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TOPOLOGICAL OPTIMIZATION HYBRID ALGORITHM
FOR THE ADHESIVE JOINT

The subject of this study is a topological optimization algorithm for a lapped symmetric adhesive joint. The
purpose of this research is to create a hybrid optimization algorithm that combines the advantages of a genetic
algorithm and a particle swarm algorithm and, at the same time, reduces the time required to solve the problem.
Task: to create a methodology for solving the optimization problem for a symmetric double-sided lapped adhe-
sive joint, which consists of a main plate and two patches (the main plate has a constant thickness, and the
thickness of the patches varies along the length of the joint, this is required to reduce the stress concentration in
the joint and reduce its weight) with satisfaction of the optimality criterion, namely, to minimize the mass of the
structure with the strength and thickness restrictions for the patch. The optimization problem is that we must
find the optimal patch form, namely, the length of the patch and the thickness-on-length dependence for the
patch. Methods: the modified Goland-Reissner model was used to describe the deflected mode of the joint. The
finite difference method was used to solve the direct stress state problem for the structure. For the numerical
solution of the optimization problem, a combination of the multi-population model of the genetic optimization
algorithm and the particle swarm algorithm was used. To improve the performance of the genetic algorithm, a
multi-population model with migration of the best individuals between populations was applied. The introduction
of individuals from other populations into the population avoids homogenization of the genotype in a separate
population and premature stopping of the optimization process. To describe the shape of the patch, the Fourier
series expansion of the patch thickness dependence was used. Results: A hybrid algorithm is proposed based on
the sequential application of a genetic algorithm and a particle swarm algorithm for three populations of solu-
tions. The particle swarm algorithm makes it possible to improve the value of the objective function achieved at
the previous stage by 20%. Conclusions: the scientific novelty lies in the improvement of the optimization algo-
rithm compared with the known ones. To reduce the calculation time, a one-dimensional adhesive joint stress
state mathematical model was used in this paper. The methods used made it possible to create a combined top-
ological optimization algorithm that combines the advantages of both methods and allows us to find a solution
to the problem quite quickly. The Python program run time is only a few minutes.

Keywords: adhesive joint; genetic algorithm; particle swarm optimization; finite difference method; topology
optimization.

patches of varying thickness. This makes it possible to
ensure a more uniform stress state of the joint compared

Introduction

Motivation. Adhesive joints have significant ad-
vantages compared to classical mechanical joints, such as
light weight, tightness, high aerodynamic efficiency, and
manufacturability. In addition, gluing does not violate the
integrity of the structure of fibrous composite materials
and does not reduce their strength, unlike classical me-
chanical joints. [1]. A well-known disadvantage of lap
joints is the stress concentration in the adhesive layer at
the edges of the gluing area [2]. To reduce stresses in the
joint, symmetrical double overlap joints are often used
[3], which allows the exclusion of eccentricity in the
transfer of forces between structural elements. The sim-
plest method to reduce the stress concentration at the
edge of the joint is to create chamfers on the inner side of
the adhesive or on the outer side of the patch [4]. A more
general approach to stress reduction in a joint is to use

with that of classical structures [5, 6].

Sate of the art. As a rule, the topological optimiza-
tion problem for overlap joints is posed in a two-dimen-
sional formulation. However, the two-dimensional formu-
lation of the optimization problem, which is based on the
use of finite element modeling [5], in a two-dimen-
sional [7, 8] formulation (considering the ability to con-
trol the characteristics of the adhesive [9]), and three-di-
mensional [10] formulation, are correlated with a signifi-
cant amount of computations. Solving one problem re-
quires approximately 10-20 h of estimated time. This is
because the optimization algorithms that are used for the
solution require multiple solving of direct problems of
finding the stress state of joints for various configurations.
The finite element method is used for this purpose.
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Although the finite element method is universal, it is ex-
pensive in terms of calculation time. In addition, the re-
sulting optimal solution may be difficult to implement in
practical applications [5]. One method to increase the
computational speed for a problem is the use of one-di-
mensional mathematical models. Reducing the dimension
of the model and ensuring its adequacy and accuracy can
significantly reduce the search space and the time required
to solve the problem. One-dimensional mathematical
models of the joint stress state are used to construct ge-
netic optimization algorithms, for example, in studies [11,
12] and the same for two types of glue, in the study [13].
In papers [11, 12], a similar stressed state mathematical
model of a joint was considered; however, the genetic al-
gorithm proposed by the authors as a solution method for
the optimization problem is ineffective at the final execu-
tion steps. Therefore, an approximate solution is found
quite quickly during the initial stage of the algorithm.
However, after that further improvement of the solutions
found is suspended. In this regard, there is a need to mod-
ify the algorithm used. Modifying the algorithm would al-
low us to avoid premature stopping of the optimization
process.

The use of a one-dimensional mathematical model
also allows us to develop the optimization problem in a
simpler form, replacing the nonparametric optimization
problem [14] with a less time-consuming parametric opti-
mization problem. In the last case, the patch shape is de-
scribed with a set of certain parameters, and the optimiza-
tion problem is to find the optimal values of these param-
eters, such as the thickness of the adhesive layer or the
adhesive joint length [15]. This approach is also aimed at
reducing the time required to solve the problem.

Objectives. The authors use a specialized low-di-
mensional mathematical model (at the same time this
model has sufficient accuracy) to reduce computation
time. Thus, the topological optimization problem is re-
duced to a parametric optimization problem. However,
using a genetic algorithm that is prone to prematurely
stopping is still a bottleneck. The purpose of this research
is to create a hybrid optimization algorithm that combines
the advantages of a genetic algorithm and a particle
swarm algorithm and, at the same time, reduces the time
required to solve the problem.

In this paper, to increase the efficiency of execution,
we propose using the island model of the genetic algo-
rithm at the initial stage and then improving the resulting
solutions using the particle swarm algorithm. The objec-
tive function (cross-sectional area of the patch) at various
stages of the algorithm is used as a criterion for assessing
efficiency. Calculations have shown that using the particle
swarm algorithm after the genetic algorithm has lost its
effectiveness allows one to quickly improve the value of
the objective function by 20%.

1. Methodology of the research

To solve the optimization problem, it is proposed to
use a one-dimensional stress state model. This model,
due to its low dimension, allows one to find the stressed
state of the joint in a very short time. This circumstance
makes it possible to use iterative methods to solve the op-
timization problem, based on a consistent solution to sev-
eral direct problems with subsequent adjustment of the
necessary parameters that describe the shape and dimen-
sions of the joint. Moreover, the one-dimensional model
allows one to describe the patch shape as a set of certain
parameters, despite the reduction in search space. This
allows the reduction of the topological optimization
problem to a parametric optimization problem, which
also simplifies the search for the optimal structural shape.

The classical genetic algorithm method has good
convergence only at the initial steps, but then the popula-
tion becomes homogeneous, and further iterations do not
improve the solution, never reaching the neighborhood of
the optimum. Therefore, to avoid such premature stop-
ping, various modifications of the genetic algorithm have
been proposed, such as the use of several populations.
However, this leads to increased computation time, while
the tendency to premature stopping still has place, alt-
hough it is reduced. To speed up the calculation process,
the authors propose to use a combination of a genetic al-
gorithm and a particle swarm algorithm. Hybrid algo-
rithms combine the advantages of both methods and rep-
resent a modern direction in the development of optimi-
zation methods [16, 17]. In the initial steps, the genetic
algorithm provides an approximate solution, which can
then be improved using the particle swarm algorithm.

In this case, the optimality criterion is the mass of
the structure. At the same time, the structure must main-
tain bearing capacity; therefore, the space of the required
parameters is limited by the area where the stress values
in the adhesive layer do not exceed the maximum permis-
sible values.

2. Problem formulation

2.1. Mathematical Model

The differential element of the gluing area and the
force factors acting on these elements are shown in
Fig. 1.

Equilibrium equations for outer (base) layers have
the form

aNg o dN, L dQy
dx dx dx
dMl dSl
L5 (x)t=N;—2+Q, =0,
dx 1( )T Lax @
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where Ny, N, are longitudinal forces in the base layers;
Q, are shear force in the patch; M, is a bending moment
in the patch; t and o are tangential and normal stresses
in the adhesive layer; s; is a distance from the neutral
axis of the patch to the adhesive layer, in the case of a
symmetrical patch structure s;(x)=0.58;(x), where

81(x) is a patch thickness.

Q;(x+dx)
N (x +dx)

M; (x +dx)

2(x) 2

N
pd
~

Fig. 1. Stress and force values in the adhesive
joint layers

The deformation of the base layer is represented by
equations

du du
N]_:B]_(X)d—xl, NZZBZd_XZ’
d2W1
Dy (x =My,
1( )dX2 1

where U; and U, are longitudinal displacements of the
base layers; w; are transversal displacements of the
patch; B, and B, are stress-strain rigidity values of the
layers, If the layers are homogenous by thickness, then
B1(x) =38 (x)E;, B, =8,E,, where E; and E, isan
elastic modulus of the corresponding layer; D; is a bend-
_H(0)E
12
We consider the stress values in the adhesive layer

to be proportional to the difference in displacements of
the base layers

ing rigidity of the patch, Dy (x)

GZKW]_, T=P(U1—U2+51(X)%j,

where K=Eq /3y, P=Gqy/3g, where & isathickness
of the adhesive layer, Eq and G are elastic modulus
and shear modulus of an adhesive.

The system of equations can be reduced to a system
of three differential equations relative to the displace-
ments of the layer. The boundary conditions are given be-
low:

Q(0)=0, M (0)=0,
—o, Wi _
-0, G -0

The goal of the problem is to find a function &; (x)

, that ensures a minimum mass of the structure, which, up
to a constant factor and constant terms, is equal to the
cross-sectional area of the patch

M =j61(x)dx ,

and would ensure the bearing capacity of the structure.
As a rule, the joint loses its bearing capacity because of
the destruction of the adhesive layer. Therefore, the con-
dition for the joint to maintain its bearing capacity is to
restrict the stress values in the adhesive layer with certain
limiting values, for example

o(x)<og, 1(X)<10.

In addition, other criteria for adhesive strength can
be used, these depend on the type of adhesive, gluing
technology and other factors.

2.2.Numerical solution to the direct problem

We assume, that the function 8, (x) and the length
L of the gluing are given. Hence, functions s;(x),

B;(x) and Dy (x) are also known. To numerically solve

the obtained system of equations with the corresponding
boundary conditions, we used the finite difference

method. The gluing area x [0; L], is divided into a sys-

tem of nodal points numbered from zero to N. Points
with numbers 0 and N are boundary (x=0 and x=L
correspondingly). Having written in the difference form
the system of differential equations for each of these
points, as well as the boundary conditions, we obtain a
system of linear equations for the displacements of the
base layers at these points. This approach makes it possi-
ble to determine stresses in the plate, patch, and adhesive
layer at the corresponding points.
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3. Optimization
3.1. Optimization of the genetic algorithm

As noted above, the solution of the optimization
problem in an analytical form is very difficult. However,
in contrast to the problem of finding the optimal material
distribution along the beam [18], if thickness values Sgl)

in neighboring points are significantly different (that can
happen due to crossbreeding and mutations), then stress
values in the adhesive layer, computed by the finite dif-
ference method, have unreal jumps, this is the fact, that
the mathematical model becomes inadequate. Therefore,
we propose to find an optimal dependence Si(l) among
functions that have smooth apriority. This also follows
from intuitive thoughts that the desired function &; (x)
probably is smooth and has no angular points or jumps. In
this paper, we propose the use of a cosine Fourier expan-
sion at the interval £e[0;1] to describe the function

81(x)
®) 3,
87 = y(éi)=7+ > ap cosmk; -
k=1

If we divide the interval £<[0;1], as well as the

interval x [0; L] into N+1 points & numerated from

Oto N.

A description of a patch geometrical form as a Fou-
rier series allows us to calculate the mass of the patch ra-
ther simply

L
agl
szél(x)dx=07.
0

To implement a genetic algorithm, it is necessary to
create a fitness function that would make it possible to
rank different sets of parameters L and ag, aq,....ap

(i.e. individual) by quality. We can, for example, write
the fitness-function in a following form:

aoL
CIDZTJF(PPL% +P3+04,

where ¢q,..., ¢4 are penalty functions that are appointed

in the case, if a corresponding solution does not satisfy
some restriction.

These functions may have, for example, the follow-
ing form:

2
max(rmax)
21| 1| e () >

(O To ]

0, mSX(TmaX)STO
2
z, —Sm"‘l -1 ,m_in(Sgl))<8min
m_in(éii( )) :

I

0, miin(éii(l))z Sumin

P2 =

where Z;, Z, are some big numbers that define the pen-
alty for leaving the solution out of the available area;
Tmax are maximal tangential stress values in the adhe-

sive layer in nodal points (rmaX:O.S\i02+4rz );

max (Tmay ) is the maximal value of the maximal tangen-
|

tial stress values for all points in the area; min (Sgl)) isa
I

minimal value of the patch thickness.
Similarly, the functions ¢; and ¢4, which are

greater than zero if the patch thickness exceeds a maximal
restriction and if the derivative modulus of the patch
thickness exceeds some given value. This restriction is be-
cause the mathematical model of the joint stress state is
based on the beam model and is adequate only if the beam
height is close to constant.

Therefore, if the solution (i.e. the set of values L
and ag, a,...,a) ) is available, then the fitness function

value is equal to the patch cross-section area 0.5agL.

However, if the imposed restrictions are violated at least
in one node, then penalty terms must be added to the area
mentioned above, the greater the value of the violation of
the corresponding restriction.

When tuning genetic algorithms, it is necessary to
maintain a balance between variability and stability. In
the case of high variability, convergence is violated, and
even appropriate values of the desired parameters are at
risk of being lost because of mutations. In the case of low
variability, the approximate solution is found quickly,
and then convergence slows down and the population de-
generates. In the future, even with a large number of iter-
ations, the value of the objective function changes little.
One possible way out of this contradiction is to use the
island model of the evolutionary algorithm. In this paper,
we propose a model with three islands, on which the
probability and standard deviation of mutations are
higher than those on the other two islands. This combi-
nation of two relatively stable islands with one island
with a higher mutation rate makes it possible to combine
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the speed of the appropriate solution finding with the sta-
bility and preservation of the best solutions in the general
population.

The general scheme of the evolutionary algorithm
for one population has the following form:

1. Creation of the initial population of vectors ﬁ(j),
where j=1,...,n, (N is many individuals in the popula-

tion). Each vector ﬁ(j) (the individual) contains compo-
nents L(j) and agj), agj),...,ag\jl).

2. According to these sets of parameters the corre-
sponding values ol = @(ﬁ(j)) are calculated.

3. Selection. The vectors available in the population
ﬁ(j) according to the corresponding values of the fitness
function CD(j) are ranked.

4. 2k elements ﬁ(j) from the population are se-

lected. It is necessary that the best individuals H(J) from
the population be included in the sample, which has fewer
fitness functions.

5. Parents choice. 2k selected individuals into pairs
and obtained k pairs of “parents” are broken. In the sim-
plest case, we can break it into pairs at random.

6. Crossover. Parameters for each new individual

L(j) and agj), agj),...,ag\j-l) from both parent individuals

are randomly selected. Because of such operation, we ob-
tain a population k of new individuals, “descendants”.
7. Mutations. Mutations occur only with a small

portion of the vector components H(J) of individuals,
which appear as a result of “descendant” breeding.

8. After making changes to the genetic code, the de-
scendants return to the main population. After that, indi-
viduals are again ranked according to the values of fit-

ness-function (D(J) and k the worst individuals are re-
moved from the population.

9. Checking of the stop criterion. If the stop crite-
rion (for example, specified number of reproduction cy-
cles M) is not reached, then we return to step 4.

After performing a certain number of algorithm cy-
cles, two islands are selected in each of the three subpop-
ulations, which exchange the best individuals (migrants).
Migration provides an influx of new genetic information
into each population. The number of migrants is approx-
imately 10% of the population. The criterion for stopping
the algorithm is the execution of a given number of mi-
grations.

Computations show [13] that in later iterations of the
algorithm, the objective function remains practically un-
changed. Therefore, it is proposed to use a combination of

the genetic algorithm and the particle swarm algo-
rithm [19, 20]. In this case, the resulting three subpopula-
tions form the initial state of each of the three swarms of
particles. For each of the three swarms, the optimization
problem is solved independently. Then, the best solutions
are selected, and the values of the desired parameters are
averaged over this sample. The scheme of the algorithm
is shown in Fig. 2.

GA

PSO

Fig. 2. Thickness of the main plate
and patch

Here P1, P2, P3 are populations 1, 2, and 3 in the
genetic algorithm (GA), and S1, S2, S3 are populations
of particles in the particle swarm optimization algorithm
(PSO). The dark color indicates the population with an
increased level of mutagenesis.

The upper and lower limits of the available value
area for the desired parameters necessary for the particle
swarm algorithm are calculated as follows:

x L = L
Lup:L +—, L|0:L —6,
(j)‘ ‘ (i)
1\* ak 1\* ak
J ] ] ]
al(<,Lp :al(() + 0 ! a|((,)|0 :ag() - 0

Here the values denoted by “*”, are the parameters
of the best individual in the subpopulation (swarm). The
parameter O, that defines a width of the interval, is ap-
pointed when tuning the algorithm. The authors used the
value 6=4.

Therefore, vectors of the upper and lower restriction
of the required parameters have the form:
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bio = (Llo' do,lo> 81,lo> ""aMJO) '

byp = (Lup, a0.up: A1up: ...,aM,up) .

3.2. Algorithm, particle swarm optimization

In this case, the particle swarm algorithm, which
acts with the population (swarm) obtained at the previous
stage (genetic algorithm), has the following form:

- the initial coordinates of each particle ﬁ(j) (indi-
vidual) are assigned to the vector of the best obtained po-

sition of each individual f)(j) ;

- the coordinates of the best individual in the swarm
(subpopulation) will be assigned to the vector g ;

- to generate velocity vectors for each particle

90— G(~(Byp ~Bio ) (Bup ~Bro))

where U(T,ﬁ) is a multidimensional uniform distribu-

tion that has a lower and upper limitations of the solution
space | and .

If the algorithm stop criterion is not met (for exam-
ple, the execution of a specified number of iterations or
stabilization of the objective function optimal values),
perform the following operations:

- to generate vectors

i, =U(01) and f; =U(0,1),

for each particle (individual);

- to renew the velocity of each particle
v = ) +¢ply O(ﬁ(J) - ﬁ(j))+(ngg Q(g —ptd) ),

where the operation © means component multiplica-
tion;

- to renew the particle position by transferring from
coordinates H(J) into the point with coordinates
RO ZR) 4y

-if d)(ﬁ(j))< f (ﬁ(j)) then renew the best obtained

value of the point j, i.e. to assign to f)(J) the actual co-

ordinates of htJ), I d)(ﬁ(j))d(g) then renew the best
obtained solution for all the swarm, assigning coordinates

f)(j) to the vector g .

The parameters o, ¢,, ¢q are selected by the cal-

culator and determine the behavior and effectiveness of
the method as a whole. The following values were as-
signed in this paper: ®=0.6, ¢ =1.1, ¢g=1.1. These

parameters describe the contribution of the inertial com-
ponent to the motion of the particle, the influence of in-
formation about the history of the particle itself (its best
position in the entire history) and the influence of the ac-
tual best value of the particle coordinates of the entire
swarm.

We have three swarms of particles that were ob-
tained in the previous step of the algorithm. We can use
this fact to modify the classical genetic algorithm by in-
creasing its speed. Note that the genetic algorithm and the
particle swarm algorithm are the basis for creating more
complex methods [21], which also use particle clustering.

In this case, we will supplement the algorithm with
the possibility of information exchange between the three
swarms. We perform the algorithm described above for
each swarm for a given number of iterations. Then, we
compare the best solution g, obtained for each swarm,

with the others and select the best. We then transfer the
best solution to each of the other two swarms and repeat
the optimization cycles with each swarm. We perform this
exchange of information between swarms a specified
number of times.

4. Results and Discussion

Let us apply the proposed joint optimization algo-
rithm to solve two problems that differ only in the load
applied to the joint. The rest of the parameters are the

same in both cases: E;=70 GPa, E, =70 GPa,
5, =3 mm, 5 =0.1 mm, Eq =2.274 GPa,
Gy =0.54 GPa, 19 =15 MPa, Smin =0.5 mm,

Smax =8 mm.. We consider one case of loading the

structure: F=170 kN/m. We added a restriction on the
value of the derivative of the patch thickness

1 (x)|<0.2.

The Fourier series term number is taken as M =15.
Stress state computation of a joint is performed by split-
ting the area into N =100 nodal points. Number of indi-
viduals in the population isn =120 . We choose 2k =40
individuals from them for cross-breeding at each itera-
tion.

As a result of the numerical realization of a given
algorithm it was obtained an optimal value of the gluing
area length L =31.5 mm. A graph of the change in patch
thickness along the joint length is shown in Fig. 3. The
main plate thickness graphs 6, =3 mm is given for a

scale.
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Fig. 3. Main plate thickness and patch profile

Stress graphs t, o in the adhesive layer and T,y
graphs are shown in Fig. 4.

1.0 .
0.81 — O
T ===~ Tmax
0.6 1
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0.4 1
()
021
Omax \
0.0 w—""7T" “‘\\
N
—0.2 1 N
0.0 0.2 0.4 0.6 0.8 1.0

x/L
Fig. 4. Stress distribution in the adhesive layer

The change in the average truncated value of the ob-
jective function in the population (it is 10% of the maxi-
mal values are cast out) during the optimization process
is shown in Fig. 5. The number of evolutional cycles M
is plotted along the horizontal axis.

[ ]
[ ]
2000 | -
L]
.C
1500
s | -
11000 2
« O
[ ]
500 .
* [ ]
01 0!==g====================
0 100 200 300 400 500

Fig. 5.0bjective function values at different steps
of the optimization

The objective function minimal value, obtained as a
result of the genetic algorithm, is equal to
® =0.0001275. This value and the corresponding pa-
rameters of the individual are the starting point for the per-
formance of the particle swarm algorithm in the next step.
A graph of the objective function values at the stages of
information exchange between swarms is shown in Fig. 6.

1.0901+*

1.085

M (@) 10*
s o
a8

1.070

1.065+

5 10 15 20
M

Fig. 6. Objective function values

Therefore, the particle swarm algorithm allows us
to decrease the objective function value from
@ =0.0001275 to @ =0.0001065.

Nevertheless, as you can see, a solution close to the
optimal can be found fairly quickly. Increasing the num-
ber of iterations of the algorithm by several thousand does
not significantly affect the solution found above. How-
ever, the application of the particle swarm algorithm to the
obtained solutions makes it possible to reduce the value
of the objective functions by another 20-25% compared
with the results achieved using the genetic algorithm.

Conclusions

To reduce computation time, a one-dimensional
mathematical model of the stress state of an adhesive
joint is used. To describe the shape of the patch, expan-
sion of the function in a Fourier series is used. This ap-
proach made it possible to create a genetic algorithm for
topological optimization, which allows one to find a so-
lution to the problem very quickly. The Python program
takes only a few minutes to perform the calculations.

Calculations have shown that the use of the particle
swarm algorithm at the second stage of optimization al-
lows us to reduce the value of the objective function by
approximately 20% compared with that obtained using
the genetic algorithm. This suggests that the proposed ap-
proach has an advantage over the traditional genetic al-
gorithm, which was previously used to solve this prob-
lem [12, 13].
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The results obtained can be the basis for the devel-
opment of several directions, such as the structural opti-
mization of composite patches, the optimization of bi-ad-
hesive joints, and joints of round patches. The mathemat-
ical model of the stress state of a round patch [22] is quite
close to that considered in this study. The task of optimiz-
ing the shape of repair patches is quite relevant. In addi-
tion, we plan to develop this approach for solving topo-
logical optimization problems in a two-dimensional for-
mulation [23], which is a qualitatively more difficult
problem. It is also interesting to use more complex opti-
mization algorithms based on the particle swarm algo-
rithm, where not only velocities but also acceleration of
particles [24] and other variants of swarm algorithms are
considered [25].
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TBPUIHUI AJITOPUTM TOMOJOTTYHOI ONTUMIBALIT KJIEHOBOI'O 3’€JTHAHHS

Onexcandp Ilonakos, Onexciit Bamoons, @edip I'azays,
TI'anna bapaxoea, Kpucmuna Bepnaocoka,
Banepii Yepanoecovkuit

IIpeameTomM BUBYEHHS B CTAaTTi € aJTOPUTM TOIOJOTIYHOI ONTUMI3allli CHMETPUYHOTO KIICHOBOTO 3’ €JJHAHHS
BHaIycK. MeTo10 € po3poOka METOAUKY PO3B’A3aHH 3a/1a4i ONTUMI3aLli, sIKa JO3BOJIUTH MIOEJHATH BUCOKY IBUAKO-
II0 Ta CTIMKICTh OIEP’KYBAHMX PE3YNBTATIB 32 PaXyHOK ITOETHAHHS JBOX AITOPUTMIB ONTHMIi3amii — TEHETUIHOT O
AITOPUTMY Ha TIOYATKOBOMY €TaIli 1 aITOPUTMY POIO YaCTHHOK Ha IPYTOMY eTalli onTuMi3zarii. 3aBAaHHsA: 11 3a/1a9i
ONTHMAaJILHOTO IPOEKTYBAHHS CHMETPHYHOTO IBOCTOPOHHBOIO KIICHOBOTO 3’€IHAHHS BHAITYCK, SIKE CKIAIA€THCA 3
OCHOBHOI IJIACTHHH Ta JBOX HAKJIAJIOK (OCHOBHA ILUIACTHHA SKOTO Ma€ MOCTiHY TOBLIMHY, a TOBILMHA HAKIAJOK 3Mi-
HIOETHCS TIO JIOBXKWHI 3 €THAHHS [UIS 3HIKCHHS KOHIICHTpAIii HAMIPYKEHb Y 3’€JHAaHHI Ta 3MEHIIECHHS HOro Barm)
CTBOPUTH METOAMKY PO3B’SI3aHHS ONTHUMI3AIliHOI 3a7a4i sl 3aI0BOJICHHS KPUTEPis ONTHUMAaIBHOCTI, a caMe, MiHi-
Mi3arii Macu KOHCTPYKIIi 32 YMOBH OOMEXKEHHS T10 MIITHOCTI Ta IO TOBIIMHI HAKJIAIKH. 3a/1a4a ONTHMI3allii MoJsrae
B 3HAXO/KEHHI ONTHUMAIBHOI OPMH HAKIIA/IOK, & CaMe — JIOBXKUHH HAKJIAIKH 1 3aJIe)KHOCTI TOBIMHU HAKIIAJAKU BiJ 11
JOBXWHI. MeTOAU: [T ONHCAaHHS HAIMpPy)KeHO-1e()OpMOBAHOTO CTaHY 3’ €IHAHHS BUKOpPUCTaHa MOIU(pikoBaHA MO-
nens ['onarma-Peticcaepa. s po3B’s;3aHHs MpsMOi 3a4a4i 31 3HAXOPKEHHS HATIPYKEHOT0 CTaHy KOHCTPYKIIii BUKO-
PHUCTaHO METOJ CKIHUEHHUX Pi3HUI. J{J1s1 YrcIoBOro po3B’ I3aHH 3a7jadi ONTHMI3allii BAKOPUCTaHO KoMOiHaIlito Oa-
TaTOIOMYJISTUITHOT MOZIETII TEHETHYHOT'0 allTOPUTMY ONTHUMI3allii 1 aNrOpUTMY PO YACTHHOK. J{JIs TTOKpaIIeHHs po-
0O0TH T€HETHYHOTO aJTOPUTMY 3aCTOCOBAHO WOTO OaraTOMOMYISIIHY MOIENb 13 MIrpaIli€elo Kpalmx OCOOMH MIiX
TOMyJISIisiMA. BHECEHHS 10 MOMyYJIsIMii 0COOWH 13 1HIMX TOMYMSAIIN JO3BOISIE YHUKHYTH TOMOTEHI3allii TeHOTUITY B
OKpeMill MOMyIIAIil Ta mepeqIacHol 3yMIMHKH MpoIiecy onTuMizaiii. s onvcanHs GopMH HAKIAIKA BUKOPHCTAHO
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PO3BHHEHHSI 3aJIE)KHOCTI TOBIIMHU HakIaaKu B psit Oyp’e. Pe3yabTaTH: 3ampornoHoBaHo TiOpHUIAHIA alropuT™, oc-
HOBAHMH Ha ITOCIIIIOBHOMY 3aCTOCYBaHHI FT€HETUYHOTO aJITOPUTMY 1 aJITOPUTMY POFO YACTHHOK JUISI TPHOX TTOITYJISIIIi i
PO3B’SI3KiB. ANTOPUTM POIO YAaCTHHOK J103BOJIsiE Ha 20% MOJNIMIINTH JOCSITHYTE Ha TONEPEAHFOMY eTall 3HAaYeHHS
uinboBoi QyHkuii. BucHoBku: HaykoBa HOBH3HA mojsirae B yAOCKOHAJICHH] aJlTOPUTMY ONTHMI3allil y TOpiBHSHHI 3
BiJJOMHMH. 3 METOIO0 CKOPOUEHHS 4acy PO3paxyHKy B poOOTI BUKOPHCTOBYBaJIaCh OIHOBUMipHA MaTeMaTHYHA MOJIETh
HaNpY)XEHOTO CTaHy KJIeWOBOro 3’€JHaHHS. BHKOpHCTOBYBaHI METOH JO3BOJMIM CTBOPUTH KOMOIHOBAaHHMHA ajiro-
PHUTM TOIOJOTIYHOI ONTHMIi3alil, KU MOEJHYE TepeBarn 000X METOJIB Ta JO3BOJSIE JyXe IIBUIKO 3HAXOIUTH
PO3B’sI30K JOCIIpKYyBaHOI 3a1ayi. Yac peaizalii mporpaMu Ha MoBi Python cTaHOBHTH JTHIIIe TEKiTbKa XBUJIMH.

Karouosi cioBa: xieiioBe 3’€1HaHHS; TEHETHYHUH aJTOPUTM; aJITOPUTM PO YaCTHHOK, METOJI CKIHYEHHUX
PI3HHUIIB; TOTIOJIOTIYHA ONITHMI3aIlisl.
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