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ENHANCING FUNCTIONAL EFFICIENCY IN INFORMATION-EXTREME
MACHINE LEARNING WITH LOGISTIC REGRESSION ENSEMBLES

The subject matter of this article is the application of supervised machine learning to the task of object class
recognition. The goal is to enhance functional efficiency in information-extreme technology (IET) for object
class recognition. The tasks to be solved are as follows: to analyze possible ways of increasing the functional
efficiency of IET approach; to implement an ensemble of models that include logistic regression for prioritiz-
ing recognition features and an IEI learning algorithm; and to compare the functional efficiency of the result-
ing ensemble of models on a well-known dataset with the classic approach and the results of other researchers.
Methods: The method is developed within the framework of the functional approach to modeling natural intel-
ligence applied to the problem of object classification. The following results were obtained: This study tries to
augment existing IET to support feature prioritization as part of the object class recognition algorithm. The
classical information-extreme algorithm treats all input features that are equivalently important in forming the
decisive rule. As a result, the object features with strong correlation are not prioritized by the algorithm’s de-
cisive mechanism, resulting in decreased functional efficiency in the exam mode. The proposed approach
solves this problem by applying a two-stage approach. In the first stage, the multiclass logistic regression ap-
plied to the input training feature vectors of the objects to be classified formed the normalized training matrix.
To prevent overfitting of the logistic regression, the L2 (ridge) regularization method was used. In the second
stage, the information-extreme method as input takes the result of the first stage as input. The geometrical pa-
rameters of the class containers and the control tolerances of the recognition features were considered as the
optimization parameters. Conclusions. The proposed approach increases MNIST (Modified National Institute
of Standards and Technology) dataset classification accuracy compared with the classic information-extreme
method by 26.44%. The proposed approach has a 3.77% lower accuracy compared to neural-like approaches
but uses fewer resources in the training phase and allows retraining of the model, as well as expanding the
dictionary of recognition classes without model retraining.

Keywords: supervised machine learning; information-extreme machine learning; machine learning parameter
regularization; algorithms ensemble; information criterion; optimization.

failures in complex systems, and controlling supply
chains [2].
The state-of-the-art algorithm in supervised learn-

1. Introduction

1.1. Motivation for research

and the State of the Art

The substantial increase in data generation and ac-
cumulation has increased interest in machine learning as
a whole and supervised machine learning in particular.
This is generally connected to the realization that this
data contains valuable hidden insights. There are three
significant data science research tasks: description, pre-
diction, and causal inference. Each of these tasks can be
solved using machine learning [1]. Automatic intellec-
tual systems, particularly Machine Learning (ML), have
progressed remarkably recently. It has numerous real-
life applications. For instance, ML has emerged as the
method of choice for developing practical software for
computer vision, speech recognition, and language pro-
cessing. The particular influence of Machine Learning
has also been widely felt across industries with data-
intensive issues, such as consumer services, diagnosing

ing includes neural-like structures — CNN (convolution-
al neural networks) [3]. The neural-like approach has
proved to be one of the best levels of functional effi-
ciency for object classification tasks [4]. The neural-like
algorithms may contain thousands of free parameters,
resulting in a high ability to learn a wide variety of dif-
ferent patterns. Simultaneously, this can result in high
computational resource consumption during the training
and exam modes. Moreover, as a result of a huge num-
ber of free parameters, these algorithms are vulnerable
to overfitting; thus, regularization is usually used. There
are several well-known methods [5] to decrease re-
source consumption and solve the problem of overfit-
ting. One method to eliminate overfitting and fully con-
nected neural network topology is the dropout approach,
which results in a sparser network with a smaller num-
ber of parameters. This simplifies the network topology,
resulting in increased speed of the exam stage and pre-
venting overfitting. However, the method also has
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downsides: the training stage time is increasing, and the
method has several hyper-parameters that may be hard
to tune, including dropout probability and learning rate.

Another popular neural-like approach includes
convolutional neural networks. This method is known to
be a regularized type of feed-forward neural network
that learns feature engineering by applying filters or
kernels [6]. Despite having one of the best classification
performances, the method also has several disadvantage,
including the requirement of a large number of labeled
training samples for weight parameter learning [7].

The problem of high compute resource consump-
tion is especially evident when considering the wide-
spread interest in Internet of Things (IoT) de-vices and
the technology of edge computing technology. Edge
computing [8] is a distributed computing approach. The
main goal of the technology is to bring compute and
data servers closer to the consumer, i.e., to the location
where they are needed. The main benefit of this effort is
that it saves network bandwidth or reduces the latency
of application request processing. For machine learning
informational systems, applying this approach means
moving models closer to the user.

One typical application is federated machine learn-
ing [9]. The machine learning system comprises shared
models spread across decentralized nodes. The models
in each node are optimized to use computational re-
sources as efficiently as possible. The technique is also
used when every node must use its training data for con-
fidentiality purposes. The technique has been used on
smartphones [10] to enhance the next-word prediction
for virtual keyboards. Because the training data never
leaves the node where it is executed, federated learning
was previously conceived to maintain the confidentiality
of the training data. In such a way, one of the prerequi-
sites of federated learning is to have a model that ena-
bles it to run on comparatively low-powered computa-
tion nodes, such as smartphones. This study was con-
ducted to find the model’s hyper parameters, consider-
ing not only the functional efficiency of the model but
also computational resource consumption. This research
is based on performing multi-objective optimization
solutions for finding acceptable machine learning mod-
els in terms of model accuracy and resource usage [11].
As described in the research, the proposed approach for
hyperparameters optimization includes performing hy-
perparameter tuning directly on the target device, which
is often not feasible due to the resource limitations of
the target device. The hyperparameter tuning process
imposes high memory requirements for evaluating mul-
tiple models on large training sets.

Thus, one of the biggest problems arising for neu-
ral-like approaches is the need for huge amounts of
computational resources [12]. The scale of the problem
reached a point when the carbon footprint of machine

learning systems became a concern. While it is still hard
to estimate the actual carbon footprint of a particular
machine learning system, it is still important from an
ethical point of view to decrease its impact on the envi-
ronment [13]. In such a way, there are increasingly ob-
vious trade-offs between the machine learning function-
al efficiency and simplicity of the model and as a result,
the number of consumed resources. The promising
method is information-extreme intellectual technology
(IEIT). This method requires less computational power
than neural-like approaches [14].

1.2. Objectives and approaches

One of the main objectives in IEIT research field is
the development of approaches to improve the function-
al efficiency of the method.

There are several known techniques for increasing
the functional efficiency of the IEIT. One of the
methods is to use information-extreme machine learning
on a hierarchical data structure. This approach is used to
increase the functional efficiency of the IEIT, especially
in the case of multiclass classification problems.
The method uses the hierarchical structure of data in the
form of a so-called decursive binary tree [14].
The data structure in the form of a binary tree is called
decursive, in which the attribute from the top of the up-
per tier is transferred to its stratum top of the lower tier.
The recognition class alphabet is given in the form
of a decursive hierarchical structure
{x0m |h=1,H;s=1,S;m =12} where H is the
number of tiers; S — the number of executions on the h-
th tier; “2” for m means the number of classes on each
level. On each tier, the algorithm forms the binary deci-
sive rule to select the correct object class with the high-
est probability. It was shown that in performing classifi-
cation for the alphabet with multiple classes, the hierar-
chical approach has a higher probability of predicting
the correct class compared with the standard IET ap-
proach [15].

Another approach to increase the functional effi-
ciency of the IET method is feature selection pre-
processing. The classic information-extreme method
treats all features as equally important. In this way, the
informative, non-informative, and counter-informative
features exert equal influence on the results during the
examination stage. The input mathematical description
is sensitive to containing the most important features to
produce the decisive rule with the maximum full proba-
bility of correct object class recognition [16, 17]. One of
the known approaches to solve this problem is to use
more features considered during class recognition, in
which the number informative, non-informative, and
counter-informative are amortized. The increase in the
feature vector dimension may be achieved due to the
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introduction of synthetic features or by extending the
feature space by considering more feature categories.
For example, for object recognition on RGB images,
one may consider not only the RGB components but
also half-tone elements in the recognition of color imag-
es [18]. The obvious downside of this approach is the
growing feature space. The compute resources needed
for the exam mode is growing proportionally to the size
of the feature space. On the other hand, approaches such
as [19] attempt to address this issue by assessing the
feature contribution to the overall functional efficiency
of the decision-making system through a sequential re-
duction of the feature vocabulary. However, this signifi-
cantly increases the time required for the training stage.
In such a way, both approaches (with expansion and
reduction feature space) might be not appropriate for
systems with small computational capacity, such as loT.

This study attempts to increase the functional effi-
ciency of the IET approach by using logistic regression
as the first stage of the algorithm. The proposed ap-
proach follows from the hypothesis that, during the pro-
cess of decisive rule construction, IEIT treats all input
features equally important — the most important features
are not prioritized; thus, it is assumed that combining
IEIT with a Machine Learning method that assigns
weights to the input features in the process of learning
may increase the functional efficiency compared to
classical IEIT. The MNIST [20] dataset is used to verify
the results of the proposed approach. The MNIST da-
taset was chosen because it is well known and has been
applied to numerous ML approaches, which in turn ena-
bles us to compare our results with those of other algo-
rithms for object class recognition.

2. Formalization of the proposed approach

2.1. Basic and enhanced EIT approach
on the learning stage

Consider the formalized formulation of the prob-
lem of information synthesis, which can be studied
within the ensemble of logistic regression and IET. The
information system was developed for automatic object
classification using input structured feature vectors.

Let {X2,|m = 1, M} is alphabet recognition classes,
where M is the total number of classes. Suppose a given

object property training matrix ||y(j)i|| ,i=1,N,j=1,n,

m,
where N, n are the number of class features recognition and
implementations, respectively. It can be seen that the ma-

trix row {yr(r‘l)1 i= ﬁ} determines the j-th feature vector

and column {Yr(rjl)1| j= ﬁ} — random sampling of the i-th
object feature. It's known that for the standard multiclass

logistic regression object classification approach we find

such weights W ={w,;/jm=1M, i=1,N}, and
biases B = {b,,|m = 1, M}, for which the loss function
reaches the minimum. The loss function in our case is a

negative log likelihood  function in  form:

Ein = XL, log 37((‘,}\'}33)11.— in-sample error equals the sum

of the natural logarithm of predicted probability for true

label y; over all test samples, where j is the sample in-

dex [21]. Formally we have the minimization problem:

argminE;,. The logistic regression is parametrized with
W,B

three hyperparameters: n;, — number of iterations,
Ir — learning rate, A — L2 regularization parameter for
penalty term of the loss function, values for these pa-
rameters are determined experimentally [22]. The lo-
gistic regression takes as input the structured features
vector {y;|i = 1,N} and transforms it to the probability

distribution vector {p,,|m =1, M}, notice the probabil-
ity distribution vector dimension equal to the number of
recognition classes. In proposed approach the input ob-

2l i=TN, j=1n

m,i

ject property training matrix ||y
is transformed to the new training matrix ||p231|| the
logistic regression parametrized by optimal weights and
biases found in the training stage for each row of the
initial matrix. In this way obtained, a new input property

training matrix“p(j)i”, i=1,M,j=1,n. The IEI tech-

m,

nology approach transforms the input training matrix Y
into a training binary matrix X, which adapts to the
maximum possible probability of making correct classi-
fication decisions by the method of permissible trans-
formations in machine learning. For Hamming binary
space introduced set of {g,,} machine learning parame-
ters that affect the functional efficiency of the IET algo-
rithm. The set of optimal parameters is represented in
the form:

8m =< Xp, dpy, 8 >, 1)

where x,,, — is the average features structured vector of
the recognition class from the alphabet Xg,; d,,— radius
of the recognition class hyper spherical container for X2,
which is restored in the radial basis of the recognition
features space; &, — parameter of the control tolerances
for the recognition features field, which is equal to half
of the symmetric field control tolerances.
Required:

— to determine machine learning parameters (1),
which provide the maximum of the averaged infor-
mation criterion:

E=-yM

1 ®)
v 2m=1 max En’, (2)
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where E& is the functional efficiency information crite- In Fig. 1 the term E consists of information criterion

rion in recognition of the implementation of class X3,
calculated on the k-th step of the algorithm; Gg — admis-
sible working area for optimization of the information
functional efficiency criterion, {k} — machine learning
algorithm learning steps;

— form a training matrix, by transforming the prior
classified fuzzy partition R™! to subperceptual binary
Hamming space;

— evaluate the Machine Learning functional effi-
ciency to decide whether the implementation of the rec-
ognized image belongs to one of the classes of the al-
phabet.

In this way, the learning process consists of optimizing
parameters (1) according to the information criterion (2).

Consider the categorical functional model of Ma-
chine Learning. The model is presented in the form of a
directional graph of mapping by operators of the corre-
sponding sets used in the learning process. Such repre-
sentation enables better visualization of the learning
procedure. The input mathematical description is pre-
sented in the following structure:

1=<G,T,ZQ0Y,PXf,b, s f, >

where G is the space of influence factors that affect the
functioning of the automatic recognition system; T — set
input data (training dataset); Z — space of possible
recognition classes; Q — space of recognition features;
Y — input training matrix; P — normalized training ma-
trix;

X — training binary training matrix; f; — the operator of
recognition features analysis; f, — operator formation of
the training matrix Y; f3 — operator to convert the input
training matrix to normalized training matrix P by ap-
plying the logistic regression; f, — operator for convert-
ing the input training matrix Y to the training matrix X
defined in the Hamming space.

Notice, the first stage of the proposed ensemble is
presented in this model as operator fs. Fig. 1 shows a cat-
egorical functional model in the form of a directed graph
of an ensemble of logistic regression and an information-
extreme machine learning system for object class recog-
nition with optimization of control tolerances for recogni-
tion features.

5
D& E<2 g0
r
o RM
0
~ LT f| f] f:; t L4 |S
L GXTxZ ——>Q—>Y—> P—de X ——» ]
Fig. 1. Categorical functional model
of machine learning

value (2) calculated at each step. This is common to all
optimization contours for the parameters of vector (1).
Operator r:E — R™! in the machine learning process
restores the radial basis of the binary feature space con-
tainers of recognition classes. In turn operator 6 maps the
partition on the fuzzy distribution of a priori classified
binary vectors of recognition class features ™!, In the
following step of the contour the operator y performs the
transition X — I!SI, where I'S! is the set of hypotheses
Y1 Xr(le) € X§9,.Operator y determines the set of accuracy
characteristics /! and operator ¢ calculates the set of
values E of the information optimization criterion, which
is functional from the accuracy characteristics. Next, the
categorical model contains the contour for optimization
of the control tolerance parameter closed by a term set D
of allowable values for the system of control tolerance.
The operator §, at each step of machine learning changes
the control field, and the operator &, evaluates the de-
pendence of the recognition features of a given control
field on the tolerances. Operator u regulates the machine
learning process.

The main difference between the proposed model
and the classical IET approach is the existence of opera-
tion f3 which transforms the input object-feature training
matrix X into normalized training matrix P obtained by
the application of logistic regression to the original
training matrix realizations.

In our case, the information-extreme machine learn-
ing algorithm with optimization of the control tolerance
parameter for features of recognition corresponds to the
second level of machine learning depth. It is presented as
a two-cycle iterative procedure for determining the global
maximum information optimization criterion (2). The
internal cycle implements the basic approach of infor-
mation-extreme machine learning. In this cycle, we de-
termined the global maximum of information criterion (2),
thus finding the optimal radii of recognition classes of
hyper spherical containers. In our case the implementa-
tion of control tolerances is applied in parallel manner,
meaning that all tolerances for recognition features
change simultaneously by a given value. The input to the
machine learning algorithm of the information-extreme
®

m,i

obtained by applying

stage is normalized matrix “p

logistic regression.

1. The main stages of information-extreme ma-
chine learning: Determine the optimal values of weights
W and biases B of the logistic regression model by run-
ning the logistic regression training procedure on the

OIl i=TN,j=1n, Apply

m,i
the first stage of the machine learning ensemble by ap-
plying the logistic regression model parameterized by
optimal weights W and biases B to the input training

input training matrix Hy
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matrix. As a result, obtain the normalized training ma-
trix“p%”. Each row of the normalized matrix is the

probability distribution of the recognition classes ob-
tained from application of softmax function.

2. Calculating the training matrix for the primary
recognition class, denoted as X?, involves determining
the average feature vector {p,;|i =1,N} for control
tolerance. Notice that in the previous step, logistic re-
gression was applied, and the number of features in the
normalized matrix is equal to the number of recognition
classes.

3. Determine the binary vectors of recognition
class X2, using the following rule:

< = { 1, ifpy; —8; < p?} <piitd;
1,i .
0, ifelse;

4. Form average binary vectors for each class im-
plementations by the following rule:

1,if lzn x> Pms
Xmi = ndaj-; ™

0, if else,

where p,, is a selection level hyperparameter. Pos-
sible values are in the range (0, 1].

5. Set division of average feature vectors accord-
ing to the rule of ‘"nearest neighbours"

Rlﬁ' = < Xy, X; >, wWhere x,a binary average vector of
neighbouring class is carried out according to the fol-
lowing scheme:

a) form the structuring vectors set {x,,} starting
from the basis class vector x;;

b) the matrix constructed with dimensions MxM.
In each cell of the matrix is the code distance between
the corresponding two recognition classes;

c) find the minimum for each row of the matrix
formed in the previous step;

d) form a structured set of pairwise partitioning
(5 m = T3

e) find code distances d,, for each recognition
class, for which the information criterion has the maxi-
mum value. The restriction for radii d,, of spherical
container is: d; < d(x, @ x,) — 1. In other words, the
distance between neighbours should be greater than the
container radius;

f) implement the procedure (2), and find the op-
timal control tolerance.

6. STOP.

After the procedure is executed, we have optimal
weights W and biases B for the logistic regression mod-
el and IET optimal parameters {x;,}— etalon vectors for
each class, {d;,}— the recognition classes containers

radii, and system of control tolerances {&; } on recogni-
tion features.

As a criterion for optimization of machine learning
parameters IET is known to use the modified Kullback
measure.

(k) (€9) k) (k)
E(k) _ n-— (Kl,m + KZ,m) log 2n+ E - Kl,m - Kl,m
m 2 ) (k)
n Kim+tKint 13

where ngr)n — number of false negative events, ngr)n -
number of false positive events, & — small number to
prevent division on zero.

Having optimal parameters obtained in the learn-
ing stage as the next stage built decisive rules in form:

(vxg, € RMN)(if ((um > 0) &y = max {um}), €))

thenx® € X9, else x® ¢ X9),

where ., is a membership function:

= 1— dx, ® x,)/d;,, where d(xi, @) is a
code distance between the etalon and classified vectors.

2.2. System operation in the exam mode

After forming the decisive rules, the system is
ready to function in the exam mode. The functional effi-
ciency of the system is possible to measure in the exam
mode. The categorical functional model is presented in
the form of a directed graph and has one contour. In the
categorical model (Fig. 2) operator ue regulates the pro-
cess of system functioning in the exam mode; Sets G, Z,
Q and f; have the same sense as previously, and
T — contains input data for recognition.

UE

. . . \
L GXTXZLQLY L’pﬁb\(t—jb\)f&l:‘mb[ M+1

Fig. 2. Categorical model of system functioning
in the exam mode

Let us clarify the meaning of some operators ac-
cording to the change in set T. Operator f, forms an ex-
amination vector of recognition features, similar in
structure to the vectors of the training matrix. Similar to
the training mode, operation f; applies logistic regres-
sion to the input feature vector, forming a probability
distribution vector size equal to the number of recogni-
tion classes. Operator f4 generates a binary vector x ac-
cording to the optimal control tolerances obtained dur-
ing the machine learning stage. Operator fs maps this
vector for the optimal division of R* recognition classes.
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Operator 1 calculates the value of the decisive rule (3)
and forms a term set F, and operator y, on the maxi-
mum value of the decisive rule determines the affiliation
of the vector x to one of the alphabets classes (verifica-
tion hypotheses IM*!), The set of possible hypotheses
IM*1l contains additional hypothesis yy,; Which is ac-

cepted in the case of system failure to classify input data.

3. Experimental result and discussion

The above two-stage algorithm was implemented

to recognize handwritten digits from the MNIST dataset.

The MNIST database contains 60000 training images of
handwritten digits and 10000 testing images. The alpha-
bet of recognition classes has size of 10 — one for each
digit. Each image has 28x28 grayscale resolution. No
preprocessing was applied to the images. The Fig. 3
shows example images for each recognition class from
the dataset.

01/ 2341617 517

Fig. 3. Example images from the MNIST dataset

According to the above algorithms in the first
stage, the logistic regression model was trained. The
following hyperparameters were used: number of itera-
tions n;, — 2000, learning rate Ir — 0.05, A — regulariza-
tion parameter 0.1. As a result of the logistic regression
training stage, the set of optimal weights W and biases
B were found. The Fig. 4 shows the visualization of
optimal weights for each digit class.

Next, to the training data, logistic regression with
optimal parameters was applied. As a result, we obtained
a normalized training matrix consisting of probability
distribution vectors over the alphabet of recognition clas-
ses. Since, the values of the normalized training matrix
represent probabilities — its values are in the range [0, 1],
for convenience the values were scaled to have values in
range [0, 256]. The normalized training matrix was used
for the second stage, i.e., the determination of optimal
IET parameters. The working area for the control toler-
ances machine learning parameter & was took roughly the
half of the range of possible features values. Because in
our case features are in range [0, 256] — the working area
was taken 120.

From Fig. 5 it is visible that for the classic IET al-
gorithm maximum information criterion E = 0.24 is
reached at the value of control tolerance § = 5.

From Fig. 6 it is visible that for the ensemble of
logistic regression and IET algorithms, the maximum
information criterion E = 0.91 is reached at the value of
control tolerance 6 = 90. The value of the information
criterion for the ensemble approach is noticeably higher

compared with the classic IET approach. On graphs, the
area filled with gray color represents the control work-
ing area. The area filled with dark gray represents the
area where the information criterion reaches maximum.

To construct the decisive rules (3), the optimal
control tolerance parameter & was found optimal values
for hyper spherical containers of recognition classes. As
shown in table 1 and 2, all classes in the enhanced ap-
proach become more compact, which led to a decrease
in type Il error at the examination stage (see fig 7,8).

0 \1.‘ 2
. » -

| |
3 | [4 5 \
r . e
| |

6 7 8

-

) o
| 2%

.
-

Fig. 4. Visualization of logistic regression optimal
weights, 0-9 are label for corresponding classes
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(5 20 40 ﬁr() BIO 160 1é0
Fig. 5. Dependence graph of the information

optimization criterion (E) from the control tolerance (5)
field parameter for IET approach
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In the examination mode, we evaluated the func-
tional efficiency of the method. We used the test sub da-
taset from MNIST dataset. For IET approach the accura-
cy is 69.56%. For the proposed ensemble of logistic and
IET, the accuracy is 96.0%. We can see that the accuracy
increase is 26.44%. For reference, the state-of-the-art
neural-based approach has an accuracy of 99.77% [23,
24]. The proposed approach has 3.77% lower accuracy;
however, it is characterized by lower requirements for
computational resources.

E ——

0.8 q

0.6 1

0.4 1

0.21

0.01

6 2I0 4I0 6'0 BrO 1(I)D 12;0
Fig. 6. Dependence graph of the information
optimization criterion from the control tolerance (8)
field parameter for the ensemble of logistic
regression and IET

Table 1
Optimal radii for hyper spherical containers using
classic IET and enhanced approach

Classes 0{1|2(3|4|5|6|7]8]9

Radii (classic IET) |8|10(13|10|13(11|10|11|12|8

Radii (enhanced

1121212 (2|2]|2]|2
approach)

The Fig. 7 shows the probability distribution of the
predicted class using IET approach. This shows that the
model has severe misclassification for some classes. For
example, for class with digit 1, the model correctly clas-
sified only 44% of the input samples.

0] 0|0 01010 0] 0
0.44(0.230.02{0.07| 0 0.21
0 |0.77/0.02| 0 |0.02] 0 |0.07|0.11
0.02[0.09]0.76| 0 [0.02| 0 | 0 |0.11
0| 0| o0 [084 0] 0 |0.11/0.05
0.02| 0.1 |0.06|0.02[0.71|0.02| 0 |0.02
0| 0| 0 (015 0 |0.81| 0 |0.04
0.04(0.04| 0 |0.06/0.02] 0 |0.81/0.02
0.08(0.04| 0 |0.04|0.08] 0 |0.02{0.73
0.02[0.11]0.06]0.04/0.11/0.02|0.02]0.15
1 2 3 4 5 6 7 8 9
Predicted label
Fig. 7. Probability distribution of the predicted classes
for IET approach
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The Fig. 8 shows the probability distribution of the
predicted classes using an ensemble of logistic regres-
sion and IET. It shows that the class for digit 1 still has
the lowest correct classification rate — 86 %, however it
is obvious that the false positive errors for each class are
generally spread across two to three classes — which in
turn gives hope that hierarchical IET may have a posi-
tive effect on increasing the functional efficiency of the
ensemble approach.

- 01 0j]o0olO0O|]O0O]O]J]0O]J]0O]0]O0
E 1/ 0 |086 0 | O | 0| O |0.02] 0 |0.04]0.07
= 20| 0|09 0| 0| 0] 0| 0]0020
% 3{0/0)]01]09| 0| 0| 0] 0 |0020.02
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500 0] 0] 0098 0| 0] 0 |0.02

6|1 01002, 0] 0] 0| 01|09 0|0] 0
710]0]0]0]0|]0]O0 1 /0] 0

81 01004 0] 0] 0 (002 O | O [094 0O
9/0 | 0| 0] 0] 0004 0| 0 |0.0210.94

0 1 2 3 4 5 6 7 8 9

Predicted label

Fig. 8. Probability distribution of the predicted classes
for the ensemble of logistic regression and IET

As noted before, the result of the softmax function
from the first stage of the ensemble was scaled to have
values in the range [0, 256]. This was done to provide a
convenient way to compare results from the classical
IET approach and ensemble approach. We studied the
influence of input feature absolute values scalers on
functional efficiency and performance of the training
stage. On decreasing the scaled feature area to range
[0, 120] and keeping the learning step of control toler-
ance equal to 1, the functional efficiency did not de-
crease, and the training stage took 48.5% less time
compared to the feature value range [0, 256]. However,
on further decreasing the feature value area and keeping
the same control tolerance range, significantly decreas-
ing the functional efficiency and converging to the accu-
racy of plain logistic regression 95.11 %. For instance,
by decreasing the feature value range to [0, 100], the
accuracy drops to 95.33 %. This can be explained by the
fact that by decreasing the range of feature values and
maintaining the same learning rate, the control tolerance
resolution of the traversed search area is also decreased.

Conclusions

Research was performed to increase the functional
efficiency of information-extreme machine learning
methodology applied to the task of object class recogni-
tion. Formed hypothesis: Because the information ex-
treme approach treats all input features equally im-
portant, the ensemble of multi-class logistic regression
and IET increases functional efficiency compared to
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classical IET. The initial hypothesis was verified using
the MNIST dataset. The testing results show an increase
in the recognition accuracy of the proposed method
compared with the classical information extreme ap-
proach of 26.44 %.

The proposed approach for object classification
has an acceptable rate of functional efficiency while
having much lower computational costs than neural-like
approaches. The alternative approach to increasing the
functional efficiency of IET is to use a hierarchical ap-
proach instead of a linear one [15]. This paves the way
for further improvements in the functional efficiency of
machine learning by optimizing additional system pa-
rameters and using ensemble logistic regression and
hierarchical IET.

In summary, the proposed ensemble has the fol-
lowing advantages:

— compared with the classic IET approach, in-
creased functional efficiency of object classes recogni-
tion on 26.44% of MNIST dataset;

— flexibility to retrain them through expansion of
the recognition classes alphabet;

— compared with the neural-like approach, it re-
quires much less computational data.

Future research will continue to solve the prob-
lem of increasing the functional efficiency of IET under
limited computing resources. The directions of the au-
tomated reduction of the dictionary of features and the
reduction of the variability of the values of the recogni-
tion features seem promising. The power of these pa-
rameters is a multiplier in the number of cycles for op-
timizing the geometric parameters of the system of con-
trol tolerances of recognition features, so they directly
affect the running time of the learning algorithm. The
complementary research direction is adopting an en-
semble of logarithmic regression and IET models with a
hierarchical approach to building a classifier — it is a
perspective approach to enhancing the results of the
exam stage.

Contributions of authors: conceptualization,
methodology -~ Oleksandr Papchenko, Borys
Kuzikov; program realization of algorithm, original
draft preparation — Oleksandr Papchenko; verification,
review, and editing — Borys Kuzikov, Oksana
Shovkoplias.

All the authors have read and agreed to the pub-
lished version of this manuscript.
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MIJIBUIIEHHSA ® YHKIIIOHAJIbHOI E@EKTUBHOCTI
IHOOPMALIMHO-EKCTPEMAJIBHOTI'O MALLIMHHOI'O HABYAHHSI
3A TOIIOMOTI' OO AHCAMBJIIB JIOI'ICTUYHOI PEI'PECII

Onexcandp Ilanuenko, bopuc Ky3ixos,
Okcana Illogéxonnac

O0’€KTOM JIOCHI/DKEHHSI € 3aCTOCYBaHHsS KEPOBAHOI'O0 MAIMHHOIO HaBYaHHS JUIs 3ajgadl Kinacudikarii
00’exTiB. MeTOW JOCHIDKEHHS € MiIBUIICHHS (YHKI[IOHATHHOI eeKTUBHOCTI 1H()OPMAIiITHO-EKCTPEMabHOI TeX-
nonorii (IET) mammuaOr0 HaBYaHHs. 3agadi JOCIIHKEHHS: POAHATI3yBaTH MOXIIUBI IIUISXHU IMiABUIICHHS (yHKII-
OHANBHOI e(eKTUBHOCTI HaBuaHHs mogxeneit 3a IET; peanizyBatn aHcaMOJIb MOZAENCH IO BKIIIOYAIOThH JIOTICTHYHY
perpecito It npiopume3sayii 03HAK PO3II3HABAHHA Ta adroput™ HapdaHHA 3a IEI; mopiBaATH (QyHKIIOHATBHY ede-
KTUBHICTh 3aIpOIIOHOBAHOTO MiAXOQY 13 KIACHYHMM Ta pe3ylbTaTaMH IHIIMX TOCHTiTHHWKIB Ha BiZoMoMy Habopi
nanux. Mertomu. Meton po3poOiieHO B paMKax (pyHKI[IOHAJIBHOTO MiAXOAY 10 MOJICIIOBAHHS IPUPOJHOTO 1HTENeK-
Ty B 3aCTOCYBaHHI JI0 3aaaui kmacudikarmii o6'exriB. OTprMaHi Taki pe3yJbTAaTH. 3alpONOHOBAHO METOJ IOKpa-
mieHss [ET numsxom momaBaHHS Bard O3HAK po3mi3HaBaHHS. KiacHYHWMI alrOpUTM PO3TIIAIaE BCi BXiTHI O3HAKH SIK
piBHOIIpaBHI TpH (OPMYBaHHI BHUPIMIATBHOTO TpaBWiIa. Y pe3yabTaTi iH(QOPMATHBHI O3HAKW PO3Ii3HABAaHHS HE
MIPiOPUTE3YIOTHCS AJITOPUTMOM ITOOYIOBY BHPIIIANBHUX MPABWI Y TOPIBHIHHI i3 He-iHQOpPMATHBHUMHU Y KOHTP-
iH(OPMATUBHUMH, IO TPU3BOIUTH /IO 3HIDKCHHS (DYHKITIOHATBHOI €PEKTUBHOCTI B PEXKUMI €K3aMeHy. 3arponoHo-
BaHO JBOCTAITHUH IiIXiJl, Ie Ha MIEPIIOMY eTaIli O HaBYAIBHOI BUOIPKH 3aCTOCOBYETHCS OaraTokiiacoBa JIOTiCTHIHA
perpecist — GopMyeThCS HOpMalli3oBaHa HaBYalIbHA MaTpuIls. J[inst 3armo0iranHs epeHaBYaHHs JIOTICTHYHOI perpecii
BHUKOpUCTOBYBaBcs Merox perymipm3anii L2 (RIDGE). Ha nmpyromy erami 3acTocoByeThCS 1H(pOpMAIiHHO-
eKCTpEeMaJIbHUI MEeTOJ HaBuaHHs. | eoMeTpryHi mapaMeTpy KOHTEHHEpiB KIIaciB po3Mi3HaBaHHS Ta KOHTPOJBHI J0-
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ITyCKH Ha O3HAKW PO3II3HABAHHS BHKOPHCTOBYIOTHCS SIK IIapaMeTpH ONTHMi3allii eranmy HaB4aHHS Mozeni. TecTy-
BaHHS OTPHMAaHMX PE3yJbTaTiB mpoBeneHo Ha Habopi mannx MNIST (Modified National Institute of Standards and
Technology), mo 103BOJNsIE€ MOPIBHATH OTPUMAHMN pE3YNbTAaT i3 pe3ylbTaTaMH IHIIUX JOCTITHUKIB. BHCHOBKH.
3anpornoHoBaHU METOA MiIBUIYe TOYHICTh Kinacudikamnii Ha Habopi mannx MNIST na 26.44% mnopiBHSHO 3 Kiia-
CHYHMM 1H(OpMaLiiHO-eKCTpEMaIbHIM METO/IOM. 3alpoNoHOBaHUH MinXin Mae Ha 3.77% MEeHIy TOYHICTh y TO-
PIiBHSHHI i3 HEHPOIOAIOHMMY i IXO/IaMH, ajle BUKOPHCTOBYE MEHIIIE PECYPCiB Ha eTalli HaBYaHHS Ta JO3BOJISIE MIPO-
BOJIMTH JOHABYAHHS MOJIEN, a TAKOXK MPOBOANTH PO3LIMPEHHS CIIOBHHMKA KJIAaciB PO3Mi3HABaHHS Oe3 IIOBHOTO Iepe-
HaBYaHHSI.

Karouosi ciioBa: HaBuaHHs 3 yuureneM; iHopMaLiiiHO-eKCTpeMallbHe MalllMHHE HaBYAHHS; MTapaMeTpH Ma-
LIMHHOTO HaBYAHHS; aHCAMOJIb aJTOPUTMIB, 1IHPOpMaLiHHUN KPUTEPil; ONTUMI3allisL.
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