36

ISSN 1814-4225 (print)

Radioelectronic and Computer Systems, 2023, no. 2(106) ISSN 2663-2012 (online)

UDC 612.141:004.032.26

doi: 10.32620/reks.2023.2.04

Oleh VIUNYTSKY/, Volodymyr LUKIN, Alexander TOTSKY,
Vyacheslav SHULGIN, Nadejda KOZHEMIAKINA

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

CONTINUOUS CUFFLESS BLOOD PRESSURE MEASUREMENT
USING FEED-FORWARD NEURAL NETWORK

High blood pressure (BP) or hypertension is an extremely common and dangerous condition affecting more than
18-27 % of the world population. It causes many cardiovascular diseases that kill 7.6 million people around the
world per year. The most accurate way to detect hypertension is ambulatory monitoring of blood pressure lasting
up to 24 h and even more. Traditional non-invasive methods for measuring BP are oscillometric and ausculta-
tory, they use an occlusal cuff as an external pressure source. Unfortunately, cuffed BP measurement creates
some inconvenience for the patient and can be inaccurate due to incorrect cuff placement. In connection with
the problems caused by cuff methods, it has become necessary to develop cuffless methods for measuring blood
pressure, which are based on the relationship of blood pressure with various manifestations of cardiac activity
and hemodynamics, which can be recorded and measured non-invasively, without the use of a compression cuff
and with simple technical means. Over the past decade, there have been many publications devoted to estimating
blood pressure based on pulse wave velocity (PWV) or pulse wave transit time (PTT). However, this approach
has few disadvantages. First, the measurement of BP using only PTT parameter is valid only for a given patient.
Second, the linear model of the relationship between BP and PTT is valid only in a small range of BP variations.
To solve this problem neural networks or linear regression models were used. The main problem with this ap-
proach is the accuracy of blood pressure measurement. This study builds one feed-forward neural network
(FFNN) for determining systolic and diastolic blood pressure based on features extracted from electrocardiog-
raphy (ECG) and photoplethysmography (PPG) signals without a cuff and calibration procedure. The novelty
of this work is the discovery of five new key points of the PPG signal, as well as the calculation of nine new
features of the ECG and PPG signals, which improve the accuracy of blood pressure measurement. The object
of the study was the ECG and PPG signals recorded from the patient's hand. The target of the study was to
obtain systolic and diastolic blood pressure based on an FFNN, the input arguments of which are the parameters
of the ECG and PPG signals. Algorithms for estimating signal parameters based on the determination of char-
acteristic points in the PPG signal, the position of R-peaks in the ECG signal, and parameters calculated from
the relationship of time parameters and amplitude ratios of these signals are described in detail. The Pearson
correlation coefficients for these parameters and BP are determined, which helps to choose the set of signal
parameters valuable for BP estimation. The results obtained show that the mean absolute error £ standard
deviation for systolic and diastolic BP is equal to 1.72£3.008 mmHg and 1.101+1.9 mmHg, respectively, the
correlation coefficients for the estimated and true BP are equal to 0.94. Conclusions. The model corresponds to
the AAMI standard and the “A” grade in the BHS standard, which proves the high accuracy of BP assessment
by the proposed approach. Comparison to other known methods was performed, which confirmed the advantages
of the proposed approach.

Keywords: blood pressure; electrocardiography; photoplethysmography; neural network; feedforward neural
network.

fore, hypertension is often called a silent killer [4]. Alt-
hough people can measure their own BP using automated

Introduction

High blood pressure (BP) or hypertension is an ex-
tremely common and dangerous condition affecting more
than 18-27 % of the world's population [1]. It causes
many cardiovascular diseases (CVDs), which kill 7.6
million people around the world per year [2]. At the same
time, 85 % of these deaths caused by a myocardial infarc-
tion or stroke [3]. Unfortunately, a significant proportion
of hypertensive patients are not even aware of their ill-
ness, while it slowly and imperceptibly damages their in-
ternal organs (brain, eyes, kidneys, blood vessels). There-

devices, evaluation by a healthcare professional is im-
portant to assess risk and related conditions [3]. To obtain
an accurate diagnosis, it is necessary to correctly measure
BP, which involves many factors: body position, arm po-
sition, and a properly selected cuff [5]. Failure to comply
with these indications can lead to an error in BP meas-
urement up to 10 mmHg [5], which is undesirable.
Usually, periodic measurements are used to control
blood pressure. But such measurements often cannot
capture sudden and rapid changes in blood pressure. The
most accurate way to detect hypertension, recommended
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by the American Heart Association and the American
College of Cardiology, is ambulatory monitoring lasting
up to 24 h [6, 7] and even more [8]. It is obvious that ap-
propriate means are needed to perform such monitoring.

State of the Art

All existing methods for measuring BP can be di-
vided into two groups: methods of invasive and non-in-
vasive measurement. In invasive measurement, the pres-
sure sensor is installed directly into an arterial vessel [9],
which ensures high accuracy and continuity of measure-
ment; however, this approach is associated with many
risks.

Therefore, invasive BP measurement can be used
only in cases of emergency, in a hospital setting, and un-
der the supervision of qualified specialists. Non-invasive
methods are not based on the direct measurement of in-
travascular BP, but on the processing and analysis of var-
ious indicators of cardiac activity and hemodynamics, in-
directly related to BP; thus, they are much safer and more
convenient to use.

Traditional non-invasive methods for measuring BP
are oscillometric [10] and auscultatory [11], they use an
occlusal cuff as an external pressure source. Unfortu-
nately, cuffed BP measurement creates some inconven-
ience for the patient and can be inaccurate due to incor-
rect cuff placement [12]. For each pressure measurement,
the cuff must be inflated and deflated, which takes some
time between successive measurements [13].

Thus, it is desirable to have methods and means of
measuring BP that would have the following properties:

1) be non-invasive for use outside the hospital;

2) provide the possibility of long-term measurement
of blood pressure to monitor its changes over 12-24
hours;

3) be convenient to use in any condition, regardless
of the position of the body, hand, and cuff size, described
in [5];

4) possess high accuracy of BP measurements.

In connection with the problems caused by the use
of cuff methods - the inconvenience of long-term moni-
toring and the inaccuracy of determining BP due to in-
correct measurement - it has become necessary to de-
velop cuffless methods for measuring blood pressure,
which are based on the relationship of blood pressure
with various manifestations of cardiac activity and hemo-
dynamics (electrical, acoustic, mechanical), and their pa-
rameters, which can be recorded and measured non-inva-
sively, without the use of a compression cuff and with
fairly simple technical means (electrocardiogram, phono-
cardiogram, photoplethysmogram, rheogram, mechani-
cal pulsogram, etc.). One of these explicit dependencies
is the relationship between blood pressure and the veloc-
ity of the propagation of the pulse wave along the arterial

vessels [14]. Wearable devices are also actively develop-
ing, which allow long-term monitoring of blood pressure
at home [15]. Various sensors allow recording signals.
The work [16] considered the use of Fiber Bragg Grating
(FBG) Sensors. A basic experiment was carried out,
which showed the effectiveness of blood pressure meas-
urement using the proposed sensors [17].

Over the past decade, there have been many publi-
cations devoted to estimating blood pressure based on
pulse wave velocity (PWV) or pulse wave transit time
(PTT) [18]. The paper [19] considers the change in the
PTT parameter when using spinal anesthesia, and the re-
sults show that the PTT indicator quite accurately indi-
cates changes in the cardiovascular system. Since this pa-
rameter reflects the changes in the cardiovascular system,
it is also actively used to monitor blood pressure with ad-
ditional determination of rhythm parameters [20]. Con-
sidering the features of the PPG signal, some authors [21]
suggest using its additional features to determine blood
pressure, which increases the accuracy of its measure-
ments. Parameter PTT is measured as the time it takes for
a pressure pulse to travel from the peak of the ECG R-
wave to the peak systolic point of the PPG wave-
form [22]. The use of rhythm parameters in addition to
the PTT parameter when determining blood pressure
leads to an increase in the accuracy of its measure-
ments [23]. All studies have used the photoplethysmo-
gram and electrocardiogram signals to measure the PTT
values and obtain blood pressure [24, 25]. However, this
approach has a few disadvantages.

Problems of existing systems

First, the measurement of BP using only PTT pa-
rameter is valid only for a given patient. In this regard, it
is necessary to calibrate the blood pressure monitoring
system [26]. To eliminate the calibration process, various
methods are proposed, for example, the use of a mathe-
matical analysis and mathematical models of the PPG
signal with the physiological parameters of the patient
was proposed in the work [27]. Although this approach
has shown stable results, it requires a large amount of in-
put data on the physiological parameters of the patient.
The use of alternative data sources such as Pulse Wave
Signals (PWS) [28] instead of PTT did not solve the
problems with the system calibration. To eliminate the
calibration problem, researchers also use neural networks
[29] or linear regression models [30]. These systems are
flexible; one trained model can be used to determine
blood pressure for different patients without repeated
training procedures. However, the relationship between
blood pressure and PTT parameter is formed only based
on the laws of hemodynamics in elastic vessels and does
not consider changes in other parameters of the circula-
tory system.



38

Radioelectronic and Computer Systems, 2023, no. 2(106)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Second, the linear model of the relationship be-
tween BP and PTT [31] is valid only in a small range of
BP variations [32] that affect the accuracy of blood pres-
sure measurement. Other authors have shown a way to
determine blood pressure based only on the ECG sig-
nal [33]. It has also been proposed to use an evaluation of
blood pressure changes using vascular transit time [34]
or phonocardiogram [35] instead of an ECG for pressure
assessment [36, 37]. However, this also did not solve the
problem of system calibration and accuracy.

For its solving, machine learning methods were also
applied, using both ECG and PPG signals to calculate
blood pressure [38]. Neural networks are used in a variety
of tasks, such as: 1) signal [39, 40] and image pro-
cessing [41]; 2) predicting dynamic processes [42, 43]. In
particular, the authors in [44] demonstrated the relation-
ship between impedance plethysmography and photople-
thysmography to determine the PTT parameter. The use
of the PPG intensity factor, which can track low-fre-
quency changes in blood pressure, was proposed in [45].
The results showed that with the use of an additional pa-
rameter, the accuracy of blood pressure determination in-
creased. In addition, new features have been proposed,
such as ascending and descending slopes and peak inten-
sity ratios to increase the accuracy of blood pressure de-
termination [46]. An indirect relationship was deter-
mined using algorithms based on machine learning [47].
Such approaches require several data channels (e.g., ECG
and PPG); however, some studies have demonstrated
quite a high accuracy of blood pressure measurements us-
ing only one data channel [48, 49]. At the same time, it
has been shown in [50] that the combination of ECG and
PPG waves contains distinctive information that im-
proves the accuracy of BP determination; therefore, it
still seems appropriate to use two data channels to im-
prove the accuracy of the blood pressure estimation.

Note that the use of neural networks makes it possi-
ble to employ the developed systems for determining
blood pressure [51, 52] without using additional calibra-
tion procedures [53, 54]. Also, deep machine learning
methods are used, which allow the determination of
blood pressure without first detecting the parameters of
ECG and PPG signals [55, 56]. However, this approach
requires a large amount of data during training, which
limits its use in the presence of a few ECG and PPG sig-
nals [57, 58]. In the presence of pathologies such as ar-
rhythmias, it is also necessary to consider the ECG and
PPG signals containing these cases in the training dataset.
If such data are available, deep learning methods can ac-
curately calculate blood pressure [59].

To improve the accuracy of the determination, one
can use neural networks with memory, for example Long
Short-Term Memory (LSTM) [60] or Recurrent Neural
Network (RNN), which consider previous experience of
calculating blood pressure. The work [61] considered the

use of four neural networks for determining systolic, di-
astolic, and mean arterial pressure, the architecture of
these neural networks was multispherical. For prediction,
three key points in the PPG signal were used: systolic rise
duration, diastolic duration, and duration between sys-
tolic and diastolic peaks. The signal amplitude ratios at
three characteristic points and the time ratios between
these positions in the PPG signal were also used. As fre-
quency parameters, heart rate and respiration rate were
employed. The work [62] exclusively used the propaga-
tion time of a pulse wave between two points to deter-
mine the BP value through regression equations.
In [63, 64], was analyzed the possibility of using regres-
sion equations for these purposes, but this approach has
not allowed evaluating BP using the same regression
model for different people without preliminary calibra-
tion.

In [65], measurements of 24 signs of PPG and ECG
signals were used, which were then employed to deter-
mine blood pressure. However, the paper presents the
calculation of four main characteristic points of the PPG
signal and there are no signs associated with the ratios of
amplitude values or temporal values. The work [66] pro-
poses a new approach for predicting the arterial blood
pressure (ABP) signal based only on the PPG signal.

Authors of [67] have identified 15 main features of
the PPG-peak that have been used to determine blood
pressure, some of which contain information about heart
rate. In our previous work [63, 64], we considered two
separate Feed-Forward neural networks with 6 and 7 in-
put parameters of ECG and PPG signals to determine sys-
tolic blood pressure (SBP) and diastolic blood pressure
(DBP).

Objectives and novelty

Thus, the aim of this work is to develop one neural
network for determining systolic and diastolic blood
pressure based on features extracted from ECG and PPG
signals without a cuff and calibration procedure. The
novelty of this work is the discovery of five new key
points of the PPG signal, as well as the calculation of nine
new features of the ECG and PPG signals, which improve
the accuracy of blood pressure measurement. The object
of the study was the ECG and PPG signals recorded from
the patient's hand.

There are various methods for training neural net-
works, for example, using the enhanced sea predator al-
gorithm [68], so one of the tasks of this study will be to
choose the optimal training method.

1. Materials and methods of research

The main idea of continuous blood pressure assess-
ment based on the extraction of cumulative features from
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two data sources, namely ECG and PPG signals, is as fol-
lows: we use segmentation of data sources, denoising
based on linear filters, and extraction of a set of features
associated with BP. Then, we analyze the relationship be-
tween certain features and BP values and develop a neu-
ral network that employs the obtained features. The out-
put parameters are estimates of systolic and diastolic
blood pressure. To analyze the accuracy of these esti-
mates, evaluated and reference (obtained using occlusion
methods) blood pressure values are used to find the
standard deviation between these values.

1.1. Signal recording equipment

We developed a system for single-channel record-
ing of both ECG and PPG signals and used CardioSens
BP Holter monitor recorder [69] to obtain the blood pres-
sure reference values shown in Fig. 1 and Fig. 2. Demo-
graphic data of patients participating in the study are
shown in Table 1.

Fig. 1. One-channel ECG and PPG signal recorder

Fig. 2. CardioSens ECG + BP Holter monitor recorder

The developed system for recording ECG and PPG
signals has the following characteristics: a sampling rate
of 1000 Hz, 12-bit resolution, and the ability to transfer
data directly to a computer via Bluetooth or store these
data on a memory card. The reference BP recorder “Car-
dioSens ECG + BP Holter monitor recorder” is capable

of recording systolic and diastolic blood pressure values
determined by the occlusal cuff once per minute, data are
stored on a memory card or transmitted via Bluetooth.
This device achieves an accuracy of £2 mmHg [69].

Table 1
Demographic and BP characteristics

Characteristics

Mean £STD or values

Height (cm)

174.5+5.42 (163-186)

Weight (g)

83+7.30 (64-102)

Per-subject SBP average
(mmHg)

130.8+7.91 (111-154)

Per-subject DBP average
(mmHg)

81.97+5.43 (67-95)

Age of patients

22.5+11.61 (19-52)

Total number of observa-

fragments

. 312
tions
Average length of obser-
; . 40
vations (minutes)
Total number of signals’ 12480

Location of data collec-
tion

National Aerospace
University "KhAI"

Laboratory KhAI-Medica
Temperature in labora- 18-22
tory, °C

Body position Sitting
Information about health

and cardiovascular dis- N/A

eases of patients

The research was conducted in accordance with the
protocol approved by the Academic Council and the Eth-
ics Committee of the Kharkiv Medical Academy of Post-
graduate Education, No. 24.04.21, and was performed in
accordance with the principles of the Declaration of Hel-
sinki.

1.2. Data preparation

Signal processing begins with their segmentation
into intervals of one minute. This procedure is performed
because the BP Holter monitor recorder is used for about
one minute to inflate the cuff and measure blood pres-
sure. Often in signal preprocessing, preliminary signal
estimation and elimination of several interferences are
used [70, 71]. Locally adaptive filtering methods [72] and
methods of identifying the parameters of a linear object
in the presence of non-Gaussian noise [73] are also ac-
tively used, which can significantly suppress interference
in the considered signals. In this work, we did not con-
duct a preliminary assessment.

To train a neural network, 7480 segments of signals
were used (60 % of the total number of 12480). The rest
values have been used for verification. The values were
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divided into training and test samples in such a way that
the test sample contained segments of signals for people
who were not employed in training. For verification, we
used 5000 segments of signals (40 % of the total sample
of 12480).

1.3. Signal processing

An example of recorded signals with a duration of
15 seconds is presented in Fig. 3. For noise suppression
in ECG signals, we used a combination of linear filters: a
low-pass filter with a cutoff frequency of 98 Hz, a high-
pass filter with a cutoff frequency of 12 Hz, and a notch
filter in the frequency band of 48-52 Hz.

This selection is justified by our previous studies
performed for ECG signal processing in fetal electrocar-
diography [74, 75]. It has been shown from the results
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that the use of such a set of linear filters introduces min-
imal distortions into the shape of the R-peak and there-
fore does not change the position of the QRS complex
itself; however, at the same time, such processing is suf-
ficient to suppress various kinds of interference caused
by electrode movements, muscle contractions, and inter-
ference distortion [76].

For noise suppression in PPG signals, we used the
following combination of linear filters: a low-pass
filter with a cutoff frequency of 40 Hz and a notch filter
in the frequency band of 48-52 Hz.

It has been shown that such filter characteristics for
PPG signals can suppress interference caused by interfer-
ence noise and eliminate high-frequency contribution in-
terference contained in signals. The results of applying
the noise reduction procedure are shown in Fig. 4, which
demonstrates fragments of 15 s of ECG and PPG signals
after pre-filtering.
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Fig. 3. An example of the obtained recordings: ECG signal (upper plot)
and PPG signal (given below the ECG plot)
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Fig. 4. ECG and PPG signals after noise reduction procedure: ECG signal (upper plot)
and PPG signal (given below the ECG plot)
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1.4. Feature extraction
and preliminary analysis

As stated earlier, the PPT parameter is measured as
the time from the R-peak point of the ECG signal to the
peak systolic point of the PPG waveform, which is sche-
matically presented in Fig. 5. To determine the positions
of the R-peaks of the ECG signal and the peak systolic
points of the PPG signal, a modified Pan-Tompkins algo-
rithm was used. The threshold detector values are rede-
fined every 10 seconds, which makes it possible to accu-
rately determine peak positions [76]. The process of de-
termining the positions of R-peaks in the ECG signal is
shown in Fig. 6.

The PPG signal has several characteristic points that
can be determined by different algorithms. In [77], the

%10 R-peak of ECG

2
n
1

(o8]

th

0.5

Amplitude of PPG and ECG signals, pV

Peak systolic point of PPG waveform

authors used window threshold methods, but the Auto-
matic Multiscale-based Peak Detection (AMPD) method
[78, 79] demonstrated the possibility of determining the
characteristic points of the PPG signal with greater sta-
bility than the threshold detection technique. In [80], the
search for extrema (points of maxima and minima) of the
first, second, and third derivatives of the PPG signal was
applied. In our previous paper [63, 64] and in this study,
we used characteristic point detection using the PPG sig-
nal and its first derivative by looking for local minima
and maxima in the derivative and signal. This choice is
justified by the simplicity of the implementation of this
algorithm and the stable results of the search for charac-
teristic points in the PPG signal. Fig. 7 illustrates the pro-
cess of determining these positions in the PPG signal.

— Filtered ECG signal
e Filtered PPG signal

time, s
Fig. 5. Calculation of the PTT parameter as the time it takes for an impulse to travel from the R-peak point
of the ECG (upper plot) to the peak systolic point of the PPG (given below the ECG plot) signals

%10
‘—'-- Square of modulus of derivative of ECG signal

]
L]

Filtered ECG signal - Threshold - R-peaks position

| |
10 15 20 25
time, s
Fig. 6. R-peaks detection in ECG signal: Square of modulus of derivative of ECG signal (upper plot)
and ECG signal (given below plot)

Amplitude of derivative and ECG signals, pV
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Amplitude of derivative and PPG signals, pV

— PPG signal
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time, s
Fig. 7. PPG signal with characteristic points (upper plot) and first derivative of PPG signal
with characteristic points (given below the PPG signal plot)

First, local minima and maxima are determined in
the first derivative of the PPG signal, which makes it pos-
sible to detect five characteristic points of the PPG signal.
Further, due to the determination of local minima and
maxima of the PPG signal, the remaining characteristic
points are determined, which correspond to the begin-
ning, maximum, beginning of the second wave, and max-
imum of the second wave of the PPG-waveform. For ex-
ample, point “p7” is defined as a local minimum of the
PPG signal in the section between points “a4” and “a5”.
The search procedure is described in more detail in [63,
64]. After determining all the characteristic points for the
PPG signal segment lasting one min, the parameters of
these signals are calculated. We consider a set of param-
eters that can be conditionally divided into several groups
as follows: temporal and amplitude dependence of the
combination of PPG and ECG signals.

1.5. Determining parameters of ECG
and PPG signals

After finding all the characteristic points of the ECG
(see Fig. 7) and PPG (Fig. 8) signals, it becomes possible
to compute the parameters for this segment. We propose
to average the calculated parameters over an interval of
one signal segment lasting one minute, by sorting certain
parameters for each PPG peak (for all characteristic
points) from the minimum values to the maximum, then
removing 10 % of the minimum and maximum (first and
last) values parameters, after which the remaining ones
are averaged.

This procedure avoids the contribution of falsely
determined characteristic points, due to which the param-
eter estimates may be inaccurate. These procedures are
repeated for all signals segments. To analyze the degree

of connection existing between the calculated parameters
and blood pressure, we propose to evaluate the Pearson
correlation coefficient between the estimated parameters
and blood pressure values:

L Z(Xj,i_ij)(yj,i_yj)
_1 =
R= nz - (€

: \/Z(Xj,i =%)"Y
i=1 =

where n is the number of analyzed elements (number of
segments); X, ; denote average values of a considered

parameter and the corresponding reference values of
blood pressure; X;;,Y;;are reference values of an ana-

lyzed parameter and the reference values of blood pres-
sure obtained using an occlusive tonometer.

To determine the temporal characteristics of the
PPG and ECG signals, we computed the classical values
of the PTT parameter from the R-peak (see Fig. 6) of the
ECG signal to each characteristic point of the PPG signal
(see Fig. 7) obtained earlier. The definition of this pulse
transit time is schematically shown in Fig. 8.

The time series of RR intervals calculated for each
R-peak of the ECG signal can be written as follows:

RR@)=R(i+1)—R(i),i=12,...,n-1,  (2)

where RR(i) is the current value of the RR-interval;
R(i+1) is the time of the next R-peak; R(i) is the time of
the current R-peak; i are indices of all R-peaks of the
ECG signal, determined using the modified Pan-Tomp-
kins algorithm; n denotes the total number of R-peaks.
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Fig. 8. Finding of pulse transit time parameters for one RR-interval (upper plot) and one PPG signal peak

Since the authors of the papers [48, 49] considered
the possibility of using only one data channel, we suggest
first checking the possibility of computing blood pressure
using only one data channel. To do this, in the PPG sig-
nal, the characteristic point pl can be considered as the
R-peak of the ECG signal, and the computation of the
PTT parameters is carried out based on this characteristic
point as the moment of the impulse beginning. Fig. 9
shows the calculation of the time parameters inside the
PPG peak.

However, it should also be stressed that the higher
the heart rate, the more heart contractions occur in one
segment, which in turn also reduces the propagation time
of the pulse wave. Therefore, the analysis below is de-
voted to finding the correlation coefficients for the prod-
uct of the pulse transit time (see Fig. 9) and the duration
of the RR interval.

To determine the amplitude characteristics of the
waveform of the PPG signal, we use the product of the

% 10°

amplitude of the PPG signal at each characteristic point
by the amplitude of the PPG signal at point p3, which
characterizes the maximum value of the PPG of the peak.

1.6. Neural network design

We propose to use a Feedforward neural network
with one input layer of 17 neurons, three hidden layers of
64 neurons each, and one output layer of 2 neurons. The
number of neurons in the input layer is equal to the
number of analyzed parameters; the number of neurons
in the output layer is determined by the necessity to cal-
culate two output values: systolic and diastolic blood
pressure. The number of neurons in the hidden layers was
determined experimentally: by gradually increasing their
number, a neural network was obtained with a minimum
error in the output values. The sigmoid transfer function
was used as the transfer function in the input and hidden
layers:
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Fig. 9. Finding the pulse transit time parameters for one PPG signal peak
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1

f(x)= .
¢ 1-e7*%

®)

As the activation function of the output layer of the
neural network, the direct (or identical) function was cho-
sen:

f(x)=x. 4)

To investigate the accuracy of blood pressure deter-
mination, we obtained an estimate of the correlation (1)
between the calculated blood pressure values and the ref-
erence values, as well as additional parameters:

n
EBP _RBP
E(Xi =X )
1

mean = % , )

where xB  xRBP are the calculated and reference val-

ues of arterial pressure, respectively; n is the number of
signal segments participating in data processing.

n
Z‘XiRBP _XiEBP

MAE = % , (6)

n
Z(XFBP —x® _mean)
=)

SD =/ , 7
— O
LOA = mean +£1.96*SD , (8)
n 2
[Z(XEBP _X_RBP)]
1 1
RMSE = |[~= , 9)

n

Cl =1.34*mean + LoA.. (10)

As a training method, the Levenberg-Marquardt op-
timization function has been used, which updates the
neuron weights and bias values. This is the fastest back-
propagation algorithm. The mean squared error perfor-
mance function has been used as a criterion for the
accuracy of the results. It defines the mean squared error
between the computed output values of the neural net-
work and the desired reference values. Training is com-
pleted when the mean squared error reaches 0.01, in
which case the network is considered trained and ready
for use or testing. The weights were recalculated using
the gradient descent method to achieve the learning goal.

2. Results

The results of computation (1) for the pulse transit
time from the R-peak (see Fig. 6) of the ECG signal and
to each characteristic point of the PPG signal (see Fig. 7),
determined in all 12480 segments, are shown in Table 2.

Table 2
The correlation coefficient of the pulse transit time
and reference values of systolic and diastolic
blood pressure (SBP and DBP, respectively)

Parameters Correlation coefficient

SBP DBP
PTT1 -0.34 -0.17
PTT2 -0.27 -0.12
PTT3 -0.27 -0.01
PTT4 -0.03 0.18
PTT5 -0.39 -0.23
PTT6 -0.19 -0.12
PTT7 -0.1 0.07
PTTS -0.21 -0.06
PTT9 -0.31 -0.21

The results of computation (1) for the pulse transit
time from the first characteristic point of the PPG peak
and to each next point determined in all 12480 signal seg-
ments are shown in Table 3.

Table 3
The correlation coefficient of the pulse transit time
and reference values of blood pressure

Parameters Correlation coefficient
SBP DBP
T1 -0.18 -0.09
T2 -0.15 -0.003
T3 -0.01 -0.05
T4 -0.26 -0.3
T5 -0.2 -0.25
T6 -0.02 0.16
T7 -0.17 -0.03
T8 -0.27 -0.23

As can be seen from the results in Table 3, the mod-
ulus values of the correlation coefficients have decreased
compared to the corresponding values in Table 2. As de-
scribed in [50], the combined use of parameters extracted
from ECG and PPG signals gives greater accuracy in de-
termining blood pressure, as evidenced by the calculated
coefficients. However, it should be noted that the rela-
tionship between the parameters and blood pressure val-
ues remained the same: with an increase in the transit
time of the pulse wave, the values of arterial pressure tend
to decrease, and with a decrease in the transit time, they
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tend to increase. It can be concluded that high blood pres-
sure accelerates the propagation of the pulse wave along
the arterial vessel.

The results of computation (1) for the time ratio be-
tween the first characteristic point of the PPG signal and
each subsequent one (see Fig. 9) to the time of the RR
interval are shown in Table 4.

Table 4
The correlation coefficient of the product of the pulse
transit time and the duration of the RR-interval
and the reference values of blood pressure

45
T8/RR-interval, as well as amplitude ratios
PPG(p4)/PPG(p3), PPG(p5)/PPG(p3), PPG(p6)/

PPG(p3), PPG(p7)/PPG(p3), PPG(p8)/PPG(p3) as fea-
tures for determining blood pressure, since the modulo
values of these parameters have larger correlation values
with blood pressure values than other parameters.

Table 5
The correlation coefficients of the product of the value
of the PPG signal at each key point by the value
of the PPG signal at point p3 and reference values
of blood pressure

According to Table 4, the product of the pulse
transit time and the RR interval time has the highest de-
gree of correlation with blood pressure values. It has been
demonstrated in [81, 82] that the parameters of heart rate
variability and current heart rate can be used to measure
stroke volume and cardiac output, which also depend on
blood pressure.

The results of computation of the values (1) for the
ratio of the amplitude of the PPG signal at the time point
p3 to the amplitude of the PPG signal at each other char-
acteristic point of the PPG signal (see Fig. 9) are given in
Table 5.

Based on the results of assessing the degree of cor-
relation of the proposed parameters (see Tables 2-5) with
SBP and DBP, we have decided to use the values of the
parameters PTT1, PTT5, PTT9, T4, T1/RR-interval,
T2/RR-interval, T3/RR-interval, T4/RR-interval,
T5/RR-interval, T6/RR-interval, T7/RR-interval,

Input Layer

Hidden Layer

Parameters Correlation coefficient Parameters Correlation coefficient
SBP DBP SBP DBP
T1/RR 0.35 -0.47 PPG(p2)/PPG(p3) -0.28 -0.14
T2/RR 0.49 -0.57 PPG(p4)/PPG(p3) -0.36 0.41
T3/RR 0.43 -0.29 PPG(p5)/PPG(p3) -0.31 0.48
T4/RR 0.53 -0.67 PPG(p6)/PPG(p3) -0.31 0.52
T5/RR 0.57 -0.58 PPG(p7)/PPG(p3) -0.3 0.45
T6/RR 0.62 -0.54 PPG(p8)/PPG(p3) -0.16 0.34
T7/RR 0.61 -0.55
T8/RR 0.67 -0.51 The parameters were selected in such a way that

their modular values of the correlation coefficient for sys-
tolic or diastolic blood pressure were greater than 0.3.

Thus, 17 parameters will be further employed to
measure BP. A neural network was obtained, which is
shown in Fig. 10. As input arguments, the parameters
listed in Tables 2-5 are used, and as the desired values at
the output of the neural network, the blood pressure val-
ues obtained using the occlusive tonometer are em-
ployed. To achieve the results of the training procedure,
the neural network took 27953 training epochs.

Here P denotes the input parameters that are used to
calculate blood pressure; W1...5 define the weights or
coefficients by which the output values of the previous
layer are multiplied; bl...5 define the offset of the inputs;
the sign > denotes the adder; al...5 are the layer output
parameters.

Fig. 11 illustrates the accuracy of BP determination
by the proposed NN for finding systolic blood pressure.

Output Layer

17x1

u 1
2x1

(&7

@4

T
T

z=-2=1
x-2=T1

=@®4
=@
(1)

-1
T

1

x=2=1
x-
x

al = logsig(W1*P + bl) a2 = logsig(W2*al + b2)

a3 = logsig(W3*a2 + b3)

a4 = logsig(W4*a3 + bd) a5 = purelin(W5*ad + bS5)

Fig. 10. Structure of the designed FFNN with some details
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170 . blood pressure estimates obtained using an occlusive to-
RMSE = 3.01 R4 nometer. The calculated values are close to the regression
i Feamsa s onslanow =031 o line. Fig. 13-14 shows the average values and values of
o the difference between the calculated values of blood
%ﬂ st pressure and the reference values obtained from the oc-
£ clusive tonometer using the Bland-Altman plot for sys-
& e tolic and diastolic BP respectively. The results show that
4 140 95 % of the calculated data fall within the confidence in-
£ terval, and the mean error is close to zero, which indicates
g 130 a high degree of accuracy in calculating BP values.
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As can be seen from the results, the Pearson corre- e 20 ® SBP vale
lation coefficients are 0.9413 and the RMSEs are Positive confidence interval
3.01 mmHg for systolic BP. Fig. 12 illustrates the accu- -30 Negative confidence interval
racy of BP determination by the proposed neural network 0 Mean

for finding diastolic blood pressure. As can be seen from
the results, the Pearson correlation coefficients are
0.9434 and the RMSEs are 1.89 mmHg diastolic BP.
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Fig. 12. Estimation of the accuracy of determining
the BP for the proposed neural network model:
DBP correlation coefficient plot

These results show the high accuracy of blood pres-
sure estimation using the proposed neural network. It can
also be seen that blood pressure estimates calculated us-
ing the developed NN have a linear relationship with

115 120 125 130 135 140 145 150 155
Average SBP, mmHg

Fig. 13. Estimation of the accuracy of determining
the BP of the proposed neural network model:
SBP Bland-Altman plot (mean = 0.1193)
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Fig. 14. Estimation of the accuracy of determining
the BP of the proposed neural network model:
DBP Bland-Altman plot (mean = 0.057)

Fig. 15-16 also shows error distribution histograms,
from which most of the errors are in the range of
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5 mmHg, which confirms the high accuracy of BP calcu-
lation by the proposed NN plot for systolic and diastolic
BP respectively. A comparative analysis of the results
with data obtained from other researchers is given in
Table 6.

400 w
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(=]
(=]

—

L

<
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SBP Error, mmHg

20 30

Fig. 15. SBP error distribution histogram

To evaluate the results obtained, the accuracy of the
developed NN can also be carried out according to inter-
national standards AAMI and BHS. According to the
AAMI standard, 85 subjects must be used for the test, and
312 were used in our study. ME values must be lower
than 5 mmHg - 0.1193 mmHg and 0.057 mmHg were ob-
tained for systolic and diastolic BP, respectively. Stand-
ard deviation (7) should be within 8 mmHg; in our case,
deviations equal to 3.008 mmHg and 1.8998 mmHg were
obtained for systolic and diastolic blood pressure, respec-
tively. These results show that the accuracy of the de-
signed system satisfies the AAMI standard. The cumula-
tive percentage of errors in SBP is 93.72, 99.28, and
99.48 %, respectively, and for DBP - 97.64, 99.53, and
99.8 %, respectively, which is higher than the BHS class
A standard of 60, 85 and 95 % of cumulative percentage.
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Fig. 16. DBP error distribution histogram

3. Discussion

The presented results show that the designed FFNN
can provide a high accuracy of BP estimation in the sta-
tistical sense. Meanwhile, it follows from Figures 13 and
14 that certain random outliers might be present in the
data (although they happen to rather small probability).
We have not rejected them in the process of estimation of
the mean and standard deviation. Meanwhile, we plan to
conduct a special study to understand the reasons for such
estimates. We hope that this can further improve the ac-
curacy of our approach. Also, in definition (2), the value
of the position of the next R-peak is used to calculate the
RR-interval, which is still unknown for the current PPG-
peak, due to which the calculation may be difficult in real
time. It is difficult to fairly compare our results concern-
ing estimation accuracy to the corresponding results in
the papers [29-33] because of the different numbers of
records analyzed, use of different databases. Meanwhile,
MAE+-SD in these papers varies from 4.04+5.81 mmHg
in [49] till 11.17£10.09 mmHg in [30] for the systolic BP
and from 2.29+3.39 mmHg in [49] till 5.35+6.14 mmHg
in [30]

Table 6
Comparative analysis with other works
Work Subjects Number of models SBP (MAE£SD), DBP (MAE+SD),
mmHg mmHg

Rong et al., [29] 11546 samples 2 5.594+7.25 3.36+4.48
Kachuee et al., [30] 942 subjects 2 11.17£10.09 5.35+6.14
Gaurav et al., [31] 3000 subjects 2 4.47+6.85 3.21+4.72
Li et al.,[53] 1 6.726+14.505 2.51+6.442
Malayeri et al.,[52] 21334 samples 1 4.04+5.81 2.2943.39
Early our work [64] 5046 samples 2 3.59+4.37 2.92+3.7

This work 12480 samples 1 1.72+3.008 1.101£1.9
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for the diastolic BP. Analysis shows that we have pro-
vided smaller MAE and SD values in all cases. All cal-
culations were performed not on open databases, but on
a private database, which is why it is also impossible to
say precisely about the stability of this method, it is nec-
essary to conduct experimental studies on open databases
in the future for the possibility of comparing the results
with other works.

Conclusions

In this paper, we propose a new method for contin-
uous non-invasive and cuffless measurement (monitor-
ing) of blood pressure based on the parameters of two
signals: ECG and PPG. Features of signal segments are
extracted by detecting R-peaks of the ECG by the modi-
fied Pan-Tompkins algorithm, as well as by detecting
characteristic points of the PPG signal. Next, the in-
formative parameters were calculated. Correlation analy-
sis of these parameters made it possible to identify fea-
tures having the maximum modular value of the correla-
tion coefficients with the reference values of blood pres-
sure obtained using the standard occlusive method. For
all signal segments, features were extracted and aver-
aged, which were later used to train and test the neural
network. The designed neural network is Feedforward
neural network. The total number of neurons in this net-
work is 211, which is almost 4 times less compared to our
previous works [60-61]. In addition, unlike the previous
work, we developed a neural network to measure both
systolic and diastolic blood pressure simultaneously. At
the same time, the results of testing the developed neural
network demonstrated the following performance char-
acteristics: MAE+£SD = 1.72£3.008 mmHg and
1.101+1.9 mmHg for systolic and diastolic BP, respec-
tively; RMSE = 3.01 mmHg and 1.896 mmHg for sys-
tolic and diastolic BP, respectively; Pearson's correlation
coefficients between calculated and reference BP values
are 94 % and 94 % for systolic and diastolic BP, respec-
tively. 93.72 and 97.64 % of the obtained BP estimates
using the developed neural network have a deviation
within £5 mmHg. These indicators correspond to the
AAMI standard and the “A” grade in the BHS standard,
which proves the high accuracy of BP assessment by the
proposed approach. Comparison to other known methods
was performed, which confirmed the advantages of the
proposed approach.

Our further research will include the following
steps: 1) application of non-linear filters to suppress in-
terference in ECG and PPG signals, such as wavelet-
based or Kalman filters; 2) application of convolutional
neural networks to determine blood pressure, which
should increase the accuracy of the proposed method of
determining blood pressure; 3) use of interpolation and

normalization methods to the PPG signal to eliminate er-
rors due to differences in the amplitude parameters of the
signal from person to person.
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BE3IIEPEPBHE BUMIPIOBAHHS1 APTEPIAJIBHOI'O TUCKY BE3 MAHKETH
3A 1O0ITIOMOTI OO MPSIMOI HEMPOHHOI MEPEXKI

Onez B’ronuyvkuit, Bonooumup Jlykin, Onexcandp Toyvkuii,
Bauecnas Illynvein, Haoia Koosicemaxina

Bucoxwii kpoB'stauit THCK (AT) abo rinepToHis € HaA3BUYAWHO MTOITUPEHNM i HEOS3METHIM CTaHOM, SIKUM CTpa-
knae noHax 18-27 % HaceneHHs cBiTy. BiH € nmpuunHOIO Oaratb0X CepleBO-CyJHMHHHX 3aXBOPIOBaHb, SIKi MIOPIYHO
BOMBaIOTh 7,6 MINBHOHIB JrO/IeH Y BcbOMY CBiTi. HaliTouHimmM cnocoOoM BUSBIEHHS apTepianbHOI TimepTeHsii €
aMOyIaTOpHE CIIOCTEPEKECHHS 32 apTepialIbHAM THCKOM TPHBAICTIO 1O 24 TOAWH 1 HaBiTh OumbIe. TpaauiiiHnMu
HeiHBa3iHHIMH MeTogaMu BUMipioBaHHA AT € oCMIIOMETpHYHUM 1 ayCKyTbTaTUBHUI, BOHH BUKOPHUCTOBYIOTH OKJTFO-
31fiHYy MamXKeTYy SIK [DKepesIo 30BHIMHBOrO0 TUCKY. Ha xaib, BuMiproBaHHs AT 3a TOTTIOMOTOF0 MaH)KETH CTBOPIOE TIEBHI
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HE3PYYHOCTI IS MAllieHTa i MOXKe OyTH HETOYHUM uepe3 HeNmpaBUIbHE PO3MIMIEHHS] MaH)KeTH. Y 3B 513Ky 3 mpoOire-
MaMH BUKOPHCTaHHS MaHXETHHX METO/IIB BUHUKJIA HEOOXIAHICTh y po3po0ili 6e3MaHKETHUX METO/IiB BUMiPIOBAHHS
apTepiaIbHOTO THCKY, SIKi 0a3yIOThCS Ha 3B’SI3KY apTepialbHOTO TUCKY 3 PI3HUMHU MPOSIBAMU CEPLIEBO JIiSUTBHOCTI Ta
TeMOJIMHAMIKH, SIKi MOXXHA PEECTPYBaTH Ta BUMIpIOBAaTH HEiHBa3iiHO, 03 3aCTOCYBaHHS KOMIIPECIHHOI MaHXeTH i
MIPOCTHMHU TEXHIYHUMH 3ac00aMU. 3a OCTaHHE JECATWIIITTA 3’ IBIIOCS Oarato ImyOJiKalliif, MpUCBsYSHNX OMLIHII ap-
TepiaNbHOTO THCKY Ha OCHOBI MIBHAKOCTI mysbcoBoi xBuii (LLITTX) abo gacy npoxomkeHHs mynbcoBoi X (UI1X).
OnHak 1e# miaxin Mae Kinbka Hefouiki. [To-nepiue, BumiproBanus AT 3a nonomoroto numnie mapamerpa YITX niiicue
JIMIIe JUIst onHoro nauienta. [lo-npyre, ninifiHa Moaens 3B's3ky Mixk AT 1 UITX niicHa nuiie B HEBETMKOMY Jiana3oHi
Bapiauiit AT. /lns BupinieHHs i€l mpoOieMy BUKOPUCTOBYBAIMCS HEMPOHHI Mepexki abo Mozieni JiHIHHOI perpecii.
OCHOBHOIO TPOOJIEMOIO TAKOT'O MiIXOAY € TOYHICTh BUMIPIOBaHHS apTepiaibHOTO THCKY. JlaHe mMociikeHHs cripsi-
MOBaHe Ha CTBOpEHHI oxHiel mpsmoi HeriporHoi Mepexi (ITHH) aist BU3Ha4YeHHS CHCTOJIIYHOTO Ta AIaCTONIYHOTO
apTepiaTbHOTO TUCKY Ha OCHOBI XapaKTEPHCTHK, OTPUMAHUX 13 curHamiiB enekTpokapaiorpadii (EKI) i poromnerns-
Morpadii (PIII") Oe3 BUKOpHUCTaHHS MaHXETH Ta Mpoleaypy KaimiOpyBanHs. HoBu3Ha poboTH monsarae y BiIKpUTTI
II'ATH HOBHX KJIFOUOBHX TOYOK curHany DIII, a Takok oOYMCIIEHHI IeB'ATH HOBUX ocobmuBocteil curnamiB EKT i
OIIT", sixi migBUINYOTH TOUHICTh BuUMiptoBaHHS AT. O6’exktoMm mociimkenns € curHanu EKIT ta ®IIT, 3amucani 3
pyKHu marienta. MeToro TOCIiKEeHHS € OTPUMAaHHS CUCTONIYHOro Ta miactonigyHoro AT Ha ocHori [THH, Bximaumu
aprymMeHTamu sikoi € napamerpu curaanis EKI ta ®I1I". JletaibHO OMUCAHO AITOPUTMH OLIHKY MMapaMeTPiB CUTHAITY,
3aCHOBaHi Ha BU3HA4YEHHI XapakTepHux Touok y curnani OIII', monoxenus R-nikiB y curnani EKT, a rakox mapame-
TpiB, PO3PAaXOBAHUX i3 CITIBBIHOIIEHHS YaCOBUX ITapaMeTpiB 1 BIIHOIIEHb aMILTITY/] UX CUTHANIB. BusHaueHo koe-
¢imientn xopensuii [lipcona s nux nmapamerpis i AT, mo fonomarae BUOpaTy Hadip CUTHANBHUX MTApaMeTpiB, HiH-
Hux uist ominkd AT. OTprMaHi pe3ysibTaTh MOKa3yoTh, 0 cepeaHs adCoNoTHa TOXMOKa + CTaHapTHE BiAXHICHHS
JUTs ccTOTiuHOro Ta miactomiuHoro AT gopisaioe 1,72+3,008 mm.pr.cT. Ta 1,101+1,9 MM.pT.CT. BiANOBIIHO; Koedi-
LIEHTH KOPEJALIiT st po3paxyHKoBoro Ta ictuaHoro AT nopiBHiotoTh 0,94. BucHoBku. Mogenb BiNOBia€e cTana-
pry AAMI Ta omiHi «A» 3a crannaptom BHS, 1o cBiguuTe npo BUCOKY TouHICTH ouiHkK AT 3a 3anponoHOBaHUM
migxonoM. [IpoBeneHO MOPIBHAHHS 3 IHIIMMH BIJOMHMH METOIAMH, IO MiATBEPIHIO MEPEBaru 3amponoOHOBAaHOIO
miaxomdy.

KuiouoBi ciioBa: aprepianbHuii THCK; enekTpokapaiorpadis; ¢ororernamorpadis; HepoHHa Mepexa; Hei-
POHHa MeperKa MPSIMOro 3B'SI3KY.
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