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Multispectral images acquired by satellites have been used in many fields such as agriculture, urban change 

detection, finding fire-hazardous forest areas, and real-time surface monitoring. The central issue in remote 

sensing analysis is land use and land cover classification. Land use and land cover classification (LULC) is 

the process of classification into meaningful classes based on the spectral characteristics of remote sensing da-

ta. Land use and land cover classification is a challenging task due to the complex nature of the Earth's sur-

face. The accuracy of solving the issue using deep learning approaches depends on the quality of the remote 

sensing data, the choice of the classification algorithm. The ability to obtain high-resolution multispectral im-

ages periodically could dramatically improve remote sensing solutions. In this study, we propose a solution for 

the land cover and land classification problem of high-resolution remote sensing data by applying deep learn-

ing methods using EuroPlanet geo-referenced high-quality images with four bands and pixel resolution of 
204x204 per image, and acquired by Planet platform in 2020-2022 years. The dataset consists of 25911 imag-

es with spatial resolution up to 3.125 meters per pixel and 10 different classes. In the past decade, artificial 

neural networks have shown great performance in solving complex image classification tasks. For the dataset 

evaluation, we have taken advantage of state-of-art pretrained convolutional neural network models Res-

Net50v2, EfficientNetV2, Xception, VGG-16, and DenseNet201 with fine tuning. It has been established that 

DenseNet201 pretrained neural network outperformed other models. The accuracy of the test data was 

92.01 % and the F1 metric was 91.63 %. In addition, bands evaluation for the dataset was carried out. Overall 

classification accuracy of 93.83 % and F1 score of 93.56 % were achieved by DenseNet201 model. The results 

could be used for area verification, real-time monitoring, and surface change detection. Nowadays, this is very 

helpful for Ukrainian territory because of the Russian invasion and the country's recovery in the future. 

 

Keywords: EuroPlanet; pretrained convolutional neural network; multispectral images; spectral indexes; land 
cover; remote sensing. 

 

1. Introduction 
 

1.1 Motivation for research 
 

 Nowadays, remote sensing plays a vital role in 

wide range of Earth observation issues. The technique 

is used for acquiring information from remote sensors 

(such as satellites) and provides practical techniques for 

monitoring and change detection of physical parameters 

of objects. In recent years, the availability of remote 

sensing data has periodically opened opportunities to 

solve the issues in various fields of study. Land use and 

land cover classification (LULC) helps in observing and 

detecting changes in ecosystems over time. Obtaining 

information is essential for understanding the impact of 

natural disasters and human activities on the environ-

ment. LULC contributes to climate change study and 

environment monitoring [1, 2] which helps to model 

future changes. It aids in managing natural resources 

such as analyzing water resources, and vegetation, iden-

tifying areas with high biodiversity, forest cover, defor-

estation areas, and detecting fire-hazardous and burn-

out forest areas [3, 4]. Land use and land cover classifi-

cation provides valuable information for agricultural 

planning and management It identifies crop types, and 

could be used for yield estimation and detecting agricul-

ture changes [5]. Identifying and localizing possible 

risky Earth areas is used in developing efficient preven-

tion solutions [6]. 

For further complex data, analysis, it is important 

to provide an image classification describing the ob-

served land type. Accurate classification of land cover 

types enables correct decision making, supports sustain-

able development, and helps address various environ-

mental challenges. Thus, the land use and land cover 

classification problem becomes a baseline one [7]. 

Deep learning (DL) approaches as a part of ma-

chine learning techniques have successfully contributed 
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to various solutions and remain a popular choice for 

many complex tasks. Artificial neural networks learn 

features from the input data automatically, which is ad-

vantage compared with classical machine learning algo-

rithms. It is known that the performance of classifica-

tion systems depends on the amount of input data col-

lected in datasets and labeled according to the prede-

fined classes [8]. 

 

1.2 State of Art 

 

Researchers [9] presented a patch-based land use 

and land cover classification approach using Sentinel-2 

satellite images. The Sentinel-2 satellite images are 

openly and freely accessible. The dataset was published 

in 2019, geo-referenced, and collected from the Senti-

nel2 earth observation satellite multispectral mission. 

The image spatial resolution in the EuroSAT dataset 

varies from 60 to 10 m with 64x64 pixels size per im-

age. An overall classification accuracy of 98.57 % was 

achieved with the proposed dataset.  

In [10] authors classified a tree species composi-

tion of the Mozhariv forest for 20 years based on the 

Bayes classifier. The acquired satellite images are re-

ceived from the satellites Landsat 5 and 8. These mis-

sions provide low-resolution images and could be con-

sidered in the analysis of huge surface areas. Such spa-

tial resolution could be enough for environment analysis 

or vegetation classification, but the urban change classi-

fication is ineligible. Controversially, in [11] and [12], 

authors focus on a very high resolution (VHR) remotely 

sensed images. In [12] the image sizes are in the range 

of 800x800 to 4000x4000. These images were used for 

airplane detection (overall 1631 images that contained 

5209 commercial airplane objects). The used R-CNN 

convolutional neural network showed acceptable results 

and better result metrics than the state-of-art detection 

YOLO-v3 model. Very high spatial resolution images 

could be naturally used for the object size and detection 

accuracy manner (as presented in [12] large- and medi-

um-sized airplanes were detected with higher accuracy), 

such spatial resolution is overpriced for LULC classifi-

cation tasks and leads to high compute resource con-

sumption during training and validating classifiers. 

Therefore, in current research, we focus on high-

resolution images (up to 3 m per pixel), so their spatial 

resolution is sufficient for classification tasks. Such data 

could be acquired frequently, and do not require huge 

amounts of RAM and computational resources. 

 

1.3 The purpose and tasks of research 

 

This study proposes a solution for the land cover 

and land use classification problem of high-resolution 

remote sensing data by applying deep learning methods 

based on a new EuroPlanet geo-referenced dataset. It 

consists of high-quality images with 4 spectral bands 

(R, G, B, and NIR), a spatial resolution of up to 3.125 m 

per pixel, and was acquired by the Planet platform in 

2020-2022 years across the European region. Each im-

age in the dataset has a size of 204x204 pixels. 

To achieve this goal, we must solve the following 

tasks: 

- acquire high-resolution quality images and form 

EuroPlanet dataset; 

- develop and adjust the deep learning approach 

based on convolutional neural networks that is suitable 

for the LULC problem; 

- improve model performance by providing bands 

evaluation of pre-calculated spectral indexes and 

train/test ratio. 

- analyze the effectiveness of the developed meth-

od on the EuroPlanet dataset. 

Structurally, the paper consists of the following 

sections. An analysis of classical remote sensing da-

tasets, modern satellite image providers, and acquiring 

the EuroPlanet dataset is presented in Section 2. 

Section 3 describes convolutional neural networks and 

experiments setup. Section 4 contains a discussion of 

the obtained results. The last section provides the con-

clusions of the paper and directions for future research. 

 

2. EuroPlanet Dataset Creation 

 

2.1 Remote Sensing Classical Datasets 

 

There are multiple classical remote sensing da-

tasets (see Table 1) that are used for the creation, evalu-

ation, and validation of different deep learning algo-

rithms when solving land use, land cover, and related 

classification problems.  

 

Table 1 

Classical remote sensing datasets 

No Name Bands 

Number 

of  

images 

Number 

of  

classes 

Re-

feren-

ce 
1 UC Merced RGB 2,100 21 [13] 

2 RSSCN7 RGB 2,800 7 [14] 

3 AID RGB 10,000 30 [15] 

4 RSI-CB RGB 36,707 12 [16] 

5 PatternNet RGB 30,400 38 [17] 

6 
NWPU-

RESISC45 
RGB 31,500 45 [18] 

7 EuroSAT 
Multi-

spectral 
27,000 10 [12] 

 

UC Merced dataset contains manually selected 21 

classes (agricultural, forest, residential, buildings, etc.) 

of land-use images with 256x256 pixels each. It was 
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generated from aerial ortho-imagery and downloaded 

from the United States Geological Survey (USGS) Na-

tional Map. There are 2100 images. Such an amount of 

data makes the dataset the smallest one. NWPU-

RESISC45 and PatternNet datasets are based on very 

high-resolution images (up to 30 cm/pixel). Because 

exceedingly high resources are needed to acquire, clean, 

and preprocess such datasets they have only a few hun-

dred images per class. RSI-CB contains 45 categories 

and more than 36,000 images with up to 3 m spatial 

resolution, but it includes only 3 bands. Wuhan Univer-

sity presented the AID dataset which consists of 10,000 

images (600x600 pixels) labeled in 30 classes. There are 

around 330 images in each category with spatial resolu-

tions from 0.5 to 8 m per pixel. AID is larger than UC 

Merced, but the overall number of images is small. 

Among considered above remote sensing classi-

cal datasets EuroSAT [12] is the most recent and 

unique from previous ones and it is multi-spectral, 

covering 13 spectral bands in the visible, near-infrared, 

and short-wave infrared parts of the spectrum. It con-

sists of 27,000 images across 34 European countries: 

Austria, Belarus, Belgium, Bulgaria, Cyprus, Czech 

Republic, Denmark, Estonia, Finland, France, Germany, 

Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithua-

nia, Luxembourg, Macedonia, Malta, Republic of Mol-

dova, Netherlands, Norway, Poland, Portugal, Romania, 

Slovakia, Slovenia, Spain, Sweden, Switzerland, 

Ukraine, and United Kingdom. The dataset is separated 

into 10 different classes with 2,000 to 3,000 images per 

class. The images size is 64x64 pixels, spatial resolution 

is up to 10 meters per pixel. EuroSAT dataset was suc-

cessfully used for land cover and land use classification 

problems. Recently wetlands detection critical to ecolo-

gy because of maintaining biodiversity identification 

was carried out in [19] based on part of the EuroSAT 

dataset. In [20] authors showed that adding additional 

spectral bands as input features in the convolutional 

neural network significantly increased the results and 

improved classification accuracy. 

 

2.2 Modern satellite images providers 

 

In the last decades, various programs and projects 

that provide satellite images have appeared. In general, 

these data sources are divided into commercial (Planet, 

Maxar) and free-of-use ones (Landsat, Sentinel2). The 

Landsat program was launched and supported by the 

National Aeronautics and Space Administration 

(NASA)/United States Geological Survey (USGS) 

which is a pioneer in acquiring remote sensing multi-

spectral images. One of the most significant develop-

ments in the Landsat program over the past years has 

been the adoption of a free and open data policy. The 

program provides 30 m resolution multispectral data 

coverage that is used to monitor, understand, and man-

age the Earth’s resources and terrestrial processes policy 

[21]. The Sentinel-2 satellite was launched by the Euro-

pean Commission and European Space Agency and 

covers multispectral images from 60 to 20 m per pixel. 

Despite Landsat supplies images in 11 different bands 

and global coverage approximately every three days, the 

Sentinel-2 Multi-Spectral Instrument features 13 spec-

tral bands spanning from the visible and near-infrared 

(VNIR) to the short-wave infrared (SWIR), featuring 4 

spectral bands at 10 m, 6 bands at 20 m and 3 bands at 

60 m spatial resolution and 10 days minimum revisit 

time at the equator Aerosols, Cirrus and Water vapor 

bands could be used for the correction of atmospheric 

effects [20]. Higher image resolution allows us to per-

form more precise calculations. Although Landsat and 

Sentinel-2 programs’ images are available for free the 

revisit time and spatial resolution are not enough for 

modern applications where high-resolution data could 

play a vital role in solving various issues. 

The Maxar company suggests different commer-

cial satellite types and provides the ability to search and 

download databases of satellite imagery and other geo-

spatial products. For instance, WorldView-3 is the in-

dustry’s first multi-payload, super-spectral, high-

resolution commercial satellite. Operating at an altitude 

of 617 km, WorldView-3 provides 31 cm panchromatic 

resolution, 1.24 m multispectral resolution, 3.7 m short-

wave infrared resolution, and 30 m CAVIS resolution. 

WorldView-3 has an average revisit time of less than 

one day and can collect up to 680,000 sq km per 

day [22]. Despite all the advantages mentioned above 

the company doesn’t provide free access to satellite im-

ages and our available computing and storage resources 

don’t align with very high-resolution images. 

The Planet is one of the most known commercial 

projects that also provides daily satellite data and helps 

businesses, civil services, researchers, and journalists 

understand the physical world and take action. Plan-

etScope, operated by Planet, is a constellation of ap-

proximately 130 satellites, able to image the entire land 

surface of the Earth every day (a daily collection capaci-

ty of 200 million sq km day). PlanetScope images are 

approximately 3 m per pixel resolution. Among differ-

ent PlanetScope assets, the PlanetScope Ortho Tiles 

products are radiometrically, sensor, and geometrically 

corrected and aligned to a cartographic map projection. 

The acquired images are divided into 25 km by 25 km 

tiles and based on a worldwide, fixed UTM grid system 

The grid is defined in 24 km by 24 km tile centres, with 

1 km of overlap (each tile has an additional 500 m over-

lap with adjacent tiles), resulting in 25 km by 25 km 

tiles [23]. Each tile consists of 4 bands: red, green, blue, 

and near-infrared ones. The company provided the re-
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search account for the study with the ability to search 

and download PlanetScope Ortho Tiles assets. 

 

2.3 Acquiring EuroPlanet Dataset 

 

The EuroPlanet dataset is based on geo-referenced 

EuroSAT data acquired by the Planet platform in terms 

of PlanetScope Ortho Tiles assets. One of Planet's plat-

form benefits is the ability to search metadata and get 

only high-quality images based on given geometries 

(see Fig. 1).  

 

 
 

Fig. 1. Geo-referenced Highway image sample placed 

on OpenStreetMap near Munich, Germany with  
coordinates longitude: 48.3163; latitude: 11.6211 

 

For instance, accurate and automated cloud detec-

tion provided by the Planet platform allows the filtering 

of images that don’t meet a certain quality threshold. 

Before downloading the full image, the user can first 

preview it in .png format. For our case we have used the 

following constraints: clear, visible, and visible confi-

dence parameters must be ≥95 % and cloud cover, 

shadow, and snow ice ≤2 %. The image-acquiring pipe-

line of satellite image collecting is shown in Fig. 2.  

 
 

Fig. 2. Images acquiring pipeline 
 

In comparison with the EuroSAT dataset (see Ta-

ble 2) our image patches measure 204x204 pixels and 

represent 4 bands with a resolution of up to 3 m per pix-

el. The acquired date ranges from January 2020 to Sep-

tember 2022. The dataset consists of 25911 (that is 

95.97 % from the original one) labeled images with ten 

different land use and land cover classes shown in 

Fig. 3.  

 

Table 2 

EuroSAT and EuroPlanet compression table 

Parameter EuroSAT EuroPlanet 

Image size 64x64 204x204 

Spatial resolution up to 10 m up to 3 m 

Number of images 27000 25911 

Number of classes 10 10 

Bands 13 4 

Source Sentinel-2 Planet 

 

The image comparison between the EuroSAT and 

the proposed dataset is presented in Fig. 4. In our da-

taset, some of the images are rotated (see Fig. 5) be-

cause we were not post-processed them after download-

ing. The dataset is slightly imbalanced for Highway, 

Industrial, Pasture, Permanent Crop, and River classes. 

 

           
Fig. 3. EuroSAT and EuroPlanet classes distribution comparison 
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Fig. 4. Sample image resolution comparison. EuroSAT images measure 64x64 pixels and EuroPlanet  

204x204 pixels. The images have the same geo-coordinates but were acquired in a different timeframe. The first  

and third rows represent the original EuroSAT dataset. The second and fourth rows represent EuroPlanet dataset 
 

 
 

Fig. 5. EuroPlanet sample images resolution examples of unideal (rotated) images 

 

3. EuroPlanet Dataset Evaluation 
 

In the past decades, various remote sensing pro-

cessing methods have been developed to improve the 

performance and accuracy of remote sensing solutions. 

Machine learning methods such as support vector ma-

chines and ensemble classifiers (e.g., random forest and 

gradient boosting) obtained high accuracies for such 

issues. Deep learning methods have recently become a 

central and state-of-the-art method for computer vision 

applications, remote sensing image processing and can 

automatically extract the required information from the 
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input data [24]. These algorithms have been widely used 

and have shown promising results for change and object 

detection, and multispectral image classification. In dif-

ferent studies, the researchers use all available spatial 

information from satellite data that includes geo-

coordinates, images with more than three classical RGB 

bands, etc to increase result metrics (for instance, classi-

fication accuracy) or improve models. 

 

3.1 Convolutional Neural Networks 

 

Among various deep learning approaches Convo-

lutional neural networks (CNNs) are effective in remote 

sensing image classification and have been used for 

dataset benchmarking [9, 25]. These neural networks 

can extract features automatically compared with tradi-

tional image classification methods. Convolutional neu-

ral network architecture is made up of convolutional 

layers that determine the features, batch normalization 

layers, activation layers, and fully connected layer or 

layers for the classification of the input vector. The gen-

eral form of the output vector for convolutional could be 

written as: 
 

 
n m

(i, j) (i, j)

i 1 j 1

Conv k F N W b

 

 
   
 
 
 , 

 

where F  – is an activation function, (i, j)W  is a weight 

corresponding to the i-th row and j-th column of the 

input vector (i, j)N  and b  – constant, which is added to 

the product of features and weights. In our case the vec-

tor (i, j)N  represents input image.  

Transfer learning improves a learner from one do-

main by transferring information from a related domain 

[26]. The technique is used for repurposing a model 

trained on one task to a comparable task that requires 

some adaptations. Deep neural network models must be 

trained with a huge number of parameters and this pro-

cess requires a lot of resources. Transfer learning ena-

bles model parameters to start with good initial values 

that only need minimal tweaks to be better curated for 

the new problem [27]. 

The VGG-16 is a state of art convolutional neural 

network [28] initially introduced in 2014 for the 

ImageNet competition. It comprises 16 layers which 

consist of 13 convolution layers and three dense layers. 

The VGG-16 is classical one and shows high perfor-

mance for image classification issues. It is designed to 

use small convolutional filters while increasing the 

depth of the neural network. 

As the number of layers increases the network can 

process more complex features. On the other hand, 

training very deep neural networks requires more com-

putational resources and causes a well-known vanishing 

gradient problem as the gradient could become too 

small. To solve this issue in [29], the authors suggested 

the Residual Neural Network (ResNet) that includes a 

skip connection, which transfers the inputs of the previ-

ous layer to the next layer. Such neural networks 

showed that increased depth can lead to a considerable 

boost in result accuracy. In [30] a new residual unit was 

proposed, which makes training easier and improves the 

generalization of such networks. 

The Xception neural network is a convolutional 

neural network architecture based entirely on separable 

convolution layers. In [31] an interpretation of Inception 

modules in convolutional neural networks was present-

ed, it was presented as being an intermediate step in-

between regular convolution and the depthwise separa-

ble convolution operation. The Xception slightly outper-

forms Inception V3 on the ImageNet dataset and signif-

icantly outperforms Inception V3 on a larger image 

classification dataset. The performance gains are not 

due to increased capacity but rather to more efficient 

use of model parameters. 

The idea behind a Dense Convolutional Network 

(DenseNet) [32] is based on direct connections between 

any two layers of a convolutional neural network with 

the same feature-map size. It is shown that DenseNets 

scale naturally to a large number of layers while exhibit-

ing no optimization difficulties with increasing accuracy 

and without any signs of performance degradation or 

overfitting. Moreover, the authors showed that Dense-

Nets require substantially fewer parameters and less 

computation to achieve state-of-the-art performances. 

EfficientNetV2 was announced in 2021 [33]. This 

model represents a new family of smaller and faster 

neural networks for image recognition. EfficientNetV2 

consumes fewer computational resources, and the train-

ing process is speeded up. In conducted experiments, 

the model outperforms previous efficient models, while 

being much faster. In addition, an improved method of 

progressive learning showed comparative performance 

on the classical ImageNet dataset. 

In our study, we tested multiple state-of-art pre-

trained convolutional neural network families to serve 

as baseline models for the EuroPlanet dataset bench-

marking (VGG-16, ResNet50v2, Xception, Dense-

Net201, and EfficientNetV2). In addition, we also eval-

uated the spectral bands, their combinations, and the 

train-test dataset split rate. 
 

3.2 Experiments Setup 
 

In this study, the EuroPlanet dataset is used for the 

land crop and land cover classification problem. The 

entire dataset was divided into 80 % training and 20 % 

test sets. The CNN pretrained models were trained and 

tested with a Google Collaboratory Pro+ integrated de-

velopment environment [34]. It provides either Python 
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runtimes with the essential deep learning libraries (in-

cluding Keras) and GPU support. In our experiments, 

we used 40 GB NVIDIA A100 Tensor Core GPU pro-

cessor and 85 GB RAM. 

We have frozen convolutional layers and trained 

the top levels of each neural network to fine-tune the 

model to a new classification task. At the final stage of 

the neural network, a simple dense layer with 2500 neu-

rons was added. For overfitting prevention, the dropout 

layer with a rate of 0.05 was used. The final layer repre-

sents 10 classes with softmax activation function. SGD 

learning algorithm with 1e-4 learning rate was selected. 

While training, we deployed EarlyStopping [35] with 

patience of 5 that monitored validation accuracy. There-

fore the number of epochs varies for each experiment. 

Table 3 lists the training hyperparameters. 

Table 3 

Hyperparameters used in experiments 

Hyperparameter Value 

Epochs 500 

Learning rate 1e-4 

Dropout 0.05 

Dense neurons 2500 

Activation Softmax 

Batch size 25 

Loss Categorical crossentropy 

Optimizer SGD 

 

In supervised learning for classification problems, 

accuracy and F1 score (which represents the harmonic 

mean of precision and recall) are the main metrics that 

help evaluate model performance. They are defined as: 
 

1
TP TN 2TP

Acc , F ,
TP TN FP FN 2TP FP FN


 

    
 

 

where a correctly classified positive sample is called 

(TP), classified as negative – false negative (FN). If the 

sample is negative and is classified as negative it is con-

sidered as true negative (TN); if it is classified as posi-

tive, it is counted as false positive (FP). 

 

4. Results and Discussion 
 

In this study, we have performed a set of experi-

ments to evaluate the EuroPlanet dataset on various 

deep learning neural networks (VGG-16, ResNet50v2, 

Xception, DenseNet201, and EfficientNetV2). We con-

sidered overall accuracy and F1 score as performance 

metrics. Selected neural networks accept as input no 

more than three bands, so we have used Band 03 as a 

read, Band 02 as green, and Band 01 as a blue channel. 

The input shape was 204x204x3 with a test split portion 

of 20 %. 

It is shown in Table 4 that all CNN models 

demonstrated classification accuracy and F1 score val-

ues under 90 %, except the DenseNet201 model which 

outperformed up to 2 % of other neural networks and 

reached 92.01 % for accuracy and 91.63 % for F1 score 

metrics. The training process for every epoch and classi-

fication accuracy of the training dataset for the selected 

set of pretrained convolutional neural networks is pre-

sented in Fig. 6. 

Table 4 

RGB EuroPlanet benchmark classification 

Model 
Accuracy, 

% 
F1, % Epochs 

Time, 

sec 

ResNet50v2 80.16 79.24 30 750 

EfficientNetV2 84.08 83.39 77 2200 

Xception 88.63 88.14 81 2010 

VGG-16 89.81 89.41 224 5600 

DenseNet201 92.01 91.63 77 2511 

 

 
Fig. 6. EuroPlanet classification accuracy  

on training data 

 

As mentioned above in the study the Planet plat-

form provides 4 bands for Planet Ortho Tiles assets. 

Thus, it is useful to conduct band evaluation and ana-

lyze the performance of deep CNNs on a single band 

and their best combinations. Following the results that 

have been shown in [20, 36, 37] calculating and adding 

the spectral indexes as inputs in the models could 

strongly improve result metrics. For instance, in [20] it 

is shown that the combination of NDVI, NDWI, and 

GNDVI with RGB channels increased classification 

accuracy from 64.72 % to 84.19 % and F1 score from 

63.89 % to 84.05 %. The authors in [38] presented eval-

uating different sets of spectral bands for the multispec-

tral panoptic segmentation issue and found that adding 

spectral bands improved research results. Each Euro-

Planet dataset sample consists of R, G, B, and NIR 

channels, and it is possible to calculate the Normalized 

Difference Vegetation Index (NDVI) [39] and Normal-
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ized Difference Green NDVI (GNDVI) [40] spectral 

indexes.  

These indexes are defined as: 
 

nir greennir red

nir red nir green

NDVI , GNDVI ,
  

 
   

 

 

where i  – reflectance value of i-th band. 

We have conducted single-band and band combi-

nation evaluations. In cases for the single-band image 

evaluation when the input channel has only one dimen-

sion, we passed the same data to all three inputs. Ac-

cording to the result obtained in the previous experi-

ment, we have used DenseNet201 convolutional neural 

network as it had shown the best results. The train-test 

dataset split rate was 80/20 respectively. Table 5 repre-

sents the band's evaluation results. It had been found 

that for the EuroPlanet dataset and three-channel convo-

lutional neural network the best indexes combination 

consists of Red, Green, and GNDVI bands. Such a set 

of inputs increased the F1 score from 91.63 % to 

92.97 %. 

 

Table 5 

EuroPlanet bands evaluation on DenseNet201 model 

Band/Combination 
Accuracy, 

% 

F1, 

% 
Epochs 

Time, 

sec 

R 89.14 88.67 42 1410 

G 90.22 89.85 35 1179 

B 88.06 87.57 45 1510 

NIR 89.00 88.12 52 1800 

NDVI 88.69 88.40 38 1310 

GNDVI 89.20 88.93 62 2120 

NIR+NDVI+GNDVI 93.09 92.83 45 1550 

R+G+GNDVI 93.27 92.97 51 1750 

 

In addition to previous research, we have evaluated 

different train-test ratios (from 10 % to 90 % with the 

step of 10 %) on the EuroPlanet dataset. Furthermore, it 

was ensured that the split was applied class-wise by 

passing stratify parameter in the split function. The re-

sults are shown in Table 6. As we can observe fine-

tuned DenseNet201 convolutional neural network 

achieved a classification accuracy of about 0.5 % higher 

compared to the previously randomly selected split. 

The classification accuracy comparison for 

DenseNet201 neural network with different band com-

binations and train-test splits is presented in Fig. 7.  

The graphs in Fig. 8 and 9 illustrate the training, 

validation classification accuracies, and loss value 

dependence on epochs for DenseNet201 fine-tuned 

neural network with RG+GNDVI bands combination 

and train-test split ratio of 0.1. The final test accuracy of 

the trained model was 93.83 % and the F1 score was 

93.56 %.  

 

 
Fig. 7. DenseNet201 classification accuracy on training 

data for RGB, RG+GNDVI, and RG+GNDVI bands 
combination with different train-test split ratios 

 

 
Fig. 8. DenseNet201 classification accuracy  

for RG+GNDVI and a train-test split ratio of 0.1 

Table 6 

EuroPlanet different test/train split evaluation (R+G+GNDVI) on DenseNet201 model 

Metric 10/90 20/80 30/70 40/60 50/50 60/40 70/30 80/20 90/10 

Accuracy, % 93.83 93.27 93.20 93.02 92.54 92.18 92.17 91.46 89.60 

F1, % 93.56 92.97 92.88 92.76 92.24 91.88 91.77 90.91 88.63 

Epochs 68 51 58 58 69 50 68 147 126 

Time, sec 2530 1740 1730 1480 1430 870 860 1260 560 
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Fig. 9. DenseNet201 classification loss for RG+GNDVI 

and a train-test split ratio of 0.1. 

 

An analysis of Table 7 illustrates the percentage 

improvement of the F1 score metric for each class in the 

EuroPlanet dataset. The neural network optimization 

process allowed a high increase the F1 score for River 

(95.27 %), Herbaceous Vegetation (95.55 %), Forest 

(98.85 %), Residential (91.74 %), and SeaLake 

(89.89 %) classes. 

 

Table 7 

Fine-tuned DenseNet201 F1 score  

for EuroPlanet dataset classes 

No Class 
RGB, 

0.2 

R+G+ 

+GNDVI, 

0.2 

R+G+ 

+GNDVI, 

0.1 

1 River 91.92 94.40 95.27 

2 Highway 88.27 90.29 90.16 

3 PermanentCrop 96.66 96.92 95.88 

4 Industrial 98.07 97.41 96.55 

5 Herbaceous 

Vegetation 
90.38 91.89 95.55 

6 AnnualCrop 88.12 89.76 89.28 

7 Pasture 92.31 92.67 92.42 

8 Forest 96.57 97.83 98.85 

9 Residential 90.00 89.96 91.74 

10 SeaLake 84.02 88.52 89.89 

 

Conclusions 
 

In recent years, deep learning approaches have 

made remarkable development and have been used in 

almost every technological sphere to solve various is-

sues. Acquiring large volumes of satellite images fre-

quently and periodically through different providers, we 

can use the multispectral images for various applica-

tions such as urban development, environment monitor-

ing (for instance, climate changes), fire hazardous forest 

areas detection, disaster detection, agriculture fields 

observation, and yield prediction. In this paper, we ad-

dressed one of the main issues in remote sensing of land 

use and land cover classification. The multispectral da-

taset called EuroPlanet is based on previously well-

known EuroSAT dataset coordinates. Satellite images in 

the EuroPlanet dataset have a spatial resolution of up to 

3.125 m per pixel and were acquired from 2020 to 2022 

years. The dataset has 4 bands (R, G, B, and NIR) with 

204x204 pixels per image. To obtain high-quality (hav-

ing a low percentage of cloud, snow, etc) and high-

resolution images, we used the Planet platform in terms 

of PlanetScope Ortho Tiles assets. The dataset consists 

of ten classes and includes 25 911 labeled images. 

Among all deep learning approaches convolutional 

neural networks showed great performance in solving 

image classification tasks. Fine tuning helps to adapt 

previously designed and tested deep convolutional neu-

ral networks to new challenges and requires a lower 

number of computational resources and learning time. 

In the study, we provided a set of experiments for the 

EuroPlanet dataset with its spectral bands using state-of-

the-art convolutional neural networks from different 

families (ResNet50v2, EfficientNetV2, Xception,  

VGG-16, and DenseNet201). It has been established 

that DenseNet201 pretrained neural network outper-

formed other models. The accuracy of the test data was 

92.01 % and the F1 metric was 91.63 %.  

In addition, we carried out a band combination 

evaluation. As a result, the RG+GNDVI showed the 

best performance and increased accuracy to 93.27 %. 

Final experiments with train-test split ratios improved 

the result metrics even more (from 92.01 % to 93.83 % 

and from 91.63 % to 93.56 % for classification accuracy 

and F1 score respectively). The EuroPlanet dataset can 

be used for an enormous range of applications (for in-

stance, verification areas, identification, etc). Further-

more, it covers the Europe region and could be applied 

for real-time monitoring of surface changes. Solving 

such issues is highly needed to be solved because of the 

Russian invasion of Ukraine.  

In future research, the additional performance 

evaluation and effectiveness of trained classifiers for 

land use and land cover classification based on Euro-

Planet dataset will be provided. We expect that the 

trained DenseNet201 convolutional neural network will 

show acceptable classification results for the Ukrainian 

territory. Furthermore, the data augmentation technique 

can increase the diversity of the train dataset and make 

the classifier more stable for image transformations and 

rotations. 
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ПОРІВНЯННЯ ПРОДУКТИВНОСТІ CNN НА МУЛЬТИСПЕКТРАЛЬНИХ НАБОРАХ ДАНИХ  

ВИСОКОЇ РОЗДІЛЬНОСТІ ДЛЯ ПРОБЛЕМИ КЛАСИФІКАЦІЇ ЗЕМНОГО ПОКРИТТЯ 

Владислав Яловега, Андрій Подорожняк,  

Георгій Кучук, Наталія Гаращук 

Мультиспектральні зображення, отримані за допомогою супутників, використовуються в багатьох га-

лузях, таких як сільське господарство, аналіз зміни місцевості, пошук пожежонебезпечних лісових територій 

і моніторинг земної поверхні в реальному часі. Класифікація земного покриття – це процес класифікації за 
визначеними класами на основі спектральних характеристик, отриманих із даних дистанційного зондування 

поверхні. Ця задача є непростою через складну природу поверхні Землі. Від якості даних дистанційного зо-

ндування земної поверхні, вибору алгоритму класифікації залежить точність вирішення задачі з викорис-

танням підходів глибокого навчання. Можливість періодично отримувати мультиспектральні зображення 

високої роздільної здатності може значно покращити рішення таких задач. У дослідженні пропонується 

розв’язок проблеми класифікації земельного покриву для даних дистанційного зондування з високою роз-

дільною здатністю шляхом застосування методів глибокого навчання з використанням високоякісних зо-

бражень датасету EuroPlanet, що містить геодані, 4 різні мультиспектральні канали, зображення розміром 

204x204 пікселів, отримані за допомогою платформи Planet у 2020-2022 роках. Набір даних складається з 

25911 зображень з просторовою роздільною здатністю до 3,125 метрів на піксель із 10 різних класів. Для 

оцінки набору даних ми використовували попередньо навчені сучасні моделі згорткових нейронних мереж 

такі як ResNet50v2, EfficientNetV2, Xception, VGG-16 і DenseNet201. Встановлено, що попередньо навчена 
нейронна мережа DenseNet201 перевершила інші моделі. Точність класифікації на тестових даних склала 

92,01 %, а метрика F1 – 91,63 %. Крім того, була проведена оцінка спектральних каналів для датасету 

EuroPlanet. Загальна точність класифікації склала 93,83 %, а F1 – 93,56 %. Результати дослідження можуть 

бути використані для аналізу земної поверхні, моніторингу в реальному часі та виявлення змін. Це дуже ко-

рисно використовувати для спостереження за територією України, зокрема і через російське вторгнення та 

відновлення країни в майбутньому. 

Ключові слова: EuroPlanet; попередньо навчена нейронна мережа; мультиспектральні зображення; 

спектральні індекси; земельне покриття; дистанційне зондування. 
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