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USING FEED-FORWARD NEURAL NETWORK  
 

High blood pressure (BP) or hypertension is an extremely common and dangerous condition affecting more than 

18–27 % of the world population. It causes many cardiovascular diseases that kill 7.6 million people around the 

world per year. The most accurate way to detect hypertension is ambulatory monitoring of blood pressure lasting 

up to 24 h and even more. Traditional non-invasive methods for measuring BP are oscillometric and ausculta-

tory, they use an occlusal cuff as an external pressure source. Unfortunately, cuffed BP measurement creates 

some inconvenience for the patient and can be inaccurate due to incorrect cuff placement. In connection with 

the problems caused by cuff methods, it has become necessary to develop cuffless methods for measuring blood 
pressure, which are based on the relationship of blood pressure with various manifestations of cardiac activity 

and hemodynamics, which can be recorded and measured non-invasively, without the use of a compression cuff 

and with simple technical means. Over the past decade, there have been many publications devoted to estimating 

blood pressure based on pulse wave velocity (PWV) or pulse wave transit time (PTT). However, this approach 

has few disadvantages. First, the measurement of BP using only PTT parameter is valid only for a given patient. 

Second, the linear model of the relationship between BP and PTT is valid only in a small range of BP variations. 

To solve this problem neural networks or linear regression models were used. The main problem with this ap-

proach is the accuracy of blood pressure measurement. This study builds one feed-forward neural network 

(FFNN) for determining systolic and diastolic blood pressure based on features extracted from electrocardiog-

raphy (ECG) and photoplethysmography (PPG) signals without a cuff and calibration procedure. The novelty 

of this work is the discovery of five new key points of the PPG signal, as well as the calculation of nine new 
features of the ECG and PPG signals, which improve the accuracy of blood pressure measurement. The object 

of the study was the ECG and PPG signals recorded from the patient's hand. The target of the study was to 

obtain systolic and diastolic blood pressure based on an FFNN, the input arguments of which are the parameters 

of the ECG and PPG signals. Algorithms for estimating signal parameters based on the determination of char-

acteristic points in the PPG signal, the position of R-peaks in the ECG signal, and parameters calculated from 

the relationship of time parameters and amplitude ratios of these signals are described in detail. The Pearson 

correlation coefficients for these parameters and BP are determined, which helps to choose the set of signal 

parameters valuable for BP estimation. The results obtained show that the mean absolute error ± standard 

deviation for systolic and diastolic BP is equal to 1.72±3.008 mmHg and 1.101±1.9 mmHg, respectively; the 

correlation coefficients for the estimated and true BP are equal to 0.94. Conclusions. The model corresponds to 

the AAMI standard and the “A” grade in the BHS standard, which proves the high accuracy of BP assessment 

by the proposed approach. Comparison to other known methods was performed, which confirmed the advantages 
of the proposed approach. 

 

Keywords: blood pressure; electrocardiography; photoplethysmography; neural network; feedforward neural 

network. 

 

Introduction 

 

High blood pressure (BP) or hypertension is an ex-

tremely common and dangerous condition affecting more 

than 18–27 % of the world's population [1]. It causes 

many cardiovascular diseases (CVDs), which kill 7.6 

million people around the world per year [2]. At the same 

time, 85 % of these deaths caused by a myocardial infarc-

tion or stroke [3]. Unfortunately, a significant proportion 

of hypertensive patients are not even aware of their ill-

ness, while it slowly and imperceptibly damages their in-

ternal organs (brain, eyes, kidneys, blood vessels). There-

fore, hypertension is often called a silent killer [4]. Alt-

hough people can measure their own BP using automated 

devices, evaluation by a healthcare professional is im-

portant to assess risk and related conditions [3]. To obtain 

an accurate diagnosis, it is necessary to correctly measure 

BP, which involves many factors: body position, arm po-

sition, and a properly selected cuff [5]. Failure to comply 

with these indications can lead to an error in BP meas-

urement up to 10 mmHg [5], which is undesirable.  

Usually, periodic measurements are used to control 

blood pressure.  But such measurements often cannot 

capture sudden and rapid changes in blood pressure. The 

most accurate way to detect hypertension, recommended 
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by the American Heart Association and the American 

College of Cardiology, is ambulatory monitoring lasting 

up to 24 h [6, 7] and even more [8]. It is obvious that ap-

propriate means are needed to perform such monitoring.  
 

State of the Art 
 

All existing methods for measuring BP can be di-

vided into two groups: methods of invasive and non-in-

vasive measurement. In invasive measurement, the pres-

sure sensor is installed directly into an arterial vessel [9], 

which ensures high accuracy and continuity of measure-

ment; however, this approach is associated with many 

risks.  

Therefore, invasive BP measurement can be used 

only in cases of emergency, in a hospital setting, and un-

der the supervision of qualified specialists. Non-invasive 

methods are not based on the direct measurement of in-

travascular BP, but on the processing and analysis of var-

ious indicators of cardiac activity and hemodynamics, in-

directly related to BP; thus, they are much safer and more 

convenient to use.  

Traditional non-invasive methods for measuring BP 

are oscillometric [10] and auscultatory [11], they use an 

occlusal cuff as an external pressure source. Unfortu-

nately, cuffed BP measurement creates some inconven-

ience for the patient and can be inaccurate due to incor-

rect cuff placement [12]. For each pressure measurement, 

the cuff must be inflated and deflated, which takes some 

time between successive measurements [13].  

Thus, it is desirable to have methods and means of 

measuring BP that would have the following properties: 

1) be non-invasive for use outside the hospital;  

2) provide the possibility of long-term measurement 

of blood pressure to monitor its changes over 12-24 

hours;  

3) be convenient to use in any condition, regardless 

of the position of the body, hand, and cuff size, described 

in [5];  

4) possess high accuracy of BP measurements.  

In connection with the problems caused by the use 

of cuff methods - the inconvenience of long-term moni-

toring and the inaccuracy of determining BP due to in-

correct measurement - it has become necessary to de-

velop cuffless methods for measuring blood pressure, 

which are based on the relationship of blood pressure 

with various manifestations of cardiac activity and hemo-

dynamics (electrical, acoustic, mechanical), and their pa-

rameters, which can be recorded and measured non-inva-

sively, without the use of a compression cuff and with 

fairly simple technical means (electrocardiogram, phono-

cardiogram, photoplethysmogram, rheogram, mechani-

cal pulsogram, etc.). One of these explicit dependencies 

is the relationship between blood pressure and the veloc-

ity of the propagation of the pulse wave along the arterial 

vessels [14]. Wearable devices are also actively develop-

ing, which allow long-term monitoring of blood pressure 

at home [15]. Various sensors allow recording signals. 

The work [16] considered the use of Fiber Bragg Grating 

(FBG) Sensors. A basic experiment was carried out, 

which showed the effectiveness of blood pressure meas-

urement using the proposed sensors [17]. 

Over the past decade, there have been many publi-

cations devoted to estimating blood pressure based on 

pulse wave velocity (PWV) or pulse wave transit time 

(PTT) [18]. The paper [19] considers the change in the 

PTT parameter when using spinal anesthesia, and the re-

sults show that the PTT indicator quite accurately indi-

cates changes in the cardiovascular system. Since this pa-

rameter reflects the changes in the cardiovascular system, 

it is also actively used to monitor blood pressure with ad-

ditional determination of rhythm parameters [20]. Con-

sidering the features of the PPG signal, some authors [21] 

suggest using its additional features to determine blood 

pressure, which increases the accuracy of its measure-

ments. Parameter PTT is measured as the time it takes for 

a pressure pulse to travel from the peak of the ECG R-

wave to the peak systolic point of the PPG wave-

form [22]. The use of rhythm parameters in addition to 

the PTT parameter when determining blood pressure 

leads to an increase in the accuracy of its measure-

ments [23]. All studies have used the photoplethysmo-

gram and electrocardiogram signals to measure the PTT 

values and obtain blood pressure [24, 25]. However, this 

approach has a few disadvantages.  
 

Problems of existing systems 
 

First, the measurement of BP using only PTT pa-

rameter is valid only for a given patient. In this regard, it 

is necessary to calibrate the blood pressure monitoring 

system [26]. To eliminate the calibration process, various 

methods are proposed, for example, the use of a mathe-

matical analysis and mathematical models of the PPG 

signal with the physiological parameters of the patient 

was proposed in the work [27]. Although this approach 

has shown stable results, it requires a large amount of in-

put data on the physiological parameters of the patient. 

The use of alternative data sources such as Pulse Wave 

Signals (PWS) [28] instead of PTT did not solve the 

problems with the system calibration. To eliminate the 

calibration problem, researchers also use neural networks 

[29] or linear regression models [30]. These systems are 

flexible; one trained model can be used to determine 

blood pressure for different patients without repeated 

training procedures. However, the relationship between 

blood pressure and PTT parameter is formed only based 

on the laws of hemodynamics in elastic vessels and does 

not consider changes in other parameters of the circula-

tory system.  
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Second, the linear model of the relationship be-

tween BP and PTT [31] is valid only in a small range of 

BP variations [32] that affect the accuracy of blood pres-

sure measurement. Other authors have shown a way to 

determine blood pressure based only on the ECG sig-

nal [33]. It has also been proposed to use an evaluation of 

blood pressure changes using vascular transit time [34] 

or phonocardiogram [35] instead of an ECG for pressure 

assessment [36, 37]. However, this also did not solve the 

problem of system calibration and accuracy.  

For its solving, machine learning methods were also 

applied, using both ECG and PPG signals to calculate 

blood pressure [38]. Neural networks are used in a variety 

of tasks, such as: 1) signal [39, 40] and image pro-

cessing [41]; 2) predicting dynamic processes [42, 43]. In 

particular, the authors in [44] demonstrated the relation-

ship between impedance plethysmography and photople-

thysmography to determine the PTT parameter. The use 

of the PPG intensity factor, which can track low-fre-

quency changes in blood pressure, was proposed in [45]. 

The results showed that with the use of an additional pa-

rameter, the accuracy of blood pressure determination in-

creased. In addition, new features have been proposed, 

such as ascending and descending slopes and peak inten-

sity ratios to increase the accuracy of blood pressure de-

termination [46]. An indirect relationship was deter-

mined using algorithms based on machine learning [47]. 

Such approaches require several data channels (e.g., ECG 

and PPG); however, some studies have demonstrated 

quite a high accuracy of blood pressure measurements us-

ing only one data channel [48, 49]. At the same time, it 

has been shown in [50] that the combination of ECG and 

PPG waves contains distinctive information that im-

proves the accuracy of BP determination; therefore, it 

still seems appropriate to use two data channels to im-

prove the accuracy of the blood pressure estimation.  

Note that the use of neural networks makes it possi-

ble to employ the developed systems for determining 

blood pressure [51, 52] without using additional calibra-

tion procedures [53, 54]. Also, deep machine learning 

methods are used, which allow the determination of 

blood pressure without first detecting the parameters of 

ECG and PPG signals [55, 56]. However, this approach 

requires a large amount of data during training, which 

limits its use in the presence of a few ECG and PPG sig-

nals [57, 58]. In the presence of pathologies such as ar-

rhythmias, it is also necessary to consider the ECG and 

PPG signals containing these cases in the training dataset. 

If such data are available, deep learning methods can ac-

curately calculate blood pressure [59].  

To improve the accuracy of the determination, one 

can use neural networks with memory, for example Long 

Short-Term Memory (LSTM) [60] or Recurrent Neural 

Network (RNN), which consider previous experience of 

calculating blood pressure. The work [61] considered the 

use of four neural networks for determining systolic, di-

astolic, and mean arterial pressure, the architecture of 

these neural networks was multispherical. For prediction, 

three key points in the PPG signal were used: systolic rise 

duration, diastolic duration, and duration between sys-

tolic and diastolic peaks. The signal amplitude ratios at 

three characteristic points and the time ratios between 

these positions in the PPG signal were also used. As fre-

quency parameters, heart rate and respiration rate were 

employed. The work [62] exclusively used the propaga-

tion time of a pulse wave between two points to deter-

mine the BP value through regression equations.  

In [63, 64], was analyzed the possibility of using regres-

sion equations for these purposes, but this approach has 

not allowed evaluating BP using the same regression 

model for different people without preliminary calibra-

tion.  

In [65], measurements of 24 signs of PPG and ECG 

signals were used, which were then employed to deter-

mine blood pressure. However, the paper presents the 

calculation of four main characteristic points of the PPG 

signal and there are no signs associated with the ratios of 

amplitude values or temporal values. The work [66] pro-

poses a new approach for predicting the arterial blood 

pressure (ABP) signal based only on the PPG signal.  

Authors of [67] have identified 15 main features of 

the PPG-peak that have been used to determine blood 

pressure, some of which contain information about heart 

rate. In our previous work [63, 64], we considered two 

separate Feed-Forward neural networks with 6 and 7 in-

put parameters of ECG and PPG signals to determine sys-

tolic blood pressure (SBP) and diastolic blood pressure 

(DBP).  

 

Objectives and novelty 

 

Thus, the aim of this work is to develop one neural 

network for determining systolic and diastolic blood 

pressure based on features extracted from ECG and PPG 

signals without a cuff and calibration procedure. The 

novelty of this work is the discovery of five new key 

points of the PPG signal, as well as the calculation of nine 

new features of the ECG and PPG signals, which improve 

the accuracy of blood pressure measurement. The object 

of the study was the ECG and PPG signals recorded from 

the patient's hand.  

There are various methods for training neural net-

works, for example, using the enhanced sea predator al-

gorithm [68], so one of the tasks of this study will be to 

choose the optimal training method. 

 

1. Materials and methods of research 
 

The main idea of continuous blood pressure assess-

ment based on the extraction of cumulative features from 
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two data sources, namely ECG and PPG signals, is as fol-

lows: we use segmentation of data sources, denoising 

based on linear filters, and extraction of a set of features 

associated with BP. Then, we analyze the relationship be-

tween certain features and BP values and develop a neu-

ral network that employs the obtained features. The out-

put parameters are estimates of systolic and diastolic 

blood pressure. To analyze the accuracy of these esti-

mates, evaluated and reference (obtained using occlusion 

methods) blood pressure values are used to find the 

standard deviation between these values. 

 

1.1. Signal recording equipment 

 

We developed a system for single-channel record-

ing of both ECG and PPG signals and used CardioSens 

BP Holter monitor recorder [69] to obtain the blood pres-

sure reference values shown in Fig. 1 and Fig. 2. Demo-

graphic data of patients participating in the study are 

shown in Table 1.  

 

 
Fig. 1. One-channel ECG and PPG signal recorder 

 

 
Fig. 2. CardioSens ECG + BP Holter monitor recorder 

 

The developed system for recording ECG and PPG 

signals has the following characteristics: a sampling rate 

of 1000 Hz, 12-bit resolution, and the ability to transfer 

data directly to a computer via Bluetooth or store these 

data on a memory card. The reference BP recorder “Car-

dioSens ECG + BP Holter monitor recorder” is capable 

of recording systolic and diastolic blood pressure values 

determined by the occlusal cuff once per minute, data are 

stored on a memory card or transmitted via Bluetooth. 

This device achieves an accuracy of ±2 mmHg [69].  

 

Table 1 

Demographic and BP characteristics 

Characteristics Mean ±STD or values  

Height (cm) 174.5±5.42 (163-186) 

Weight (g) 83±7.30 (64-102) 

Per-subject SBP average 

(mmHg) 
130.8±7.91 (111-154) 

Per-subject DBP average 

(mmHg) 
81.97±5.43 (67-95) 

Age of patients 22.5±11.61 (19-52) 

Total number of observa-

tions 
312 

Average length of obser-

vations (minutes) 
40 

Total number of signals’ 

fragments 
12480 

Location of data collec-

tion 

National Aerospace 

University "KhAI" 

Laboratory KhAI-Medica 

Temperature in labora-

tory, °C 

18-22 

Body position Sitting 

Information about health 

and cardiovascular dis-

eases of patients 

N/A 

 

The research was conducted in accordance with the 

protocol approved by the Academic Council and the Eth-

ics Committee of the Kharkiv Medical Academy of Post-

graduate Education, No. 24.04.21, and was performed in 

accordance with the principles of the Declaration of Hel-

sinki. 
 

1.2. Data preparation 
 

Signal processing begins with their segmentation 

into intervals of one minute. This procedure is performed 

because the BP Holter monitor recorder is used for about 

one minute to inflate the cuff and measure blood pres-

sure. Often in signal preprocessing, preliminary signal 

estimation and elimination of several interferences are 

used [70, 71]. Locally adaptive filtering methods [72] and 

methods of identifying the parameters of a linear object 

in the presence of non-Gaussian noise [73] are also ac-

tively used, which can significantly suppress interference 

in the considered signals. In this work, we did not con-

duct a preliminary assessment.  

To train a neural network, 7480 segments of signals 

were used (60 % of the total number of 12480). The rest 

values have been used for verification. The values were 
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divided into training and test samples in such a way that 

the test sample contained segments of signals for people 

who were not employed in training. For verification, we 

used 5000 segments of signals (40 % of the total sample 

of 12480). 

 

1.3. Signal processing 

 

An example of recorded signals with a duration of 

15 seconds is presented in Fig. 3. For noise suppression 

in ECG signals, we used a combination of linear filters: a 

low-pass filter with a cutoff frequency of 98 Hz, a high-

pass filter with a cutoff frequency of 12 Hz, and a notch 

filter in the frequency band of 48–52 Hz.  

This selection is justified by our previous studies 

performed for ECG signal processing in fetal electrocar-

diography [74, 75]. It has been shown from the results 

that the use of such a set of linear filters introduces min-

imal distortions into the shape of the R-peak and there-

fore does not change the position of the QRS complex 

itself; however, at the same time, such processing is suf-

ficient to suppress various kinds of interference caused 

by electrode movements, muscle contractions, and inter-

ference distortion [76]. 

For noise suppression in PPG signals, we used the 

following combination of linear filters: a low-pass  

filter with a cutoff frequency of 40 Hz and a notch filter 

in the frequency band of 48–52 Hz.  

It has been shown that such filter characteristics for 

PPG signals can suppress interference caused by interfer-

ence noise and eliminate high-frequency contribution in-

terference contained in signals. The results of applying 

the noise reduction procedure are shown in Fig. 4, which 

demonstrates fragments of 15 s of ECG and PPG signals 

after pre-filtering. 
 

 
Fig. 3. An example of the obtained recordings: ECG signal (upper plot)  

and PPG signal (given below the ECG plot) 

 

 
Fig. 4. ECG and PPG signals after noise reduction procedure: ECG signal (upper plot)  

and PPG signal (given below the ECG plot) 
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1.4. Feature extraction  

and preliminary analysis 

  

As stated earlier, the PPT parameter is measured as 

the time from the R-peak point of the ECG signal to the 

peak systolic point of the PPG waveform, which is sche-

matically presented in Fig. 5. To determine the positions 

of the R-peaks of the ECG signal and the peak systolic 

points of the PPG signal, a modified Pan-Tompkins algo-

rithm was used. The threshold detector values are rede-

fined every 10 seconds, which makes it possible to accu-

rately determine peak positions [76]. The process of de-

termining the positions of R-peaks in the ECG signal is 

shown in Fig. 6. 

The PPG signal has several characteristic points that 

can be determined by different algorithms. In [77], the 

authors used window threshold methods, but the Auto-

matic Multiscale-based Peak Detection (AMPD) method 

[78, 79] demonstrated the possibility of determining the 

characteristic points of the PPG signal with greater sta-

bility than the threshold detection technique. In [80], the 

search for extrema (points of maxima and minima) of the 

first, second, and third derivatives of the PPG signal was 

applied. In our previous paper [63, 64] and in this study, 

we used characteristic point detection using the PPG sig-

nal and its first derivative by looking for local minima 

and maxima in the derivative and signal. This choice is 

justified by the simplicity of the implementation of this  

algorithm and the stable results of the search for charac-

teristic points in the PPG signal. Fig. 7 illustrates the pro-

cess of determining these positions in the PPG signal. 

 
Fig. 5. Calculation of the PTT parameter as the time it takes for an impulse to travel from the R-peak point  

of the ECG (upper plot) to the peak systolic point of the PPG (given below the ECG plot) signals  

 

 
Fig. 6. R-peaks detection in ECG signal: Square of modulus of derivative of ECG signal (upper plot)  

and ECG signal (given below plot) 
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Fig. 7. PPG signal with characteristic points (upper plot) and first derivative of PPG signal  

with characteristic points (given below the PPG signal plot) 

 

First, local minima and maxima are determined in 

the first derivative of the PPG signal, which makes it pos-

sible to detect five characteristic points of the PPG signal. 

Further, due to the determination of local minima and 

maxima of the PPG signal, the remaining characteristic 

points are determined, which correspond to the begin-

ning, maximum, beginning of the second wave, and max-

imum of the second wave of the PPG-waveform. For ex-

ample, point “p7” is defined as a local minimum of the 

PPG signal in the section between points “a4” and “a5”. 

The search procedure is described in more detail in [63, 

64]. After determining all the characteristic points for the 

PPG signal segment lasting one min, the parameters of 

these signals are calculated. We consider a set of param-

eters that can be conditionally divided into several groups 

as follows: temporal and amplitude dependence of the 

combination of PPG and ECG signals. 

 

1.5. Determining parameters of ECG  

and PPG signals 

 

After finding all the characteristic points of the ECG 

(see Fig. 7) and PPG (Fig. 8) signals, it becomes possible 

to compute the parameters for this segment. We propose 

to average the calculated parameters over an interval of 

one signal segment lasting one minute, by sorting certain 

parameters for each PPG peak (for all characteristic 

points) from the minimum values to the maximum, then 

removing 10 % of the minimum and maximum (first and 

last) values parameters, after which the remaining ones 

are averaged.  

This procedure avoids the contribution of falsely 

determined characteristic points, due to which the param-

eter estimates may be inaccurate. These procedures are 

repeated for all signals segments. To analyze the degree 

of connection existing between the calculated parameters 

and blood pressure, we propose to evaluate the Pearson 

correlation coefficient between the estimated parameters 

and blood pressure values: 

 
n

j,i j j,i jn
i 1

n n
j 1 2 2

j,i j j,i j

i 1 i 1

(x x )(y y )
1

R ,
n

(x x ) (y y )





 

 



 




 

         (1) 

 

where n is the number of analyzed elements (number of 

segments); jx , jy denote average values of a considered 

parameter and the corresponding reference values of 

blood pressure; j,ix , j,iy are reference values of an ana-

lyzed parameter and the reference values of blood pres-

sure obtained using an occlusive tonometer. 

To determine the temporal characteristics of the 

PPG and ECG signals, we computed the classical values 

of the PTT parameter from the R-peak (see Fig. 6) of the 

ECG signal to each characteristic point of the PPG signal 

(see Fig. 7) obtained earlier. The definition of this pulse 

transit time is schematically shown in Fig. 8. 

The time series of RR intervals calculated for each 

R-peak of the ECG signal can be written as follows: 

 

RR(i) R(i 1) R(i),i 1,2,...,n 1     ,          (2) 

 

where RR(i) is the current value of the RR-interval; 

R(i+1) is the time of the next R-peak; R(i) is the time of 

the current R-peak; i are indices of all R-peaks of the 

ECG signal, determined using the modified Pan-Tomp-

kins algorithm; n denotes the total number of R-peaks. 
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Fig. 8. Finding of pulse transit time parameters for one RR-interval (upper plot) and one PPG signal peak  

 

Since the authors of the papers [48, 49] considered 

the possibility of using only one data channel, we suggest 

first checking the possibility of computing blood pressure 

using only one data channel. To do this, in the PPG sig-

nal, the characteristic point p1 can be considered as the 

R-peak of the ECG signal, and the computation of the 

PTT parameters is carried out based on this characteristic 

point as the moment of the impulse beginning. Fig. 9 

shows the calculation of the time parameters inside the 

PPG peak. 

However, it should also be stressed that the higher 

the heart rate, the more heart contractions occur in one 

segment, which in turn also reduces the propagation time 

of the pulse wave. Therefore, the analysis below is de-

voted to finding the correlation coefficients for the prod-

uct of the pulse transit time (see Fig. 9) and the duration 

of the RR interval.  

To determine the amplitude characteristics of the 

waveform of the PPG signal, we use the product of the 

amplitude of the PPG signal at each characteristic point 

by the amplitude of the PPG signal at point p3, which 

characterizes the maximum value of the PPG of the peak.  

 

1.6. Neural network design 

  

We propose to use a Feedforward neural network 

with one input layer of 17 neurons, three hidden layers of 

64 neurons each, and one output layer of 2 neurons. The 

number of neurons in the input layer is equal to the  

number of analyzed parameters; the number of neurons 

in the output layer is determined by the necessity to cal-

culate two output values: systolic and diastolic blood 

pressure. The number of neurons in the hidden layers was 

determined experimentally: by gradually increasing their 

number, a neural network was obtained with a minimum 

error in the output values. The sigmoid transfer function 

was used as the transfer function in the input and hidden 

layers: 

 

 
Fig. 9. Finding the pulse transit time parameters for one PPG signal peak 
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x

1
f (x)

1 e



.  (3) 

 

As the activation function of the output layer of the 

neural network, the direct (or identical) function was cho-

sen: 

 

 f (x) x .   (4) 

 

To investigate the accuracy of blood pressure deter-

mination, we obtained an estimate of the correlation (1) 

between the calculated blood pressure values and the ref-

erence values, as well as additional parameters: 
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where 
EBP
ix ,

RBP
ix  are the calculated and reference val-

ues of arterial pressure, respectively; n is the number of 

signal segments participating in data processing. 
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 LoA mean 1.96*SD  ,  (8) 

 

 

EBP RBP
i i

2
n

i 1
RMS

( x )

E

x

n



 
 
 
 




, (9) 

 

 CI 1.34*mean LoA  .              (10) 

 

As a training method, the Levenberg-Marquardt op-

timization function has been used, which updates the 

neuron weights and bias values. This is the fastest back-

propagation algorithm. The mean squared error perfor-

mance function has been used as a criterion for the  

accuracy of the results. It defines the mean squared error 

between the computed output values of the neural net-

work and the desired reference values. Training is com-

pleted when the mean squared error reaches 0.01, in 

which case the network is considered trained and ready 

for use or testing. The weights were recalculated using 

the gradient descent method to achieve the learning goal. 

2. Results 
 

The results of computation (1) for the pulse transit 

time from the R-peak (see Fig. 6) of the ECG signal and 

to each characteristic point of the PPG signal (see Fig. 7), 

determined in all 12480 segments, are shown in Table 2.  

 

Table 2 

The correlation coefficient of the pulse transit time  

and reference values of systolic and diastolic  

blood pressure (SBP and DBP, respectively) 

Parameters 
Correlation coefficient 

SBP DBP 

РТТ1 -0.34 -0.17 

РТТ2 -0.27 -0.12 

РТТ3 -0.27 -0.01 

РТТ4 -0.03 0.18 

РТТ5 -0.39 -0.23 

РТТ6 -0.19 -0.12 

РТТ7 -0.1 0.07 

РТТ8 -0.21 -0.06 

РТТ9 -0.31 -0.21 

 

The results of computation (1) for the pulse transit 

time from the first characteristic point of the PPG peak 

and to each next point determined in all 12480 signal seg-

ments are shown in Table 3.  

 

Table 3 

The correlation coefficient of the pulse transit time  

and reference values of blood pressure 

Parameters 
Correlation coefficient 

SBP DBP 

Т1 -0.18 -0.09 

Т2 -0.15 -0.003 

Т3 -0.01 -0.05 

Т4 -0.26 -0.3 

Т5 -0.2 -0.25 

Т6 -0.02 0.16 

Т7 -0.17 -0.03 

Т8 -0.27 -0.23 

 

As can be seen from the results in Table 3, the mod-

ulus values of the correlation coefficients have decreased 

compared to the corresponding values in Table 2. As de-

scribed in [50], the combined use of parameters extracted 

from ECG and PPG signals gives greater accuracy in de-

termining blood pressure, as evidenced by the calculated 

coefficients. However, it should be noted that the rela-

tionship between the parameters and blood pressure val-

ues remained the same: with an increase in the transit 

time of the pulse wave, the values of arterial pressure tend 

to decrease, and with a decrease in the transit time, they 



Intelligent information technologies 
 

45 

tend to increase. It can be concluded that high blood pres-

sure accelerates the propagation of the pulse wave along 

the arterial vessel.  

The results of computation (1) for the time ratio be-

tween the first characteristic point of the PPG signal and 

each subsequent one (see Fig. 9) to the time of the RR 

interval are shown in Table 4.  

 

Table 4 

The correlation coefficient of the product of the pulse 

transit time and the duration of the RR-interval  

and the reference values of blood pressure 

Parameters 
Correlation coefficient 

SBP DBP 

Т1/RR 0.35 -0.47 

Т2/RR 0.49 -0.57 

Т3/RR 0.43 -0.29 

Т4/RR 0.53 -0.67 

Т5/RR 0.57 -0.58 

Т6/RR 0.62 -0.54 

Т7/RR 0.61 -0.55 

Т8/RR 0.67 -0.51 

 

According to Table 4, the product of the pulse 

transit time and the RR interval time has the highest de-

gree of correlation with blood pressure values. It has been 

demonstrated in [81, 82] that the parameters of heart rate 

variability and current heart rate can be used to measure 

stroke volume and cardiac output, which also depend on 

blood pressure.  

The results of computation of the values (1) for the 

ratio of the amplitude of the PPG signal at the time point 

p3 to the amplitude of the PPG signal at each other char-

acteristic point of the PPG signal (see Fig. 9) are given in  

Table 5. 

Based on the results of assessing the degree of cor-

relation of the proposed parameters (see Tables 2-5) with 

SBP and DBP, we have decided to use the values of the 

parameters PTT1, PTT5, PTT9, T4, T1/RR-interval, 

T2/RR-interval, T3/RR-interval, T4/RR-interval, 

T5/RR-interval, T6/RR-interval, T7/RR-interval, 

T8/RR-interval, as well as amplitude ratios 

PPG(p4)/PPG(p3), PPG(p5)/PPG(p3), PPG(p6)/ 

PPG(p3), PPG(p7)/PPG(p3), PPG(p8)/PPG(p3) as fea-

tures for determining blood pressure, since the modulo 

values of these parameters have larger correlation values 

with blood pressure values than other parameters.  

 

Table 5 

The correlation coefficients of the product of the value 

of the PPG signal at each key point by the value  

of the PPG signal at point p3 and reference values  

of blood pressure 

Parameters 
Correlation coefficient 

SBP DBP 

PPG(p2)/PPG(p3) -0.28 -0.14 

PPG(p4)/PPG(p3) -0.36 0.41 

PPG(p5)/PPG(p3) -0.31 0.48 

PPG(p6)/PPG(p3) -0.31 0.52 

PPG(p7)/PPG(p3) -0.3 0.45 

PPG(p8)/PPG(p3) -0.16 0.34 

 

The parameters were selected in such a way that 

their modular values of the correlation coefficient for sys-

tolic or diastolic blood pressure were greater than 0.3.  

Thus, 17 parameters will be further employed to 

measure BP. A neural network was obtained, which is 

shown in Fig. 10. As input arguments, the parameters 

listed in Tables 2-5 are used, and as the desired values at 

the output of the neural network, the blood pressure val-

ues obtained using the occlusive tonometer are em-

ployed. To achieve the results of the training procedure, 

the neural network took 27953 training epochs. 

Here P denotes the input parameters that are used to 

calculate blood pressure; W1…5 define the weights or 

coefficients by which the output values of the previous 

layer are multiplied; b1…5 define the offset of the inputs; 

the sign ∑ denotes the adder; a1…5 are the layer output 

parameters. 

Fig. 11 illustrates the accuracy of BP determination 

by the proposed NN for finding systolic blood pressure. 

 

 
 

Fig. 10. Structure of the designed FFNN with some details 
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Fig. 11. Estimation of the accuracy of determining  

the BP for the proposed neural network model:  

SBP correlation coefficient plot 

 

As can be seen from the results, the Pearson corre-

lation coefficients are 0.9413 and the RMSEs are  

3.01 mmHg for systolic BP. Fig. 12 illustrates the accu-

racy of BP determination by the proposed neural network 

for finding diastolic blood pressure. As can be seen from 

the results, the Pearson correlation coefficients are 

0.9434 and the RMSEs are 1.89 mmHg diastolic BP. 

 

 
 

Fig. 12. Estimation of the accuracy of determining  

the BP for the proposed neural network model:  

DBP correlation coefficient plot 

 

These results show the high accuracy of blood pres-

sure estimation using the proposed neural network. It can 

also be seen that blood pressure estimates calculated us-

ing the developed NN have a linear relationship with 

blood pressure estimates obtained using an occlusive to-

nometer. The calculated values are close to the regression 

line. Fig. 13-14 shows the average values and values of 

the difference between the calculated values of blood 

pressure and the reference values obtained from the oc-

clusive tonometer using the Bland-Altman plot for sys-

tolic and diastolic BP respectively. The results show that 

95 % of the calculated data fall within the confidence in-

terval, and the mean error is close to zero, which indicates 

a high degree of accuracy in calculating BP values.  

 

 
 

Fig. 13. Estimation of the accuracy of determining  

the BP of the proposed neural network model:  

SBP Bland-Altman plot (mean = 0.1193) 

 

 
 

Fig. 14. Estimation of the accuracy of determining  

the BP of the proposed neural network model:  

DBP Bland-Altman plot (mean = 0.057) 

 

Fig. 15-16 also shows error distribution histograms, 

from which most of the errors are in the range of  
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5 mmHg, which confirms the high accuracy of BP calcu-

lation by the proposed NN plot for systolic and diastolic 

BP respectively. A comparative analysis of the results 

with data obtained from other researchers is given in  

Table 6. 

 

 
 

Fig. 15. SBP error distribution histogram 

 

To evaluate the results obtained, the accuracy of the 

developed NN can also be carried out according to inter-

national standards AAMI and BHS. According to the 

AAMI standard, 85 subjects must be used for the test, and 

312 were used in our study. ME values must be lower 

than 5 mmHg - 0.1193 mmHg and 0.057 mmHg were ob-

tained for systolic and diastolic BP, respectively. Stand-

ard deviation (7) should be within 8 mmHg; in our case, 

deviations equal to 3.008 mmHg and 1.8998 mmHg were 

obtained for systolic and diastolic blood pressure, respec-

tively. These results show that the accuracy of the de-

signed system satisfies the AAMI standard. The cumula-

tive percentage of errors in SBP is 93.72, 99.28, and 

99.48 %, respectively, and for DBP - 97.64, 99.53, and 

99.8 %, respectively, which is higher than the BHS class 

A standard of 60, 85 and 95 % of cumulative percentage. 

 
 

Fig. 16. DBP error distribution histogram 

 

3. Discussion 

 

The presented results show that the designed FFNN 

can provide a high accuracy of BP estimation in the sta-

tistical sense. Meanwhile, it follows from Figures 13 and 

14 that certain random outliers might be present in the 

data (although they happen to rather small probability). 

We have not rejected them in the process of estimation of 

the mean and standard deviation. Meanwhile, we plan to 

conduct a special study to understand the reasons for such 

estimates. We hope that this can further improve the ac-

curacy of our approach. Also, in definition (2), the value 

of the position of the next R-peak is used to calculate the 

RR-interval, which is still unknown for the current PPG-

peak, due to which the calculation may be difficult in real 

time. It is difficult to fairly compare our results concern-

ing estimation accuracy to the corresponding results in 

the papers [29-33] because of the different numbers of 

records analyzed, use of different databases. Meanwhile, 

MAE+-SD in these papers varies from 4.04±5.81 mmHg 

in [49] till 11.17±10.09 mmHg in [30] for the systolic BP 

and from 2.29±3.39 mmHg in [49] till 5.35±6.14 mmHg 

in [30] 
 

Table 6 

Comparative analysis with other works 

Work Subjects Number of models 
SBP (MAE±SD), 

mmHg 

DBP (MAE±SD), 

mmHg 

Rong et al., [29] 11546 samples 2 5.59±7.25 3.36±4.48 

Kachuee et al., [30] 942 subjects 2 11.17±10.09 5.35±6.14 

Gaurav et al., [31] 3000 subjects 2 4.47±6.85 3.21±4.72 

Li et al.,[53]  1 6.726±14.505 2.51±6.442 

Malayeri et al.,[52] 21334 samples 1 4.04±5.81 2.29±3.39 

Early our work [64] 5046 samples 2 3.59±4.37 2.92±3.7 

This work 12480 samples 1 1.72±3.008 1.101±1.9 
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for the diastolic BP. Analysis shows that we have pro-

vided smaller MAE and SD values in all cases. All cal-

culations were performed not on open databases, but on 

a private database, which is why it is also impossible to 

say precisely about the stability of this method, it is nec-

essary to conduct experimental studies on open databases 

in the future for the possibility of comparing the results 

with other works. 

 

Conclusions 
 

In this paper, we propose a new method for contin-

uous non-invasive and cuffless measurement (monitor-

ing) of blood pressure based on the parameters of two 

signals: ECG and PPG. Features of signal segments are 

extracted by detecting R-peaks of the ECG by the modi-

fied Pan-Tompkins algorithm, as well as by detecting 

characteristic points of the PPG signal. Next, the in-

formative parameters were calculated. Correlation analy-

sis of these parameters made it possible to identify fea-

tures having the maximum modular value of the correla-

tion coefficients with the reference values of blood pres-

sure obtained using the standard occlusive method. For 

all signal segments, features were extracted and aver-

aged, which were later used to train and test the neural 

network. The designed neural network is Feedforward 

neural network. The total number of neurons in this net-

work is 211, which is almost 4 times less compared to our 

previous works [60-61]. In addition, unlike the previous 

work, we developed a neural network to measure both 

systolic and diastolic blood pressure simultaneously. At 

the same time, the results of testing the developed neural 

network demonstrated the following performance char-

acteristics: MAE±SD = 1.72±3.008 mmHg and 

1.101±1.9 mmHg for systolic and diastolic BP, respec-

tively; RMSE = 3.01 mmHg and 1.896 mmHg for sys-

tolic and diastolic BP, respectively; Pearson's correlation 

coefficients between calculated and reference BP values 

are 94 % and 94 % for systolic and diastolic BP, respec-

tively. 93.72 and 97.64 % of the obtained BP estimates 

using the developed neural network have a deviation 

within ±5 mmHg. These indicators correspond to the 

AAMI standard and the “A” grade in the BHS standard, 

which proves the high accuracy of BP assessment by the 

proposed approach. Comparison to other known methods 

was performed, which confirmed the advantages of the 

proposed approach. 

Our further research will include the following 

steps: 1) application of non-linear filters to suppress in-

terference in ECG and PPG signals, such as wavelet-

based or Kalman filters; 2) application of convolutional 

neural networks to determine blood pressure, which 

should increase the accuracy of the proposed method of 

determining blood pressure; 3) use of interpolation and 

normalization methods to the PPG signal to eliminate er-

rors due to differences in the amplitude parameters of the 

signal from person to person. 
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БЕЗПЕРЕРВНЕ ВИМІРЮВАННЯ АРТЕРІАЛЬНОГО ТИСКУ БЕЗ МАНЖЕТИ  

ЗА ДОПОМОГОЮ ПРЯМОЇ НЕЙРОННОЇ МЕРЕЖІ  

Олег В’юницький, Володимир Лукін, Олександр Тоцький,  

Вячеслав Шульгін, Надія Кожемякіна 

Високий кров'яний тиск (АТ) або гіпертонія є надзвичайно поширеним і небезпечним станом, яким стра-

ждає понад 18–27 % населення світу. Він є причиною багатьох серцево-судинних захворювань, які щорічно 

вбивають 7,6 мільйонів людей у всьому світі. Найточнішим способом виявлення артеріальної гіпертензії є 

амбулаторне спостереження за артеріальним тиском тривалістю до 24 годин і навіть більше. Традиційними 

неінвазійними методами вимірювання АТ є осцилометричний і аускультативний, вони використовують оклю-

зійну манжету як джерело зовнішнього тиску. На жаль, вимірювання АТ за допомогою манжети створює певні 
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незручності для пацієнта і може бути неточним через неправильне розміщення манжети. У зв’язку з пробле-

мами використання манжетних методів виникла необхідність у розробці безманжетних методів вимірювання 

артеріального тиску, які базуються на зв’язку артеріального тиску з різними проявами серцевої діяльності та 

гемодинаміки, які можна реєструвати та вимірювати неінвазійно, без застосування компресійної манжети і 

простими технічними засобами. За останнє десятиліття з’явилося багато публікацій, присвячених оцінці ар-

теріального тиску на основі швидкості пульсової хвилі (ШПХ) або часу проходження пульсової хвилі (ЧПХ). 

Однак цей підхід має кілька недоліків. По-перше, вимірювання АТ за допомогою лише параметра ЧПХ дійсне 

лише для одного пацієнта. По-друге, лінійна модель зв'язку між АТ і ЧПХ дійсна лише в невеликому діапазоні 

варіацій АТ. Для вирішення цієї проблеми використовувалися нейронні мережі або моделі лінійної регресії. 

Основною проблемою такого підходу є точність вимірювання артеріального тиску. Дане дослідження спря-

моване на створенні однієї прямої нейронної мережі (ПНН) для визначення систолічного та діастолічного 
артеріального тиску на основі характеристик, отриманих із сигналів електрокардіографії (ЕКГ) і фотоплетиз-

мографії (ФПГ) без використання манжети та процедури калібрування. Новизна роботи полягає у відкритті 

п'яти нових ключових точок сигналу ФПГ, а також обчисленні дев'яти нових особливостей сигналів ЕКГ і 

ФПГ, які підвищують точність вимірювання АТ. Об’єктом дослідження є сигнали ЕКГ та ФПГ, записані з 

руки пацієнта. Метою дослідження є отримання систолічного та діастолічного АТ на основі ПНН, вхідними 

аргументами якої є параметри сигналів ЕКГ та ФПГ. Детально описано алгоритми оцінки параметрів сигналу, 

засновані на визначенні характерних точок у сигналі ФПГ, положення R-піків у сигналі ЕКГ, а також параме-

трів, розрахованих із співвідношення часових параметрів і відношень амплітуд цих сигналів. Визначено кое-

фіцієнти кореляції Пірсона для цих параметрів і АТ, що допомагає вибрати набір сигнальних параметрів, цін-

них для оцінки АТ. Отримані результати показують, що середня абсолютна похибка ± стандартне відхилення 

для систолічного та діастолічного АТ дорівнює 1,72±3,008 мм.рт.ст. та 1,101±1,9 мм.рт.ст. відповідно; коефі-
цієнти кореляції для розрахункового та істинного АТ дорівнюють 0,94. Висновки. Модель відповідає станда-

рту AAMI та оцінці «А» за стандартом BHS, що свідчить про високу точність оцінки АТ за запропонованим 

підходом. Проведено порівняння з іншими відомими методами, що підтвердило переваги запропонованого 

підходу. 

Ключові слова: артеріальний тиск; електрокардіографія; фотоплетизмографія; нейронна мережа; ней-

ронна мережа прямого зв'язку. 
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