94

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)

UDC 004.932:004.312.466

doi: 10.32620/reks.2023.2.08

Olesia BARKOVSKA!, Inna FILIPPENKO?, lvan SEMENENKO?,
Valentyn KORNIIENKO!, Peter SEDLACEK?

! Kharkiv National University of Radio Electronics, Kharkiv, Ukraine
2 Department of Informatics, University of Zilina, Zilina, Slovakia

ADAPTATION OF FPGA ARCHITECTURE
FOR ACCELERATED IMAGE PREPROCESSING

The work is devoted to the topical problem at the intersection of communications theory, digital electronics and
numerical analysis, namely the study of image processing methods implementation time on different architec-
tures of computational devices, which are used for software and hardware acceleration. The subject of this
article is the investigation of reconfigurable FPGA processing systems in the image processing area. The goal
of this work is to create a reconfigurable FPGA-based image processing system and compare it with existing
processing architectures. Task. To fulfill the requirements of this work, it is necessary to prepare a practical
experiment as well as theoretical research of the proposed architecture; to investigate the process of creating a
ZYNQ SoC-based image processing system; and to develop and benchmark the speed of execution for the given
set of algorithms with the specific range of the picture resolution. Methods used: FPGA simulation, C++ par-
allel programming with OpenMP, NVIDIA CUDA, performance analysis tools. The result of this work is the
development of a resilient SoC Zynq7000-based computing system with programmable logic and the possibility
to load images to FPGA RAM using the resources of ARM core for further processing and output via HDMI
video interface, which enables the change of PL configuration at any time during the processing process. Con-
clusions. The efficiency of the FPGA approach was compared with a parallel image processing method imple-
mentation with OpenMP and CUDA. An overview of the ZYNQ platform with specific details related to media
processing is presented. The analysis of algorithm speed testing findings based on various outputs proved the
advantage (of over 60 times) of hardware acceleration of image processing over software analogs. The obtained
results may be used in the development of embedded SoC-based solutions that require acceleration of big data
processing. Also, the achieved findings can be used during the process of finding a suitable embedded platform
for a certain image-processing task, where high data throughput is one of the most desired requirements.

Keywords: speedup; FPGA; performance; acceleration; parallel system; image processing.

Introduction

The present-day development of various areas of
human activity is tightly coupled with the development
of information technologies, digital devices, and digital
signal processing. IT development and digitization are in-
tensively integrated in spheres that combine scientific re-
search and engineering practice. Along with this, the
mathematical tool, special-purpose technologies, input
signal type (seismic vibrations, visible object images,
acoustic vibrations etc.), software and hardware base as
well as the demands put forward within problem defini-
tion vary depending on the application domain (radiolo-
cation and radionavigation, oil production, space re-
search, medical facilities, manufacturing, military hard-
ware, science) of the digital signal processing theory [1].

Digital signal processing theory is tightly connected
with disciplines such as data communication theory, nu-
merical analysis, probability theory, statistical analysis,
analog electronics, and digital electronics.

Having analyzed the abovementioned, it can be
stated that the solution to the problem, which is at the in-

tersection of various disciplines, is quite topical. An ex-
ample of such task is the application of special-purpose
computing devices for digital image processing algo-
rithm acceleration.

Digital image processing is a form of information
processing and conversion, in which data input is pre-
sented in the form of images (photos and video frames).

Image processing aims at producing a different im-
age as an output or different attributes of the incoming
image [2]. In addition, a necessity often emerges to pro-
cess images that change in time, for instance, films and
videos. The spheres of practical application of image pro-
cessing methods are numerous: law, military science,
medical establishments, aviation and space exploration,
archives and electronic libraries, multiservice networks
and the Internet [3, 4], weather services, law enforcement
agencies etc.

Fig. 1 also displays digital image processing meth-
ods, which can be implemented on different software and
hardware platforms. Depending on the need, processing
may be done with the application of: CPU, which is
enough for fulfilling the majority of everyday tasks [5];
GPU with SIMD-based architecture [6]; and FPGA,

© Olesia Barkovska, Inna Filippenko, Ivan Semenenko, Valentyn Korniienko, Peter Sedlacek, 2023

Methods and means of image processing

95

which enables the avoidance of execution of extra in-
structions and gives the developer full control of the data
flow [7].

QSPI
FLASH

FPGA
BUZZER
HDMI

NAND
flash(DNP)

‘ Data input type ‘

Image/video Audio sequence

Biomedical signals Radar signals

@::

Signal processing methods

compression]47
filtering]47
signal reconstruction]47

Hardware base for Methods implementation

signal quality
enhancement

preprocessing
methods

segmentation

I

Sequential computing system

system

Parallel computing system/ massively parallel]

AL

Distributed computing system

FPGA

Fig. 1. Problem area analysis

One of the given boards is Xilinx Zynq 7020-based
Z-turn Board (Fig. 2), which includes ARM Dual-core
Cortex A9 (PS) and Kintex-7 (PL). PS may operate at a
frequency of up to 866MHz and supports up to 1GHz
DDR SDRAM. PL has 53200 LUTs, 106400 Flip-Flops,
140x36Kb RAM and 220 DSP blocks. The board itself
fully caters for the minimum number of peripherals.

Overall, all the systems for prototyping
SoC-based software and hardware solutions are similar
by a series of factors. As arule, systems on the chip com-
bine the functional components of the whole device.
They consume less energy, are less costly and work more
efficiently than chipsets with the same functionality.
Fewer components simplify the assembly of the finished
product. One of the most popular SoC is Zynq7000 series
by Xilinx (Fig. 3), which has two cores (ARM + FPGA)
and provides a variety of interfaces for establishing com-
munication (data exchange) between them.

Vendors of breadboards and software and hardware
solutions debugging boards attempt to add as many pe-
ripherals as possible and provide maximum variability of
their settings. The availability of HDMI, Ethernet, SD,
USB HS and USB UART is the minimum for the given
systems.

TF card
socket

XC7010/20

3-axis g-
sensor
Temperature
sensor

JTAG PL/PSE
:
! —{ User PB }
: = |
E. ion 10:
PLIOS: ggﬂsolgﬂ(mm/zm: User LEDx2
PS: ADC, 9GPIO(shared)’
: ARM
Fig. 2. Flow Diagram
for Z-turn Board Components [8]
Research task rationale.
Related works
SoC-based system integration remains a practical

area for both research and the platform development pro-
Cess.

Modern embedded systems contain complex firm-
ware as well as the peripheral interconnections between
the modules. The current requirements for most applica-
tions to be developed include:

—big output data processing capacity;

—original problem solution time improvement;

—usability and understandability features of the de-
veloped application;

—ease of scalability and modification;

—competitive development cost;

—etc.

Hardware computational power may help to meet
the first two requirements from the abovementioned list.
Due to the fact that Moore’s law has been thrown over-
board, yet the necessity to increase the computational ca-
pacity still exists, it is only possible to meet the require-
ments for computing and big output data processing
speedup via the application of parallel processing as well
as targeted computer devices adapted for special tasks ex-
ecution [10, 11].

The works [12, 13] show that CPU and GPU-based
computing systems can be used equally effectively to
speedup image preprocessing methods. However, the ob-
tained acceleration depends on the opportunity for algo-
rithm’ decomposition for the decomposition of the algo-
rithm.

In [14, 15], attention is paid to the approaches to
data parallelism organization and techniques of output
data segmentation with the definition of computation
granularity regarding the type of hardware base.

96 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)
10
/6 SPI0 SWDT Application processor unit(APU)
a SPI1 TTC
o -
= 12C0 System level AdRI‘\/II Corl%xpﬁg
- 12C1 Control Regs uaicore
- CAN 0
xm
§ % | CAN 1
= UART 0 ‘ Snoop control unit
o UART 1
= DMA8 ae 512KB L2 Cache and
2 GPIO j Contral channel controller
% SDo int o t C ight
- 3D 1 interconnec ore SIgNt | 560 interconnect 256 KB SRAM
components
| [usBo 0
USB 1 ‘
ENET 0 DAP
ENET 1
Flash memory Memory interf
5 DEVC > ry interraces
interfaces Programmable logic to memory ODR2/3.LPDDR2
v interconnect sl ;
SDRAM/NOR Config controller
NAND « ASE/SHA T T T
32b GP AX| High performance AXI 32b/64b
QUAD SPI Master/Slave ports Slave Ports
SMC Timing .
h Clock t
calculation ock generation Chl:;rxlrﬁals XADC Processing system

Fig. 3. Interface Flowchart for Xilinx Zynq7 [9]

Massively parallel architecture also justifies the
need in GPU-based computations for general-purpose
problem solutions [13, 16]. Application of CUDA tech-
nology along with the computing resource of a graphic
processing unit (Nvidia Tesla K20) provides a speedup
of up to 376 times during ultrasound image analysis and
up to 426 times in problem solution aimed at aerial target
identification based on infrared ray reflection time.

Modern FPGAS gain increased value in the applica-
tion of software processors to solve several tasks, as men-
tioned in [17 — 19].

FPGA devices provide a series of sequential and
parallel configuration interfaces [20] that can be used for
loading configuration data. As a rule, the process of up-
loading bitstream requires the stop of chip operation;
however, there are some devices that support dynamic
partial reconfiguration (DPR).

FPGA-based systems use special-purpose equip-
ment for logic processing. Unlike program solutions,
which use context switching to maintain several threads,
FPGA proposes real concurrent and special processing,
in which tasks do not compete for access to the resources
[21].

This support of multithreading must, in theory, pro-
vide for the reduction of time needed to perform naturally
parallel tasks. The practical grounding for these theoreti-
cal findings is a task of high actuality and, thus, applied
in practice.

All of the above gives reason to believe that the ef-
ficiency' and performance' research of a software and
hardware computational complex based on FPGA [21] is
an urgent task and can eliminate such problems in the
field of image processing as:

—reducing of the image processing execution dura-
tion;

—computational device scalability;

—computational device portability.

Perspective studies related to special areas of image
processing, such as machine vision for autonomous driv-
ing or medical image analysis, clearly shows the potential
of using FPGA to accelerate processing in this domain
area. In [20], attention is paid to the problem of imple-
mentation of the edge detection algorithm using Sobel
operator. The corner cases of low data latency are men-
tioned as significant ones. Also, the implementation of
Sobel algorithm is compared between general purpose
CPU and Zyng-based FPGA platform. There is also the
proposal of using reconfigurable facilities of the hybrid
SoC, where the high-complexity image filtering was im-
plemented via the hardware configuration [23].

The image defogging algorithms are covered in
[24], where modern Vivado HLS tools are used for cus-
tom IP core generation. The aspects of HLS Synthesis for
image processing are mentioned. Also, the output to a
custom display with VDMA is implemented. The exist-
ing trends of using FPGA acceleration for cloud services
allow us to implement the model of the top of multiple

Methods and means of image processing

97

FPGASs, which is known as FPGA-as-a-Service (FaaS).
The topics related to the intercommunication delay be-
tween the nodes and reliability aspects are covered
in [25]. Meanwhile, the aspects of embedded system re-
liability remain actual through the history of programma-
ble logic. There are existing tools for simulation and fail-
ure detection of FPGA designs during the development
process, but the practical aspects may differ from the the-
oretical ones. The experience in operating and analytical
reliability assessment of FPGA is covered in depth in
work [26], where the practical aspects are also mentioned
in the summary.

Aim and tasks of the work

The aim of this study is to design a resilient
Zynq7000 SoC-based hardware accelerator for further re-
search into the processing speed of a programmable logic
computing device exemplified by image preprocessing
tasks.

The designed software and hardware complex
should be resilient in further exploitation and develop-
ment. In the case of the proposed system, resilience can
be defined like the ability to continue and process the
given information under adverse conditions or stress,
even if debilitated state is reached.

Achieving the set aims requires the following tasks
to be solved:

—study the interaction of SoC system components;

—design a Zyng7000 SoC-based hardware acceler-
ator;

—design FPGA-based system architecture in the
real-time;

—implement SoC-based image processing algo-
rithms in Verilog on a single-processor computer and in
a massively parallel system with high processing quality
preservation;

—conduct the analysis of research findings.

Therefore, concerning the capacity of the selected
system, it is possible to set certain requirements for hard-
ware accelerator features, including:

—program interfaces for the interaction of a pro-
cessing subsystem (PS) and programmable logic (PL);

—ability to upload images in PL RAM,;

—display of the processed image via HDMI video
interface;

—real-time PL configuration updatability.

Materials and methods

The following image processing tasks were selected
for the experiments: noise suppression, image transfor-
mation into the grayscale, binarization of the grayscale
image, and morphological transformation [1].

A selection criterion is the natural parallelism of most
studied methods and their frequent use.

Testing is performed on computing devices with
varying architectures, namely:

—single-processor computing system;

—massively parallel computing system;

—field-programmable gate array.

The research of the performance of the single-pro-
cessor computing system was conducted on the basis of
developed software using the C ++ language and the
OpenCV library (version 4.2.0). The graphical user inter-
face was built on QtWidgets. A computer with AMD A6-
7310 2.4 GHz processor (RAM 8 GB 2600 MHz) was
used to test the performance of the selected digital image
processing algorithms on the CPU in sequential mode.

To measure the serial algorithm time execution, the
capabilities of a standard library were used. The determi-
nation of the execution duration is shown in program list-
ing 1.

int
DeviceCPU: :MeasureExecution (std::function<
void()> func) {
using namespace std::chrono;
using timestamp =
time point<high resolution_clock>;
timestamp t before =
high resolution_clock::now();
func(); // execute algorithm
timestamp t_after =
high _resolution_clock::now();
return duration cast<milliseconds>(t_after
- t_before);

}
Listing 1. Sequential CPU timing

The research of the performance of the massively-
parallel computing system was conducted on the basis of
developed software using the CUDA technology (CUDA
Toolkit 10.0 for the minimal compute capability 3.0 and
the driver version 411.31) and OpenCV library with ad-
ditional set for C and C ++ development.

To measure the parallel algorithm time execution,
the capabilities of CUDA-events were used. The execu-
tion time determination is shown in program listing 1
and 2.

To design a FPGA-based image processing system,
the “B-PDPR: Follow-behavior” pattern was used, and
the “A-PDPR: Data-exchange” architectural pattern was
used for interaction between program tasks.

The architectural part presents four tasks, replacing
each other, depending on the current state. The data
stream is formed sequentially for each item. Once the
data have been processed, they are transferred to the next
task (Fig. 4 and 5).

08 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)
int HDMI video interface and real-time PL configuration is

DeviceGPU: :MeasureExecution (std::function
<void()> cuda f) {
float elapsed=0;
cudaEvent t start, stop;
HANDLE_ERROR (cudaEventCreate (&start)) ;
HANDLE_ERROR (cudaEventCreate (&stop)) ;
HANDLE ERROR (cudaEventRecord(start,
nullptr));
cuda_ f();
HANDLE_ERROR (cudaEventRecord (stop,
nullptr));
HANDLE ERROR (cudaEventSynchronize (stop));
HANDLE ERROR (cudaEventElapsedTime (&elapsed,

// execute

start, stop));
HANDLE_ERROR (cudaEventDestroy (start));
HANDLE ERROR (cudaEventDestroy (stop));

return static cast<int>(elapsed);

Listing 2. Parallel GPU timing

The engineered architecture for real-time FPGA im-
age processing allows you to perform the necessary cal-
culations without worrying about the current state of the
program and reconfiguration. The system can be easily
expanded to more algorithms if needed.

Design of the programmable gate array
computing device

In compliance with these requirements, the de-
signed device has program interfaces necessary for the
interaction of the microprocessor control unit with pro-
grammable logic, which facilitates uploading images to
PL memory. In addition, the processed image output via

<<RtUnit>>
Grayscale

id: integer
executionTime: long
<<nfp>> energy: long |«

<<FlowPort>> out| id: integer

available.

<<Mode>> Reconfiguration 1S2 <<Mode>>
|

Statel > State2
Filtering Grayscale

A

Reconfiguration 481
€Sz uonelnByuooay

A 4

<<Mode>> Reconfiguration 354 <<Mode>>
i

State4 < State3
Morph. transf. Binarization

Fig. 4. “B-PDPR: Follow-behavior” template state
change diagram

The dataflow chart inside the SoC system is shown
in Fig.6. The following IP blocks by Xilinx were used in
the design (Fig. 7):

—ZYNQ7 Processing System is responsible for
PL+PS integration and peripherals configuration;

—Block Memory Generator provides an interface
for accessing BRAM,;

—AXI BRAM Controller and AXI SmartConnect
enable PS interaction with BRAM via AXI bus line.

Processor System Reset and Clocking Wizard —
generate clocking and asynchronous reset signals.

Within the implementation of the median filter, a
scheme allowing input of two vectors, which represent
pixel component values concerning the color of a digital
image and communicate them to the outputs depending
on their size, was developed for comparing every matrix
element (Fig. 8).

<<RtUnit>>
<<ResourceUsage>>
Filtering

executionTime: long

actionType: string
state: string
isMain: boolean

<<FlowPort>> out

executionTime: long
<<nfp>> energy: long

£

A <<RtUnit>>
= . . .

=] Binarization
o

= L

o id: integer

[N

v

v

<<FlowPort=> in

<<FlowPort=> out

A

<<nfp>> energy: long
actionType: string
state: string

isMain: boolean

<<FlowPort>> in

<<RtUnit>>
Morph. transf.

id: integer
executionTime: long

Y

actionType: string
state: string
isMain: boolean

<<FlowPort==> in| state: string

<<FlowPort>> out

»| <<nfp>> energy: long
actionType: string

isMain: boolean

Fig. 5. “A-PDPR: Data-exchange” template State change diagram

Methods and means of image processing

99

Camera PL
Videofile | PS [BLOCKRAM [= > Display

Fig. 6. Design Dataflow Chart

DDR
/—R FIXED 10
*{ AXI BRAM Controller (Y]
AXI Smart connect hdmi_clk
/ A External IO
ZYNQT P ing Syst Block Memory
rocessing System |—
Generator SDA/SCL
Clocking Wizard
.
hdmi_data[15:0]
> hdmi_display_test S hdmi_ds
hdmi_hs
‘ image_processing unit —_>]
Processor System Reset r hdmi_vs
Constant
Utility Vector Logic }7

/

Fig. 7. General Design Structure Chart

comp_node_ub

\

data_hi[7:0]

data_hi_i
S=1'b0 10[7:0]
data_a[7:0] O[7:0]
| S=1'b1 M[7:0]
_ RTL_MUX
S=1b1 10 [Sel0 1
S=default 11| |0 S
data_b[7:0] i ST RTL_MUX
07:0] ggi01
1o . \o

o

The median filter is used

processing in the process of digital filtering for noise sup-

RTL_LT

comd node parametrized1

Fig. 8. RTL Scheme for Designed Element

in digital image and signal

pression. Input data are a two-dimensional matrix, the

samples from which are arranged in ascending or de-

/

scending order, and the value within the ordered list en-
ters the filter output.

Nine plus one elements of this kind are needed for

(Fig. 9).

calculating the median value for a 3x3-sized matrix

100 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)
c21[7:0] [7-7}— comp_node_uZ
— data_a[7:0
cthfz:0) l 7]_ data_hi[7:0]
— comp_node_u0 data bIT:0 [
__ data_a[7:0] -
c3h[7:ﬁ][_i_}7 ata_\u[?:O]. comp_node_u3 comp_node_parametrized1
c2h[r:0) |7_’]“_“" 7:0 data_alf:0]
L I tiata_lo[7:0] comp_node_u$
. comp_node — data_a[7:0]
c1hl7:ﬂl[} data_b[7:0] data_hi[7:0]
— comp_node data_bT:0
c3l[7:ﬂ][1
] comp_node_parametrizedi
comp_node_u1

ﬂmn:m[’- data_a[7:0

czmlr:ull "Jdata_np:u

ata_hi[7:0]
comp_node_ub
data_lo[7:0] data_a[7:0]
—|\ comp_node_ué fiata_lo[7:0]

comp_node_parametrized0 | data_a[7:0 data_b[7:0]
data_hi[7:0]

comp_node

data_b[7:0]

cﬂm[?:[l]|_:]

comp_node_parametrizedi

data_b[7:0]

comp_node_ud

comp_node_u7 data_a[7:0]

data_a[7:0]
data_hi[7:0] ‘
data_lo[7:0]

median[7:0]
ata_lo[7:0] [~

data_b7:0

comp_node_ug
data_a[7:0]

7. comp_node
comp_node_parametrizedd data_hi[7:0]

data_b[7:0]

comp_node_parametrized1

Fig. 9. RTL Scheme of Device for Median Value Calculation

Noise suppression from the color image requires the
definition of the median value with the account taken of
every color channel (RGB). Therefore, the whole algo-
rithm does not require additional work cycles and is exe-
cuted via a combinational circuit. The end device is
shown in Fig. 10. The simulation findings prove that pro-
cessing of one image pixel in the filter takes one clock
signal pulse (Fig. 11).

To transform a color image into a grayscale image,
finding the arithmetic mean of the channels for every
pixel is enough.

After the vector division operation, the total amount
of clocking signal cycles necessary for obtaining the re-
sult equals 2 (see Fig. 11).

To transform a grayscale image into a binary image,
the thresholding algorithm is applied. Its main idea lies
in one or several threshold values. If the input numeric
color value exceeds the threshold value, the output color
is white, if it does not, the output color is black (see
Fig. 11, b).

Development of image output

Xilinx Zynq7020-based Z-turn Board has Sil9022A
video transmitter controlled with PL (Fig. 12). The trans-
mitter receives RGB888 (24bit) formatted data, but the
board design restricts the use of data lines and is set for
the work with RGB565 (16bit) format.

Interaction with the transmitter requires the use of
two clock domain signals (see Fig. 12 and Fig. 13). Data
and the address are generated separately and 12C protocol
is used for operation with VDMA.

ARM core in Zynq7020 system is operated by OS

Linux. Block RAM of SoC memory is accessed via a spe-
cial device file, thus, data can be sent and received using
a memory-mapped file region.

OpenCV library was used to simplify digital image
processing in PS. The result of software to be used in PS
retrieves each image from the video file (or a camera)
frame by frame and transmits it to PL for further pro-
cessing and display on the screen. The main indicator of
the developed device quality assessment is the data pro-
cessing speed compared with the program solutions.

The findings made after the application of the
abovementioned methods are provided in Fig. 14.

Experiment, Results and Discussions

Research was conducted on the basis of the devel-
oped software with the use of C++ and OpenCV library
(version 4.2.0).

A computer with the following configuration in or-
der to test the speed of the selected digital image pro-
cessing algorithms on the CPU: AMD A6-7310 2.4 GHz
processor (8 GB 2600 MHz RAM, OC Windows 10
Home x64).

Median filter was selected as the algorithm for color
image filtering with the time slot and search box size is
3x3 pixels.

Thresholding algorithm was applied to convert the
filtered color image into a grayscale image and further
into a binary image with the starting brightness value of
50.

Morphological transformations included opening
and closing operations with 10x10 pixel cores. The ob-
tained results for color images with various resolutions

Methods and means of image processing

101

after progressive processing by every algorithm are pre- size. The measurement unit is milliseconds. The
sented in Table 1. The table contains the execution time row contains the image input size and 4 algor
for the selected algorithms with the different input image runtime duration on CPU.

data_i20[31:0]
data_i22[31:0]
data_i21[31:0]

data_i10[31:0]

data_i12[31:0]

data_i11[31:0]

data_i02[31:0]

rst_i

clk_i

en_i
data_i0 0[31:0]

data_i0 1[31:0]

Signal name
o5t
e clk_i
o &n_i
o data_i
= data_o

Signal name
B rst_i
e cl_i
B EN_|
o data_i
= data_o

pixel_net_u0
c1h[7:0]

cl[7:0]

c1m[7:0]
c2h[7:0]

c2I[7:0] | median[7:0]
com[7:0]

c3h[7:0]

c3I[7:0]
—c3m[7:0] pixel_net

pixel_net_u1
c1h[7:0]

cAI[7:0]

c1m[7:0]
c2h[7:0]

median[7:0] data_o_reg[31:0]

c21[7:0]

table
ithms

CLR [}
c2m([7:0] C

c3h[7:0] —|cE Q

1 e3I[7:0] D

—{c3m[7:0] pixel_net —]

RTL_REG_ASYNC

pixel_net_u2

c1h[7:0]
c1I[7:0]

c1m[7:0]

c2h[7:0]
c21[7:0]

median[7:0]

c2m[7:0]
c3h[7:0]
c3I[7:0]

c3m[7:0] pixel_net

Fig. 10. RTL Scheme for 3x3 Median Filter

data_o[31:0]

Value - T - - - ©OSE
1 I |
0 I I I I I I I I
1
00000000 [T Fogagdon Y 0naa000
0ooo0o0o 00000 99999300 % 00000000
a)
Value - L - S - 2 -
1 I I
0 | I I I [
1
00000000 (] FETETE00 0000000
00000000 OO000000 FFFFFFO0 00000000
——
b)

Fig. 11. Software-Based Simulation Findings:
a) for converting to grayscale image, b) for converting to binary image

102

Radioelectronic and Computer Systems, 2023, no. 2(106)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

INT HPD
Sil8022A
RESET 1 'r
SDA
> 12C e
SCL Registers&Config CEC_A
. 1
SPDIF I rudo Logic CEC D
MV%;K | Capture
SCK F—* Logic T—. 7> DSDA
SD[3-0] 12C Master |— . DscL
D[23-0] \Video Capture l EXT SWING
) » Logic/ DE — » Color Space
E%K GEN Converter/Resampler > Tx0+-
VS "" HDMI TMDS o Tx14-
DE Core
» Tx2+-
L) TxC+-
Fig. 12. Core Transmitter Structure Chart
OutputClock PortName CoiPutFred (MHz) _ _ _ Table 1
Requesiod LETE Results of image processing algorithms on CPU
) clk_outd clk_outt 100.000 100.000 out Algorithm time (ms)
| clk_out2 clk_out2 148.500 148.438 : : |mage i L. Morph
image size
g filter Grayscale | Binarization transf.
Fig. 13. Clocking Signals Settings 1920x1080 | 723 110 23 850
1280x720 322 42 10 380
640x480 163 18 4 130
320x240 84 10 1 34

Fig. 14. Results of application of the tested digital
image preprocessing methods: a) output image;
b) the result of noise suppression; c) grayscale image;
d) binary image; e) the result of morphological
transformation

NVIDIA CUDA, which provides for the full range
of applications for development in C and C++ was To
ensure simplicity, an OpenCV library enhancement,
which encompasses various extensions on CUDA
(CUDA Toolkit 10.0), was applied.

All algorithms applied in program implementation
on GPU fully comply with the analogs on CPU. All input
data and parameters come in the same way and have
equal values. Output data are provided in Fig. 14.

Testing was conducted on NVIDIA Quadro
K2000M GPU. The device has 384 CUDA cores and
2 GB DDR3 global memory with 128-bit bus width. The
shared memory size is 48Kb, the clock rate is 750 MHz.

Data allocation for the algorithms was done in
global memory. The time slot for data allocation and cop-
ying into GPU was neglected in the end values. The time
of the regarded methods’ implementation is shown in Ta-
ble 2. The table structure is similar to Table 1, but the
results are shown for the same algorithms, but executed
on GPU.

Methods and means of image processing

103

Table 2
Results of image processing algorithms on GPU
Input | Algorithm time (ms) —
image size | 'Mage inarizati orp
g filter Grayscale | Binarization transf.
1920x1080 86 3 1 23
1280x720 45 2 1 14
640x480 22 1 1
320x240 14 1 1

Obtained Results

To estimate the image processing module execution
speed, start_i and done_o signals were used. Therefore,
having calculated the number of clocking signal pulses
between these two events, it was possible to obtain the
time necessary for full processing of one image. The
comparison results are presented in Table 3 and Fig-
ures 15-17.

Table 3
Execution Time Comparison Chart
Execution time (ms)
1920x1080
CPU GPU FPGA

Image filter 723 86 12
Grayscale 110 3 4
Binarization 23 1 2

As metrics for the analysis of the results obtained,
we used the practical speedup of the studied image pro-
cessing methods on the designed and developed software
and hardware complex based on FPGAs with respect to
sequential implementation on the CPU and parallel im-
plementation on the GPU. The speedup was calculated in

accordance with:
Tbase
TrpGA’

SFPGA(base) =

where Ty, IS the task execution time on the CPU or
GPU, Tgpga iS the task execution time on the developed
FPGA-based computing system.

Median filter
(1920x1080)
BECPU EGPU mFPGA

723
m— O

Fig. 15. Filtering Algorithm Running
Speed Comparison

The implementation of the existing sequential im-
age filtering algorithm based on the median filter takes a
significant amount of time (Tcpy = 723 ms), as shown
on the blue bar of the chart (Figure 15). The specialized
graphics processor provides an execution time
Tepy = 86 ms. Thus, the highest obtained speedup of the
developed software and hardware computing complex
based on FPGA leads t0 Sgpga(cpuy = 60.25 relative to
the sequential execution time on the CPU.

The implementation of sequential converting an im-
age to grayscale takes a significant amount of time
(Tepy = 110 ms), as shown on the blue bar of the chart
(Figure 16).

Grayscale (1920x1080)

ECPU mGPU mFPGA

Fig. 16. Color Conversion Algorithm
Running Speed Comparison

The specialized graphics processor provides an ex-
ecution time Tgpy = 3 ms. The developed software and
hardware computing complex based on FPGA provides
an execution time Tgpga = 4 ms and does not give the
highest speedup for color conversion algorithm running.
This is due to the architectural features of the NVidia
company graphics processors.

The situation is similar to binarization algorithm
running (Fig.17). The time of the binarization algorithm
execution on the GPU and on the developed computer
complex differs by 1ms and show an acceleration of al-
most 20 times.

Binarization
(1920x1080)

ECPU EGPU HFPGA

Fig.17. Binarization Algorithm Running
Speed Comparison

104

Radioelectronic and Computer Systems, 2023, no. 2(106)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

A comparative analysis was conducted for the re-
sults of algorithm running speed testing on various input
data, which demonstrated the significant advantage of
hardware acceleration of image processing over their
software analogs.

Conclusions

The result of the work is the research conducted into
the capabilities of a SoC Zynq7000-based hardware ac-
celerator on the example of image preprocessing com-
pared with massively parallel systems and parallel shared
memory computing systems.

The advantage of the designed software and hard-
ware complex with programmable logic is the ability to
load images to FPGA RAM using the resource of ARM
core for further processing and display via HDMI video
interface, in which PL configuration can be changed at
any time within the processing process, and this makes
the system resilient in further exploitation and develop-
ment. For the designed software and hardware, complex
resilience can be defined as the ability to continue and
process the given information under adverse conditions
or stress, even if a debilitated state is reached. The results
of the execution are well defined among the system
launches, and essential operation capabilities are main-
tained. The system is extensible by using partial recon-
figuration facilities, which add an extra isolation layer
from the architectural and development perspective.

A comparative analysis was conducted for the re-
sults of algorithm running speed testing on various input
data, which demonstrates the considerable superiority
(by over 60 times) of hardware image processing accel-
eration over their software analogs.

In conclusion, it should be noted that the advantage
of the developed software and hardware computing com-
plex based on FPGAs is that it is easily expandable and
reconfigurable for most image processing methods.
However, just for the problem of filtering based on the
median filter, the proposed and developed system gives a
high acceleration, reaching up 60 times. This confirms
the need for hybrid computing to achieve maximum effi-
ciency in computer graphics problem execution.

The obtained results can be applied in the develop-
ment of embedded SoC-based solutions that require big
data processing acceleration.

Thus, the work shows that the solution of the prob-
lem posed on the basis of FPGA is an alternative to spe-
cial-purpose integrated circuits and can reduce image
processing time execution. This is important in many
fields of science and technology where the time of filter-
ing, transformation and binarization of the image stream
is critical (for example, processing information from sat-
ellites when compiling maps of the area, identifying ob-

jects in computer vision systems, analyzing the kinemat-
ics of human body movement in medical systems, and so
on). Compared to other hard-coded logic solutions,
FPGAs have the advantage of being flexible and pro-
grammable in nature. Also, most modern FPGA devices
support dynamic partial reconfiguration, which enables
the possibility of performance increasing in comparison
to computing on a conventional computer.

Acknowledgement

This work was supported by the Slovak Research
and Development Agency under the grant ‘“New meth-
ods development for reliability analysis of complex sys-
tem’’ reg.no. APVV-18-0027

Contribution of authors: formulation of the prob-
lem - Olesia Barkovska, Inna Filippenko,
Peter Sedlacek; hardware platform investigation and de-
velopment tools selection — Valentyn Korniienko, Ivan
Semenenko; C++ software algorithms realization —
Valentyn Korniienko; FPGA algorithms realization —
Ivan Semenenko; analysis and processing of the ob-
tained results — Olesia Barkovska, Inna Filippenko;
finalization of the draft article wversion — Inna
Filippenko, Peter Sedla¢ek; corrections and postediting
— Olesia Barkovska, lvan Semenenko, Peter Sedlacek.

All authors have read and agreed to the published
version of the manuscript.

References

1. Barkovskaya, O. & Axak, N. Contrastive Anal-
ysis of the Parallel Version of the Binary Image Skele-
tonization Algorithms on Basis of Binary Matrix and
Structural Elements. 9th International Conference - The
Experience of Designing and Applications of CAD Sys-
tems in Microelectronics, Lviv, Ukraine, 2007, pp. 435-
436. DOI: 10.1109/CADSM.2007.4297609.

2. Gonzalez, C. & Woods, R. E. Digital Image
Processing. Instructor's Manual. 3rd Edition. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 2007. 976 p.

3. Barkovska, O., Axak, N., Rosinskiy, D. & Li-
ashenko, S. Application of mydriasis identification meth-
ods in parental control systems. IEEE 9th International
Conference on Dependable Systems, Services and Tech-
nologies (DESSERT), Kyiv, Ukraine, 2018, pp. 459-463.
DOI: 10.1109/DESSERT.2018.8409177.

4. Barkovska, O., Movsesian., I., Yeromina, N.,
Liashenko, O. & Tkachenko, D. System of individual
multidimensional biometric authentication. International
Journal of Emerging Trends in Engineering Research,
2019, wvol. 7, iss. 12, pp. 812-817. DOI:
10.30534/ijeter/2019/147122019.

5. Dagum, L. & Menon, R. OpenMP: an industry
standard API for shared-memory programming. |IEEE

http://reg.no/
https://www.scopus.com/authid/detail.uri?authorId=24482907700
https://www.scopus.com/authid/detail.uri?authorId=56866413200
https://www.scopus.com/authid/detail.uri?authorId=57194558513
https://www.scopus.com/authid/detail.uri?authorId=55658561300
https://www.scopus.com/authid/detail.uri?authorId=57213159381

Methods and means of image processing

105

Computational Science and Engineering, vol. 5, iss. 1,
pp. 46-55, Jan.-March 1998. DOI: 10.1109/99.660313.

6. Oden, L. Lessons learned from comparing
C-CUDA and Python-Numba for GPU-Computing.
28th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP),
Visterds, Sweden, 2020, pp. 216-223. DOI:
10.1109/PDP50117.2020.00041.

7. Monmasson, E., Idkhajine, L. & Naouar, M. W.
FPGA-based Controllers. IEEE Industrial Electronics
Magazine, vol. 5, no. 1, pp. 14-26, March 2011. DOI:
10.1109/MIE.2011.940250.

8. Z-turn Board V2 (with Zyng-7020). MYIR Tech
Limited. Auvailable at: https://www.xilinx.
com/products/boards-and-Kits/1-571ww1.html (accessed
12.12.2022).

9. Taylor, A. The Zynqg PS/PL, Part One: Adam
Taylor’s MicroZed Chronicles Part 21. Available at:
https://support.xilinx.com/s/article/418935%lan-
guage=en_US (accessed 12.12.2022).

10.Flynn, M. J. Some computer organizations and
their effectiveness. IEEE Transactions on Computers,
Sept. 1972, vol. C-21, iss. 9, pp. 948-960. DOI:
10.1109/TC.1972.5009071.

11.Park, I. K., Singhal, N., Lee, M. H., Cho, S. &
Kim, C. Design and Performance Evaluation of Image
Processing Algorithms on GPUs. IEEE Transactions on
Parallel and Distributed Systems, Jan. 2011, vol. 22, no.
1, pp. 91-104. DOI: 10.1109/TPDS.2010.115.

12.Usha, R., Pandey, P. & Mangala, N. A Compre-
hensive Comparison and Analysis of OpenACC and
OpenMP 4.5 for NVIDIA GPUs. IEEE High Perfor-
mance Extreme Computing Conference (HPEC), 2020,
pp. 1-6. DOI: 10.1109/HPEC43674.2020.9286203.

13. Miroshnikov, A. S., Berko, I. A. & Berko, A. A.
Optimization Method for Parallel Algorithm for Face
Recognition in Graphic Images. International Confer-
ence on Industrial Engineering, Applications and Manu-
facturing (ICIEAM), 2021, pp. 729-735. DOI:
10.1109/ICIEAM51226.2021.9446397.

14. Rakhimov, M., Mamadjanov, D. & Mukhiddi-
nov, A. A High-Performance Parallel Approach to Image
Processing in Distributed Computing. IEEE 14th Inter-
national Conference on Application of Information and
Communication Technologies (AICT), 2020, pp. 1-5.
DOI: 10.1109/AICT50176.2020.9368840.

15. 1dzenga, T., Gaburov, E., Vermin, W., Menssen,
J. & De Kaorte, C. L. Fast 2-D ultrasound strain imaging:
the benefits of using a GPU. IEEE Transactions on Ul-
trasonics, Ferroelectrics, and Frequency Control, vol.
61, no. 1, pp. 207-213, January 2014. DOI:
10.1109/TUFFC.2014.2893.

16.Yokota, T., Nagafuchi, M., Mekada, Y.
Yoshinaga, T., Ootsu, K. & Baba, T. A scalable FPGA-

based custom computing machine for a medical image
processing. 10th Annual IEEE Symposium on Field-Pro-
grammable Custom Computing Machines, Napa, CA,
USA, 2002, pp. 307-308. DOl:
10.1109/FPGA.2002.1106695.

17. Mamatha, G., Sumalatha, V. & Lakshmaiah, M.
V. FPGA implementation of satellite image fusion using
wavelet substitution method. Science and Information
Conference (SAIl), London, UK, 2015, pp. 1155-1159.
DOI: 10.1109/SAI.2015.7237290.

18. Shandilya, R. & Sharma, R. K. FPGA imple-
mentation of image enhancement technique for Auto-
matic Vehicles Number Plate detection. International
Conference on Trends in Electronics and Informatics
(ICEI), Tirunelveli, India, 2017, pp. 1010-1017. DOI:
10.1109/ICOEI.2017.8300860.

19.Dhaussy, P., Fillogue, J., Pottier, B. & Ru-
bini, S. Global control synthesis for an MIMD/FPGA
machine. Proceedings of IEEE Workshop on FPGA's for
Custom Computing Machines, Napa Valley, CA, USA,
1994, pp. 72-81. DOI: 10.1109/FPGA.1994.315603.

20.Fan, R. & Yamaguchi, Y. A study of FPGA-
based cluster computing by high-speed serial-link com-
munication. Eighth International Symposium on Compu-
ting and Networking Workshops (CANDARW), 2020, pp.
401-405. DOl: 10.1109/CANDARW51189.
2020.00082.

21.Li, B., Chen, J., Zhang, X., Xu, X., Wei, Y. &
Kong, D. A design of zyng-based medical image edge
detection accelerator. 6th international conference on bi-
omedical signal and image processing (ICBIP '21), Au-
gust 20 - 22, 2021, Suzhou China, New York, NY, USA:
ACM, pp. 59-64. DOI: 10.1145/3484424.
3484434,

22.Liu, J. & Feng, J. Design of embedded digital
image processing system based on ZYNQ. Microproces-
sors and microsystems, 2021, vol. 83, article no. 104005.
DOI: 10.1016/j.micpro.2021.104005

23.Zhang, C., Bi, S., Jiang, T., Wang, J. & Mao, W.
Implementation of ZYNQ for image defogging. IEEE 9th
joint international information technology and artificial
intelligence conference (ITAIC), 11-13 December 2020,
Chongqging, China, 2020, pp. 1971-1977. DOI:
10.1109/itaic49862.2020.9339196.

24, Perepelitsyn, A., Kulanov, V. & Zarizenko, I.
Method of QoS evaluation of FPGA as a service. Radio-
electronic and Computer Systems, 2022, no. 4, pp. 153-
160. DOI: 10.32620/reks.2022.4.12.

25. Babeshko, E., Kharchenko, V., Leontiiev, K. &
Ruchkov, E. Practical aspects of operating and analytical
reliability assessment of FPGA-based 1&C systems. Ra-
dioelectronic and computer systems, 2020, no. 3, pp. 75-
83. DOI: 10.32620/reks.2020.3.08.

Received 21.03.2023, Accepted 20.05.2023

106 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)

AJANTALISA FPGA APXITEKTYPU JJISI TIPUCKOPEHHSA AJITOPUTMIB
OBPOBKU 305PAKEHD

Oneca bapxoecvka, Inna @ininnenxo , lean Cemenenko,
Banenmun Kopuicnko, Ilemep Ceonauex

I pobota mpucBsiueHa aKkTyalbHiH MpobieMi Ha MepeTrHi Teopii 3B'A3Ky, IU(PPOBOI EIEKTPOHIKH Ta YHCEITh-
HOT'O aHali3y, a caMe BIMiPIOBaHHIO Yacy BUKOHAHHS METO/iB 0OpOOKHM 300pa’keHb Ha PI3HUX apXiTEKTypax o0dmHc-
JIIOBAJIHUX IIPUCTPOIB, sIKi 320€3MEeUyIOTh TIPOrpaMHe Ta anapaTHe NprckopeHHs. [IpeameTomM BUBYEHHS CTaTTi €
nociipkeHHs pekoHgirypoanux FPGA cuctem B obmacti 00poOku 300paxens. MeToro i€l poOOTH € CTBOPEHHS
repepoOITIOBaNIbHOI cucTeMu 00poOKn 300pakeHb Ha 0a3i FPGA Ta nopiBHSHHS 11 3 iICHYIOUNMHE apXiTEKTypaMH 00-
poOku. 3aBaannst: J{1s1 BUKOHaHHS BUMOT poOOTH HEOOX1THO MiIrOTyBaTH MPAKTHYHUI €KCIIEPHMEHT, a TAKOX TeO-
peTUYHE JOCIIKEHHS 3alPOIIOHOBAHOI apXITEKTYpH; TOCHIIJUTH MPOLEC CTBOPEHHSI CUCTEMH 00pOOKH 300pakeHb
Ha ocHOBi ZYNQ SoC; po3poOuTH Ta MOpiBHATH IIBUIKICTh BUKOHAHHS ISl 331aHOT0 HA0OpY aJITOPUTMIB i3 IEBHUM
Jiarma3oHOM PO3UTBHOI 3aTHOCTI 300paxkeHb. Bukopucrani Metomu: cumyssiiis FPGA, mapanensHe nporpamy-
BanHs Ha C++, Texnosorist NVIDIA CUDA, inctpyMeHTapiii 11t aHai3y IPOAYKTHBHOCTI BUKOHAHHS Iporpam. Pe-
3yJAbTATOM 1Ii€l poOOTH € po3podKa cTiiikoi obuncmoBabHOl cucteMu Ha 6a3i SoC Zynq7000 3 mporpamMoBaHOO
JIOTIKOIO T2 MOJKJIMBICTIO 3aBaHTaxxeHHs 300pakeHb B RAM FPGA 3 BukopucTanHsM pecypciB siipa ARM mis mo-
JanbInol 00poOku Ta BUBOAY uepe3 intepdeiic Bineo HDMI, 110 no3Bosisie 3MiHtoBaTH KoHQirypariito PL y Oyab-sikuit
MOMEHT Tiz yac 00poOku. BucnoBku. EdexruBnicts migxony FPGA nopiBHIOBaNuM 3 peanizalii€lo MeToiB napae-
JILHOT 00p00OKHU 300pakeHb 3a Joromoror OpenMP ta CUDA. [pencrasneno orsia wiathopmu ZYNQ 3 KOHKpeT-
HUMH JIETAISIMU, TI0B’I3aHIUMU 3 00pOOKOI0 Metia. AHaJl3 pe3y/bTaTiB TECTYBaHHS IIBHKOCTI aJITOPUTMY Ha OCHOBI
Pi3HUX BUXO/IB JIOBiB niepeBary (y nonayn 60 pasiB) anapaTHOro NPUCKOPEHHs 00OpOOKHU 300paXkeHb Tepe]] Iporpam-
HUMU aHasoramu. OTpuMaHi pe3yJbTaTH MOXKYTh OyTH BUKOPHCTaHI IpH po3po0diii BOymoBaHKX pileHb Ha 6a3i SoC,
SIKI BUMAararoTh IPUCKOPEHHS 00pOOKH BENMKUX AaHuX. KpiM TOro, oTprMaHi pe3ysibTaTH MOXKHa BUKOPHCTOBYBATH
IiJ] 4ac MOUIYKY BiANOBiAHOI BOYIOBaHOI miaTdopMu A1 MEBHOTO 3aBAaHHA 00pOOKH 300paxeHb, i BUCOKA Mpo-
NYCKHA 3[]aTHICTh CUCTEMH € OJTHIEI0 3 HAWOUIBII MPIOPUTETHUX BUMOT.

KurouoBi ciioBa: npuckopeHHs 00po6ku nanux; FPGA; Bicoka NpoAyKTHBHICTB; MapayielibHi CUCTeMH; 00po-
OKa 300pakeHb.

BapkoBcska Ouiecsi FOpiiBHa — kaH/A. TeXH. HayK, JOIL., OOI. Kad. ENekTpoHHUX 004HCIIIOBAIBHUX MallIVH,
XapKiBChbKUi HalliOHAJILHUN YHIBEPCUTET paliOeIeKTPOHIKU, XapKiB, YKpaiHa

diginnenko Inna BikTopiBHa — KaH/. TeXH. HayK, JOIL., 10L. Kad. ABTOMAaTH3allii IPOEKTYBaHHS OOYHCITIOBA-
JIbHOT TeXHIKH, XapKiBChbKHI HAI[lOHAJIBHUI YHIBEPCUTET PaJllOeIeKTPOHIKH, XapKiB, YKpaiHa

Cemenenko IBan I'eopriiioBuy — Marictpant kad. ABToMaTu3allii MPOEKTYBaHHs 00UMCIIOBAILHOT TEXHIKH,
XapKiBChKUi HAllIOHAILHUN YHIBEPCUTET PalioeNIEeKTPOHIKH, XapKiB, YKpaina

Kopnienko Basentnn PycinanoBuu — acn. kad. ABTomaru3aiii NpOEKTYBaHHs OOUMCIIOBAILHOI TEXHIKH,
XapKiBChKUii HAllIOHAILHUN YHIBEPCUTET PaliOeIEKTPOHIKH, XapKiB, YKpaiHa

Merep Cennavexk — n-p dinoc. 3 KOMIT'IOTEPHUX HAYK, NOL. Kad. iHPpopmaTuku KUIIHCHKOrO yHIBEPCUTETY,
Kunina, CinoBayunHa.

Olesia Barkovska — PhD (Computer Sciences), Associate Professor of the Department of Electronic Computers,
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
e-mail: olesia.barkovska@nure.ua, ORCID: 0000-0001-7496-4353, Scopus Author ID: 24482907700.

Inna Filippenko — PhD (Computer Sciences), Associate Professor of the Design Automation Department,
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine,
e-mail: inna.filippenko@nure.ua, ORCID: 0000-0002-3584-2107, Scopus Author 1D: 24483080100.

Ivan Semenenko — master of the Design Automation Department, Kharkiv National University of Radio
Electronics, Kharkiv, Ukraine,
e-mail: ivan.semenenko@nure.ua, ORCID: 0000-0002-6498-2440, Scopus Author ID: 57352374800.

Valentyn Korniienko — PhD student of the Design Automation Department, Kharkiv National University
of Radio Electronics, Kharkiv, Ukraine,
e-mail: valentyn.korniienkol@nure.ua, ORCID: 0000-0001-7070-5127, Scopus Author ID: 57352374900.

Peter Sedla¢ek — PhD in Computer Sciences, Assistant Professor of the Department of Informatics, University
of Zilina, Zilina, Slovakia,
e-mail: peter.sedlacek@fri.uniza.sk, ORCID: 0000-0002-7481-6905, Scopus Author ID: 57210661864

http://orcid.org/0000-0001-7496-4353
https://www.scopus.com/authid/detail.uri?authorId=24482907700
http://www.scopus.com/inward/authorDetails.url?authorID=24483080100&partnerID=MN8TOARS

