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MACHINE LEARNING WITH LOGISTIC REGRESSION ENSEMBLES 
 

The subject matter of this article is the application of supervised machine learning to the task of object class 
recognition. The goal is to enhance functional efficiency in information-extreme technology (IET) for object 

class recognition. The tasks to be solved are as follows: to analyze possible ways of increasing the functional 

efficiency of IET approach; to implement an ensemble of models that include logistic regression for prioritiz-

ing recognition features and an IEI learning algorithm; and to compare the functional efficiency of the result-

ing ensemble of models on a well-known dataset with the classic approach and the results of other researchers. 

Methods: The method is developed within the framework of the functional approach to modeling natural intel-

ligence applied to the problem of object classification. The following results were obtained: This study tries to 

augment existing IET to support feature prioritization as part of the object class recognition algorithm. The 

classical information-extreme algorithm treats all input features that are equivalently important in forming the 

decisive rule. As a result, the object features with strong correlation are not prioritized by the algorithm’s de-

cisive mechanism, resulting in decreased functional efficiency in the exam mode. The proposed approach 
solves this problem by applying a two-stage approach. In the first stage, the multiclass logistic regression ap-

plied to the input training feature vectors of the objects to be classified formed the normalized training matrix. 

To prevent overfitting of the logistic regression, the L2 (ridge) regularization method was used. In the second 

stage, the information-extreme method as input takes the result of the first stage as input. The geometrical pa-

rameters of the class containers and the control tolerances of the recognition features were considered as the 

optimization parameters. Conclusions. The proposed approach increases MNIST (Modified National Institute 

of Standards and Technology) dataset classification accuracy compared with the classic information-extreme 

method by 26.44%. The proposed approach has a 3.77% lower accuracy compared to neural-like approaches 

but uses fewer resources in the training phase and allows retraining of the model, as well as expanding the 

dictionary of recognition classes without model retraining.  

 

Keywords: supervised machine learning; information-extreme machine learning; machine learning parameter 
regularization; algorithms ensemble; information criterion; optimization. 

 

1. Introduction 

 

1.1. Motivation for research  

and the State of the Art 

 

The substantial increase in data generation and ac-

cumulation has increased interest in machine learning as 

a whole and supervised machine learning in particular. 

This is generally connected to the realization that this 

data contains valuable hidden insights. There are three 

significant data science research tasks: description, pre-

diction, and causal inference. Each of these tasks can be 

solved using machine learning [1]. Automatic intellec-

tual systems, particularly Machine Learning (ML), have 

progressed remarkably recently. It has numerous real-

life applications. For instance, ML has emerged as the 

method of choice for developing practical software for 

computer vision, speech recognition, and language pro-

cessing. The particular influence of Machine Learning 

has also been widely felt across industries with data-

intensive issues, such as consumer services, diagnosing 

failures in complex systems, and controlling supply 

chains [2]. 

The state-of-the-art algorithm in supervised learn-

ing includes neural-like structures – CNN (convolution-

al neural networks) [3]. The neural-like approach has 

proved to be one of the best levels of functional effi-

ciency for object classification tasks [4]. The neural-like 

algorithms may contain thousands of free parameters, 

resulting in a high ability to learn a wide variety of dif-

ferent patterns. Simultaneously, this can result in high 

computational resource consumption during the training 

and exam modes. Moreover, as a result of a huge num-

ber of free parameters, these algorithms are vulnerable 

to overfitting; thus, regularization is usually used. There 

are several well-known methods [5] to decrease re-

source consumption and solve the problem of overfit-

ting. One method to eliminate overfitting and fully con-

nected neural network topology is the dropout approach, 

which results in a sparser network with a smaller num-

ber of parameters. This simplifies the network topology, 

resulting in increased speed of the exam stage and pre-

venting overfitting. However, the method also has 
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downsides: the training stage time is increasing, and the 

method has several hyper-parameters that may be hard 

to tune, including dropout probability and learning rate. 

Another popular neural-like approach includes 

convolutional neural networks. This method is known to 

be a regularized type of feed-forward neural network 

that learns feature engineering by applying filters or 

kernels [6]. Despite having one of the best classification 

performances, the method also has several disadvantage, 

including the requirement of a large number of labeled 

training samples for weight parameter learning [7]. 

The problem of high compute resource consump-

tion is especially evident when considering the wide-

spread interest in Internet of Things (IoT) de-vices and 

the technology of edge computing technology. Edge 

computing [8] is a distributed computing approach. The 

main goal of the technology is to bring compute and 

data servers closer to the consumer, i.e., to the location 

where they are needed. The main benefit of this effort is 

that it saves network bandwidth or reduces the latency 

of application request processing. For machine learning 

informational systems, applying this approach means 

moving models closer to the user. 

One typical application is federated machine learn-

ing [9]. The machine learning system comprises shared 

models spread across decentralized nodes. The models 

in each node are optimized to use computational re-

sources as efficiently as possible. The technique is also 

used when every node must use its training data for con-

fidentiality purposes. The technique has been used on 

smartphones [10] to enhance the next-word prediction 

for virtual keyboards. Because the training data never 

leaves the node where it is executed, federated learning 

was previously conceived to maintain the confidentiality 

of the training data. In such a way, one of the prerequi-

sites of federated learning is to have a model that ena-

bles it to run on comparatively low-powered computa-

tion nodes, such as smartphones. This study was con-

ducted to find the model’s hyper parameters, consider-

ing not only the functional efficiency of the model but 

also computational resource consumption. This research 

is based on performing multi-objective optimization 

solutions for finding acceptable machine learning mod-

els in terms of model accuracy and resource usage [11]. 

As described in the research, the proposed approach for 

hyperparameters optimization includes performing hy-

perparameter tuning directly on the target device, which 

is often not feasible due to the resource limitations of 

the target device. The hyperparameter tuning process 

imposes high memory requirements for evaluating mul-

tiple models on large training sets. 

Thus, one of the biggest problems arising for neu-

ral-like approaches is the need for huge amounts of 

computational resources [12]. The scale of the problem 

reached a point when the carbon footprint of machine 

learning systems became a concern. While it is still hard 

to estimate the actual carbon footprint of a particular 

machine learning system, it is still important from an 

ethical point of view to decrease its impact on the envi-

ronment [13]. In such a way, there are increasingly ob-

vious trade-offs between the machine learning function-

al efficiency and simplicity of the model and as a result, 

the number of consumed resources. The promising 

method is information-extreme intellectual technology 

(IEIT). This method requires less computational power 

than neural-like approaches [14]. 

 

1.2. Objectives and approaches 

 

One of the main objectives in IEIT research field is 

the development of approaches to improve the function-

al efficiency of the method. 

There are several known techniques for increasing 

the functional efficiency of the IEIT. One of the  

methods is to use information-extreme machine learning 

on a hierarchical data structure. This approach is used to 

increase the functional efficiency of the IEIT, especially 

in the case of multiclass classification problems.  

The method uses the hierarchical structure of data in the 

form of a so-called decursive binary tree [14].  

The data structure in the form of a binary tree is called 

decursive, in which the attribute from the top of the up-

per tier is transferred to its stratum top of the lower tier. 

The recognition class alphabet is given in the form  

of a decursive hierarchical structure 

{xh,s,m
o  | h = 1, H ; s = 1, S; m = 1,2}  where H is the 

number of tiers; S – the number of executions on the h-

th tier; “2” for m means the number of classes on each 

level. On each tier, the algorithm forms the binary deci-

sive rule to select the correct object class with the high-

est probability. It was shown that in performing classifi-

cation for the alphabet with multiple classes, the hierar-

chical approach has a higher probability of predicting 

the correct class compared with the standard IET ap-

proach [15]. 

Another approach to increase the functional effi-

ciency of the IET method is feature selection pre-

processing. The classic information-extreme method 

treats all features as equally important. In this way, the 

informative, non-informative, and counter-informative 

features exert equal influence on the results during the 

examination stage. The input mathematical description 

is sensitive to containing the most important features to 

produce the decisive rule with the maximum full proba-

bility of correct object class recognition [16, 17]. One of 

the known approaches to solve this problem is to use 

more features considered during class recognition, in 

which the number informative, non-informative, and 

counter-informative are amortized. The increase in the 

feature vector dimension may be achieved due to the 
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introduction of synthetic features or by extending the 

feature space by considering more feature categories. 

For example, for object recognition on RGB images, 

one may consider not only the RGB components but 

also half-tone elements in the recognition of color imag-

es [18]. The obvious downside of this approach is the 

growing feature space. The compute resources needed 

for the exam mode is growing proportionally to the size 

of the feature space. On the other hand, approaches such 

as [19] attempt to address this issue by assessing the 

feature contribution to the overall functional efficiency 

of the decision-making system through a sequential re-

duction of the feature vocabulary. However, this signifi-

cantly increases the time required for the training stage. 

In such a way, both approaches (with expansion and 

reduction feature space) might be not appropriate for 

systems with small computational capacity, such as IoT. 

This study attempts to increase the functional effi-

ciency of the IET approach by using logistic regression 

as the first stage of the algorithm. The proposed ap-

proach follows from the hypothesis that, during the pro-

cess of decisive rule construction, IEIT treats all input 

features equally important – the most important features 

are not prioritized; thus, it is assumed that combining 

IEIT with a Machine Learning method that assigns 

weights to the input features in the process of learning 

may increase the functional efficiency compared to 

classical IEIT. The MNIST [20] dataset is used to verify 

the results of the proposed approach. The MNIST da-

taset was chosen because it is well known and has been 

applied to numerous ML approaches, which in turn ena-

bles us to compare our results with those of other algo-

rithms for object class recognition. 

 

2. Formalization of the proposed approach 
 

2.1. Basic and enhanced EIT approach  

on the learning stage 

 

Consider the formalized formulation of the prob-

lem of information synthesis, which can be studied 

within the ensemble of logistic regression and IET. The 

information system was developed for automatic object 

classification using input structured feature vectors. 

Let {Xm
o |m = 1, M} is alphabet recognition classes, 

where M is the total number of classes. Suppose a given 

object property training matrix ||ym,i

(j) || , i = 1, N , j = 1, n, 

where N, n are the number of class features recognition and 

implementations, respectively. It can be seen that the ma-

trix row {ym,i

(j) | i = 1, N}, determines the j-th feature vector 

and column {ym,i

(j)
| j = 1, n} – random sampling of the i-th 

object feature. It's known that for the standard multiclass 

logistic regression object classification approach we find 

such weights W = {wm,i| m = 1, M, i = 1, N } , and 

biases B = {bm|m = 1, M}, for which the loss function 

reaches the minimum. The loss function in our case is a 

negative log likelihood function in form:  

Ein = ∑ log �̂�(W,B),j

(yj)n
j=1 – in-sample error equals the sum 

of the natural logarithm of predicted probability for true 

label yj over all test samples, where j is the sample in-

dex [21]. Formally we have the minimization problem: 

argminEin
W,B

. The logistic regression is parametrized with 

three hyperparameters: nit  – number of iterations,  

lr – learning rate, λ – L2 regularization parameter for 

penalty term of the loss function, values for these pa-

rameters are determined experimentally [22]. The lo-

gistic regression takes as input the structured features 

vector {yi|i = 1, N} and transforms it to the probability 

distribution vector {pm|m = 1, M}, notice the probabil-

ity distribution vector dimension equal to the number of 

recognition classes. In proposed approach the input ob-

ject property training matrix ||ym,i

(j) || ,  i = 1, N ,  j = 1, n 

is transformed to the new training matrix ||pm,i

(j) ||  the 

logistic regression parametrized by optimal weights and 

biases found in the training stage for each row of the 

initial matrix. In this way obtained, a new input property 

training matrix||pm,i

(j) || ,  i = 1, M , j = 1, n. The IEI tech-

nology approach transforms the input training matrix Y 

into a training binary matrix X, which adapts to the 

maximum possible probability of making correct classi-

fication decisions by the method of permissible trans-

formations in machine learning. For Hamming binary 

space introduced set of {gm} machine learning parame-

ters that affect the functional efficiency of the IET algo-

rithm. The set of optimal parameters is represented in 

the form: 

 

gm =< xm, dm, δk >,                     (1)  

 

where xm – is the average features structured vector of 

the recognition class from the alphabet Xm
o ; dm– radius 

of the recognition class hyper spherical container for Xm
o , 

which is restored in the radial basis of the recognition 

features space; δk – parameter of the control tolerances 

for the recognition features field, which is equal to half 

of the symmetric field control tolerances. 

Required: 

– to determine machine learning parameters (1), 

which provide the maximum of the averaged infor-

mation criterion: 

 

E  =
1

M
∑ max

GE∩{k}
Em

(k)M
m=1 ,                    (2) 
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where Em
(k)

 is the functional efficiency information crite-

rion in recognition of the implementation of class Xm
o , 

calculated on the k-th step of the algorithm; GE – admis-

sible working area for optimization of the information 

functional efficiency criterion, {k} – machine learning 

algorithm learning steps; 

– form a training matrix, by transforming the prior 

classified fuzzy partition ℛ̃ |M|  to subperceptual binary 

Hamming space; 

– evaluate the Machine Learning functional effi-

ciency to decide whether the implementation of the rec-

ognized image belongs to one of the classes of the al-

phabet. 

In this way, the learning process consists of optimizing 

parameters (1) according to the information criterion (2).  

Consider the categorical functional model of Ma-

chine Learning. The model is presented in the form of a 

directional graph of mapping by operators of the corre-

sponding sets used in the learning process. Such repre-

sentation enables better visualization of the learning 

procedure. The input mathematical description is pre-

sented in the following structure: 

 

I =< G, T, Z, Ω, Y, P, X; f1, f2, f3, f4 > 

 

where G is the space of influence factors that affect the 

functioning of the automatic recognition system; T − set 

input data (training dataset); Z – space of possible 

recognition classes; Ω – space of recognition features;  

Y – input training matrix; P – normalized training ma-

trix;  

X – training binary training matrix; f1 – the operator of 

recognition features analysis; f2 – operator formation of 

the training matrix Y; f3 – operator to convert the input 

training matrix to normalized training matrix P by ap-

plying the logistic regression; f4 – operator for convert-

ing the input training matrix Y to the training matrix X 

defined in the Hamming space. 

Notice, the first stage of the proposed ensemble is 

presented in this model as operator f3. Fig. 1 shows a cat-

egorical functional model in the form of a directed graph 

of an ensemble of logistic regression and an information-

extreme machine learning system for object class recog-

nition with optimization of control tolerances for recogni-

tion features. 
 

 
Fig. 1. Categorical functional model  

of machine learning 

In Fig. 1 the term E consists of information criterion 

value (2) calculated at each step. This is common to all 

optimization contours for the parameters of vector (1). 

Operator r: E  → ℛ̃ |M|  in the machine learning process 

restores the radial basis of the binary feature space con-

tainers of recognition classes. In turn operator θ maps the 

partition on the fuzzy distribution of a priori classified 

binary vectors of recognition class features ℛ̃ |M|. In the 

following step of the contour the operator ψ performs the 

transition X → I|S| , where I|S|  is the set of hypotheses 

γ1: xm
(j)

∈  Xm
o .Operator γ  determines the set of accuracy 

characteristics 𝔍|Q|  and operator φ  calculates the set of 

values E of the information optimization criterion, which 

is functional from the accuracy characteristics. Next, the 

categorical model contains the contour for optimization 

of the control tolerance parameter closed by a term set D 

of allowable values for the system of control tolerance. 

The operator δ1 at each step of machine learning changes 

the control field, and the operator δ2  evaluates the de-

pendence of the recognition features of a given control 

field on the tolerances. Operator u regulates the machine 

learning process. 

The main difference between the proposed model 

and the classical IET approach is the existence of opera-

tion f3 which transforms the input object-feature training 

matrix X into normalized training matrix P obtained by 

the application of logistic regression to the original 

training matrix realizations. 

In our case, the information-extreme machine learn-

ing algorithm with optimization of the control tolerance 

parameter for features of recognition corresponds to the 

second level of machine learning depth. It is presented as 

a two-cycle iterative procedure for determining the global 

maximum information optimization criterion (2). The 

internal cycle implements the basic approach of infor-

mation-extreme machine learning. In this cycle, we de-

termined the global maximum of information criterion (2), 

thus finding the optimal radii of recognition classes of 

hyper spherical containers. In our case the implementa-

tion of control tolerances is applied in parallel manner, 

meaning that all tolerances for recognition features 

change simultaneously by a given value. The input to the 

machine learning algorithm of the information-extreme 

stage is normalized matrix ||pm,i

(j) || obtained by applying 

logistic regression.  

1. The main stages of information-extreme ma-

chine learning: Determine the optimal values of weights 

W and biases B of the logistic regression model by run-

ning the logistic regression training procedure on the 

input training matrix ||ym,i

(j) || ,  i = 1, N ,  j = 1, n, Apply 

the first stage of the machine learning ensemble by ap-

plying the logistic regression model parameterized by 

optimal weights W and biases B to the input training 
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matrix. As a result, obtain the normalized training ma-

trix||pm,i

(j) ||. Each row of the normalized matrix is the 

probability distribution of the recognition classes ob-

tained from application of softmax function. 

2. Calculating the training matrix for the primary 

recognition class, denoted as X1
o, involves determining 

the average feature vector {p1,i|i = 1, N}  for control 

tolerance. Notice that in the previous step, logistic re-

gression was applied, and the number of features in the 

normalized matrix is equal to the number of recognition 

classes. 

3. Determine the binary vectors of recognition 

class X1
o, using the following rule: 

 

x1,i

(j)
= {

  1,  if p1,i − δ𝑖   ≤ p1,i

(j)
≤ p1,i + δ𝑖 ,

0,  if else;                                       
 

 

4. Form average binary vectors for each class im-

plementations by the following rule: 

 

xm,i = {
1, if 

1

n
∑ xm,i

(j)
n

j=1
> ρm,

0, if else,

 

 

where ρm is a selection level hyperparameter. Pos-

sible values are in the range (0, 1]. 

5. Set division of average feature vectors accord-

ing to the rule of "nearest neighbours" 

ℛm
|2|

= < xm, x1 >, where x1a binary average vector of 

neighbouring class is carried out according to the fol-

lowing scheme: 

a) form the structuring vectors set {xm}  starting 

from the basis class vector x1; 

b) the matrix constructed with dimensions M×M. 

In each cell of the matrix is the code distance between 

the corresponding two recognition classes; 

c) find the minimum for each row of the matrix 

formed in the previous step; 

d) form a structured set of pairwise partitioning 

{ℛm
|2|

|m = 1, M}; 

e) find code distances dm  for each recognition 

class, for which the information criterion has the maxi-

mum value. The restriction for radii dm  of spherical 

container is: d1 < d(x1 ⊕  x2) − 1. In other words, the 

distance between neighbours should be greater than the 

container radius; 

f) implement the procedure (2), and find the op-

timal control tolerance. 

6. STOP. 

After the procedure is executed, we have optimal 

weights W and biases B for the logistic regression mod-

el and IET optimal parameters {xm
∗ }– etalon vectors for 

each class, {dm
∗ } – the recognition classes containers 

radii, and system of control tolerances {δ𝑖
∗

 
} on recogni-

tion features. 

As a criterion for optimization of machine learning 

parameters IET is known to use the modified Kullback 

measure. 

 

Em
(k)

=
n −  (K1,m

(k)
+ K2,m

(k)
)

n
log2

2n + ξ − K1,m
(k)

− K1,m
(k)

K1,m
(k)

+ K1,m
(k)

+ ξ
 

 

where K1,m
(k)

 – number of false negative events, K2,m
(k)

 – 

number of false positive events, ξ – small number to 

prevent division on zero. 

Having optimal parameters obtained in the learn-

ing stage as the next stage built decisive rules in form: 

 

(∀Xm
o ∈ ℛ̃ |M|)(if ((μm >  0) & μm  = max

{m}
 {μm}),   (3) 

                  then x(j) ∈  Xm
o ,  else  x(j) ∉  Xm

o ) , 
 

where μm is a membership function: 

 μm =  1 −   d(x1 ⊕  x2) dm
⋅⁄ , where  d(xm

∗   ⊕ xj)  is a 

code distance between the etalon and classified vectors. 

 

2.2. System operation in the exam mode 

 

After forming the decisive rules, the system is 

ready to function in the exam mode. The functional effi-

ciency of the system is possible to measure in the exam 

mode. The categorical functional model is presented in 

the form of a directed graph and has one contour. In the 

categorical model (Fig. 2) operator uE regulates the pro-

cess of system functioning in the exam mode; Sets G, Z, 

Ω and f1 have the same sense as previously, and  

T – contains input data for recognition. 

 

 
 

Fig. 2. Categorical model of system functioning  

in the exam mode 

 

Let us clarify the meaning of some operators ac-

cording to the change in set T. Operator f2 forms an ex-

amination vector of recognition features, similar in 

structure to the vectors of the training matrix. Similar to 

the training mode, operation f3 applies logistic regres-

sion to the input feature vector, forming a probability 

distribution vector size equal to the number of recogni-

tion classes. Operator f4 generates a binary vector x ac-

cording to the optimal control tolerances obtained dur-

ing the machine learning stage. Operator f5 maps this 

vector for the optimal division of ℜ* recognition classes. 
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Operator ψ1 calculates the value of the decisive rule (3) 

and forms a term set F, and operator ψ2 on the maxi-

mum value of the decisive rule determines the affiliation 

of the vector x to one of the alphabets classes (verifica-

tion hypotheses I|M+1|). The set of possible hypotheses 

I|M+1| contains additional hypothesis γM+1  which is ac-

cepted in the case of system failure to classify input data. 

 

3. Experimental result and discussion 
 

The above two-stage algorithm was implemented 

to recognize handwritten digits from the MNIST dataset. 

The MNIST database contains 60000 training images of 

handwritten digits and 10000 testing images. The alpha-

bet of recognition classes has size of 10 – one for each 

digit. Each image has 28×28 grayscale resolution. No 

preprocessing was applied to the images. The Fig. 3 

shows example images for each recognition class from 

the dataset. 

 

 
 

Fig. 3. Example images from the MNIST dataset 
 

According to the above algorithms in the first 

stage, the logistic regression model was trained. The 

following hyperparameters were used: number of itera-

tions nit – 2000, learning rate lr – 0.05, λ – regulariza-

tion parameter 0.1. As a result of the logistic regression 

training stage, the set of optimal weights W and biases 

B were found. The Fig. 4 shows the visualization of 

optimal weights for each digit class. 

Next, to the training data, logistic regression with 

optimal parameters was applied. As a result, we obtained 

a normalized training matrix consisting of probability 

distribution vectors over the alphabet of recognition clas-

ses. Since, the values of the normalized training matrix 

represent probabilities – its values are in the range [0, 1], 

for convenience the values were scaled to have values in 

range [0, 256]. The normalized training matrix was used 

for the second stage, i.e., the determination of optimal 

IET parameters. The working area for the control toler-

ances machine learning parameter δ was took roughly the 

half of the range of possible features values. Because in 

our case features are in range [0, 256] – the working area 

was taken 120. 

From Fig. 5 it is visible that for the classic IET al-

gorithm maximum information criterion E = 0.24  is 

reached at the value of control tolerance δ = 5.  

From Fig. 6 it is visible that for the ensemble of 

logistic regression and IET algorithms, the maximum 

information criterion E = 0.91 is reached at the value of 

control tolerance δ = 90. The value of the information 

criterion for the ensemble approach is noticeably higher 

compared with the classic IET approach. On graphs, the 

area filled with gray color represents the control work-

ing area. The area filled with dark gray represents the 

area where the information criterion reaches maximum. 

To construct the decisive rules (3), the optimal 

control tolerance parameter δ⋅ was found optimal values 

for hyper spherical containers of recognition classes. As 

shown in table 1 and 2, all classes in the enhanced ap-

proach become more compact, which led to a decrease 

in type II error at the examination stage (see fig 7,8). 

 

 
Fig. 4. Visualization of logistic regression optimal 

weights, 0-9 are label for corresponding classes 

 

 
Fig. 5. Dependence graph of the information  

optimization criterion (E) from the control tolerance (δ) 
field parameter for IET approach 
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In the examination mode, we evaluated the func-

tional efficiency of the method. We used the test sub da-

taset from MNIST dataset. For IET approach the accura-

cy is 69.56%. For the proposed ensemble of logistic and 

IET, the accuracy is 96.0%. We can see that the accuracy 

increase is 26.44%. For reference, the state-of-the-art 

neural-based approach has an accuracy of 99.77% [23, 

24]. The proposed approach has 3.77% lower accuracy; 

however, it is characterized by lower requirements for 

computational resources. 
 

 
Fig. 6. Dependence graph of the information  

optimization criterion from the control tolerance (δ) 

field parameter for the ensemble of logistic  

regression and IET 
 

Table 1 

Optimal radii for hyper spherical containers using  

classic IET and enhanced approach 

Classes 0 1 2 3 4 5 6 7 8 9 

Radii (classic IET) 8 10 13 10 13 11 10 11 12 8 

Radii (enhanced 

approach) 
1 2 1 2 1 2 2 2 2 2 

 

The Fig. 7 shows the probability distribution of the 

predicted class using IET approach. This shows that the 

model has severe misclassification for some classes. For 

example, for class with digit 1, the model correctly clas-

sified only 44% of the input samples. 

 

 
Fig. 7. Probability distribution of the predicted classes  

for IET approach 

The Fig. 8 shows the probability distribution of the 

predicted classes using an ensemble of logistic regres-

sion and IET. It shows that the class for digit 1 still has 

the lowest correct classification rate – 86 %, however it 

is obvious that the false positive errors for each class are 

generally spread across two to three classes – which in 

turn gives hope that hierarchical IET may have a posi-

tive effect on increasing the functional efficiency of the 

ensemble approach. 

 

 
Fig. 8. Probability distribution of the predicted classes  

for the ensemble of logistic regression and IET 

 

As noted before, the result of the softmax function 

from the first stage of the ensemble was scaled to have 

values in the range [0, 256]. This was done to provide a 

convenient way to compare results from the classical 

IET approach and ensemble approach. We studied the 

influence of input feature absolute values scalers on 

functional efficiency and performance of the training 

stage. On decreasing the scaled feature area to range 

[0, 120] and keeping the learning step of control toler-

ance equal to 1, the functional efficiency did not de-

crease, and the training stage took 48.5% less time 

compared to the feature value range [0, 256]. However, 

on further decreasing the feature value area and keeping 

the same control tolerance range, significantly decreas-

ing the functional efficiency and converging to the accu-

racy of plain logistic regression 95.11 %. For instance, 

by decreasing the feature value range to [0, 100], the 

accuracy drops to 95.33 %. This can be explained by the 

fact that by decreasing the range of feature values and 

maintaining the same learning rate, the control tolerance 

resolution of the traversed search area is also decreased. 

 

Conclusions 

 

Research was performed to increase the functional 

efficiency of information-extreme machine learning 

methodology applied to the task of object class recogni-

tion. Formed hypothesis: Because the information ex-

treme approach treats all input features equally im-

portant, the ensemble of multi-class logistic regression 

and IET increases functional efficiency compared to 
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classical IET. The initial hypothesis was verified using 

the MNIST dataset. The testing results show an increase 

in the recognition accuracy of the proposed method 

compared with the classical information extreme ap-

proach of 26.44 %. 

The proposed approach for object classification 

has an acceptable rate of functional efficiency while 

having much lower computational costs than neural-like 

approaches. The alternative approach to increasing the 

functional efficiency of IET is to use a hierarchical ap-

proach instead of a linear one [15]. This paves the way 

for further improvements in the functional efficiency of 

machine learning by optimizing additional system pa-

rameters and using ensemble logistic regression and 

hierarchical IET. 

In summary, the proposed ensemble has the fol-

lowing advantages: 

– compared with the classic IET approach, in-

creased functional efficiency of object classes recogni-

tion on 26.44% of MNIST dataset; 

– flexibility to retrain them through expansion of 

the recognition classes alphabet; 

– compared with the neural-like approach, it re-

quires much less computational data. 

Future research will continue to solve the prob-

lem of increasing the functional efficiency of IET under 

limited computing resources. The directions of the au-

tomated reduction of the dictionary of features and the 

reduction of the variability of the values of the recogni-

tion features seem promising. The power of these pa-

rameters is a multiplier in the number of cycles for op-

timizing the geometric parameters of the system of con-

trol tolerances of recognition features, so they directly 

affect the running time of the learning algorithm. The 

complementary research direction is adopting an en-

semble of logarithmic regression and IET models with a 

hierarchical approach to building a classifier – it is a 

perspective approach to enhancing the results of the 

exam stage. 
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ПІДВИЩЕННЯ ФУНКЦІОНАЛЬНОЇ ЕФЕКТИВНОСТІ  

ІНФОРМАЦІЙНО-ЕКСТРЕМАЛЬНОГО МАШИННОГО НАВЧАННЯ  

ЗА ДОПОМОГОЮ АНСАМБЛІВ ЛОГІСТИЧНОЇ РЕГРЕСІЇ 

Олександр Папченко, Борис Кузіков,  

Оксана Шовкопляс 

Об’єктом дослідження є застосування керованого машинного навчання для задачі класифікації 

об’єктів. Метою дослідження є підвищення функціональної ефективності інформаційно-екстремальної тех-

нології (ІЕТ) машинного навчання. Задачі дослідження: проаналізувати можливі шляхи підвищення функці-

ональної ефективності навчання моделей за ІЕТ; реалізувати ансамбль моделей що включають логістичну 

регресію для пріоритезації ознак розпізнавання та алгоритм навчання за ІЕІ; порівняти функціональну ефе-

ктивність запропонованого підходу із класичним та результатами інших дослідників на відомому наборі 

даних. Методи. Метод розроблено в рамках функціонального підходу до моделювання природного інтелек-

ту в застосуванні до задачі класифікації об'єктів. Отримані такі результати. Запропоновано метод покра-

щення ІЕТ шляхом додавання ваги ознак розпізнавання. Класичний алгоритм розглядає всі вхідні ознаки як 

рівноправні при формуванні вирішального правила. У результаті інформативні ознаки розпізнавання не 

пріоритезуються алгоритмом побудови вирішальних правил у порівнянні із не-інформативними чи контр-

інформативними, що призводить до зниження функціональної ефективності в режимі екзамену. Запропоно-

вано двоетапний підхід, де на першому етапі до навчальної вибірки застосовується багатокласова логістична 

регресія – формується нормалізована навчальна матриця. Для запобігання перенавчання логістичної регресії 

використовувався метод регуляризації L2 (RIDGE). На другому етапі застосовується інформаційно-

екстремальний метод навчання. Геометричні параметри контейнерів класів розпізнавання та контрольні до-



ISSN 1814-4225 (print) 

Radioelectronic and Computer Systems, 2023, no. 4(108)               ISSN 2663-2012 (online) 

74 

пуски на ознаки розпізнавання використовуються як параметри оптимізації етапу навчання моделі. Тесту-

вання отриманих результатів проведено на наборі даних MNIST (Modified National Institute of Standards and 

Technology), що дозволяє порівняти отриманий результат із результатами інших дослідників. Висновки. 

Запропонований метод підвищує точність класифікації на наборі даних MNIST на 26.44% порівняно з кла-

сичним інформаційно-екстремальним методом. Запропонований підхід  має на 3.77% меншу точність у по-

рівнянні із нейроподібними підходами, але використовує менше ресурсів на етапі навчання та дозволяє про-

водити донавчання моделі, а також проводити розширення словника класів розпізнавання без повного пере-

навчання. 

Ключові слова: навчання з учителем; інформаційно-екстремальне машинне навчання; параметри ма-

шинного навчання; ансамбль алгоритмів, інформаційний критерій; оптимізація. 
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