https://ponoma-
renko.info/psnrhvsm.htm) in our analysis (where HVS
relates to human vision system and M to masking).

Decompressed frisco
PSNR

Beta 0 20 Q
a
Decompressed fr03
PSNR

Beta 0 20 Q

b
Fig. 7. 3D representations of PSNR¢(j, Q)
for 62 = 100 for the decompressed test
images Frisco (a) and Fr03 (b) after post-processing
by the BM3D filter

This metric considers two important properties of
the human vision system (HVS): less sensitivity to dis-
tortions in higher spatial frequencies than in low spatial
frequencies and masking effect. In our case, it is also im-
portant that PSNR-HVS-M can be applied to grayscale
images. Its values are larger than the corresponding
PSNR if noise (distortions) is white and an essential
masking effect occurs. In contrast, PSNR-HVS-M is
smaller than PSNR if the distortions are close to spatially
correlated noise and the masking effect is practically ab-
sent. PSNR-HVS-M is expressed in dB, where its larger
values correspond to a better visual quality. PSNR-HVS-
M corresponds to practically invisible distortions if its
value exceeds 41 dB.

Fig. 8 presents dependence PSNR — HVS — M,¢(8)
obtained for o?=100 and four values of
Q (28, 32, 36, and 40) for the test image Fr03. The plots
are similar to the corresponding plots in Fig. 5.
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Fig. 8. PSNR — HVS — M_(B) for fixed o = 100
and values of Q equal to 28 (a), 32 (b), 36 (c),
and 40 (d), image Fr03

Again, there are obvious maxima for Q=28 and 32
(Figures 8, a and 8, b, respectively) observed for Bop of

about 2.3. Meanwhile, for Q = 36 = Qoop, the maximum
exists but its value (31.6 dB) is significantly smaller than
that for Q = 28 (33.8 dB) and Q = 32 (33.2 dB). Besides,
Bopt for Q = 36 has shifted to 1.7.

This means that post-processing is efficient and
worth applying for Q=~Qoop-3. For larger Q, post-pro-
cessing efficiency decreases rapidly as Q grows.

Fig. 9 shoes the dependence PSNR — HVS —
M,¢(B) obtained for 6* = 100 and four values of Q (28,
32, 36, and 40) for the test image Frisco. The first obser-
vation is that the dependence is similar to the correspond-
ing dependence PSNR¢(B) in Fig. 6 as well as depend-
ences PSNR — HVS — M¢(B) in Fig. 8 for the other test
image. The specific features are as follows. First, larger
maximal values are provided than those for the corre-
sponding data in Fig. 8. This approach deals with less
complexity of the image Frisco and, thus, better effi-
ciency of its lossy compression and denoising. Second,
for the same Q and B, PSNR — HVS — M+ values are, in
general, larger for the test image Frisco. Meanwhile, the
conclusion is the same — it is not worth compressing im-
ages with Q>Qoor Where Qoor is described by expression
(4) and it is useless to perform post-processing in this
case. In fact, compression with Q>Qoop can be reasona-
ble (used) only if for Qoop a desired CR is not produced.

We are also interested in whether the BM3D filter
produces a better visual quality of post-processed images
compared to the standard DCT-based filter. For this pur-
pose, the data for the metric PSNR — HVS — M,¢ have
been collected and are presented in Table 2. As seen,
BM3D shows better performance for Q<Qoop-3. Then,
the difference reduces and, for Q>Qoop, post-processing
by any of the considered filters becomes useless.

The cases of other test images and other values of
noise variance have also been studied. The observed
tendencies and conclusions are the same as above. The
benefit of using the BM3D filter is greater for simpler
structure images (Frisco in our case) and for larger noise
intensity. For Q<Qoor-3, it is possible to recommend us-
ing Bopr=2.3 to provide the best visual quality.

5. Discussion

The analysis of the simulation data shows the fol-
lowing. The proposed approach can be helpful when im-
ages subject to compression are contaminated by inten-
sive noise. This often occurs in radar [2] and ultrasound
medical [4] imaging as well as for optical images ac-
quired under poor illumination conditions [15]. Since the
positive effect of post-filtering can be sufficiently large
(PSNR and PSNR-HVS-M can be improved by several
dB), it is worth providing the post-filtering option for sys-
tems that deal with processing of images of the aforemen-
tioned types where lossy compression is needed.
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Filtererd Frisco Table 2
—a28 Comparison of the BM3D and standard DCT-based
36 filters, 02 = 100, the test image Frisco, PSNR-HVS-M
Standard DCT filter BMa3D filter
F o0 Q Bt | PSNRp Bt | PSNRn
z . 24 25 | 3566 2.5 36.11
5 25 25 |35.64 2.5 36.08
» 26 25 | 3559 2.5 36.00
' 27 25 | 3553 2.5 35.93
28 25 |35.48 2.4 35.86
1 2 B 5 29 2.4 | 35.40 2.3 35.79
a 30 24 | 35.25 2.3 35.62
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s 3} 35 1.9 [3433 2.0 3431
L s 36 16 | 3384 1.3 33.87
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1 2 3 4 5
Beta

b

Filtererd Frisco
Q=36

Beta
c

Filtererd Frisco
Q=40

31.35F

31.3F
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Fig. 9. PSNR — HVS — M_(B) for fixed o = 100
and values of Q equal to 28 (a), 32 (b), 36 (c),
and 40 (d), image Frisco

The proposed method has several limitations and
should be further advanced. The principal limitation is
that it is useless for Q>Qoop. Denoising based on trained
neural networks [6] may be helpful, but we have doubts
because statistics of residual noise are very complex.

Another problem deals with the simplified noise
model used in our design. AWGN model is approxi-
mately adequate for optical imaging, but noise in radar
and medical images is usually signal dependent. How-
ever, it is possible to overcome this problem by applying
a proper variance stabilizing transform [25] before com-
pression and/or denoising. One more problematic point
with AWGN maodel is that noise can be spatially corre-
lated. This case requires additional studies.

One more assumption put into the basis of our de-
sign is that noise statistics is known in advance. In this
sense, we can state that there exist blind methods that can
perform estimation of noise properties accurately
enough [29].

Our studies have also shown that post-filtering per-
formance depends on image complexity. This means that
image and noise properties have to be incorporated into
the decision of whether it is worth performing post-filter-
ing of compressed noisy images and what should be the
filter parameters.

6. Conclusions
In this paper, we have considered the problem of

post-processing noisy images compressed in a lossy man-
ner by the BPG coder. It is shown that post-processing
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can be efficient under the following conditions:

a) the parameter that controls compression is
smaller than Qoopr determined by (4);

b) noise intensity is quite high;

c) image complexity is not large;

d) an efficient filter is applied;

e) its parameters are adapted to the properties of re-
sidual noise.

It is demonstrated that the BM3D filter with an op-
timal threshold is more efficient than the standard
DCT-based filter for the PCC Q < Qooe-3 in terms of con-
ventional and visual quality metrics. The difference ac-
cording to PSNR can reach 0.5 dB and such a difference
could be expected from other studies dealing with de-
noising efficiency. If the computational efficiency of
post-filtering is not of prime importance, the use of the
BM3D filter with the recommended threshold parameter
is expedient.

For the PCC Q > Qoop, the post-filtering is practi-
cally useless. This recommendation can be incorporated
in automatic multistage processing of noisy images if
there are some restrictions on the provided CR.

The basic limitations of the proposed approach and
used AWGN model have been discussed. In the future, it
will be reasonable to consider other types of noise and
some other types of filters. Multichannel images are also
worth considering. It is also worth using visual quality
metrics that consider human vision attention (saliency
maps) [35, 36].
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MHOCT-OBPOBKA CTUCHYTHUX 3AIIYMJIEHUX 306PA’KEHb ®1JIbTPOM BM3D
Bonooumup Peopos, Bonooumup Jlykin

OtpumaHni 300pakeHHs 4acTo OyBaroTh CIIOTBOpEHi IIyMoM. OCKUIBKM KUIBKICTh TaKUX 300pakeHb 301JIbIIY-
€ThCsl, TX CIIJI CTUCKATH 1 BHACII/IOK KUJIBKOX MPUYMH YacTO 3aCTOCOBYETHCS CTHCK i3 BTpaTaMu. Take CTHCHEHHS
moB’si3aHe 3 ehekTamMul crenudivHol GuUIBTpaIlii 300pakeHh BHACIHIOK CTUCHCHHS 3 BTPAaTaAMU T4 MOKJIUBUM iCHY-
BaHHSAM onTUMajbHOi pobouoi Touku (OPT). OnHak Taka (inbTpaliist He € i1eaJIbHOI0, 1 3JINIIKOBHUI IITyM MOXe OyTH
JIOCUTh IHTEHCBHUM, HaBITh SIKIIO 300pa)kKeHHs1 CTUCKYETHCS B TaK 3BaHii oNTHUMalIbHIM poOodiii Touti. s mokpa-
LIEHHS SIKOCTI 300pa)keHHsT MOYKHA 3aCTOCYBATH JIOAATKOBY MOCT-(inbTpariifo. TakuM YHHOM, OCHOBHHM MpPeIMeTOoM
CTaTTi € MOCT-00po0Ka 3alIyMIIeHnX 300paeHb, CTUCHYTHX 13 BTpaTaMu. OCHOBHA MeTa CTaTTi — PO3IIISIHYTH MOX-
JIMBICTh 3aCTOCYBAHHS TPUBUMIpHOTO (inbTpa 6s10uHOro 3icrasienns (BM3D) mo 300pakeHb, CIIOTBOPEHUX aJMTH-
BHUM O1JMM rayCiBCHKMM IIIYMOM, CTHCHYTHM Kpainum kojepom better portable graphics (BPG) 3i crynenem cruc-
HEHHS MEHIIINM, HiXK JUIsl ONTUMalIbHOT poOodoi Touku Ta B okomnuui OPT. 3aBaanns naHOT CTaTTI — NpoaHati3yBaTH
eeKTUBHICTh MOCT-00pPOOKN CTHCHEHUX 300pakKeHb 3aJIeKHO Bijl IHTEHCHBHOCTI IIYMY, CKJIAIHOCTI 300pa)KeHHs,
nmapameTpa koaepa Q, 110 Kepye CTUCHEHHSM, Ta apamerpa (GiibTpa B, 110 BU3HAYAE MOPIT, 32 PI3HUMH METPUKAMHU
SIKOCTI, TaTH TIPAKTHYHI PEKOMEHIAIINIT 11010 HATAIITYBaHHS MapaMeTpiB GiibTpa Ta kojaepa. OCHOBHUH pe3yabTaT
THIOJISITAE B TOMY, 110 epeKTUBHICTh MOCT-00pOOKM 3HMKYETHCS 31 30UIbILICHHSIM 3HAUSHHS [TapaMeTpa, 10 KepPYe CTH-
caenusaM (ITKC), i crae nesnaunoro mist [IKC tpoxu 6inbiroro, Hixk [IKC mis OPT. EQEeKTUBHICTD € BHUILOKO s
300pa)keHb 3 OUIBII MPOCTOI CTPYKTYPOIO 1 OUIBIIOI IHTEHCHUBHICTIO IIyMYy. SIKICTh CTHCHEHOTO 300pa)KeHHS 32
PaxyHOK MocT-00pOOKH MOKPAIIYETHCS BiIIOBITHO JI0 CTAHJAPTHOTO KPUTEPIIO MIKOBOI'O BiJJHOLICHHS CUTHAII-IIIYM
Ta 3a Bi3yaJIbHUMHU NoKa3HUKaMH AkocTi. [Ipu 6inbimomy ITKC ontumanbHe 3HaY€HHS OPOT'Y 3MILyeThes y OiK MeH-
IIMX 3HaYCHb. SIK BACHOBKH IIPOJIEMOHCTPOBAHO €(heKTHBHICTh IOCT-00pOOKH Ta MmokaszaHo, 1o BM3D-¢iastp mpa-
roe kpaiue, Hix crannaptauit JKII-dinbtp. Takokx HajaHO pekoMeHanii o0 HaJaTyBaHHs napaMeTpiB (iyib-
Tpa. Takox OKpecieHi MOXKJIMBI HAMPSIMKH JIOCHIIPKEHb Ha MaOyTHE.

Karwou4oBi ciioBa: cTUCHEHHS 3 BTpaTaMu; 3alllyMIJIeH] 300pakeHHs1; KOJEPH; MOKA3HUKH SIKOCTi; MOCT-(PibTpa-
s,
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