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FORMAL MODEL OF MULTI-AGENT ARCHITECTURE  

OF A SOFTWARE SYSTEM BASED ON KNOWLEDGE INTERPRETATION 
 

The use of agents across diverse domains within computer science and artificial intelligence is experiencing a 
notable surge in response to the imperatives of adaptability, efficiency, and scalability. The subject of this 

study is the application of formal methods to furnish a framework for knowledge interpretation with a specific 

focus on the agent-based paradigm in software engineering. This study aims to advance a formal approach to 

knowledge interpretation by leveraging the agent-based paradigm. The objectives are as follows: 1) to exam-

ine the current state of the agent-based paradigm in software engineering; 2) to describe the basic concepts of 

the knowledge interpretation approach; 3) to study the general structure of the rule extraction task; 4) to de-

velop the reference structure of knowledge interpretation; 5) to develop a multi-agent system architecture; 6) 

and to discuss the research results. This study employs formal methods, including the use of closed path rules 

and predicate logic. Specifically, the integration of closed path rules contributes to the extraction and explica-

tion of facts from extensive knowledge bases. The obtained results encompass the following: 1) a rule mining 

approach grounded in closed path rules and tailored for processing extensive datasets; 2) a formalization of 
relevance that facilitates the scrutiny and automated exclusion of irrelevant fragments from the explanatory 

framework; and 3) the realization of a multi-agent system predicated on the synergy among five distinct types 

of agents, dedicated to rule extraction and the interpretation of acquired knowledge. This paper provides an 

example of the application of the proposed formal tenets, demonstrating their practical context. The conclu-

sion underscores that the agent-based paradigm, with its emphasis on decentralized and autonomous entities, 

presents an innovative framework for handling the intricacies of knowledge processing. It extends to the re-

trieval of facts and rules. By distributing functions across multiple agents, the framework offers a dynamic and 

scalable solution to effectively interpret vast knowledge repositories. This approach is particularly valuable in 

scenarios where traditional methods may struggle to cope with the volume and complexity of information. 

 

Keywords: multi-agent system; software engineering; formal model; knowledge interpretation; closed path 

rules. 

 

Introduction 

 

Agent-based systems represent one of the most 

dynamic and pivotal domains in recent years, garnering 

substantial attention in information technology 

development [1, 2]. Constituting intricate information 

systems, multi-agent systems feature many interacting 

agents, each endowed with distinct attributes, 

capabilities, and objectives, fostering collaborative 

interactions within the system. The versatility of multi-

agent systems finds application across diverse domains, 

including the modeling of market behavior in 

economics, the simulation of biological and social 

systems in scientific contexts, and the representation of 

complex technical systems in engineering [3]. 

The ubiquity of agent-based systems transcends 

their initial roots in artificial intelligence, evolving into 

a foundational computing technology of paramount 

significance. The advent of information and related 

technologies aligns seamlessly with the utility of multi-

agent systems. Concurrently, advancements in 

distributed object technologies, exemplified by the 

CORBA (Common Object Request Broker 

Architecture) distributed computing platform [4], which 

facilitates low-level interaction among heterogeneous 

distributed components, are instrumental contributors to 

the maturation of the agent-based approach. Notably, 

these technologies obviate the need for extensive 

redevelopment of foundational methods. 

In the contemporary landscape, the imperatives of 

software demand flexibility, reliability, and efficiency. 

In response, an agent-based paradigm is gaining 

prominence within the field of software engineering. 

While prevailing efforts in the realm of agents often 

gravitate toward either practical application 

development or the intricate construction of reasoning 

logic, the development of formal models for agent 

systems assumes paramount importance. Such formal 

models substantiate the overarching computational 

objective of realizing tangible agent systems. 

The modeling of intelligent functions, which 

encompass knowledge processing, can be effectively 

realized through a network of agents engaging with both 

the external environment and each other to address 
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intricate intellectual tasks. In this context, knowledge 

assumes the role of information conveyed by an 

observer to an intelligent agent, empowering the agent 

to rationalize its behavior in pursuit of predetermined 

goals derived from observational learning. The 

contemporary objective of knowledge bases is to 

facilitate the sharing and reuse of knowledge. Notably, 

the creation of expansive knowledge bases containing 

millions of facts about diverse entities has emerged as a 

focal point, proving immensely beneficial for intelligent 

web search, question comprehension, contextual 

advertising, social media analysis, and advancements in 

biomedicine. 

Consequently, the application of an agent-based 

paradigm for knowledge processing, spanning the 

interpretation of information within large knowledge 

bases, as well as the search for facts and rules, holds 

promise for optimizing the efficient utilization of 

available information resources. 

This article specifically addresses the development 

of a multi-agent system grounded in a formal 

description of agent architecture and underscores the 

modeling of pertinent explanations derived from 

knowledge bases. The primary objective of this study is 

to devise a formal approach to knowledge interpretation, 

leveraging the agent-based software development 

paradigm.  

The research questions guiding this endeavor are 

as follows: 

1. What properties influence the utility of 

information garnered from a knowledge base and how 

can they be employed in the interpretation of 

knowledge? 

2. In what manner can the agent-based software 

development paradigm be effectively applied to a 

knowledge-based software system? 

The subsequent sections are organized as follows: 

an examination of the current state of the agent-based 

paradigm in software engineering, an elucidation of the 

research methodology and used materials, a depiction of 

the approach to formalizing agent architecture, and its 

practical implementation for knowledge base 

interactions. The article concludes with a discussion of 

formal knowledge interpretation, the proposal of a 

multi-agent system architecture, and an illustrative 

application of the developed formal tenets, followed by 

conclusive remarks and a discussion of the results. 

 

1. State of the art and problem statement 
 

Until recently, the creation of intelligent systems 

predominantly followed two principal methods: the al-

gorithmic approach and the structural-functional ap-

proach. A more recent paradigm, known as the func-

tional-structural method, has emerged in the domain of 

intelligent system creation [5]. The algorithmic method 

entails constructing intelligent systems that emulate 

human intelligence functions described in linguistic 

terms, with subsequent algorithmic implementation [2]. 

Conversely, the structural-functional method involves 

initially establishing a network structure based on artifi-

cial neurons, followed by a learning process to replicate 

specific intelligence functions [6]. A third method, dis-

tinct from the former two, describes intelligence func-

tions as a system of logical equations in predicate alge-

bra. Subsequently, chains of switches are created on the 

basis of these equations, endowing the method with the 

advantage of purposeful structure formation to represent 

a designated intelligence function [5, 7]. 

Within the realm of artificial intelligence, the con-

ceptualization of agents has emerged as a response to 

the challenges encountered when attempting to solve 

problems without accounting for the real external envi-

ronment or the entity involved in the problem-solving 

process. Agents, designed to operate flexibly and adap-

tively in complex real-world environments, receive data 

from their environment through sensor devices and in-

fluence the environment through specialized effectors. 

This concept has gained swift and widespread adoption 

across various computer science fields because of its 

versatility and practical utility [1, 8]. 

The diversity of agent definitions has proliferated, 

spanning generic autonomous agents, software agents, 

intelligent agents, and more specialized categories such 

as interface agents, virtual agents, information agents, 

and mobile agents [9, 10]. Agents find application in a 

myriad of domains, including operating system interfac-

es, satellite image data processing, power distribution 

management, air traffic control, business process man-

agement, e-commerce, computer games, and beyond, 

attesting to their broad utility and adaptability [11, 12]. 

The agent metaphor, with its versatility, manifests 

both strength and weakness due to the absence of a uni-

versally agreed-upon definition. Consequently, many 

researchers provide their own interpretations, often 

characterizing agents by specific parameters. For in-

stance, Wooldridge and Jennings [1] established a foun-

dational notion of agents that encompasses autonomy 

(the ability to function without interference), sociality 

(interaction with other agents), reactivity (perception 

and response to a changing environment), and proactivi-

ty (purposeful behavior), which are widely acknowl-

edged as pivotal qualities defining "agency." 

In the context of software engineering, an agent is 

defined as an autonomous software entity that demon-

strates a prolonged lifespan and adaptive behavior in 

response to environmental changes, facilitating interac-

tion with other agents [1]. Within artificial intelligence 

systems, an agent is conceptualized as an entity capable 

of perceiving information via sensors and influencing 
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the environment through actuators [2]. The key features 

of agents include autonomy, interactivity, and learning 

abilities, enabling independent decision-making for goal 

attainment, and facilitating interactions akin to social 

dynamics. The ability to learn is particularly associated 

with intelligent agents within artificial intelligence sys-

tems. 

The agent-based approach to software design 

seamlessly integrates features from both object-oriented 

and component-based methodologies, enabling the in-

corporation of specific agent properties [13, 14]. This 

methodology empowers the design of multi-agent sys-

tems in which agents collaborate to achieve individual 

and collective goals [15, 16]. 

For the effective design and implementation of 

agent systems, the establishment of a formal framework 

for describing and specifying their behavior is crucial. 

An agent system serves as a platform capable of creat-

ing, interpreting, executing, communicating, and termi-

nating agents [3, 10]. The underpinning of software de-

velopment relies on the use of formal models, a practice 

that has also been extended to the domain of multi-agent 

systems [14, 17]. Noteworthy formal approaches en-

compass equation-based modeling [18], game theory 

[19], discrete systems [20], classifiers, and other meth-

odologies [21]. 

In the context of knowledge reuse, the foundation-

al assumption posits that knowledge is replicable and 

transportable across different contexts [22, 23]. 

Knowledge, conceptualized as an abstraction beyond 

tangible representation, cannot be transcribed or physi-

cally grasped. Various formal languages, such as predi-

cate calculus, are employed to represent knowledge in 

information systems. Predicate calculus, notable for its 

unambiguous formal semantics and operational support 

through a flawless inference mechanism, serves as a 

prominent tool for expressing and manipulating 

knowledge in a systematic manner [5, 7]. 

A Knowledge Graph (KG) constitutes an extensive 

collection of binary facts expressed in the form of sub-

ject-predicate-object triples [22, 24]. This assembly of 

facts forms a directed graph in which each fact is an 

edge, with the predicate serving as the label, connecting 

a subject entity to an object entity. A Knowledge Graph 

is a specialized form of a Knowledge Base (KB), in 

which a KB is a broader category encompassing general 

repositories of knowledge without imposing specific 

restrictions on the pattern of facts or the level of 

knowledge abstraction. A Knowledge Database (KD) 

has the capacity to incorporate not only general rules 

but also facts [22, 25]. 

Given the sheer volume of data, the manual con-

struction of large Knowledge Graphs is impractical. 

Consequently, a primary challenge in building a 

Knowledge Graph lies in developing scalable methods 

for the automated learning of new entities, their proper-

ties, and relationships [24]. Some researchers argue that 

a Knowledge Graph transcends the conventional defini-

tion of a database [22, 25]. Specifically, it is asserted 

that a Knowledge Graph must possess a level of concep-

tual knowledge, often represented as a set of rules. 

Rules, constituting explicit knowledge, offer human-

readable explanations for the outcomes derived from 

them. Traditional rule learning methods face limitations 

in this context, as they lack the scalability to handle vast 

amounts of data, and Knowledge Graphs do not explic-

itly articulate negative examples, which are crucial for 

many data mining tools. 

Interpretation is a pivotal factor in ensuring effec-

tive interaction between users and software, with expla-

nation playing a crucial role in fostering trust in the out-

comes of intelligent systems. Typically, an explanation 

is perceived as a lucid delineation of the results ob-

tained. However, providing an explanation necessitates 

a delicate balance between relevance and completeness. 

Demonstrating the relevance of knowledge poses a chal-

lenge, given that the perception of information is inher-

ently subjective. What may be intriguing to one user 

might be entirely inconsequential to another. Conse-

quently, the interpretation of knowledge can be realized 

through the explanations offered by intelligent systems 

to users. 

In this context, employing the agent paradigm as 

the foundation for developing intelligent system soft-

ware holds promise, particularly in terms of scalability 

and flexibility in crafting solutions. The imperative of 

processing large knowledge bases underscores the need 

for scalability in rule learning methods. Simultaneously, 

the extraction of rules, exploration of new entities, and 

understanding of their properties form the bedrock for 

constructing user-understandable explanations. This 

collective approach enables the development of intelli-

gent systems grounded in knowledge interpretation. 

 

2. The rule extraction task 

 

Formally, a knowledge graph (KG) contains facts 

about entities. An entity e can represent a place, person, 

etc.; a fact is an RDF triple (e, P, e′). In other words, an 

entity e is related to another entity e′ through a binary 

predicate P. Following the convention of knowledge 

representation, we denote this fact as p(e, e′). Thus, 

formally, a knowledge graph is a pair K = (E, F)where 

E - is a set of entities, and F - is a set of facts. 

Let 𝑟 denote the rule. Next, we consider rules that 

have the following form 

 

p(x0, xn) ← p1(x0, x1) ∧···∧ pn(xn−1, xn), 

 

where everyone xi (0 ≤  i ≤  n) is a variable. 
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Intuitively, the rule 𝑟 says that if 

 p1(x0, x1),···, pn(xn−1, xn) is true, then p(x0, xn) is also 

true. A rule of this type is usually called a closed-path 

rule (CPR) because the sequence of predicates in the 

body of the rule forms a path from the subject argument 

to the object argument of the main predicate [24]. 

For a given rule 𝑟, a pair of entities (e, e′) satisfies 

the body of the rule 𝑟, denoted as 𝑏(𝑒, 𝑒′), if there is a 

way to replace the variables in 𝑏 with entities from the 

knowledge base (KB) such that: (1) all atoms in 𝑏(𝑒, 𝑒′) 

(after replacement) are facts in the KB, and (2) x0 і xn 

are replaced by 𝑒 and 𝑒′, respectively. A pair of entities 

is said to be (e, e′) is said to satisfy the head of the rule 

𝑟, denoted as h(e, e′)if h(e, e′) is also a fact in the 

knowledge base [24]. Then the degree of support for 

rule 𝑟 is defined as the number of pairs of entities that 

satisfy both the head and the body of rule 𝑟: 

 

S(r) = #(e, e′) ∶ b(e, e′) ∧ h(e, e′). 

 

The degree of confidence of the rule 𝑟 SB(r) and 

the head coverage of the rule 𝑟 SH(r) are defined as 

forms of normalization for the degree of support S(r): 

 

SB(r)  =  
S(r)

#(e, e′) ∶  b(e, e′)
 

 

SH(r)  =  
S(r) 

#(e, e′) ∶ h(e, e′)
 

 

So, SB(r) is a normalization S(r) by the number of 

entity pairs that satisfy the body, whereas SH(r)  is a 

normalization S(r) by the number of pairs of entities 

that satisfy the head. The degree of support for a rule 

and its normalization are used as criteria for evaluating 

the extracted rules. 

Rule extraction constitutes a central task in induc-

tive logic programming [22, 24]. However, traditional 

logic programming systems are ill-suited for large-scale 

KG because they typically rely on negative facts, 

whereas KGs predominantly contain positive facts, and 

these methods are generally incapable of handling the 

immense volume of data present in a KG. Conversely, 

agents, integral to the agent-based paradigm, offer a 

solution by facilitating the construction of intelligent 

systems that meet the demands of flexibility and scala-

bility—crucial elements for rule extraction and interpre-

tation. 

 

3. Formal agent architecture 

 

To articulate the potential actions of an agent and 

its interactions with the external environment, a formal 

tool is indispensable for precisely describing the agent’s 

behavior. The formal architecture of an agent serves  

as the foundation for understanding and designing an 

agent’s behavior through clear and rigorous methods. 

This formal architecture is delineated through a descrip-

tion of the agent’s operating environment, the agent’s 

perception of this environment, and its corresponding 

actions [14, 26]. 

Let’s denote the agent’s external environment by 

the set of states S. The possible actions of the agent are 

described by the set of actions A [1]. Abstractly, an 

agent can be represented as a function of 

 

gs: S → A 

 

that is, the agent chooses a specific action from a set of 

possible actions based on the current state of the envi-

ronment si ∈ S. At the same time, the agent's actions 

can influence the environment, but not completely con-

trol it. 

To represent an agent, it is convenient to use a 

model of perception of the external environment. To do 

this, we introduce a set of possible perceptions P and a 

function f: S → P that describes how certain states of the 

environment are perceived by the agent. The agent is 

then represented by the function 

 

gP: P → A 

 

that is, the agent's action is determined in the general 

case by the current perception of the state of the envi-

ronment pj ∈ P. The agent model with perception is 

equivalent to the basic model. However, it allows us to 

introduce the following additional property of the agent: 

different states of the environment can be perceived in 

the same way and vice versa - one state can be per-

ceived differently by the agent. 

Another option for solving the problem of includ-

ing previous actions when choosing a current action is 

to introduce the concept of the agent state. In this case, 

it is assumed that the agent has certain internal data 

structures that it modifies depending on the perception 

of the current state of the environment, and based on the 

results obtained, it chooses an action. To formalize this 

process, a set of I of internal states of the agent and the 

internal state update function, which is responsible for 

updating the internal state in accordance with the cur-

rent perception of the environment: 
 

h: I × P → I. 
 

Then the agent is described using the function 
 

gI: I → A 

 

that is, the action is selected based on the current state 
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of the agent. To correctly describe the behavior of an 

agent with a state, it is necessary to determine the initial 

state i0ϵI. Such agent architecture has one significant 

drawback, namely that an agent defined in this manner 

does not receive information about its actions, which 

limits its ability to gain experience and analyze the po-

tential consequences of its actions. One possible way to 

overcome this disadvantage is to present information 

about the agent’s actions as part of the information 

about the external environment; however, this approach 

is not visual and intuitive. A more correct solution to 

this problem is to include information about the actions 

performed explicitly in the input data of the action se-

lection function: 
 

gA: (P × A)∗ → A. 
 

In this configuration, the agent explicitly acquires 

information about previously executed actions. When 

selecting an action, it draws upon the perception of en-

vironmental states. In the case of an agent equipped 

with a state, the information regarding prior actions 

plays a role in the state update function: 
 

h: I × P × A → I. 
 

The parameter of the state update function is not 

the sequence of all agent actions, but only the last action 

performed. 

An agent that chooses an action based on the cur-

rent perception, ignoring the entire history of previous 

perceptions, is a simple reflexive agent [2]. This type of 

agent is quite simple. In practice, simple reflexive 

agents are often sufficient to implement agent-based 

software systems [27]. In this case, we assume that each 

type of agent implements one function from the specifi-

cation. 

Let us define SI = {s0, s1, s2, … , sn} - is the set of 

possible states of a software system that characterize the 

interaction of software agents and components at a cer-

tain point in time, which together ensure the achieve-

ment of functional requirements in accordance with the 

specification.  

Given AF = {aF1, … , aFj, … , aFS}, the set represent-

ing agent actions aligning with the realization of func-

tional requirements, the formal agent model is delineat-

ed as follows: 
 

gA: (SI × AF) → AF. 

 

Consequently, it becomes feasible to characterize 

the agents comprising a multi-agent system through a 

formal architecture that defines the agent’s function as 

the selection of an action based on the current state of 

the software system and information regarding previ-

ously executed actions. 

In the realm of using a multi-agent system to in-

stantiate an intelligent system grounded in knowledge 

interpretation, this approach exhibits scalability and 

adeptness in handling substantial volumes of data.  

Thus, addressing the second research question 

leads to the conclusion that software agents play a piv-

otal role in extracting rules from the knowledge base, 

processing, and interpreting them. This is accomplished 

through the implementation of an agent-based platform 

for parallel data processing, in which each agent is con-

structed in accordance with the aforementioned formal 

model. 
 

4. Reference structure  

of knowledge interpretation 
 

Elucidating or interpreting the behavior of an intel-

ligent system represents a significant societal demand 

and a major challenge for both practitioners and theo-

rists in the field of artificial intelligence. Despite the 

paramount importance of this task, there exists a notable 

absence of a logical formalization that captures these 

ubiquitous ideas. The formalization of knowledge, par-

ticularly in the form of rules that adhere to the definition 

of a closed path rule, has emerged as a potent tool for 

constructing a coherent and logical explanation. 

It is essential to recognize that people may not find 

explanations compelling under certain conditions. First, 

when the extracted information holds true for scenarios 

beyond the one being explained, especially if this in-

formation is universally applicable. Second, individuals 

may exhibit disinterest if the extracted information 

merely reaffirms what they already know. In navigating 

the delicate balance of providing meaningful and perti-

nent explanations, the formalization of knowledge 

through closed path rules offers a structured and sys-

tematic approach to meet this pressing demand. 

To formalize the explanation, we establish several 

foundational assumptions. We introduce the concepts of 

a deterministic system Csys, denoted as the system under 

consideration, and input data I. The system Csys pro-

cesses the input data I and produces the desired result R 

requested by the user. 

In the realm of knowledge interpretation, formaliz-

ing the concept of relevance in an explanation poses a 

challenge for logical formulation. Effective explanations 

must inherently consider both the context and the end-

user, that is, the individual receiving the explanation. As 

a solution, this study introduces the concept of an "irrel-

evant explanation" as a formalism for evaluating inter-

pretation results. Furthermore, a logical structure is pre-

sented to characterize the irrelevance concerning both 

the context and the user. This structured approach en-

hances the precision and clarity of the knowledge inter-

pretation process. 
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Let's formalize the assumption. 

Assumption 1: It is always feasible to represent the 

inputs and outputs of a system in a formal language. 

The input and output, or their respective descriptions, 

can be expressed as formulas denoted as I and R respec-

tively. 

Assumption 2: The characteristics of system Csys 

can be represented by a logical theory TS such that  

TS ∪ {I} ← R, i.e., inputs and outputs can be logically 

connected by TS. 

Assumption 3: The knowledge possessed by the 

user, denoted as the information consciously known to 

them, can be represented as another logical theory Te. 

This theory encompasses both general knowledge and 

specific knowledge held by the user. 

Assumption 4: The explanation consists of n sen-

tences (fragments), each of which indicates the truth of 

the logical formula Ei , i = 1, . . . , n so that the entire ex-

planation E can be represented as a conjunction  

E = E1 ∧···∧ En. 

Assumption 5: The explanation is always true with 

respect to the specific behavior of the system it explains, 

i.e. TS ∪ {I} ← E. 

Let’s define the concept of an irrelevant explana-

tion on the basis of the provided conditions. 

1 (General irrelevance) An explanation E is con-

sidered irrelevant for the outcome R if there exist alter-

native inputs I′ for which the system Csys produces a 

different result R′, such that 𝐸 also explains the result 

R′. In essence, explanations that are overly general and 

fail to convincingly account for the outcome are deemed 

irrelevant. 

2 (Partial irrelevance) An explanation E is consid-

ered irrelevant to the user if all i ∈ {1, . . . , n} holds  

Te ← E, i.e., none of the conjuncts of E are unknown to 

the user. This consideration allows us to account for the 

specific knowledge possessed by individual users. 

Partial irrelevance acknowledges that explanations 

can extend beyond a single phrase, encompassing a 

chain of reasoning from input to output. In this context, 

it becomes pivotal that at least one conjunct, denoted as 

Ei, forming the explanation remains unknown to the 

user. It is noteworthy that excluding parts of the expla-

nation that are already known is not advocated, as these 

components contribute to the overall argument, and 

their omission would undermine the coherence of the 

entire explanation. 

Therefore, a relevant explanation is one that incor-

porates at least one conjunct in explanation E that is 

unknown to the user. The constituents of E are frag-

ments of rules extracted from the knowledge base, com-

prising individual facts that collectively develop a rule. 

This definition of irrelevance serves as the founda-

tion for constructing explanations derived from 

knowledge base information. The proposed formaliza-

tion facilitates the automatic exclusion of irrelevant 

fragments or extracted rules from the comprehensive 

explanation, guided by the logical representation of the 

user’s knowledge, such as through an ontology. In this 

context, the assessment of irrelevance can be conducted 

systematically.  

Thus, we propose a formal logical framework for 

identifying irrelevant fragments within a complex ex-

planation, operating under the premise that irrelevance 

is more amenable to logical formalization than the in-

herently subjective nature of relevance. 
 

5. Multi-agent system architecture  

development 
 

To determine the relevance of the explanations, we 

must first form an explanation E based on rule extrac-

tion from the knowledge base. In the following section, 

we consider a knowledge base as a knowledge graph 

formed by a set of entities and facts. We assume that 

there is a known knowledge graph K = (E, F). Let us 

define Pt - the target predicate, i.e. the fact that needs to 

be interpreted. The task is to find the rules, conjunc-

tions, and interpretation for a given target predicate Pt to 

find rules whose conjuncts form an explanation. In this 

study, we consider closed path rules. Note that attribu-

tive facts can be represented as binary predicates, as 

shown in [7]. Thus, let's consider how to study rules that 

have a target predicate in their head Pt. The proposed 

approach is based on the research of [24], which consid-

ers large amounts of data in the KG and uses an effi-

cient algorithm to identify candidates for rule formation.  

Let's delve into the structure of a multi-agent sys-

tem designed for rule extraction. This approach involves 

categorizing agents according to the functional charac-

teristics of the fundamental steps in the algorithm. Let's 

explore the key principles underlying the process of rule 

extraction. 

1. We assume that the knowledge graph is given 

K = (E, F) and the target predicate Pt, the maximum 

length of the rules L, the minimum values of the rule 

confidence SB(r), the head coverage of the rule SH(r) 

and the degree of support S(r). 

2. Due to the large size of the input data of the 

knowledge graph K = (E, F) it is necessary to first sam-

ple the data. To achieve this goal, we propose to imple-

ment the function Sampling() to obtain a smaller KG 

K′ = (E′, F′) (where E′ ⊂ E, F′ ⊂ F)), which contains 

only those entities and facts relevant to the target predi-

cate Pt. 

3. To study the maximum length rules L we pro-

pose to build a sample of entities as follows: 
 

E0 = {e ∈ E| ∃e′ ∈ E: Pt(e, e′) ∈ F ∨ Pt(e′ , e) ∈ F}, 
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Ei = {e ∈ E| ∃e′ ∈ Ei−1: P(e, e′) ∈ F ∨ P(e′ , e) ∈ F} , 

∀i ∈ {1, … , L − 1}, 

 

E′ = ⋃ Ei
L
i=0 , 

F′ = {P(e1, e2)| e1, e2 ∈ E′ , P(e1, e2) ∈ F}. 
 

As a result, we have a set of entities E′ and a set of 

facts F′ representing the subgraph K′ tangent to the tar-

get predicate Pt to a depth not exceeding L. 

4 To proceed with the development of the candi-

date rules set, along with their subsequent evaluation 

and selection, it becomes imperative to implement the 

function Embeddings() that transforms them into a 

vector representation of predicates and their correspond-

ing arguments. In essence, the implementation of this 

function is crucial for the effective representation and 

analysis of the extracted rules. 

5 Searching for candidates for a set of rules in the 

form of CPRs, i.e. in the form of 

 

p(x0, xL−1) ← p1(x0, x1) ∧···∧ pL−1(xL−2, xL−1), 

 

actually, it comes down to finding sequences of predi-

cates P1, P2, … , PL−1 and their inverses. This is achieved 

by using the rule search function. 

6 Resulting set of candidate rules  

Cand = {r1, r2, … , rp} should be evaluated. As a criteri-

on for rule acceptance, a measure of similarity between 

the body of the candidate rule and the target predicate in 

the context of their vector representation can be used. 

For further selection, it is advisable to apply the mini-

mum values of the rule confidence SB(r), rule head 

coverage SH(r) and the degree of support S(r) respec-

tively, SBmin, SHmin, Smin which reduces the number of 

rules obtained. 

To implement these functions, we propose a multi-

agent architecture, as illustrated in Figure 1. The follow-

ing types of agents are defined: 

A0: Agent-Ruler (coordinator), responsible for co-

ordinating functions and serving as an interface for 

communication between the rule extraction module and 

other components. This includes interfacing with a 

Knowledge Interpretation Agent, which assesses the 

relevance of the obtained rules explaining the target 

predicate. 

A1: Sampling Agent is a search space reduction 

agent, tasked with implementing the Sampling()  func-

tion. This agent facilitates the construction of a 

knowledge subgraph K′ = (E′, F′), contributing to the 

reduction of the search space. 

A2: Embedding Agent is an agent for vector repre-

sentation of predicates and their arguments, a pivotal 

component for processing large volumes of facts within 

the KG. This agent enables the comparison of the head 

and body of a rule, thereby assessing their compatibility. 

A3: Agent-Searcher, dedicated to constructing a 

set of candidate rules by considering all possible paths 

attainable on the subgraph K′. 

 

 
 

Fig. 1. Multi-agent implementation of rule mining 
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A4: Agent- Evaluator, responsible for implement-

ing functions to evaluate the similarity of vectors in the 

body and head of the rule. In addition, it assesses the 

rule's confidence level SB(r), the coverage of the rule 

head SH(r) and the degree of support S(r). 

Therefore, through the orchestrated interaction of 

the five types of agents, a sophisticated rule extraction 

algorithm can be effectively implemented. The actions 

of these agents are governed by corresponding func-

tions, and their execution is contingent on the prevailing 

state of the software system. The resultant rules collec-

tively compose an explanation and necessitate evalua-

tion for relevance, both in a general sense and with re-

spect to specific criteria. 

 

6. Case-Study 
 

Let's delve into an example illustrating the applica-

tion of a multi-agent system for deriving rules and in-

terpreting knowledge. The knowledge graph in focus 

comprises facts derived from electronic trading plat-

forms, specifically encompassing attribute facts detail-

ing various laptop models. As an illustration, consider 

the following attributes: 

a – type of data storage that can accept values: 

a1 – "HDD"; 

a2 – "SSD"; 

a3 – "SSD+HDD"; 

h – the RAM size: 

h1 – "less than 16 GB"; 

h2 – "more than 16 GB"; 

i – the diagonal of the display: 

i1 – 9'-12,5'; 

i2 – 13'-14'; 

i3 – 15'-15,6'; 

i4 – larger than 15.6'. 

By capturing and interpreting various attributes, a 

comprehensive description of laptop features emerges, 

allowing for convenient categorization into distinct clas-

ses, as depicted in Figure 2. This classification system 

facilitates streamlined product discovery on e-

commerce platforms, enhancing user experience and 

aiding in the identification of the most suitable products. 

Let's designate, for instance, specific classes of 

laptops as follows: 

с1 – office laptops with a small monitor. 

с2 – powerful, large laptops. 

It's important to note that the delineation of these 

classes is somewhat arbitrary and serves illustrative 

purposes. In practice, the formulation of classes results 

from the application of specific rules based on feature 

values. Alternatively, these classes can originate from 

the intellectual choices made by users, documented in 

the knowledge base as facts regarding which laptops 

were selected for particular search purposes. Subse-

quently, by leveraging the information about class 

matching and the particulars of features for a given 

model, it becomes feasible to develop rules for classify-

ing a laptop into a specific category, offering a pertinent 

explanation. 
 

 
 

Fig. 2. Tree of features of laptop models (fragment) 
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Let's define a set of laptops L = {l1, l2, l3} for 

which the values of their attributes have been deter-

mined and the corresponding triplets in the KG have 

been formed (Fig. 3). Then let us denote the predicates 

that reflect the attribute facts as follows:  

h(x, y) – RAM size;  

i(x, y) – display diagonal;  

a(x, y) – type of data storage.  
 

 
Fig. 3. Attribute facts in the KG (fragment) 

 

Thus, for example, h(l1, h1) – determines the fact 

that the laptop l1 has less than 16 GB of RAM. All facts 

about the values of the laptop features can be written in 

triplets and corresponding predicates: 
 

〈l1; a; a3〉  a(l1; a3), 
〈l1; h; h1〉  h(l1; h1), 
〈l1; i; i2〉  i(l1; i2), 

〈l2; a; a3〉  a(l2; a3), 

… 
〈l3; i; i1〉  i(l3; i1). 

 

We assume that these laptops are divided into two 

classes: c1 - office laptops with a small monitor; c2 - 

powerful, large laptops. A fragment of the knowledge 

graph that reflects the known facts about the values of 

the features is depicted in Figure 4. 
 

 
 

Fig. 4. Fragment of the knowledge graph 
 

If the target predicate for rule retrieval is c(x, y) 

then we can extract the following rules: 
 

с(l1; c1) ← a(l1; a3)h(l1; h1)i(l1; i2); 

с(l3; c1) ← a(l3; a2)h(l3; h1)i(l3; i1); 

с(l2; c2) ← a(l2; a3)h(l2; h2)i(l2; i4). 

From this, we can derive the following rules: 

 

с(x; c1) ← a(x; a3)h(x; h1)i(x; i2) ∨ 

∨ a(x; a2)h(x; h1)i(x; i1), 

 

с(x; c1) ← h(x; h1)a((x; a3)i(x; i2) ∨ 

∨ a(x; a2)i(x; i1)). 

 

This rule defines that the class of "office laptops 

with a small monitor" (c1) can be classified as a laptop 

if its RAM is less than 16 GB and it has a 13'-14' or 9'-

12.5' display and HDD or HDD+SSD storage. 

If you want to find all laptops that match a class 

rule, you can set the target predicate to с(x; c1) then  

 

с(l1; c1) ← a(l1; a3)h(l1; h1)i(l1; i2); 

с(l3; c1) ← a(l3; a2)h(l3; h1)i(l3; i1). 

 

From this, you can determine the value of the fea-

tures of the laptop 
 

l1:  a3h1i2 

l3:  a2h1i3. 
 

Thus, the multi-agent model for rule extraction and 

knowledge interpretation emerges as a robust and prom-

ising framework. The formalization of agent interac-

tions facilitates the extraction of meaningful rules from 

a complex KG. The proposed approach, which involves 

distinct agent types performing specialized functions, 

enables efficient rule generation, evaluation, and inter-

pretation. 
 

7. Discussion 
 

The presented example, where a KG derived from 

electronic trading platforms is utilized, showcases the 

practical application of the multi-agent model. By cate-

gorizing laptops on the basis of attributes and forming 

classes, the model effectively interprets and extracts 

relevant rules for improved system understanding. 

The incorporation of contracts during the design 

and realization phases ensures the correctness of system 

implementation. Research on formal models of agent-

based systems, including logical formalism and model 

checking, further contributes to the reliability and scala-

bility of the multi-agent approach [28, 29]. The formal 

methodology for developing multi-agent systems typi-

cally comprises three stages: 

1. Analysis Stage: This involves collecting infor-

mal requirements for the system. 

2. Design Phase: This phase is accompanied by the 

creation and refinement of a model-based specification 

based on the requirements from the analysis phase. 

3. Implementation Stage: This stage involves the 

actual realization of the system. 
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The concept of a contract becomes prominent dur-

ing the design and realization stages. The design stage 

culminates in the creation of a model-oriented specifica-

tion. A system is considered to have a correct imple-

mentation if it precisely adheres to the contract terms 

outlined in the specification.  

In the last five years, numerous frameworks, plat-

forms, and models within the agent-based approach 

have emerged, as discussed in [30]. Agent coordination 

and collaboration, particularly in terms of the platforms 

that facilitate them, are active research areas [31].  

Despite the regular introduction of extensions and new 

languages, many remain limited to formal descriptions, 

lacking practical implementation to support their theo-

retical frameworks [30]. The primary challenge lies in 

their usability, which is compounded by a lack of  

effective evaluation methods. Consequently, a crucial 

research question arises as to how to compare existing 

languages and frameworks to enhance their functionali-

ty and broaden their applicability in real-world scenari-

os. 

Although agent platforms offer versatility across 

various domains, several challenges persist. Notably, 

most existing platforms lack support for communication 

between agents developed using different frameworks, 

hindering interoperability [31]. To address this, an area 

of improvement involves incorporating common stand-

ards and protocols into agent platforms, facilitating 

seamless implementation across a broader range of ap-

plications. 

Despite ongoing challenges related to diverse 

agent systems and the accommodation of self-organized 

and emergent behavior, the proposed framework pro-

vides a foundational approach to address these issues. 

Future advancements in multi-agent systems should 

prioritize certifying agent components for correctness, 

ensuring adaptability to system changes, and maintain-

ing ongoing system integrity. Techniques such as de-

pendency analysis and high-level contracts can signifi-

cantly contribute to achieving these objectives. 
 

Conclusions 
 

This study contributes to the advancement of mul-

ti-agent systems by introducing an agent-formalized 

approach to the extraction of meaningful rules from 

complex knowledge graphs. In addressing the first re-

search question, we determine that the resultant rules 

collectively form an explanation, necessitating evalua-

tion for relevance in both a general sense and specific 

criteria. To address this issue, we propose a formal logi-

cal framework for identifying irrelevant fragments with-

in a complex explanation, grounded in the premise that 

irrelevance is more amenable to logical formalization 

than the inherently subjective nature of relevance. 

The resolution of the second research question 

leads to the conclusion that software agents play a piv-

otal role in extracting rules from the knowledge base, 

processing, and interpreting them. This is achieved 

through the implementation of an agent-based platform 

for parallel data processing, where each agent is con-

structed in accordance with the formal model. The pro-

posed model, which involves the coordinated interaction 

of five distinct agent types, facilitates the generation, 

evaluation, and interpretation of rules. Consequently, it 

emerges as a robust and promising framework. 

While the concept of an agent acting autonomous-

ly in the world is intuitively straightforward, the formal 

analysis of systems containing multiple agents is inher-

ently complex. Understanding the properties of systems 

with multiple actors requires robust modeling and rea-

soning techniques to capture potential system evolu-

tions. Such methods are essential for effectively model-

ing and analyzing agents and systems of agents through 

computation. 

Research in formal models of agent-based systems 

aims to represent and comprehend system properties 

using logical formalism that describe both the mental 

states of individual agents and possible interactions 

within the system. Frequently employed logics include 

belief logics or other modalities, often incorporating 

temporal modalities. Efficient algorithms for theorem 

proving or model checking are required when dealing 

with large-scale problems. Recent efforts have used 

logical formalism to represent social properties such as 

agent coalitions, preferences, and game-type properties. 

Formal methods such as model checking are cru-

cial for testing, debugging, and verifying the properties 

of implemented multi-agent systems. Despite progress, 

challenges persist stemming from variations in agent 

systems, including paradigms, programming languages, 

and particularly the design of self-organized and emer-

gent behavior. The latter may necessitate a program-

ming paradigm that supports the automatic verification 

of both functional and non-functional properties. This 

leads to the need for certifying agent components for 

correctness against their specifications. Certification can 

be achieved by selecting components already verified 

using traditional methods or by automatically generating 

code from specifications. 

In addition, methods are essential to ensure that the 

system continues to operate acceptably or safely during 

the adaptation process. This may involve techniques 

such as dependency analysis or high-level contracts and 

invariants to monitor the correctness of the system be-

fore, during, and after adaptation. 
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ФОРМАЛЬНА МОДЕЛЬ МУЛЬТИАГЕНТНОЇ АРХІТЕКТУРИ  

ПРОГРАМНОЇ СИСТЕМИ НА ОСНОВІ ІНТЕРПРЕТАЦІЇ ЗНАНЬ  

Олександр Каратаєв, Ігор Шубін 

Використання агентів у різних областях інформатики та штучного інтелекту переживає помітний 

сплеск у відповідь на вимоги адаптивності, ефективності та масштабованості. Предметом цього досліджен-

ня є застосування формальних методів для створення основи для інтерпретації знань у контексті агентної 

парадигми в розробці програмного забезпечення. Метою дослідження є розвиток формального підходу до 

інтерпретації знань шляхом використання агентної парадигми. Завдання: 1) вивчити поточний стан агент-

ної парадигми в розробці програмного забезпечення; 2) описати основні поняття підходу до інтерпретації 

знань; 3) вивчити загальну структуру задачі видобування правил; 4) розробити еталонну структуру інтерп-

ретації знань; 5) розробити мультиагентну архітектуру системи; 6) та обговорити результати дослідження.  

Дослідження використовує формальні методи, включаючи використання правил замкнутого шляху та логіку 

предикатів. Зокрема, інтеграція правил замкнутого шляху сприяє вилученню та поясненню фактів із баз 

знань. Отримані результати: 1) підхід до видобування правил, заснований на правилах замкнутого шляху та 
розроблений для обробки великих наборів даних; 2) модель релевантності, яка полегшує перевірку та авто-

матичне виключення нерелевантних фрагментів із пояснювальної структури; 3) багатоагентна система з 

п’яти типів агентів, призначених для видобування правил та інтерпретації отриманих знань. У статті наве-

дено приклад застосування запропонованих принципів, демонструючи їх практичний контекст. Висновок 

підкреслює, що агентна парадигма з акцентом на децентралізацію та автономію представляє інноваційну 

структуру для вирішення завдань обробки знань. Це поширюється на пошук як фактів, так і правил. Розпо-

діляючи функції між кількома агентами, пропонується динамічне та масштабоване рішення для ефективної 

інтерпретації величезних сховищ знань. Цей підхід стає особливо цінним у сценаріях, коли традиційні мето-

ди не можуть впоратися з обсягом і складністю інформації. 

Ключові слова: мультиагентна система; програмна інженерія; формальна модель; інтерпретація знань; 

правило замкнутого шляху. 
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