
Intelligent information technologies

53

UDC 004.415:004.82 doi: 10.32620/reks.2023.4.05

Oleksandr KARATAIEV, Ihor SHUBIN

National University of Radioelectronics, Kharkiv, Ukraine

FORMAL MODEL OF MULTI-AGENT ARCHITECTURE

OF A SOFTWARE SYSTEM BASED ON KNOWLEDGE INTERPRETATION

The use of agents across diverse domains within computer science and artificial intelligence is experiencing a
notable surge in response to the imperatives of adaptability, efficiency, and scalability. The subject of this

study is the application of formal methods to furnish a framework for knowledge interpretation with a specific

focus on the agent-based paradigm in software engineering. This study aims to advance a formal approach to

knowledge interpretation by leveraging the agent-based paradigm. The objectives are as follows: 1) to exam-

ine the current state of the agent-based paradigm in software engineering; 2) to describe the basic concepts of

the knowledge interpretation approach; 3) to study the general structure of the rule extraction task; 4) to de-

velop the reference structure of knowledge interpretation; 5) to develop a multi-agent system architecture; 6)

and to discuss the research results. This study employs formal methods, including the use of closed path rules

and predicate logic. Specifically, the integration of closed path rules contributes to the extraction and explica-

tion of facts from extensive knowledge bases. The obtained results encompass the following: 1) a rule mining

approach grounded in closed path rules and tailored for processing extensive datasets; 2) a formalization of
relevance that facilitates the scrutiny and automated exclusion of irrelevant fragments from the explanatory

framework; and 3) the realization of a multi-agent system predicated on the synergy among five distinct types

of agents, dedicated to rule extraction and the interpretation of acquired knowledge. This paper provides an

example of the application of the proposed formal tenets, demonstrating their practical context. The conclu-

sion underscores that the agent-based paradigm, with its emphasis on decentralized and autonomous entities,

presents an innovative framework for handling the intricacies of knowledge processing. It extends to the re-

trieval of facts and rules. By distributing functions across multiple agents, the framework offers a dynamic and

scalable solution to effectively interpret vast knowledge repositories. This approach is particularly valuable in

scenarios where traditional methods may struggle to cope with the volume and complexity of information.

Keywords: multi-agent system; software engineering; formal model; knowledge interpretation; closed path

rules.

Introduction

Agent-based systems represent one of the most

dynamic and pivotal domains in recent years, garnering

substantial attention in information technology

development [1, 2]. Constituting intricate information

systems, multi-agent systems feature many interacting

agents, each endowed with distinct attributes,

capabilities, and objectives, fostering collaborative

interactions within the system. The versatility of multi-

agent systems finds application across diverse domains,

including the modeling of market behavior in

economics, the simulation of biological and social

systems in scientific contexts, and the representation of

complex technical systems in engineering [3].

The ubiquity of agent-based systems transcends

their initial roots in artificial intelligence, evolving into

a foundational computing technology of paramount

significance. The advent of information and related

technologies aligns seamlessly with the utility of multi-

agent systems. Concurrently, advancements in

distributed object technologies, exemplified by the

CORBA (Common Object Request Broker

Architecture) distributed computing platform [4], which

facilitates low-level interaction among heterogeneous

distributed components, are instrumental contributors to

the maturation of the agent-based approach. Notably,

these technologies obviate the need for extensive

redevelopment of foundational methods.

In the contemporary landscape, the imperatives of

software demand flexibility, reliability, and efficiency.

In response, an agent-based paradigm is gaining

prominence within the field of software engineering.

While prevailing efforts in the realm of agents often

gravitate toward either practical application

development or the intricate construction of reasoning

logic, the development of formal models for agent

systems assumes paramount importance. Such formal

models substantiate the overarching computational

objective of realizing tangible agent systems.

The modeling of intelligent functions, which

encompass knowledge processing, can be effectively

realized through a network of agents engaging with both

the external environment and each other to address

 Oleksandr Karataiev, Ihor Shubin, 2023

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

54

intricate intellectual tasks. In this context, knowledge

assumes the role of information conveyed by an

observer to an intelligent agent, empowering the agent

to rationalize its behavior in pursuit of predetermined

goals derived from observational learning. The

contemporary objective of knowledge bases is to

facilitate the sharing and reuse of knowledge. Notably,

the creation of expansive knowledge bases containing

millions of facts about diverse entities has emerged as a

focal point, proving immensely beneficial for intelligent

web search, question comprehension, contextual

advertising, social media analysis, and advancements in

biomedicine.

Consequently, the application of an agent-based

paradigm for knowledge processing, spanning the

interpretation of information within large knowledge

bases, as well as the search for facts and rules, holds

promise for optimizing the efficient utilization of

available information resources.

This article specifically addresses the development

of a multi-agent system grounded in a formal

description of agent architecture and underscores the

modeling of pertinent explanations derived from

knowledge bases. The primary objective of this study is

to devise a formal approach to knowledge interpretation,

leveraging the agent-based software development

paradigm.

The research questions guiding this endeavor are

as follows:

1. What properties influence the utility of

information garnered from a knowledge base and how

can they be employed in the interpretation of

knowledge?

2. In what manner can the agent-based software

development paradigm be effectively applied to a

knowledge-based software system?

The subsequent sections are organized as follows:

an examination of the current state of the agent-based

paradigm in software engineering, an elucidation of the

research methodology and used materials, a depiction of

the approach to formalizing agent architecture, and its

practical implementation for knowledge base

interactions. The article concludes with a discussion of

formal knowledge interpretation, the proposal of a

multi-agent system architecture, and an illustrative

application of the developed formal tenets, followed by

conclusive remarks and a discussion of the results.

1. State of the art and problem statement

Until recently, the creation of intelligent systems

predominantly followed two principal methods: the al-

gorithmic approach and the structural-functional ap-

proach. A more recent paradigm, known as the func-

tional-structural method, has emerged in the domain of

intelligent system creation [5]. The algorithmic method

entails constructing intelligent systems that emulate

human intelligence functions described in linguistic

terms, with subsequent algorithmic implementation [2].

Conversely, the structural-functional method involves

initially establishing a network structure based on artifi-

cial neurons, followed by a learning process to replicate

specific intelligence functions [6]. A third method, dis-

tinct from the former two, describes intelligence func-

tions as a system of logical equations in predicate alge-

bra. Subsequently, chains of switches are created on the

basis of these equations, endowing the method with the

advantage of purposeful structure formation to represent

a designated intelligence function [5, 7].

Within the realm of artificial intelligence, the con-

ceptualization of agents has emerged as a response to

the challenges encountered when attempting to solve

problems without accounting for the real external envi-

ronment or the entity involved in the problem-solving

process. Agents, designed to operate flexibly and adap-

tively in complex real-world environments, receive data

from their environment through sensor devices and in-

fluence the environment through specialized effectors.

This concept has gained swift and widespread adoption

across various computer science fields because of its

versatility and practical utility [1, 8].

The diversity of agent definitions has proliferated,

spanning generic autonomous agents, software agents,

intelligent agents, and more specialized categories such

as interface agents, virtual agents, information agents,

and mobile agents [9, 10]. Agents find application in a

myriad of domains, including operating system interfac-

es, satellite image data processing, power distribution

management, air traffic control, business process man-

agement, e-commerce, computer games, and beyond,

attesting to their broad utility and adaptability [11, 12].

The agent metaphor, with its versatility, manifests

both strength and weakness due to the absence of a uni-

versally agreed-upon definition. Consequently, many

researchers provide their own interpretations, often

characterizing agents by specific parameters. For in-

stance, Wooldridge and Jennings [1] established a foun-

dational notion of agents that encompasses autonomy

(the ability to function without interference), sociality

(interaction with other agents), reactivity (perception

and response to a changing environment), and proactivi-

ty (purposeful behavior), which are widely acknowl-

edged as pivotal qualities defining "agency."

In the context of software engineering, an agent is

defined as an autonomous software entity that demon-

strates a prolonged lifespan and adaptive behavior in

response to environmental changes, facilitating interac-

tion with other agents [1]. Within artificial intelligence

systems, an agent is conceptualized as an entity capable

of perceiving information via sensors and influencing

Intelligent information technologies

55

the environment through actuators [2]. The key features

of agents include autonomy, interactivity, and learning

abilities, enabling independent decision-making for goal

attainment, and facilitating interactions akin to social

dynamics. The ability to learn is particularly associated

with intelligent agents within artificial intelligence sys-

tems.

The agent-based approach to software design

seamlessly integrates features from both object-oriented

and component-based methodologies, enabling the in-

corporation of specific agent properties [13, 14]. This

methodology empowers the design of multi-agent sys-

tems in which agents collaborate to achieve individual

and collective goals [15, 16].

For the effective design and implementation of

agent systems, the establishment of a formal framework

for describing and specifying their behavior is crucial.

An agent system serves as a platform capable of creat-

ing, interpreting, executing, communicating, and termi-

nating agents [3, 10]. The underpinning of software de-

velopment relies on the use of formal models, a practice

that has also been extended to the domain of multi-agent

systems [14, 17]. Noteworthy formal approaches en-

compass equation-based modeling [18], game theory

[19], discrete systems [20], classifiers, and other meth-

odologies [21].

In the context of knowledge reuse, the foundation-

al assumption posits that knowledge is replicable and

transportable across different contexts [22, 23].

Knowledge, conceptualized as an abstraction beyond

tangible representation, cannot be transcribed or physi-

cally grasped. Various formal languages, such as predi-

cate calculus, are employed to represent knowledge in

information systems. Predicate calculus, notable for its

unambiguous formal semantics and operational support

through a flawless inference mechanism, serves as a

prominent tool for expressing and manipulating

knowledge in a systematic manner [5, 7].

A Knowledge Graph (KG) constitutes an extensive

collection of binary facts expressed in the form of sub-

ject-predicate-object triples [22, 24]. This assembly of

facts forms a directed graph in which each fact is an

edge, with the predicate serving as the label, connecting

a subject entity to an object entity. A Knowledge Graph

is a specialized form of a Knowledge Base (KB), in

which a KB is a broader category encompassing general

repositories of knowledge without imposing specific

restrictions on the pattern of facts or the level of

knowledge abstraction. A Knowledge Database (KD)

has the capacity to incorporate not only general rules

but also facts [22, 25].

Given the sheer volume of data, the manual con-

struction of large Knowledge Graphs is impractical.

Consequently, a primary challenge in building a

Knowledge Graph lies in developing scalable methods

for the automated learning of new entities, their proper-

ties, and relationships [24]. Some researchers argue that

a Knowledge Graph transcends the conventional defini-

tion of a database [22, 25]. Specifically, it is asserted

that a Knowledge Graph must possess a level of concep-

tual knowledge, often represented as a set of rules.

Rules, constituting explicit knowledge, offer human-

readable explanations for the outcomes derived from

them. Traditional rule learning methods face limitations

in this context, as they lack the scalability to handle vast

amounts of data, and Knowledge Graphs do not explic-

itly articulate negative examples, which are crucial for

many data mining tools.

Interpretation is a pivotal factor in ensuring effec-

tive interaction between users and software, with expla-

nation playing a crucial role in fostering trust in the out-

comes of intelligent systems. Typically, an explanation

is perceived as a lucid delineation of the results ob-

tained. However, providing an explanation necessitates

a delicate balance between relevance and completeness.

Demonstrating the relevance of knowledge poses a chal-

lenge, given that the perception of information is inher-

ently subjective. What may be intriguing to one user

might be entirely inconsequential to another. Conse-

quently, the interpretation of knowledge can be realized

through the explanations offered by intelligent systems

to users.

In this context, employing the agent paradigm as

the foundation for developing intelligent system soft-

ware holds promise, particularly in terms of scalability

and flexibility in crafting solutions. The imperative of

processing large knowledge bases underscores the need

for scalability in rule learning methods. Simultaneously,

the extraction of rules, exploration of new entities, and

understanding of their properties form the bedrock for

constructing user-understandable explanations. This

collective approach enables the development of intelli-

gent systems grounded in knowledge interpretation.

2. The rule extraction task

Formally, a knowledge graph (KG) contains facts

about entities. An entity e can represent a place, person,

etc.; a fact is an RDF triple (e, P, e′). In other words, an

entity e is related to another entity e′ through a binary

predicate P. Following the convention of knowledge

representation, we denote this fact as p(e, e′). Thus,

formally, a knowledge graph is a pair K = (E, F)where

E - is a set of entities, and F - is a set of facts.

Let 𝑟 denote the rule. Next, we consider rules that

have the following form

p(x0, xn) ← p1(x0, x1) ∧···∧ pn(xn−1, xn),

where everyone xi (0 ≤ i ≤ n) is a variable.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

56

Intuitively, the rule 𝑟 says that if

 p1(x0, x1),···, pn(xn−1, xn) is true, then p(x0, xn) is also

true. A rule of this type is usually called a closed-path

rule (CPR) because the sequence of predicates in the

body of the rule forms a path from the subject argument

to the object argument of the main predicate [24].

For a given rule 𝑟, a pair of entities (e, e′) satisfies

the body of the rule 𝑟, denoted as 𝑏(𝑒, 𝑒′), if there is a

way to replace the variables in 𝑏 with entities from the

knowledge base (KB) such that: (1) all atoms in 𝑏(𝑒, 𝑒′)

(after replacement) are facts in the KB, and (2) x0 і xn

are replaced by 𝑒 and 𝑒′, respectively. A pair of entities

is said to be (e, e′) is said to satisfy the head of the rule

𝑟, denoted as h(e, e′)if h(e, e′) is also a fact in the

knowledge base [24]. Then the degree of support for

rule 𝑟 is defined as the number of pairs of entities that

satisfy both the head and the body of rule 𝑟:

S(r) = #(e, e′) ∶ b(e, e′) ∧ h(e, e′).

The degree of confidence of the rule 𝑟 SB(r) and

the head coverage of the rule 𝑟 SH(r) are defined as

forms of normalization for the degree of support S(r):

SB(r) =
S(r)

#(e, e′) ∶ b(e, e′)

SH(r) =
S(r)

#(e, e′) ∶ h(e, e′)

So, SB(r) is a normalization S(r) by the number of

entity pairs that satisfy the body, whereas SH(r) is a

normalization S(r) by the number of pairs of entities

that satisfy the head. The degree of support for a rule

and its normalization are used as criteria for evaluating

the extracted rules.

Rule extraction constitutes a central task in induc-

tive logic programming [22, 24]. However, traditional

logic programming systems are ill-suited for large-scale

KG because they typically rely on negative facts,

whereas KGs predominantly contain positive facts, and

these methods are generally incapable of handling the

immense volume of data present in a KG. Conversely,

agents, integral to the agent-based paradigm, offer a

solution by facilitating the construction of intelligent

systems that meet the demands of flexibility and scala-

bility—crucial elements for rule extraction and interpre-

tation.

3. Formal agent architecture

To articulate the potential actions of an agent and

its interactions with the external environment, a formal

tool is indispensable for precisely describing the agent’s

behavior. The formal architecture of an agent serves

as the foundation for understanding and designing an

agent’s behavior through clear and rigorous methods.

This formal architecture is delineated through a descrip-

tion of the agent’s operating environment, the agent’s

perception of this environment, and its corresponding

actions [14, 26].

Let’s denote the agent’s external environment by

the set of states S. The possible actions of the agent are

described by the set of actions A [1]. Abstractly, an

agent can be represented as a function of

gs: S → A

that is, the agent chooses a specific action from a set of

possible actions based on the current state of the envi-

ronment si ∈ S. At the same time, the agent's actions

can influence the environment, but not completely con-

trol it.

To represent an agent, it is convenient to use a

model of perception of the external environment. To do

this, we introduce a set of possible perceptions P and a

function f: S → P that describes how certain states of the

environment are perceived by the agent. The agent is

then represented by the function

gP: P → A

that is, the agent's action is determined in the general

case by the current perception of the state of the envi-

ronment pj ∈ P. The agent model with perception is

equivalent to the basic model. However, it allows us to

introduce the following additional property of the agent:

different states of the environment can be perceived in

the same way and vice versa - one state can be per-

ceived differently by the agent.

Another option for solving the problem of includ-

ing previous actions when choosing a current action is

to introduce the concept of the agent state. In this case,

it is assumed that the agent has certain internal data

structures that it modifies depending on the perception

of the current state of the environment, and based on the

results obtained, it chooses an action. To formalize this

process, a set of I of internal states of the agent and the

internal state update function, which is responsible for

updating the internal state in accordance with the cur-

rent perception of the environment:

h: I × P → I.

Then the agent is described using the function

gI: I → A

that is, the action is selected based on the current state

Intelligent information technologies

57

of the agent. To correctly describe the behavior of an

agent with a state, it is necessary to determine the initial

state i0ϵI. Such agent architecture has one significant

drawback, namely that an agent defined in this manner

does not receive information about its actions, which

limits its ability to gain experience and analyze the po-

tential consequences of its actions. One possible way to

overcome this disadvantage is to present information

about the agent’s actions as part of the information

about the external environment; however, this approach

is not visual and intuitive. A more correct solution to

this problem is to include information about the actions

performed explicitly in the input data of the action se-

lection function:

gA: (P × A)∗ → A.

In this configuration, the agent explicitly acquires

information about previously executed actions. When

selecting an action, it draws upon the perception of en-

vironmental states. In the case of an agent equipped

with a state, the information regarding prior actions

plays a role in the state update function:

h: I × P × A → I.

The parameter of the state update function is not

the sequence of all agent actions, but only the last action

performed.

An agent that chooses an action based on the cur-

rent perception, ignoring the entire history of previous

perceptions, is a simple reflexive agent [2]. This type of

agent is quite simple. In practice, simple reflexive

agents are often sufficient to implement agent-based

software systems [27]. In this case, we assume that each

type of agent implements one function from the specifi-

cation.

Let us define SI = {s0, s1, s2, … , sn} - is the set of

possible states of a software system that characterize the

interaction of software agents and components at a cer-

tain point in time, which together ensure the achieve-

ment of functional requirements in accordance with the

specification.

Given AF = {aF1, … , aFj, … , aFS}, the set represent-

ing agent actions aligning with the realization of func-

tional requirements, the formal agent model is delineat-

ed as follows:

gA: (SI × AF) → AF.

Consequently, it becomes feasible to characterize

the agents comprising a multi-agent system through a

formal architecture that defines the agent’s function as

the selection of an action based on the current state of

the software system and information regarding previ-

ously executed actions.

In the realm of using a multi-agent system to in-

stantiate an intelligent system grounded in knowledge

interpretation, this approach exhibits scalability and

adeptness in handling substantial volumes of data.

Thus, addressing the second research question

leads to the conclusion that software agents play a piv-

otal role in extracting rules from the knowledge base,

processing, and interpreting them. This is accomplished

through the implementation of an agent-based platform

for parallel data processing, in which each agent is con-

structed in accordance with the aforementioned formal

model.

4. Reference structure

of knowledge interpretation

Elucidating or interpreting the behavior of an intel-

ligent system represents a significant societal demand

and a major challenge for both practitioners and theo-

rists in the field of artificial intelligence. Despite the

paramount importance of this task, there exists a notable

absence of a logical formalization that captures these

ubiquitous ideas. The formalization of knowledge, par-

ticularly in the form of rules that adhere to the definition

of a closed path rule, has emerged as a potent tool for

constructing a coherent and logical explanation.

It is essential to recognize that people may not find

explanations compelling under certain conditions. First,

when the extracted information holds true for scenarios

beyond the one being explained, especially if this in-

formation is universally applicable. Second, individuals

may exhibit disinterest if the extracted information

merely reaffirms what they already know. In navigating

the delicate balance of providing meaningful and perti-

nent explanations, the formalization of knowledge

through closed path rules offers a structured and sys-

tematic approach to meet this pressing demand.

To formalize the explanation, we establish several

foundational assumptions. We introduce the concepts of

a deterministic system Csys, denoted as the system under

consideration, and input data I. The system Csys pro-

cesses the input data I and produces the desired result R

requested by the user.

In the realm of knowledge interpretation, formaliz-

ing the concept of relevance in an explanation poses a

challenge for logical formulation. Effective explanations

must inherently consider both the context and the end-

user, that is, the individual receiving the explanation. As

a solution, this study introduces the concept of an "irrel-

evant explanation" as a formalism for evaluating inter-

pretation results. Furthermore, a logical structure is pre-

sented to characterize the irrelevance concerning both

the context and the user. This structured approach en-

hances the precision and clarity of the knowledge inter-

pretation process.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

58

Let's formalize the assumption.

Assumption 1: It is always feasible to represent the

inputs and outputs of a system in a formal language.

The input and output, or their respective descriptions,

can be expressed as formulas denoted as I and R respec-

tively.

Assumption 2: The characteristics of system Csys

can be represented by a logical theory TS such that

TS ∪ {I} ← R, i.e., inputs and outputs can be logically

connected by TS.

Assumption 3: The knowledge possessed by the

user, denoted as the information consciously known to

them, can be represented as another logical theory Te.

This theory encompasses both general knowledge and

specific knowledge held by the user.

Assumption 4: The explanation consists of n sen-

tences (fragments), each of which indicates the truth of

the logical formula Ei , i = 1, . . . , n so that the entire ex-

planation E can be represented as a conjunction

E = E1 ∧···∧ En.

Assumption 5: The explanation is always true with

respect to the specific behavior of the system it explains,

i.e. TS ∪ {I} ← E.

Let’s define the concept of an irrelevant explana-

tion on the basis of the provided conditions.

1 (General irrelevance) An explanation E is con-

sidered irrelevant for the outcome R if there exist alter-

native inputs I′ for which the system Csys produces a

different result R′, such that 𝐸 also explains the result

R′. In essence, explanations that are overly general and

fail to convincingly account for the outcome are deemed

irrelevant.

2 (Partial irrelevance) An explanation E is consid-

ered irrelevant to the user if all i ∈ {1, . . . , n} holds

Te ← E, i.e., none of the conjuncts of E are unknown to

the user. This consideration allows us to account for the

specific knowledge possessed by individual users.

Partial irrelevance acknowledges that explanations

can extend beyond a single phrase, encompassing a

chain of reasoning from input to output. In this context,

it becomes pivotal that at least one conjunct, denoted as

Ei, forming the explanation remains unknown to the

user. It is noteworthy that excluding parts of the expla-

nation that are already known is not advocated, as these

components contribute to the overall argument, and

their omission would undermine the coherence of the

entire explanation.

Therefore, a relevant explanation is one that incor-

porates at least one conjunct in explanation E that is

unknown to the user. The constituents of E are frag-

ments of rules extracted from the knowledge base, com-

prising individual facts that collectively develop a rule.

This definition of irrelevance serves as the founda-

tion for constructing explanations derived from

knowledge base information. The proposed formaliza-

tion facilitates the automatic exclusion of irrelevant

fragments or extracted rules from the comprehensive

explanation, guided by the logical representation of the

user’s knowledge, such as through an ontology. In this

context, the assessment of irrelevance can be conducted

systematically.

Thus, we propose a formal logical framework for

identifying irrelevant fragments within a complex ex-

planation, operating under the premise that irrelevance

is more amenable to logical formalization than the in-

herently subjective nature of relevance.

5. Multi-agent system architecture

development

To determine the relevance of the explanations, we

must first form an explanation E based on rule extrac-

tion from the knowledge base. In the following section,

we consider a knowledge base as a knowledge graph

formed by a set of entities and facts. We assume that

there is a known knowledge graph K = (E, F). Let us

define Pt - the target predicate, i.e. the fact that needs to

be interpreted. The task is to find the rules, conjunc-

tions, and interpretation for a given target predicate Pt to

find rules whose conjuncts form an explanation. In this

study, we consider closed path rules. Note that attribu-

tive facts can be represented as binary predicates, as

shown in [7]. Thus, let's consider how to study rules that

have a target predicate in their head Pt. The proposed

approach is based on the research of [24], which consid-

ers large amounts of data in the KG and uses an effi-

cient algorithm to identify candidates for rule formation.

Let's delve into the structure of a multi-agent sys-

tem designed for rule extraction. This approach involves

categorizing agents according to the functional charac-

teristics of the fundamental steps in the algorithm. Let's

explore the key principles underlying the process of rule

extraction.

1. We assume that the knowledge graph is given

K = (E, F) and the target predicate Pt, the maximum

length of the rules L, the minimum values of the rule

confidence SB(r), the head coverage of the rule SH(r)

and the degree of support S(r).

2. Due to the large size of the input data of the

knowledge graph K = (E, F) it is necessary to first sam-

ple the data. To achieve this goal, we propose to imple-

ment the function Sampling() to obtain a smaller KG

K′ = (E′, F′) (where E′ ⊂ E, F′ ⊂ F)), which contains

only those entities and facts relevant to the target predi-

cate Pt.

3. To study the maximum length rules L we pro-

pose to build a sample of entities as follows:

E0 = {e ∈ E| ∃e′ ∈ E: Pt(e, e′) ∈ F ∨ Pt(e′ , e) ∈ F},

Intelligent information technologies

59

Ei = {e ∈ E| ∃e′ ∈ Ei−1: P(e, e′) ∈ F ∨ P(e′ , e) ∈ F} ,

∀i ∈ {1, … , L − 1},

E′ = ⋃ Ei
L
i=0 ,

F′ = {P(e1, e2)| e1, e2 ∈ E′ , P(e1, e2) ∈ F}.

As a result, we have a set of entities E′ and a set of

facts F′ representing the subgraph K′ tangent to the tar-

get predicate Pt to a depth not exceeding L.

4 To proceed with the development of the candi-

date rules set, along with their subsequent evaluation

and selection, it becomes imperative to implement the

function Embeddings() that transforms them into a

vector representation of predicates and their correspond-

ing arguments. In essence, the implementation of this

function is crucial for the effective representation and

analysis of the extracted rules.

5 Searching for candidates for a set of rules in the

form of CPRs, i.e. in the form of

p(x0, xL−1) ← p1(x0, x1) ∧···∧ pL−1(xL−2, xL−1),

actually, it comes down to finding sequences of predi-

cates P1, P2, … , PL−1 and their inverses. This is achieved

by using the rule search function.

6 Resulting set of candidate rules

Cand = {r1, r2, … , rp} should be evaluated. As a criteri-

on for rule acceptance, a measure of similarity between

the body of the candidate rule and the target predicate in

the context of their vector representation can be used.

For further selection, it is advisable to apply the mini-

mum values of the rule confidence SB(r), rule head

coverage SH(r) and the degree of support S(r) respec-

tively, SBmin, SHmin, Smin which reduces the number of

rules obtained.

To implement these functions, we propose a multi-

agent architecture, as illustrated in Figure 1. The follow-

ing types of agents are defined:

A0: Agent-Ruler (coordinator), responsible for co-

ordinating functions and serving as an interface for

communication between the rule extraction module and

other components. This includes interfacing with a

Knowledge Interpretation Agent, which assesses the

relevance of the obtained rules explaining the target

predicate.

A1: Sampling Agent is a search space reduction

agent, tasked with implementing the Sampling() func-

tion. This agent facilitates the construction of a

knowledge subgraph K′ = (E′, F′), contributing to the

reduction of the search space.

A2: Embedding Agent is an agent for vector repre-

sentation of predicates and their arguments, a pivotal

component for processing large volumes of facts within

the KG. This agent enables the comparison of the head

and body of a rule, thereby assessing their compatibility.

A3: Agent-Searcher, dedicated to constructing a

set of candidate rules by considering all possible paths

attainable on the subgraph K′.

Fig. 1. Multi-agent implementation of rule mining

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

60

A4: Agent- Evaluator, responsible for implement-

ing functions to evaluate the similarity of vectors in the

body and head of the rule. In addition, it assesses the

rule's confidence level SB(r), the coverage of the rule

head SH(r) and the degree of support S(r).

Therefore, through the orchestrated interaction of

the five types of agents, a sophisticated rule extraction

algorithm can be effectively implemented. The actions

of these agents are governed by corresponding func-

tions, and their execution is contingent on the prevailing

state of the software system. The resultant rules collec-

tively compose an explanation and necessitate evalua-

tion for relevance, both in a general sense and with re-

spect to specific criteria.

6. Case-Study

Let's delve into an example illustrating the applica-

tion of a multi-agent system for deriving rules and in-

terpreting knowledge. The knowledge graph in focus

comprises facts derived from electronic trading plat-

forms, specifically encompassing attribute facts detail-

ing various laptop models. As an illustration, consider

the following attributes:

a – type of data storage that can accept values:

a1 – "HDD";

a2 – "SSD";

a3 – "SSD+HDD";

h – the RAM size:

h1 – "less than 16 GB";

h2 – "more than 16 GB";

i – the diagonal of the display:

i1 – 9'-12,5';

i2 – 13'-14';

i3 – 15'-15,6';

i4 – larger than 15.6'.

By capturing and interpreting various attributes, a

comprehensive description of laptop features emerges,

allowing for convenient categorization into distinct clas-

ses, as depicted in Figure 2. This classification system

facilitates streamlined product discovery on e-

commerce platforms, enhancing user experience and

aiding in the identification of the most suitable products.

Let's designate, for instance, specific classes of

laptops as follows:

с1 – office laptops with a small monitor.

с2 – powerful, large laptops.

It's important to note that the delineation of these

classes is somewhat arbitrary and serves illustrative

purposes. In practice, the formulation of classes results

from the application of specific rules based on feature

values. Alternatively, these classes can originate from

the intellectual choices made by users, documented in

the knowledge base as facts regarding which laptops

were selected for particular search purposes. Subse-

quently, by leveraging the information about class

matching and the particulars of features for a given

model, it becomes feasible to develop rules for classify-

ing a laptop into a specific category, offering a pertinent

explanation.

Fig. 2. Tree of features of laptop models (fragment)

Intelligent information technologies

61

Let's define a set of laptops L = {l1, l2, l3} for

which the values of their attributes have been deter-

mined and the corresponding triplets in the KG have

been formed (Fig. 3). Then let us denote the predicates

that reflect the attribute facts as follows:

h(x, y) – RAM size;

i(x, y) – display diagonal;

a(x, y) – type of data storage.

Fig. 3. Attribute facts in the KG (fragment)

Thus, for example, h(l1, h1) – determines the fact

that the laptop l1 has less than 16 GB of RAM. All facts

about the values of the laptop features can be written in

triplets and corresponding predicates:

〈l1; a; a3〉 a(l1; a3),
〈l1; h; h1〉 h(l1; h1),
〈l1; i; i2〉 i(l1; i2),

〈l2; a; a3〉 a(l2; a3),

…
〈l3; i; i1〉 i(l3; i1).

We assume that these laptops are divided into two

classes: c1 - office laptops with a small monitor; c2 -

powerful, large laptops. A fragment of the knowledge

graph that reflects the known facts about the values of

the features is depicted in Figure 4.

Fig. 4. Fragment of the knowledge graph

If the target predicate for rule retrieval is c(x, y)

then we can extract the following rules:

с(l1; c1) ← a(l1; a3)h(l1; h1)i(l1; i2);

с(l3; c1) ← a(l3; a2)h(l3; h1)i(l3; i1);

с(l2; c2) ← a(l2; a3)h(l2; h2)i(l2; i4).

From this, we can derive the following rules:

с(x; c1) ← a(x; a3)h(x; h1)i(x; i2) ∨

∨ a(x; a2)h(x; h1)i(x; i1),

с(x; c1) ← h(x; h1)a((x; a3)i(x; i2) ∨

∨ a(x; a2)i(x; i1)).

This rule defines that the class of "office laptops

with a small monitor" (c1) can be classified as a laptop

if its RAM is less than 16 GB and it has a 13'-14' or 9'-

12.5' display and HDD or HDD+SSD storage.

If you want to find all laptops that match a class

rule, you can set the target predicate to с(x; c1) then

с(l1; c1) ← a(l1; a3)h(l1; h1)i(l1; i2);

с(l3; c1) ← a(l3; a2)h(l3; h1)i(l3; i1).

From this, you can determine the value of the fea-

tures of the laptop

l1: a3h1i2

l3: a2h1i3.

Thus, the multi-agent model for rule extraction and

knowledge interpretation emerges as a robust and prom-

ising framework. The formalization of agent interac-

tions facilitates the extraction of meaningful rules from

a complex KG. The proposed approach, which involves

distinct agent types performing specialized functions,

enables efficient rule generation, evaluation, and inter-

pretation.

7. Discussion

The presented example, where a KG derived from

electronic trading platforms is utilized, showcases the

practical application of the multi-agent model. By cate-

gorizing laptops on the basis of attributes and forming

classes, the model effectively interprets and extracts

relevant rules for improved system understanding.

The incorporation of contracts during the design

and realization phases ensures the correctness of system

implementation. Research on formal models of agent-

based systems, including logical formalism and model

checking, further contributes to the reliability and scala-

bility of the multi-agent approach [28, 29]. The formal

methodology for developing multi-agent systems typi-

cally comprises three stages:

1. Analysis Stage: This involves collecting infor-

mal requirements for the system.

2. Design Phase: This phase is accompanied by the

creation and refinement of a model-based specification

based on the requirements from the analysis phase.

3. Implementation Stage: This stage involves the

actual realization of the system.

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

62

The concept of a contract becomes prominent dur-

ing the design and realization stages. The design stage

culminates in the creation of a model-oriented specifica-

tion. A system is considered to have a correct imple-

mentation if it precisely adheres to the contract terms

outlined in the specification.

In the last five years, numerous frameworks, plat-

forms, and models within the agent-based approach

have emerged, as discussed in [30]. Agent coordination

and collaboration, particularly in terms of the platforms

that facilitate them, are active research areas [31].

Despite the regular introduction of extensions and new

languages, many remain limited to formal descriptions,

lacking practical implementation to support their theo-

retical frameworks [30]. The primary challenge lies in

their usability, which is compounded by a lack of

effective evaluation methods. Consequently, a crucial

research question arises as to how to compare existing

languages and frameworks to enhance their functionali-

ty and broaden their applicability in real-world scenari-

os.

Although agent platforms offer versatility across

various domains, several challenges persist. Notably,

most existing platforms lack support for communication

between agents developed using different frameworks,

hindering interoperability [31]. To address this, an area

of improvement involves incorporating common stand-

ards and protocols into agent platforms, facilitating

seamless implementation across a broader range of ap-

plications.

Despite ongoing challenges related to diverse

agent systems and the accommodation of self-organized

and emergent behavior, the proposed framework pro-

vides a foundational approach to address these issues.

Future advancements in multi-agent systems should

prioritize certifying agent components for correctness,

ensuring adaptability to system changes, and maintain-

ing ongoing system integrity. Techniques such as de-

pendency analysis and high-level contracts can signifi-

cantly contribute to achieving these objectives.

Conclusions

This study contributes to the advancement of mul-

ti-agent systems by introducing an agent-formalized

approach to the extraction of meaningful rules from

complex knowledge graphs. In addressing the first re-

search question, we determine that the resultant rules

collectively form an explanation, necessitating evalua-

tion for relevance in both a general sense and specific

criteria. To address this issue, we propose a formal logi-

cal framework for identifying irrelevant fragments with-

in a complex explanation, grounded in the premise that

irrelevance is more amenable to logical formalization

than the inherently subjective nature of relevance.

The resolution of the second research question

leads to the conclusion that software agents play a piv-

otal role in extracting rules from the knowledge base,

processing, and interpreting them. This is achieved

through the implementation of an agent-based platform

for parallel data processing, where each agent is con-

structed in accordance with the formal model. The pro-

posed model, which involves the coordinated interaction

of five distinct agent types, facilitates the generation,

evaluation, and interpretation of rules. Consequently, it

emerges as a robust and promising framework.

While the concept of an agent acting autonomous-

ly in the world is intuitively straightforward, the formal

analysis of systems containing multiple agents is inher-

ently complex. Understanding the properties of systems

with multiple actors requires robust modeling and rea-

soning techniques to capture potential system evolu-

tions. Such methods are essential for effectively model-

ing and analyzing agents and systems of agents through

computation.

Research in formal models of agent-based systems

aims to represent and comprehend system properties

using logical formalism that describe both the mental

states of individual agents and possible interactions

within the system. Frequently employed logics include

belief logics or other modalities, often incorporating

temporal modalities. Efficient algorithms for theorem

proving or model checking are required when dealing

with large-scale problems. Recent efforts have used

logical formalism to represent social properties such as

agent coalitions, preferences, and game-type properties.

Formal methods such as model checking are cru-

cial for testing, debugging, and verifying the properties

of implemented multi-agent systems. Despite progress,

challenges persist stemming from variations in agent

systems, including paradigms, programming languages,

and particularly the design of self-organized and emer-

gent behavior. The latter may necessitate a program-

ming paradigm that supports the automatic verification

of both functional and non-functional properties. This

leads to the need for certifying agent components for

correctness against their specifications. Certification can

be achieved by selecting components already verified

using traditional methods or by automatically generating

code from specifications.

In addition, methods are essential to ensure that the

system continues to operate acceptably or safely during

the adaptation process. This may involve techniques

such as dependency analysis or high-level contracts and

invariants to monitor the correctness of the system be-

fore, during, and after adaptation.

Contributions of authors: conceptualization,

methodology, formulation of tasks – Ihor Shubin;

analysis – Oleksandr Karataiev; development of mod-

Intelligent information technologies

63

el, software, verification – Oleksandr Karataiev; anal-

ysis of results, visualization – Oleksandr Karataiev;

writing – original draft preparation visualization –

Oleksandr Karataiev; writing – review and editing –

Ihor Shubin.

All authors have read and agreed to the published

version of this manuscript.

References

1. Wooldridge, M. An Introduction to Multi-

Agent Systems. 2nd Ed., Wiley Publ., 2009. 488 p.

2. Russell, S. J., & Norvig, P. Artificial Intelli-

gence: A Modern Approach. 4th Ed., Pearson, 2020.

1166 p. Available at: https://aima.cs.berkeley.edu/

index.html. (accessed 12.07.2023).

3. Alkhateeb, F., Al Maghayreh, E., &

Abu Doush, I. Multi-Agent Systems – Modeling, Inter-
actions, Simulations and Case Studies. InTech, 2011.

514 p. DOI: 10.5772/1936.
4. About the Common Object Request Broker Ar-

chitecture Specification Version 2.0. Available at:

https://www.omg.org/spec/CORBA/2.0/About-CORBA

(accessed 05.06.2023).

5. Bondarenko, M. F., & Shabanov-Kushnarenko,

U. P. Theory of intelligence: a Handbook. Kharkiv,

SMIT Company Publ., 2006.

6. Hinkelmann, F., Murrugarra, D., Jarrah, A. S.,

& Laubenbacher, R. C. A mathematical framework for

agent based models of complex biological net-

works. Bulletin of Mathematical Biology, 2011, vol. 73,

iss. 7, pp. 1583-1602. DOI: 10.1007/s11538-010-9582-
8.

7. Sharonova, N., Doroshenko, A., & Chered-

nichenko, O. Issues of Fact-based Information Analysis.

International Conference on Computational Linguistics

and Intelligent Systems. CEUR Workshop Proceedings,

2018, vol. 2136, pp. 11-19. Available at: https://ceur-

ws.org/Vol-2136/10000011.pdf (accessed 05.06.2023).

8. Botti, V., Mariani, S., Omicini, A., & Julian, V.

Multi-Agent Systems. MDPI – Multidisciplinary Digital

Publishing Institute, 2019. 392 p. ISBN 3038979252.

9. Wang, J., Deng, X., Guo, J., & Zeng, Z. Resili-
ent Consensus Control for Multi-Agent Systems: A

Comparative Survey. Sensors, 2023, vol. 23, iss. 6, arti-

cle no. 2904. DOI: 10.3390/s23062904.

10. Niazi, M. A., & Hussain, A. A novel agent-

based simulation framework for sensing in complex

adaptive environments. IEEE Sensors Journal, 2011,

vol. 11, iss. 2, pp. 404-412. DOI: 10.1109/JSEN.2010.

2068044.

11. Nufer, G., & Muth, M. Artificial Intelligence in

Marketing Analytics: The Application of Artificial Neu-

ral Networks for Brand Image Measurement. Journal of

Marketing Development and Competitiveness. 2022,
vol. 16, iss. 1. DOI: 10.33423/jmdc.v16i1.5027.

12. Dorri, A., Kanhere, S. S., & Jurdak, R. Multi-

Agent Systems: A Survey. IEEE Access, 2018, vol. 6,

pp. 28573-28593. DOI: 10.1109/ACCESS.2018.

2831228.

13. Abar, S., Theodoropoulos, G. K., Lemarinier,

P., & O’Hare, G. M. P. Agent Based Modelling and

Simulation tools: A review of the state-of-art software.

Computer Science Review, 2017, vol. 24, pp. 13-33.

DOI: 10.1016/j.cosrev.2017.03.001.

14. North, M. J. A theoretical formalism for ana-

lyzing agent-based models. Complex Adaptive Systems

Modeling, 2014, vol. 2, article no. 3. DOI:

10.1186/2194-3206-2-3.

15. Piccoli, B. Control of multi-agent systems: Re-

sults, open problems, and applications. Open Mathemat-
ics, 2023, vol. 21, iss. 1. DOI: 10.1515/math-2022-

0585.

16. Houhamdi, Z. Multi-Agent System Testing: A

Survey. International Journal of Advanced Computer

Science and Applications, 2011, vol. 2, iss. 6. DOI:

10.14569/ijacsa.2011.020620.

17. Roggenbach, M., Cerone, A., Schlingloff, B.-

H., Schneider, G., & Shaikh, S. Formal Methods for

Software Engineering: Languages, Methods, Applica-

tion Domains. Springer Cham Publ., 2021. 524 p. DOI:

10.1007/978-3-030-38800-3.
18. Smale, S. Differentiable dynamical systems.

Bulletin of the American Mathematical Society, 1967,

vol. 73, pp. 747-817. Available at: https://www.

ams.org/journals/bull/1967-73-06/S0002-9904-1967-

11798-1/S0002-9904-1967-11798-1.pdf (accessed

05.06.2023).

19. Nisan, N., Roughgarden, T., Tardos, E., &

Vazirani, V. V. Algorithmic Game Theory. Cambridge,

UK: Cambridge University Press, 2007. 754 p. Availa-

ble at: https://www.cs.cmu.edu/~sandholm/cs15-

892F13/algorithmic-game-theory.pdf (accessed

05.06.2023).
20. Cassandras, C. G., & Lafortune, S. Introduc-

tion to Discrete Event Systems. 2nd Ed., New York,

USA, Springer Publ., 2010. 772 p. DOI: 10.1007/978-0-

387-68612-7.

21. Dorofeenko, V., & Shorish, J. Dynamical

Modeling of the Demographic Prisoner's Dilemma. Rei-

he Ökonomie / Economics Series, Vienna, Austria, Insti-

tute for Advanced Studies, 2002, no. 124. 25 p. Availa-

ble at: https://www.econstor.eu/bitstream/10419/

71200/1/740824198.pdf (accessed 05.06.2023).

22. Karataiev, O., & Shubin, I. Problemy povtor-
noho vykorystannya znanʹ u protsesi proyektuvannya

prohramnykh system [Reuse of information based on

the interpretation of knowledge]. Suchasnyy stan nau-

kovykh doslidzhenʹ ta tekhnolohiy v promyslovosti –

Innovative technologies and scientific solutions for in-

dustries, 2023, no. 2 (24), pp. 62-71, DOI: 10.30837/

ITSSI.2023.24.062. (In Ukrainian).

23. Jarrahi, M. H., Lutz, C., & Newlands, G. Arti-

ficial intelligence, human intelligence and hybrid intel-

ligence based on mutual augmentation. Big Data & So-

ciety, 2022, vol. 9, iss. 2. DOI: 10.1177/

20539517221142824.
24. Omran, P. G., Wang, Z., & Wang, K. Learning

Rules with Attributes and Relations in Knowledge

Graphs. AAAI Spring Symposium: MAKE, 2022, vol.

https://www.omg.org/spec/CORBA/2.0/About-CORBA
https://link.springer.com/journal/11538
https://www.scopus.com/sourceid/21100218356?origin=resultslist
https://www.semanticscholar.org/paper/Issues-of-Fact-based-Information-Analysis-Sharonova-Doroshenko/f923b77b8561736202388db853e51df9bb7b9301
https://www.semanticscholar.org/paper/Issues-of-Fact-based-Information-Analysis-Sharonova-Doroshenko/f923b77b8561736202388db853e51df9bb7b9301
https://ceur-ws.org/Vol-2136/10000011.pdf
https://doi.org/10.3390/s23062904
https://doi.org/10.1186/2194-3206-2-3
https://doi.org/10.1515/math-2022-0585
https://doi.org/10.1515/math-2022-0585

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 4(108) ISSN 2663-2012 (online)

64

3121. Available at: https://ceur-ws.org/Vol-3121/

paper10.pdf (accessed 05.06.2023).

25. Brown, D. G., Riolo, R., Robinson, D. T.,

North, M. J., & Rand, W. Spatial process and data mod-

els: toward integration of agent-based models and GIS.

Journal of Geographical Systems, 2005, vol. 7, pp. 25-

47. DOI: 10.1007/s10109-005-0148-5.

26. Epstein, J. M. Generative Social Science: Stud-

ies in Agent-Based Computational Modeling. Princeton,

NJ USA, Princeton University Press, 2006. 352 p.

Available at: https://www.jstor.org/stable/j.ctt7rxj1 (ac-
cessed 05.06.2023).

27. Leombruni, R., & Richiardi, M. Why are econ-

omists sceptical about agent-based simulations? Physica

A: Statistical Mechanics and its Applications, 2005, vol.

355, iss. 1, pp. 103-109. DOI: 10.1016/j.physa.

2005.02.072.

28. Korteling, J. E. (Hans), van de Boer-

Visschedijk, G. C., Blankendaal, R. A. M., Boonekamp,

R. C., & Eikelboom, A. R. Human- versus Artificial

Intelligence. Frontiers in Artificial Intelligence, 2021,

vol. 4, article no. 622364. DOI: 10.3389/

frai.2021.622364.

29. Strilets, V., Donets, V., Ugryumov, M., Ar-

tiuch, S., Zelenskyi, R., & Goncharova, T. Agent-

oriented data clustering for medical monitor-

ing. Radioelectronic and Computer Systems, 2022, no.

1, pp. 103-114. DOI: 10.32620/reks.2022.1.08.

30. Cardoso, R. C., & Ferrando, A. A Review of

Agent-Based Programming for Multi-Agent Sys-
tems. Computers, 2021, vol. 10, article no. 16. DOI:

10.3390/computers10020016.

31. Wrona, Z., Buchwald, W., Ganzha, M., Pap-

rzycki, M., Leon, F., Noor, N., & Pal, C.-V. Overview

of Software Agent Platforms Available in

2023. Information, 2023, vol. 14, article no. 348. DOI:

10.3390/info14060348.

Received 17.07.2023, Accepted 20.11.2023

ФОРМАЛЬНА МОДЕЛЬ МУЛЬТИАГЕНТНОЇ АРХІТЕКТУРИ

ПРОГРАМНОЇ СИСТЕМИ НА ОСНОВІ ІНТЕРПРЕТАЦІЇ ЗНАНЬ

Олександр Каратаєв, Ігор Шубін

Використання агентів у різних областях інформатики та штучного інтелекту переживає помітний

сплеск у відповідь на вимоги адаптивності, ефективності та масштабованості. Предметом цього досліджен-

ня є застосування формальних методів для створення основи для інтерпретації знань у контексті агентної

парадигми в розробці програмного забезпечення. Метою дослідження є розвиток формального підходу до

інтерпретації знань шляхом використання агентної парадигми. Завдання: 1) вивчити поточний стан агент-

ної парадигми в розробці програмного забезпечення; 2) описати основні поняття підходу до інтерпретації

знань; 3) вивчити загальну структуру задачі видобування правил; 4) розробити еталонну структуру інтерп-

ретації знань; 5) розробити мультиагентну архітектуру системи; 6) та обговорити результати дослідження.

Дослідження використовує формальні методи, включаючи використання правил замкнутого шляху та логіку

предикатів. Зокрема, інтеграція правил замкнутого шляху сприяє вилученню та поясненню фактів із баз

знань. Отримані результати: 1) підхід до видобування правил, заснований на правилах замкнутого шляху та
розроблений для обробки великих наборів даних; 2) модель релевантності, яка полегшує перевірку та авто-

матичне виключення нерелевантних фрагментів із пояснювальної структури; 3) багатоагентна система з

п’яти типів агентів, призначених для видобування правил та інтерпретації отриманих знань. У статті наве-

дено приклад застосування запропонованих принципів, демонструючи їх практичний контекст. Висновок

підкреслює, що агентна парадигма з акцентом на децентралізацію та автономію представляє інноваційну

структуру для вирішення завдань обробки знань. Це поширюється на пошук як фактів, так і правил. Розпо-

діляючи функції між кількома агентами, пропонується динамічне та масштабоване рішення для ефективної

інтерпретації величезних сховищ знань. Цей підхід стає особливо цінним у сценаріях, коли традиційні мето-

ди не можуть впоратися з обсягом і складністю інформації.

Ключові слова: мультиагентна система; програмна інженерія; формальна модель; інтерпретація знань;

правило замкнутого шляху.

Каратаєв Олександр Анатолійович – асп. каф. програмної інженерії, Харківський національний

університет радіоелектроніки, Харків, Україна.
Шубін Ігор Юрійович – канд. техн. наук, доц., проф. каф. програмної інженерії, Харківський

національний університет радіоелектроніки, Харків, Україна.

Oleksandr Karataiev – PhD Student of the Department of Software Engineering, Kharkiv National Universi-

ty of Radioelectronics, Kharkiv, Ukraine,

e-mail: tosanik@gmail.com.

Ihor Shubin – Candidate of Technical Sciences, Associate Professor, Professor at the Department of Software

Engineering, Kharkiv National University of Radioelectronics, Kharkiv, Ukraine,

e-mail: igor.shubin@nure.ua, ORCID: 0000-0002-1073-023X, Scopus Author ID: 57188703184.

https://link.springer.com/journal/10109
https://doi.org/10.3389/frai.2021.622364
https://doi.org/10.3389/frai.2021.622364

