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CONSISTENCY ISSUE AND RELATED TRADE-OFFS IN DISTRIBUTED
REPLICATED SYSTEMS AND DATABASES: A REVIEW

Distributed replicated databases play a crucial role in modern computer systems enabling scalable, fault-tolerant,
and high-performance data management. However, achieving these qualities requires resolving a number of trade-
offs between various properties during system design and operation. This paper reviews trade-offs in distributed rep-
licated databases and provides a survey of recent research papers studying distributed data storage. The paper first
discusses a compromise between consistency and latency that appears in distributed replicated data storages and
directly follows from CAP and PACELC theorems. Consistency refers to the guarantee that all clients in a distributed
system observe the same data at the same time. To ensure strong consistency, distributed systems typically employ
coordination mechanisms and synchronization protocols that involve communication and agreement among distrib-
uted replicas. These mechanisms introduce additional overhead and latency and can dramatically increase the time
taken to complete operations when replicas are globally distributed across the Internet. In addition, we study trade-
offs between other system properties including availability, durability, cost, energy consumption, read and write la-
tency, etc. In this paper we also provide a comprehensive review and classification of recent research works in dis-
tributed replicated databases. Reviewed papers showcase several major areas of research, ranging from performance
evaluation and comparison of various NoSQL databases to suggest new strategies for data replication and putting
forward new consistency models. In particular, we observed a shift towards exploring hybrid consistency models of
causal consistency and eventual consistency with causal ordering due to their ability to strike a balance between
operations ordering guarantees and high performance. Researchers have also proposed various consistency control
algorithms and consensus quorum protocols to coordinate distributed replicas. Insights from this review can empower
practitioners to make informed decisions in designing and managing distributed data storage systems as well as help
identify existing gaps in the body of knowledge and suggest further research directions.
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Introduction

The exponential growth of data together with the in-
creasing demand for scalability, fault tolerance, and high-
performance computing, has driven the rise of distributed
databases as a fundamental component of modern com-
puter systems. Internet-scale distributed computer sys-
tems and data storages are now extensively used in social
media platforms, science and business applications and
critical infrastructures.

The importance of distributed data storages and
modern NoSQL databases lies in their ability to address
the limitations of traditional relational database manage-
ment systems, which struggle to handle the scale, veloc-
ity, and variety of data as required by today’s applications
[1]. By sharing and replicating data across multiple nodes,
distributed databases provide inherent advantages such as
enhanced performance and scalability, improved availa-
bility and fault tolerance.

However, achieving these benefits involves making
trade-offs in various aspects, including consistency, avail-
ability, latency, cost and other system properties. Deep
understanding of these trade-offs enables system engi-
neers, developers, and users to make informed decisions
and find the right balance to meet their specific require-
ments and is crucial for resource-efficient system design.

The paper is aimed at analysing trade-offs in modern
distributed systems and replicated data storages and review-
ing research publications that study the consistency and
other properties of such systems. The rest of the paper is or-
ganised as follows. In the next section we discuss CAP and
PACELC theorems and their implications in distributed
systems. Section 2 explores main trade-offs between the
various properties of distributed replicated databases.
Section 3 provides an overview of recent research works
studying distributed data storages, analyses keywords and
identifies major areas of interests and research efforts. The
last section concludes our survey.
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1. Data Replication.
CAP and PACELC Theorems

1.1. Data Replication

Data replication is a database scale-out approach
where the same data is replicated across multiple nodes,
i.e. replicas. Itis a vital technique used to build large-scale
distributed applications of high performance.

Data replication primarily improves system availa-
bility and performance. If one of the database nodes fails,
the system will continue to work because there are other
nodes available. The system performance is improved by
load balancing (i.e. sharing the workload among available
nodes) and distributing replicas close to end users to min-
imize latency. However, replication increases implemen-
tation complexity and rises multiple inter-related trade-
offs between different system properties.

1.1. CAP Theorem

The CAP theorem [2], first introduced in 1998-1999,
establishes a fundamental trade-off between three proper-
ties of distributed replicated systems: Consistency, Avail-
ability, and Partition tolerance. According to the theorem,
it is impossible to simultaneously guarantee all three prop-
erties in such systems, allowing for the preservation of
only two out of the three. Gilbert and Lynch in [3] con-
sider the CAP theorem as a specific instance of a broader
trade-off between consistency and availability that exists
in unreliable distributed systems, where updates propagate
over time. When a distributed database encounters a parti-
tion (for example, when one of the replicas rejects a user
request or fails to respond within a given timeout), it must
decide whether to return a possibly stale result to the client,
sacrificing consistency or to report service unavailability.
Depending on this decision, the CAP theorem specifies the
following three types of systems:

—CA: traditional ACID-oriented databases (Oracle,
MySQL, PostgreSQL, etc.) which preserve Consistency
and Availability, but are not suitable for efficient data dis-
tribution and cannot tolerate system partitioning;

— AP: distributed databases such as Riak, Voldemort,
Cassandra, Dynamo, CouchDB relaxing Consistency in
favour of Availability and Partition tolerance;

—CP: NoSQL databases such as MongoDB, HBase,
BigTable, Redis, MemcacheDB which give up availabil-
ity but preserve Consistency when Partitioned.

1.2. PACELC Theorem

The PACELC theorem [4] is a further development
of CAP which suggests that that in the case of partitioning
(P) of adistributed data storage, one has to choose between
availability (A) and consistency (C), else (E) in the absence

of partitions the replicated database faces a trade-off be-
tween latency (L) and consistency (C). There could be four
types of distributed databases as follows from PACELC
(some distributed databases such as Couchbase, Dyna-
moDB can be configured to be either PC/EL or PC/EC):

—PC/EC: ACID databases (MySQL Cluster, Post-
greSQL, Megastore, VoltDB/H-Store, etc.) and NoSQL
databases (HBase, BigTable);

—PCJ/EL: PNUTS, Couchbase, DynamoDB, FaunaDB;

—PA/EC: MongoDB, Aerospike;

—PAJ/EL: Cassandra, Dynamo, Cosmos DB, Riak.

2. Trade-offs in Distributed Replicated
Databases

Though CAP and PACELC theorems are helpful in
understanding a key trade-off between consistency and
availability/latency, they do not consider other important
compromises discussed below.

2.1. Availability vs Performance

Replicating data across multiple nodes increases data
availability. On the one hand, it also enables load balancing
to improve system performance. On the other, increased
system complexity and overheads related to the need for
replica synchronization and coordination introduce delays
and impact system latency. This impact considerably de-
pends on the replication model used and consistency set-
tings. Another important factor balancing availability ver-
sus performance is the application timeout [5]. Timeout
serves as the major error detection mechanism in distrib-
uted systems. If it is less than the typical response time, a
system will likely enter a partition mode more often [6]. If
the timeout is too long, the system will be too slow to han-
dle exceptions and inefficient in error-recovery.

2.2. Latency vs Consistency

Strong consistency ensures that a read always re-
flects the most recent write and all nodes store the same
version of data at all times. It is always desirable to main-
tain data consistency. However, the strong consistency
cannot be efficiently achieved in distributed (especially of
the large scale) replicated systems without affecting sys-
tem latency. Strong consistency is based on synchronous
updates which are controlled by consensus protocols or
coordination mechanisms such as Paxos or two-phase
commits. They require multiple communication and coor-
dination among replicas resulting in increased latency.

The more nodes involved in the coordination and the
larger the distance between them, the higher the latency
impact. Moreover, strong consistency often relies on lock-
ing mechanisms to prevent concurrent conflicting opera-
tions. This can increase latency as transactions should
wait for locks to be released.
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2.3. Availability and Performance vs Cost
and Energy Consumption

A higher replication factor coupled with a relaxed
consistency model can considerably increase database per-
formance, fault-tolerance and availability. However, in-
creased redundancy incurs higher storage costs and cost of
maintenance and management. Besides, stronger con-
sistency model involves coordination of responses from
multiple replicas which brings interaction overheads addi-
tional to propagating updates over the network. Conse-
quently, these overheads lead to higher energy consump-
tion by multiple database nodes and networking equipment.

2.4, Consistency vs Availability

If one of the replicas is down or unreachable and
does not respond within the specified timeout, the system
becomes partitioned. In this case the database can sacri-
fice availability to guarantee consistency or proceed and
return a potentially stale data to a client, as it is described
by the CAP theorem. Prioritizing high availability can
lead to the necessity of relaxing the consistency level and
using a weaker consistency model.

2.5. Read Latency vs Write Latency

In a traditional master—slave replicated system reads
become faster because only one (the nearest to a client) rep-
lica must be read. At the same time writes become slower
due to all (in case of strong consistency) replicas need to
return the status of the update before confirming its success
to a client. Read and write latencies can be balanced by
shifting consistency management from reads to writes. For
example, Cassandra NoSQL database maintains a tuneable
consistency level for individual read and write operations.
This consistency level specifies the number of replicas that
should respond for a write (W) or read (R) request to be
considered complete. If the sum of R and W is larger than
the total number of replicas (i.e. the replication factor N)
then the strong consistency is guaranteed: R +W > N. Bal-
ancing R and W allows trading-off read and write perfor-
mance while preserving strong consistency.

2.6. Durability vs Performance

Durability refers to the ability of a database to ensure
that once data updates are committed, they will persist
even in the event of failures or crashes. Ensuring durabil-
ity usually involves synchronous writes to durable storage
(i.e. the hard disk). However, slow disk 1/0O operations in-
crease latency and impact system performance, especially
for write-intensive workloads. To reduce write latency
many NoSQL databases store data in memory, periodi-
cally flushing it and transaction/commit logs to disk. This

improves overall system performance but creates a so
called ‘data loss window’ [7], leading to a trade-off be-
tween durability and performance.

3. A Survey of Recent Research Works
Studying Distributed Data Storages

Recently, Big Data storages and distributed data-
bases have gained significant interest from both develop-
ers and the research community. Tag clouds built using
titles (Fig. 1) and keywords (Fig. 2) from the recent re-
search publications depict a visual taxonomy of key topics
of researchers’ interests in the field.

Consistency (consistency models, weak and even-
tual consistency) and replication are shown to be the most
important and dominant research topics. In turn, data re-
dundancy causes development of quorum and consensus
protocols and algorithms for adaptive replications and
optimization of replica placement. Other important areas
of research include evaluation and enhancement of system
latency, availability, and reliability.
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Fig. 1. A word cloud built using titles of recent
publications in the domain of distributed data storages
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Fig. 2. A word cloud built using keywords from papers
in the domain of distributed data storages

Fig. 3 further classifies the studied publications in
two major groups: those that report results of various
types of analysis of existing distributed data storages and
those that provide solutions to enhance them.
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Fig. 3. Classification of research publications studying
distributed data storages

The first group (see Table 1) encompasses research
works reviewing and comparing different distributed da-
tabases [8-11], evaluating their performance [12-15], and
studying trade-offs between data consistency and other
system properties [16-28] the most popular of which is a
trade-off between consistency and latency. It is worth not-
ing that other important trade-offs (e.g. between durability
and performance; energy consumption and availability)
have received much less attention, which determines the
need for further research in this area. The analyzed works
suggest that Cassandra and MongoDB are two the most
popular NoSQL databases that attract researchers the
most, and that YCSB (Yahoo Cloud Serving Benchmark)

is used as the default standard for their performance eval-
uation. Other frequently studied databases are Hbase, Re-
dis, Couchbase, BigTable, DynamoDB, Riak and Cosmos
DB. These and other distributed data storages support var-
ious consistency models that are difficult to match and to
verify in all possible application scenarios. In [28] re-
searchers propose consistency oracles which mimic be-
havior of a distributed system and are used to formally
specify the consistency model of that system and predict
possible data state under a given consistency model. Un-
fortunately, many research publication comparing perfor-
mance of various NoSQL databases do not take into ac-
count the impact of the used consistency model, con-
sistency settings and the replication factor on the reported
results of performance evaluation, which creates a certain
gap in the body of knowledge.

The second large group of recent research activities
(see Table 2) puts forward (i) new data models suitable for
efficient distributed across multiple nodes [29-30];
(i) new consistency models [40-46], (iii) consistency con-
trol algorithms and consensus quorum protocols [31-39],
and (iv) techniques for data replications and strategies for
replica placement [47-55].

A considerable number of recent publications focus
on developing adaptive replication techniques [32, 34] and
proposing optimal replica placement strategies [52-54] in

Table 1

Research publications on comparison and performance evaluation of NoSQL databases;
consistency and trade-offs analysis in distributed systems

Distributed data storage Database bropert =
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[}
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o 1111]| 2022 1 1 review
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o
& 52| [13]| 2020 11 11 1 benchmarking
égg [14]| 2021 1|1 1|1 1| YCSB benchmarking
3_»%8 [15] | 2017 1(1 1 1 1|1 experimental evaluation
[16] | 2021 1 review
2 |[17]] 2019 1 1)1 1 analytical modeling
= [[8]] 2020 1111 1 1)1 1]1]1 1 theoretical
S experimental evaluation;
£ [19]| 2019 1 1)1 1 analytical modelling
o [[20]| 2012 1 1]1 1 1 theoretical
5 theoretica
S [[21]] 2019 1 1 1 1 heoretical
= [[22]] 2015 1 1 1 | experimental evaluation
= theoretical;
E [23]| 2017 1 1]1])1 1 YCSB benchmarking
& |[24]] 2020 1 1(1]1 1 theoretical
£ [[25]]2020 1 1]1 1 1 | YCSB benchmarking
‘@ |[26]| 2014 1 1)1 1 | YCSB benchmarking
8 |[271] 2022 1 1111 YCSB benchmarking
[28]| 2017 1 1 theoretical
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Table 2
Research publications on new consistency models, quorum protocols, data replications and replica placement
Distributed data storage Database bropert
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s 15181318 S|8l . 2|8 e8l6|8l 3285 e g2 |8 Evaluation technique
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T |3 glx|la| >0 Fl < 3 & 8 @)
o 2_ n| T w9
Eﬂé [29] | 2016 1 111 implementation and testing
<5
z%g [30]| 2017 1 1 1 implementation and testing
=g [[31]]2019 1 1 111 1 |implementation and testing
£¢,|[32]] 2018 1 1 1)1 implementation and testing
8%8 [33]] 2020 1 1(1]1 1 simulation in Akka
§;§ [34]| 2020 1 1)1 1 1 |implementation; benchmarking (TPC-C)
&£ a([35][ 2015 1 1 1)1 theoretical
'3 » E[136][ 2020 1 1[1]1 1 1 [simulation
cE2
8< 9|[37]] 2017 1 1 1(1 modelling and benchmarking
£S5 °|[38]] 2018 1|1 1011 1 1 [implementation; benchmarking (YCSB)
Z<= [[39]] 2021 1 1011 1 theoretical and implementation
= 40]] 2018 1 1 1 1 implementation and failure simulation
e [41]| 2017 1 1)1 1 implementation and failure simulation
;3% [42] | 2016 1 1[1 1 theoretical
%'g [43] | 2020 1 1111 1 |prototyping on Alibaba cloud
O E |[44]]2020 1 1111 1 |implementation; YCSB benchmarking
2 [45] | 2021 1 111 1 implementation and benchmarking
= [46]| 2018 1 1 simulation in CPN
[47]| 2017 1 1 1 simulation with ReDstm
< implementation; benchmarking (TPC-C,
%i_'i [48]] 2022 | 1 1 1(1]1 YCSB, CHB)
E@'“ [49]| 2021 | 1 1 1 1 i\r(ncpé%r?entation; benchmarking (TPC-C,
é’gé [50] | 2020 1 1(1]1 1 1 |simulation, implementation and testing
gg% [51] | 2020 1 1(1 1|1 1 1 |simulation in CloudSim
S235 simulation using MSR Cambridge Traces
§§Q [52] | 2020 1 1 1 1 and Facebook Friendships Dataset
gg_ [53] | 2020 1 1(1 1 1 |simulation in OptorSim
Z= [[54]| 2019 1 111 1 benchmarking (YCSB)
[55] | 2017 1 1 1 formal verification
large-scale geo-spatial distributed systems, cloud environ- Conclusions

ments and edge applications. Because strong consistency
in distributed replicated systems causes significant delays
and impacts system performance, other researchers are in-
troducing mechanisms to provide certain guarantees (e.g.
operations causality) for systems with relaxed consistency
[37, 38, 43, 44]. Causal consistency is a weak consistency
model which, nevertheless, preserves the order of read and
write/update operations for all clients (which is crucial for
many business- and mission-critical application) while ac-
cepting some level of data staleness. Furthermore, in [45]
authors put forward a concept of fuzzy consistency model.

Yet the most promising approach seems to be to bal-
ance data consistency and system performance in line with
the idea of adaptive consistency developed in [35, 40, 41,
56]. In this regard, timeouts settings seem to be an important
part of the adaptability mechanism playing also a role of a
major error detection mechanism in distributed systems and
databases [25, 56].

However, it seems that the problem of optimal timeout
settings and its effect on system consistency, availability and
performance is less studied.

In recent years, there have been significant advances
in development and research interests in the field of dis-
tributed data storages. These efforts are driven by the in-
creasing demands for scalable, fault-tolerant, and high-
performance data management systems to deal with high
volume, velocity, and variety of big data. Consistency and
replication as one of the most crucial aspects of distributed
databases have received considerable attention from re-
searchers aiming to tackle the challenges associated with
data integrity, availability, and performance.

Through our comprehensive review several key in-
sights and trends have been identified. First, there is a
growing emphasis on analysing trade-offs and achieving a
balance between consistency, performance and other sys-
tem properties.

Researchers have proposed various approaches such
as relaxed consistency models, concurrency control mech-
anisms, and adaptive consistency protocols to mitigate the
latency and coordination overhead associated with the
strong consistency.
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Second, we observed a shift towards exploring mod-
els going beyond the traditional strong and eventual con-
sistency. Causal consistency and eventual consistency
with causal ordering have gained attention due to their
ability to strike a balance between operations ordering
guarantees and high performance. These new models ena-
ble applications to maintain causal relationships between
read/write requests while relaxing the strict requirements
of linearizability or serializability.

Another prominent theme in recent research works is
utilizing machine learning (ML) algorithms to optimize data
replication strategies and dynamically adapt consistency
levels based on workload patterns. This intersection of ML
and distributed databases opens up new avenues for intelli-
gent and adaptive data management in distributed environ-
ments. Furthermore, we observed an increased focus on
consistency and replication in specific domains such as edge
computing, 10T, and large-scale geo-spatial applications.
These domains present unique challenges in terms of limited
resources, intermittent connectivity, and decentralized trust
models. Overall, the reviewed publications reflect continu-
ous evolution of distributed databases, consistency models
and replication strategies and highlight need for further in-
novations and research activities.
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IMPOBJIEMA Y3I'O/JUKEHOCTI TA BIAITIOBIIHI KOMIIPOMICH
B PO3INIOAIVIEHUX PEIIVIIKOBAHUX CUCTEMAX I BA3AX JIAHUX: OI'JISI

Jorcaghap Axmeo, Anopii Kapnenrxo, Onvea Tapaciok,
Anamoniii I'opoenxo, Axoap Illeiix-Axoapi

Posnozineni pertikoBaHi 06a3u JaHUX BiZIrparoTh BAXKIUBY POJb Y CYJaCHIX KOMIT IOTEPHHUX CHCTEMAaX, YMOXK-
JUBITIOIOYN MacITaboBaHe, CTilfke 10 300iB 1 BHCOKOMPOAYKTUBHE KepyBaHHA JaHUMH. OIHAK JOCATHEHHS IIUX KO-
CTell BUMarae BUPIIIEHHS HI3KHA KOMITPOMICIB Mi’K Pi3HIUMH BIIACTHBOCTSAMM ITiJ] Yac MPOSKTYBaHHS Ta eKCILTyaTarlii
pO3TONiNeHOI CHCTEMHU. Y CTaTTi PO3TISAAIOTHECS KOMIIPOMICH B PO3IMIOAUIEHUX PEIUTIKOBaHUX 0a3axX JaHUX 1 Hajia-
€THCS OTJIAJT OCTAHHIX HAYKOBHUX ITyOJiKaliii, sIKi BHBYAIOTh PO3IIOMITICH] CHCTEMH 30epiraHHs JaHuX. Y CTaTTi CIIo-
4aTKy OOTOBOPIOETHCSA KOMIIPOMIC MK Y3TOKEHICTIO Ta YACOBUMH 3aTPUMKAMHU, SIKUHA € TIPUPOTHIM IS PO3IOIi-
JICHUX PEIUTiIKOBAaHMX CXOBHIN JaHUX 1 6e3nocepennno BummmBae 3 TeopeM CAP i PACELC. Y3romxkeHicTs 03Ha4ae
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TapaHTIIo TOTO, IO BCi KITIEHTH B PO3MOALICHIH CHCTEM1 OJTHOYACHO CITOCTEPIraroTh OHAKOBI naHi. [1[06 3a0e3meunTti
CTPOT'Y Y3TO/KEHICTb, PO3IOJIUIEH] CHCTEMH 3a3BHUYail BHKOPHCTOBYIOTh MEXaHI3MH KOOpHUHAMIi Ta TPOTOKOJIH CH-
HXpOHi3amii, SIKi BKIIIOYAIOTh 3B’SI30K 1 Y3TOJDKEHHS MK PO3MONUIEHNMH perntikaMu. Lli MexaHi3Mu 00yMOBITIOIOTH
JIOIATKOBI HAKJIAJHI BUTPATH Ta MOXXYTh 3HAYHO 301JIBIINTH Yac, HEOOXIAHUH I BUKOHAHHS Omepariii, oco0nnBo
SIKIIIO PETUTIKH TJI00aJIbHO PO3MOBCIO/KEHI B Mepexi [HrepHeT. Kpim Toro, y crarTi po3riissHyTo KOMIIPOMicH, sIKi
iICHYIOTh MIXK IHIIIMMH BJIACTUBOCTSMH, BKITIOYAFOUU JOCTYIIHICTh, JOBTOBIYHICTh, BapTiCTh, CIIOXKMBAHHS CHEPTil,
MIPOAYKTUBHICTH OTIEpaIliif YHTaHHS Ta 3aIKCy TOMIO. Y IIii CTAaTTI MM TaKOXX HAJAa€MO OIJIsiA 1 KiIacu]iKalilo OCTaH-
HIX JOCJIDKEHb y Tary3i po3MoAiJIeHnX perutikoBaHux 0a3 nanux. [IpoaHanizoBaHi CTaTTi IEMOHCTPYIOTH KiJIbKa OC-
HOBHHX HaIPSIMKiB JOCIIJDKEHb, TOYWHAIOYH BiJl OIIIHKW MPOAYKTHBHOCTI Ta MOPIBHAHHS pi3sHMX 0a3 gannx NoSQL
JI0 TIPOTIO3HIIIT HOBUX CTpaTerii perutikamii JaHuX i 3aIpoBaPKeHHs] HOBUX MOJIENel y3rofKeHOCTi. 30KpeMa, CIo-
CTepiraeThCs Mepexif 10 BUBYESHHs TIOPUIHUX MOJIENIel Y3TO/DKEHOCTI 3 NPUYUHHO-HACIIJKOBUM YIIOPSAKYBaHHSIM
3aBJISIKM TXHIH 3JaTHOCTI JOCSTTH OajaHCy MK TapaHTIsIMH BIOPSAKYBAHHS OIlepalliid i BUCOKOIO MPOIYKTUBHICTIO.
JloCTiTHUKH TaKOX MPOITOHYIOTh Pi3HI aJITOPUTMH KOHTPOJIO Y3TO/DKEHOCTI Ta MPOTOKOJIN JIOCATHEHHSI KOHCEHCYCY
JUIsl KOOp/IMHALIT CTaHy PO3IMOJIICHUX PeIUTiK. BUCHOBKM IIbOTO OISy MOXYTh JIOTIOMOITH MPAaKTHKaM MPUAMATH
OOTpYHTOBaHI PillIEHHs IIO/I0 MPOSKTYBAHHS PO3MOAITICHUX CUCTEM 30epiraHHs JaHUX 1 KEPYBaHHS HHUMH, a TAaKOXK
BH3HAYUTH TOJAJIBIII HAMIPSIMH aKTYaJIbHUX HAYKOBUX JOCIIIKEHb.

Koarouosi ciioBa: posmnoaineni 6a3u naHux; Benuki gaHi, NoSQL; perutikaris;; y3roKeHicTb; 3aTPUMKH; TIPO-
MMyCKHA 3[IaTHICTh; TOTOBHiCTh; KoMmpomicu; CAP; PACELC; ormsa,.
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