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CONVOLUTIONAL NEURAL NETWORK-BASED SKIN CANCER CLASSIFICATION

WITH TRANSFER LEARNING MODELS

Skin cancer is a medical condition characterized by abnormal growth of skin cells. This occurs when the DNA
within these skin cells becomes damaged. In addition, it is a prevalent form of cancer that can result in fatali-
ties if not identified in its early stages. A skin biopsy is a necessary step in determining the presence of skin
cancer. However, this procedure requires time and expertise. In recent times, artificial intelligence and deep
learning algorithms have exhibited superior performance compared with humans in visual tasks. This result
can be attributed to improved processing capabilities and the availability of vast datasets. Automated classifi-
cation driven by these advancements has the potential to facilitate the early identification of skin cancer. Tra-
ditional diagnostic methods might overlook certain cases, whereas artificial intelligence-powered approaches
offer a broader perspective. Transfer learning is a widely used technique in deep learning, involving the use of
pre-trained models. These models are extensively implemented in healthcare, especially in diagnosing and
studying skin lesions. Similarly, convolutional neural networks (CNNs) have recently established themselves as
highly robust autonomous feature extractors that can achieve excellent accuracy in skin cancer detection be-
cause of their high potential. The primary goal of this study was to build deep-learning models designed to
perform binary classification of skin cancer into benign and malignant categories. The tasks to resolve are as
follows: partitioning the database, allocating 80% of the images to the training set, assigning the remaining
20% to the test set, and applying a preprocessing procedure to the images, aiming to optimize their suitability
for our analysis. This involved augmenting the dataset and resizing the images to align them with the specific
requirements of each model used in our research; finally, building deep learning models to enable them to per-
form the classification task. The methods used are a CNNs model and two transfer learning models, i.e., Visual
Geometry Group 16 (VGG16) and Visual Geometry Group 19 (VGG19). They are applied to dermoscopic im-
ages from the International Skin Image Collaboration Archive (ISIC) dataset to classify skin lesions into two
classes and to conduct a comparative analysis. Our results indicated that the VGG16 model outperformed the
others, achieving an accuracy of 87% and a loss of 38%. Additionally, the VGG16 model demonstrated the
best recall, precision, and F1- score. Comparatively, the VGG16 and VGG19 models displayed superior per-
formance in this classification task compared with the CNN model. Conclusions. The significance of this study
stems from the fact that deep learning-based clinical decision support systems have proven to be highly benefi-
cial, offering valuable recommendations to dermatologists during their diagnostic procedures.

Keywords: Deep learning; CNN; Transfer Learning; VGG19; VGG16; Skin cancer; Medical imaging.

similarity in appearance among several types of skin
cancer. Furthermore, even skilled dermatologists
encounter limitations based on their education and
experience in accurately diagnosing skin cancer. Their
exposure is confined to a subset of potential skin cancer
manifestations throughout their professional lifetime.

1. Introduction
1.1. Motivation

Cancer is an ailment distinguished by the

unrestrained splitting and proliferation of cells in organs
or tissues, which can lead to their spread beyond the
initial location [1]. Skin cancer is a dangerous and
potentially deadly type of cancer [2 - 4]. It represents
the most common type of cancer that threatens human
beings. In the first instance, it is visually detected, and
then by dermoscopic analysis, an early diagnosis makes
it curable by almost 100%]5, 6].

Precisely diagnosing skin cancer poses a
significant challenge for dermatologists, even when
employing dermoscopy images, because of the initial

Likewise, dermoscopy performed by less experienced
dermatologists can lead to a decrease in the accuracy of
skin cancer identification. Consequently, to solve the
problems encountered by dermatologists there is an ur-
gent necessity to create a swifter and more precise pro-
cess for detecting and classifying skin lesions [7].

In recent years, researchers have invested substan-
tial effort into crafting intelligent systems for applica-
tions in different fields such as object detection [8],
emotion recognition [9] and healthcare [10].
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Deep Convolutional Neural Networks (CNNs)
have demonstrated their effectiveness in performing
detection and classification tasks in medical image pro-
cessing. Numerous studies have employed deep learning
techniques for the classification of skin lesions, as doc-
umented in the existing literature.

Objectives

This study aims to develop automated tools that
aid dermatologists in the precise diagnosis of skin le-
sions. To achieve this, we constructed classification
models for skin lesions capable of predicting the class
(benign or malignant) to which each dataset element
belongs.

To accomplish the research objectives, the follow-
ing tasks have been formulated:

1. Developing two pre-trained transfer learning
models, VGG19 and VGG16, for feature extraction and
classification, with the goal of accurately identifying the
two categories of skin lesions.

2. Developing a customized CNN-based approach
to achieve the classification process.

3. Training and testing the three deep neural net-
works mentioned above.

4. Conducting a comparative study aimed at eval-
uating the performance of various models and ultimate-
ly identifying the one that exhibits the most optimal
results.

1.2. Content of the paper

The structure of the remaining sections in the pa-
per is as follows: Materials and Methods are elaborated
in Section 3: Section 3.1 introduces the used approach,
Section 3.2 describes the dataset, Section 3.3 outlines
the preprocessing procedures employed in the study,
and Section 3.4 details the classification models used.
The process of training and testing the models is de-
scribed in Section 3.5. Furthermore, Section 3.6 deline-
ates the methodology employed for performance evalua-
tion. Section 4 outlines the findings and results of the
conducted experiments, followed by the conclusion.

2. Litterature Review

N. Nigar et al. [11] created a Convolutional Neural
Network (CNN) model for the automated identification
of six distinct skin conditions: actinic keratosis, benign
keratosis, melanoma, basal cell carcinoma, insect bite,
and skin acne. This model demonstrated an impressive
accuracy rate of 97%, along with precision, recall, and
F1-score, each reaching 91%. The primary objective of
this model is to automatically distinguish between mel-
anoma and non-melanoma skin cancer types.

S. M. Jaisakthi et al. [12] presented a transfer
learning architecture based on EfficientNet. The evalua-
tion of the system’s performance was conducted using
the Area under the curve ROC (AUC-ROC), yielding an
impressive score of 0.9681. This achievement was real-
ized through the optimal fine-tuning of EfficientNet-B6
using the Ranger optimizer.

S. Albawi et al. [13] designed and implemented a
neural network-based method to predict skin cancer.
The central focus of their work was refining the convo-
lutional neural network (CNN) architecture and identi-
fying optimal values for various CNN parameters. Their
results demonstrated that the CNN approach achieved a
notably elevated accuracy rate of 98.5%, surpassing the
performance of other established methods.

A. Mahbod et al. [14] conducted a study to assess
the performance of transfer learning with multi-scale
and multi-network systems for classifying and detecting
skin lesions. In addition, the authors examined the influ-
ence of dermoscopic image size on pre-trained CNNs
using transfer learning.

D. A. Rodrigues et al. [15] presented a unique
method to classify skin lesions using deep learning,
transfer learning, and loT. Their proposal involved im-
plementing deep learning and transfer learning in an loT
system, allowing clinicians to diagnose common skin
lesions using CNNs as feature extractors. This study
incorporated various pre-trained networks and machine-
learning techniques.

K. M. Hosny et al. [16] proposed a skin lesion
classification system using transfer learning and aug-
mentation, specifically employing AlexNet architecture.
The authors initialized the model’s parameters with the
settings of the original model and randomly initiated the
replacement of the last three layer weights.

A. Singhal et al. [17] devised a transfer-learning
skin lesion classification model employing four pre-
trained networks: Inception v3, ResNet50, Dense-
Net201, and Inception ResNet v2. These networks were
trained using a dataset comprising up to seven classes of
skin lesions. The researchers conducted a study to eval-
uate the effectiveness of these models in classifying skin
lesions.

G. Arora et al. [18] used fourteen transfer learning
networks to classify seven types of skin lesions on
unbalanced data. N. Kausar et al. [19] conducted a study
on multiclass skin cancer classification using a set of
fine-tuned deep-learning models. They proposed a mod-
el capable of accurately identifying the most prominent
types of skin lesions. To achieve this, the authors em-
ployed transfer learning techniques, leveraging several
pre-trained models and implementing class-weighted
loss and augmentation methods during the classification
stage, particularly using ResNet50.
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A multiclass classification system for skin lesions
by applying deep learning models was proposed by
M. Tahir et al. [20] To categorize the four different skin
diseases.

Al-Habib Islam et al. [21] presented a study on
skin disease detection, where they employed a transfer
learning approach called fine-tuned visual geometry
group-19. They examined five transfer learning models
VGG16, VGG19, MobileNetV2, InceptionV3, and
MobileNet to determine the network that achieves the
highest accuracy and the most effective transfer learning
technique for the task of skin disease identification.

A. A. Nugroho et al. [22] developed a customized
CNN model that achieved an accuracy of 78% when
applied to the HAM10000 dataset. N. C. F. Codella et
al. [23] utilized the ISIC 2017 dataset, which includes
three categories of skin cancer, to employ machine
learning methods for accurate melanoma prediction.
However, the study encountered inaccurate results
attributed to dataset bias and incomplete dermoscopic
feature annotations.

In[24], a new approach was introduced that
employs transfer learning and CNN to handle multi-
resolution images captured by different sensors. The
CNN was initially trained on a standard image dataset,
and the learned weights were then transferred to other
datasets with varying resolutions. |Initially, the
classification of skin cancer diseases was limited to two
categories: benign and malignant.

3. Materials and Methods

3.1. The proposed approach

The evolution of machine learning techniques has
had a profound impact on various sectors , and
dermatology is no exception. The application of
machine learning in dermatology has shown great
promise in improving the accuracy and efficiency of
skin disorder diagnosis and treatment. The research
focus on medical imaging and computer vision has
identified skin lesion classification and detection as
pivotal areas, holding the potential to transform the
early diagnosis and treatment of diverse skin disorders.

In this paper, a binary classification system for
skin lesions based on convolutional neural network and
transfer learning models is proposed using dermoscopic
images. The models were trained on a dataset labeled
with two classes: malignant and benign lesions. To
enhance the original images, a set of preprocessing steps
is applied to remove unnecessary information. The
resulting improved images are then fed into the pattern
recognition system. The classification process starts
with the extraction of deep features from the
preprocessed input image, followed by the utilization of

a dense layer to produce the final classification result.
Six essential steps are used in the proposed approach:
dataset collection, preprocessing, convolutional neural
network, and VGG19 and VGG16 architectures for skin
lesion classification, training and testing, classification,
and performance evaluation. These steps are detailed in
the following subsections. A general diagram of the
proposed approach is illustrated in Figure 1, and a
summary of the different layers in our models is shown
in Figures 2 - 4.

I1SIC Archive

Dataset collection

Preprocessing and extraction of
images classes

CNN, VGG16, VGG19
algorithms design

Training and testing

Prediction (Benign or malignant)

Performance evaluation

Fig. 1. Proposed approach architecture

3.2. Dataset

To conduct this study, we referred to the Interna-
tional Skin Image Collaboration Archive (ISIC) [25]
from kaggle.com, which contains a dataset of various
skin cancer types. This study focused on two categories
selected from the dataset: benign and malignant moles.
The benign type of skin cancer has 1800 samples in the
dataset. However, the malignant type has 1497 samples,
and the final dataset size is 3297. The images in the da-
taset were resized to (224x224x3) RGB and then labeled
as "benign" and "malignant”. Figures 5 and 6 show
some example images from the dataset.
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To ensure a comprehensive evaluation of our
system’s performance, we adopted a specific data
distribution strategy. The database was divided, with
80% of the images allocated to the training set and the

remaining 20% designated for the test set.

Layer (type) Output Shape Param #
conv2d (Conv2D) (None. 224, 224. 64) 1792
max_pooling2d(MaxPooling2D) (None, 112, 112, 64) 0
dropout (Dropout) (None. 112,112, 64) 0
conv2d_I (Conv2D) (None. 112, 112. 64) 36928
max_pooling2d_1 (MaxPooling 2D) (None. 56. 56. 64) 0
dropout_1 (Dropout) (None. 56. 56. 64) 0
flatten (Flatten) (None. 200704) 0
dense (Dense) (None. 128) 25690240
dense_1 (Dense) (None. 2) 258
Fig. 2.Summary of the CNN model
Layer (tvpe) Output Shape Param #
input 1 (InputLayer) [(Neme, 224,224, 3)] 0
blockl_convl (Conv2D) (Noms, 224,224, 64) 1792
dlockl_conv2 (Conv2D) (Nons, 224,224, 64) 36028
blockl_pool (MaxPeoling2D) None, 112,112, 64) 0
block2_convl (Conv2D) (None, 112, 112, 128) 73856
block2_conv2 (Conv2D) (None, 112,112, 128) 147584
block2_pool MaxPooling2D) (None, 56, 56, 128) 0
block3_convl (Conv2D) (Nome, 56, 56,256) 205168
block3_conv2 (Conv2D) (None, 56, 56, 256) 560080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080
block3_conv4 (Conv2D) (Neme, 56, 56, 256) 590080
block3_pool (MaxPoeoling2D) (None, 28, 28, 256) 0
block4_convl (Conv2D) (None, 28, 28, 512) 1180160
block4_conv2 (Conv2D) (None, 28, 28, 512) 2350808
block4_conv3 (Conv2D) (Nens, 28, 28, 512) 2359808
block4_conv4 (Conv2D) (Nomne, 28, 28, 512) 2359808
block4_pool (MaxPooling2D) (None, 14, 14, 512) 0
blockS_convl (Conv2D) (None, 14, 14,512) 2359808
blockS_conv2 (Conv2D) (Nens, 14, 14,512) 2350808
blockS_conv3 (Conv2D) (Nons, 14, 14, 512) 2359808
blockS_conv4 (Conv2D) (None, 14, 14, 512) 2350808
blockS_pool (MaxPooling2D) (None, 7.7.512) 0
flatten (Flaten) (Nonz, 25088) 0
dans2 (D2nss) (Nene, 512) 12845568
dropout (Dropont) (Nomns, 512) 0
dense_1 (Denss) (Neme, 256) 131328
dropout_1 (Dropout (None, 256) 0
denzz 2 (Denzs) (None, 2; 514

Fig. 3. Summary of the VGG19 model

Fig. 5. Example of benign images in the dataset [25]

Layer (type) Output Shape Param #
inpuot_1 (InpotLayer) [None, 224, 224, 3)] 0
blockl_convl (Conv2D) (Nons, 224, 224 64) 1792
blockl_conv2 (Conv2D) None, 224, 224, 64) 36928

block]_pool (MaxPooling2D) (None, 112, 112, 64) 0
block2_convl (Conv2D) (None, 112, 112, 128) 73856
block2_conv2 (Conv2D) (None, 112, 112, 128) 147584

block2_pool (MaxPoolinz2D) (None, 56, 56, 128) 0
block3_convl (Conv2D) (None, 36, 56, 256) 295168
blocl3_conv2 (Conv2D) (None, 36, 56, 236) 590080
block3_conv3 (Conv2D) (None, 56, 56, 256) 590080

block3_pool (MaxPooling2D) (Nons, 28, 28, 256) 0
blockd_convl (Conv2D) (None, 28, 28, 512) 1180160
blockd_conv2 (Coav2D) (Nons, 28,28, 512) 2359808
blockd_conv3 (ConvD) (None, 28, 28, 512) 2359808

block4_pool (MaxPooling2D) (Nons, 14, 14, 512) 0
blockS_convl (Conv2D) (None, 14, 14, 512) 2359808
blockS_conv2 (Conv2D) (None, 14, 14, 512) 2359808
blockS_conv3 (Conv2D) (None, 14, 14, 512) 2359808

blockS_pool (MaxPoolinz2D) (None, 7, 7,512) 0

flatten (Flatten) (Non=, 25088) 0
dense (Dense) (None, 512) 12845568
dropout (Dropout) (None, 512) 0
dense_1 (Damse) (Nons, 236) 131328
dropout_1 (Dropout) (None, 256) 0
densz_2 (Demse) (None, 2) 514

Fig.4. Summary of the VGG16 model

3.3. Preprocessing

We implemented a preprocessing image process
using the included pre-processing function of the Keras
ImageDataGenerator to prepare the data. This involved:

- Resizing the images to suit the distinct
specifications of each model employed in our study.
This careful preparation allowed us to obtain accurate
and meaningful results for detecting and classifying skin

lesions;

- Normalization of data. Data normalization is the
process of structuring a database to minimize data
and eliminate
established

redundancy,
undesirable

ensure data
characteristics.

integrity,

Several

techniques for normalization exist, including methods
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Fig. 6. Example of malignant images in the dataset [25]

such as min-max normalization, z-score normalization,
and decimal scaling normalization. In our study, we
normalized the dataset by dividing it by 255, which
corresponds to the gray scale value of an image;

- Augmentation of data. To effectively train our
models. The data augmentation technique holds
considerable importance in the training process. This
method prevents distortion and maintains the inherent
coherence of the input and output data. Furthermore,
this process is performed in real-time during the training
phase, contributing to an enhanced model output and
addressing the challenge of overfitting. Multiple options
for image augmentation are available, including
choosing values from a range of sizes such as shear
range, zoom range, rotation range, and horizontal flip.
The settings for image augmentation employed in our
experiment are outlined in Table 1.

Table 1
Images augmentation setting
Augmentation setting Range
Shear range 0.2
Zoom range 0.2
Width shift range 0.2
Height shift range 0.2
Rotation range 40
Horizontal flip True

3.4. Classification models
3.4.1. Transfer Learning model structure

Transfer Learning is a machine learning technique
that leverages an existing model to address distinct yet
interconnected problems. In essence, it involves
harnessing the knowledge gained from one task to
enhance generalization in another. This is achieved by
employing the pre-trained weights or model architecture

of an existing model to address our specific problem.
Transfer learning offers several advantages, including
accelerated training time, improved performance in
many instances, and decreased demand for an extensive
dataset. In this study, VGG16 and VGG19 known as
VGGNet CNN architecture de- veloped by the Visual
Geometry Group of the University of Oxford,were used,
trained and tested to determine the type of skin lesions.

3.4.1.1. VGG19 Convolutional neural
network architecture

The VGG19 network (Figure7) [26] has 19 layers,
including 16 convolutional layers, 3 fully connected
layers, 5 MaxPooling layers, and 1 SoftMax layer. It
accepts an input image of size 224x224 into the
network. The network uses a kernel of size 3x3 with a
stride of 1 and space padding. Max pooling is performed
in step 2. The two layers are fully connected, and the
last layer has been eliminated and reacquired with a
softmax layer that classifies the two types of skin
lesions. In this work, we add a preprocessing layer in
front of VGG19, freeze the existing layers, and finally
create a final fully connected layer.

3.4.1.2. VGG16 Convolutional neural
network architecture

The VGG16 network, as illustrated in
Figure 8 [27], consists of 13 convolutional layers, 5
max-pooling layers, and 3 dense layers; however, it
includes only 16 weight layers (layers with learnable
parameters). VGG16 accepts 224x224 images with 3
RGB channels. What is special about VGG16 is that
rather than focusing on several parameters, it focuses on
convolutional layers of 3x3 step 1 filters but uses the
same padding and max pooling layers as 2x2 step 2
filters.
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Fig. 7. VGG19 model architecture [26]
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Fig. 8. VGG16 mode
3.4.2. Convolutional neural network model

A CNN represents a network architecture within
the realm of deep learning, designed to learn directly
from data. CNNs are especially effective for identifying
patterns within images, facilitating the recognition of
objects,classes, and categories.

A CNN can comprise dozens or even hundreds of
layers, each dedicated to discerning distinct features
within an image. Filters are employed to process every
training image across various resolutions, and the out-
comes of these convolved images serve as inputs for
subsequent layers. The filters initiate as rudimentary
attributes such as brightness and edges, gradually evolv-
ing to encompass intricate features that are characteris-
tic identifiers of objects.

The network presented in Figure 9 [28] is struc-
tured into 3 layers. The first layer serves as the input
layer responsible for forming and training the dataset. It
collects the data, assigns weights to the hidden layers,
and allows the neurons in the hidden layers to separate

Aot e ——2 A
Ay A= —
| Slgf—:zf
/@l A ;J b T Tx1x4095
A 1

TxTx512

1) convolutional + ReLU

@ max pooling
@ fully connected + RelU
f j softmax

| architecture [27]

features from the data, ultimately deriving a model. This
model forms the foundation for the generative layers,
which are responsible for selecting the appropriate clas-
ses. The network employs binary classification to make
the final decision. In the given example, class O repre-
sents a benign tumor, whereas class 1 indicates a malig-
nant tumor. This system’s implementation revolves
around the CNN.

3.5. Training and testing

To implement the CNN, VGG19, and VGG16
models, we used Keras, which is a deep-learning API
for Python [29]. All methods were implemented using
Keras. In this study, a dataset containing 2637 training
images and 660 test images was used. The training
spanned 50 epochs, utilizing a batch size of 64 and a
learning rate of 0.01 for the models. Adam [30] was the
optimization function used for weight updating. The
loss function chosen for this model was "bina-
ry_crossentropy"”. To combat overfitting, a dropout rate
of 0.5 was used for the fully connected layers.
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After training for 50 epochs, the highest-

performance model was selected on the basis of the
evaluation metrics. The model parameters were then
used for the test images to evaluate the overall network
performance on previously unseen data.

Nevertheless, in the context of examining the
number of parameters in the pre-trained models,
VGG16 and VGG19, they were initially very high.
However, through the use of transfer learning and the
process of freezing some layers at the start of the
network, the number of parameters decreased
significantly. As a result, the required parameters for
training were drastically reduced from 27,692,098 to
12,977,410 in the case of VGG16 and from 33,001,794
to 12,977,410 in the case of VGG19. Table2 displays
the training parameters for each model.

Table 2
Training parameters of the networks

Total Trainable Non-trainable
Model
parameters | parameters parameters
VGG19 | 33,001,794 | 12,977,410 20,024,384
VGG16 | 27,692,098 | 12,977,410 14,714,688
CNN 25,729,218 | 25,729,218 0

3.6. Performance evaluation

We validated the models' performance by evaluat-
ing metrics such as Recall, Precision, and
F1-score. see equation 1, 2, and 3:

— Recall, the fraction of true positives that are
correctly identified;

— Precision, is the fraction of retrieved instances
that are relevant;

— Fl-score, is the weighted average of Precision
and Recall.

Recall/Sensitivity = Ll 1)
ecall/Sensitivity = TP+ FN
L TP 2
Precision = TP+ FP
2 x Precision * Recall ?3)
F1 — score =

Precision + Recall

Where:

- TP (True Positives). These instances refer to cases
in which the model accurately predicted the positive
class when the actual class was indeed positive;

- FN (False Negatives).These occurrences corre-
spond to situations in which the model forecasted the
negative class, but the actual class was positive. In sim-
pler terms, the model failed to identify a positive case;

- FP (False Positives).These scenarios arise when
the model predicts a positive class, but the actual class
is negative. In such instances, the model mistakenly
assigns a negative case as positive.

4. Results and discussion

4.1. Accuracy and loss

During the training process of our three proposed
models, the loss function for both the training and vali-
dation data consistently decreased as the number of
epochs increased. Simultaneously, the accuracy of the
models increases. The accuracy and loss values for each
model are presented in Table 3. The pre-trained VGG16
model attained a peak accuracy of 87 % with a loss of
0.38. In contrast, the VGG19 architecture achieved the
best loss value of 0.39, but a slightly lower accuracy of
84.37%. The CNN model, on the other hand, attained an
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accuracy of 74% with a loss of 0.52. The results clearly
show that the VGG16 model significantly outperforms
the other two models, resulting in better values in terms
of accuracy, precision, recall, and F1 score. The CNN
classifier performs the poorest among its counterpart
algorithms.

Figures 10 and 11 display, respectively, the graph
of accuracy and loss of training and validation on the
skin cancer dataset for the pre-trained models VGG19,
VGG16, and CNN. According to the graphs, it appears
that VGG19 exhibits significant overfitting of the pro-
vided data throughout each training epoch, with high
training and testing loss observed at the initial epoch. In
contrast, for the VGG16 model, there is a minimal dif-
ference in the results between the training and testing
accuracy, suggesting that the network is not overfitting.
Additionally, the loss and accuracy stabilize between
epochs 40 and 50, indicating a stable network perfor-
mance. The CNN model consistently demonstrated an
increase in accuracy with each iteration without exhibit-
ing signs of network overfitting. Simultaneously, the
system loss continues to decrease progressively with
each iteration.

In summary, the VGG16 model has demonstrated
its reliability and robustness, enabling the attainment of
high accuracy even with limited data. It effectively mit-
igates overfitting, as corroborated by [31] and [32].

Table 3

Accuracy and Loss of proposed VGG19, VGG16,
and CNN models(%)

261 images were correctly predicted and 39 images
were incorrectly predicted;

— For custom CNN, we note that out of 360
benign images, 280 images were predicted correctly
while 80 images had a wrong prediction. On the other
hand, we notice that on 300 malignant images, 234
images were predicted correctly and 66 images had an
incorrect prediction.

Based on the information provided earlier, it can
be concluded that the VGG16 model demonstrates
higher performance.

4.3. Recall, Precision, and F1-score

Tables 4 - 6, show precision, recall, and F1-score
metrics results for the three proposed models. The re-
sults indicate that the VGG16 transfer learning model
outperformed the other two models in terms of preci-
sion,recall and F1-score for both benign and malignant
classes, Specifically, it achieved 88% precision , 87%,
recall, and 87% F1-score for the bening class, and 85%,
precision, 87% recall, and 86% F1-score for the malig-
nant class. Following closely, the VGG19 model
achieved the second-best results, while the CNN model
was ranked last.

Model Accuracy Loss
VGG19 84.37 39
VGG16 87 38

CNN 74 52

4.2. Confusion matrix

The confusion matrix is employed to evaluate the
performance of classifier models displaying the number
of correct and incorrect predictions based on each class
in the test dataset (Benign, Malignant). Figure 12 illus-
trates the confusion matrix of the three proposed mod-
els:

— For the VGG19 model, out of 360 benign
images, 302 images were predicted correctly and 58
images were predicted incorrectly. On the other hand,
we found that out of 300 malicious images, 252 were
correctly predicted and 48 were incorrectly predicted.

— For the VGG16 model, we found that for 360
benign images, 313 images were correctly predicted,
whereas 47 images were incorrectly predicted. On the
other hand, we found that for 300 malignant images,

Table 4
VGG19 model
Class Precision | Recall |F1-score | Support
Benign 0.86 0.83 0.84 360
Malignant 0.81 0.84 0.82 300
Table 5
VGG16 model
Class Precision | Recall | F1-score | Support
Benign 0.88 0.87 0.87 360
Malignant 0.85 0.87 0.86 300
Table 6
CNN model
Class Precision | Recall |Fl-score | Support
Benign 0.80 0.77 0.78 360
Malignant 0.78 0.74 0.75 300

5. Conclusions

The realm of computerized diagnosis through im-
age processing has garnered considerable interest in
recent times. Accessibility of affordable software and
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(VGG19)

(VGG16)

(CNN)

Fig. 12. The confusion matrix for our three
proposed models

hardware has opened up new possibilities for image
analysis applications. Automated diagnostic systems
have become prevalent and are tailored for specific
medical image analyses and disease diagnosis. Notably,
in recent years, deep neural networks and other variants
of deep learning algorithms have captured significant
attention, achieving remarkable classification results in
the field of computer vision. The primary goal behind
developing this efficient system is to fulfill a real-time
clinical diagnostic project by diagnosing skin lesions.
The proposed approach comprises several stages,
including data normalization, data augmentation, feature
extraction using deep learning models ( CNN, VGG19,
VGGL16), and classification. These models were trained
and tested using 3297 skin lesion images sourced from
the International Skin Image Collaboration archive. Ac-
cording to the training and testing results, we deduced
that the VGG16 model achieved good performance for
the benign and malignant classes with an accuracy of
87% and a loss rate of 0.38. The VGG16 model provid-

ed the highest performance among the others with 88%
precision, 87 % recall, and 87% F1-score for the benign
class and 85% precision, 87% recall, and 86% F1-score
for the malignant class.

In future studies, we are considering improving
these models so that they can classify several categories
of skin cancer (Actinic keratosis, basal cell carcinoma,
dermatofibroma, melanoma, etc).

Contributions of authors: Conceptualization,
methodology — Mariame Oumoulylte, Ahmad
El Allaoui; formulation of tasks, analysis — Mariame
Oumoulylte, Abdelkhalak Bahri, Ali Omari Alaoui;
development of model, software, verification — Mari-
ame Oumoulylte; analysis of results, visualization —
Mariame Oumoulylte, Ahmad EIl Allaoui; writing —
original draft preparation, writing — review and editing —
Mariame  Oumoulylte, Ali  Omari  Alaoui,
Yousef Farhaoui.

All authors have read and approved the published
version of this manuscript.
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KIIACU®DIKALIS PAKY IIKIPH HA OCHOBI 3rOPTKOBOI HEMPOHHOI MEPEXI
3 MOJIEJISIMA TPAHC®EPHOI'O HABUAHHSI

Mapiam Ymyninm, Ani Omapi Anayi, FOcep @apxayi,
Axmao Env Annayi, Aooenvxanax baxpi

Pak mikipu — 1e 3aXBOpPIOBaHHS, 10 XapaKTEPU3YEThCSl aTUIIOBUM PO3POCTAHHSAM KIIiTHH miKipu. Lle BinOyBa-
etbest, ko JJHK y xinitHHax mikipu nomkomkyeTbes. Kpim Toro, 1ie nommpeHa gopma paxy, sika MOXKe IPU3BECTH
JIO JIETAJIbHOI'0 PE3YJbTAaTY, SIKIIO ii HEe BUSABUTH HAa PaHHIX cTajisx. biomncis mKkipu € HeoOXiTHUM KPOKOM Y BH3Ha-
YeHHI HAasBHOCTI paKy LIKIpH, OJHAK Il TIPOLelypa BUMarae yacy i gocBifay. OCTaHHIM 4acoM IUTYYHHH iHTEJIEKT i
QITOPUTMH TIIMOOKOTr0 HABYAHHS IEMOHCTPYIOTh BHUIIY ITPOJYKTUBHICTh MOPIBHSHO 3 JIFOJWHOIO Y BUKOHAHHI Bi3ya-
JIBHUX 3aBJaHb. e MOXKHA MOSCHUTH TIOKpAIlEHUMH MOXIIMBOCTSIMH OOpOOKH Ta HAsSBHICTIO BENMKUX HAOOPIB Ja-
HUX. ABTOMaTH30BaHa Kiacu]ikailis, 3aCHOBaHAa Ha LUX JOCATHEHHSX, MA€ MOTEHIIaN JUIs MOJETIIeHHS PaHHbOI
JIarHOCTHKH paKy mikipu. TpaauiiiHi MeToAM MTIarHOCTUKU MOXYTh IPOIYCTUTH TEBHI BUMAKH, TOJI K ITiIXOIH
Ha OCHOBI HITYYHOI'0 iHTEJEKTY IPOIMOHYIOTH IIUPINY MepCreKTuBy. TpaHcdepHe HABYAHHS BUIUIAETHCS SIK HIAPO-
KO BUKOPUCTOBYBaHa TeXHika B INIMOOKOMY HaBYaHHI, 0 nepeadadae BUKOPUCTAHHS HONEPEIHbO HaBUSHUX MOJe-
neid. L{i Mozeni MIMPOKO 3aCTOCOBYIOTHCSI B OXOPOHI 3710pOB's, OCOOJIMBO B JIarHOCTHUII Ta BUBUEHHI ypa)KeHb IIKi-
pu. AHanoriuHo, 3ropTkoBi HeliponHi Mepexxi (CNN) HeoaaBHO 3apeKoMeHIyBalll ce0e Ik BUCOKOHA/IIiHI aBTO-
HOMHI eKCTPAKTOPH O3HAK, SIKi 3aBASKH CBOEMY BHCOKOMY ITOTEHIIialTy MOXYTh JOCSTTH BiJIMiHHOI TOYHOCTI y BH-
SIBIIEHHI paKy mKipu. OCHOBHOIO METOIO IbOTO JOCTIIKEHHA € TMoOyIoBa MoAeiel TiIrnOOKOro HaBYAHHS, IO HE
MaloTh 3HAKiB, JUISI BUKOHAHHA OiHapHOI Knacudikalii paky mKipu Ha JOOPOSKICHI Ta 37OAKiCHI Kateropii. 3aBmaH-
HS, SIKI HEOOX1/THO BUPIMINTH: PO3OUTTA 0a3u naHux, BumineHHs 80% 300paxeHb y HaBYaIbHY BUOIpKY, pemra 20%
- Y TeCTOBY BHOIpKY; 3aCTOCYBaHHS MPOLENYPH IMOMEpenHboi 0OpoOKH 300pakeHh 3 METOI0 ONTUMI3allii IXHBOI
MIPUOATHOCTI [T aHami3y. Lle Bkitogano po3mmpeHHs Habopy AaHUX 1 3MiHY po3Mipy 300pakeHb IS MPUBEACHHS
X y BIJIOBIHICTh A0 CrielU(IYHUX BUMOT KOXKHOI MOJIEJi, BUKOPHCTAHOI B HAIIOMY JOCHI/DKEHHI; HAPEIITI, CTBO-
peHHsI MojieNieit TITMOOKOro HaBYaHHSI UIs TOro, 00 BOHM MOTJIM BUKOHYBATH 3aBJaHHs Kiacudikailii. Bukopucra-
Hi Meroau — e Mmomens CNN i mBi Monerni HaBUaHHSA 3 repeHocoM, Taki sk Visual Geometry Group 16 (VGG16) i
Visual Geometry Group 19 (VGG19), Bonn Oynu 3acTocoBaHi A0 ASPMATOJOTIYHUX 300pa’keHb 3 HA0OpY IaHUX
Mixuapogroro apxiBy 300paxens mkipu (ISIC) mns kmacudikamii ypakeHp IIKIpH Ha JBa KJIACH i TMPOBEICHHS
TOPIBHAIIBHOTO aHami3y. Hamri pe3ymbraTi mokazanu, mo moaens VGG16 nepeBeprimia iHII, JOCATHYBIIH TOYHO-
cti 87% 1 BTpar 38%. Kpim Toro, mopens VGG16 nporemMoHcTpyBana Haiikpalli MOKa3HUKY MPHUTayBaHHS, TOUYHO-
cti ta Fl. lnsa mopiBasas, Mmoneni VGG16 ta VGG19 npogeMoHCTpyBany Kpaili pe3yabTaTH B IIbOMY 3aBlaHHI
knacudikamii nopiBasHO 3 MomeTio CNN. BucHoBKH. BaxknuBicTs bOTO AOCIIIKEHHS BUIUIUBAE 3 TOTO, IO CHC-
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TEMU MiATPUMKA MPUAHATTS KIIHIYHAX PIIICHh HA OCHOBI TJTHOOKOT'O HABYAHHS BUSBWIIUCS YK€ KOPUCHUMH, TIPO-
TIOHYIOYH I[IHHI peKOMEHAAIII] 1epMaToJIoram IiJ{ 4yac AiarHOCTUIHHUX TPOLETYD.

Karouosi cioBa: CNN; ['muboke HaBuanns; HaBuanus 3 mepenecennsm; VGG19; VGG16; Pak mkipu; Me-
JIMYHA Bi3yaTi3artis.

Mapiam YMyminT — acmipaHT y Tanmy3i oOpoOku 300paxxeHb, HallioHanbHa INKONA TMPUKIAJHUX HAYK
Anp-Xoceiima, JlaGopaTopist nmpukianaux Hayk, komanma: SDIC, VuiBepcutrer AoOnmeneMmaineka Ecaami, Teryas,
Mapokxko.

Adxi Omapi Aastayi — acripaT y raimy3i o00pooku 300paxens y L-STI, T-IDMS, FST Eppauinis, YHiBepcuter
Mymnas Icmaina Meknec, Mapokxo.

KOced dPapxayi — n-p Hayk 3 komm'totepHoi Oesmneku, npod. ¢axynbrery Hayku i Texnonoriii FSTE,
Eppauinis, Mapokko.

Axman Eabs Annayi — a-p Hayk 3 iHpopMaiiiHuX TexHomnorii, npod. dakynerery Hayku i TexHonoriit FSTE,
Eppauinis, Mapokko.

Abnenbxamak baxpi — mnpod., HamionanpHa mikojga mnpuKIagHUX Hayk Aub-Xoceiima, JlabGopaTopist
NpUKIIagHuX Hayk, komannaa: SDIC, YuiBepcurer Adaensmaneka Ecaani, Teryan, Mapokko.
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