166

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

UDC 004.633

doi: 10.32620/reks.2023.1.14

Maksym BOIKO!?, Viacheslav MOSKALENKOQO?!3

1 Sumy State University, Sumy, Ukraine

2 The National Anti-corruption Bureau of Ukraine, Kyiv, Ukraine
% National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

SYNTACTICAL METHOD
FOR RECONSTRUCTING HIGHLY FRAGMENTED OOXML FILES

A common task in computer forensics is to recover files that lack file system metadata. In the case of searching
for file fragments in unallocated space, file carving is the most often used method, which is ideal for unfrag-
mented data. However, such methods and the tools based on them are ineffective for recovering OOXML files
with a high fragmentation level. These methods do not provide reliable determination of the correct order of
fragments. Techniques for reconstructing documents based on the analysis of words and phrases are also inef-
fective in fragmented OOXML documents. The main reason is that OOXML files are ZIP archives and, as a
result, store data on disk space in a compressed form. This paper proposes a syntactical method for reconstruct-
ing OOXML documents based on knowledge about the internal structure of this file type, regardless of their
content. The details of the implementation of the reconstruction algorithm and the peculiarities of restoring
certain types of local elements of the document were considered. The efficiency of the algorithm was tested on
the Govdocsl and NapierOne datasets. The proposed method was applied to 4096-byte data blocks, which cor-
respond to the standard cluster size in different file systems. The experimental results confirmed the method's
suitability for practical use with 82.97 % of recovered files, including 34.38 % reconstructed completely, 0.43 %
excluding the last 21 bytes at most, and another 48.16 % excluding embeddings that require other approaches.
In the latter case, obtaining a fully working document without displaying graphic images and other contents of
different embeddings is possible. The presence in OOXML files of CRC-32 hashes of the uncompressed data
stream of each local element allows us to confirm the correctness of information recovery and its integrity un-
ambiguously. Simultaneously, the method's effectiveness depends mainly on data verification methods during the
reconstruction of local elements that occupy at least three clusters in the file. Therefore, this method is supposed
to be improved by developing new mechanisms for verifying XML elements.

Keywords: digital forensics; data recovery; file carving; syntactical file carving; fragmentation; file reconstruc-

tion; Office Open XML; OOXML; DOCX file; ZIP archive; DEFLATE compression.

1. Introduction

1.1 Motivation of research

When investigating economic crimes, computer fo-
rensic experts often face the issue of searching for and
further examining electronic documents and their draft
versions, the circumstances, and chronology of their cre-
ation, etc. Only one workstation of an office worker can
have tens of thousands of available text files, one of the
most common types of which are OOXML documents.
The amount and nature of the deleted information depend
on the features and procedure of the user's actions when
working with data, operating system parameters, and the
type of storage medium used, etc. As a rule, the most sig-
nificant difficulties occur when searching for deleted
files without file system metadata associated with the
data blocks being analyzed.

There are many available data recovery tech-
niques [2 — 4]. The most common and straightforward of

the existing methods is searching for signatures of files’
beginning and end. This method can be classified as gen-
eral since it identifies a wide range of complex file types,
including OOXML documents. However, many difficul-
ties occur when working with fragmented data using this
method.

Along with partially overwritten and/or damaged
data, the most problematic situations occur when data
blocks are out-of-order fragmented. Some studies [5] es-
timate the possible level of fragmentation of Microsoft
Office text documents in NTFS file systems on work-
stations running Windows operating systems. Therefore,
approximately 51 % of the DOCX files were split into
three or more fragments. Simultaneously, 72 % of these
documents had data blocks located on the disk space in a
non-sequential order.

The techniques used in such circumstances are gen-
erally reduced to two separate tasks: identifying data
blocks by type and further reconstruction based on the
file content and/or its internal structure.

© Maksym Boiko, Viacheslav Moskalenko, 2023

Specialized systems of data processing

167

Although OOXML documents contain textual in-
formation, they are de facto ZIP archives. Therefore, an-
alyzing the text in raw data blocks is impossible without
preliminary processing. As a result, context-based statis-
tical models [6 — 9], or their modifications are not very
applicable when reconstructing files of this type.

On the other hand, even small damage up to
4096 bytes in the middle of a compressed bitstream led
to at least an inaccurate reconstruction of the original
texts [10]. As a result, incorrect and/or incomplete reas-
sembly of OOXML file fragments into a single whole
leads to partial and, in the worst cases, completes loss of
access to the contents of the recovered document.

1.2. State of the Art

Researchers [11, 12] consider the problem of
searching uncompressed data fragments containing the
texts of DOCX documents in RAM. Thus, a memory
dump was studied in [11], where the search was per-
formed using keywords obtained from the previously un-
zipped internal contents of the OOXML file. The results
of the experiments depended on the user's actions with
the files. In the best case, extracting about 20.18 % of
blocks with text data was possible. In [12], available parts
of DOCX files were found by searching tags between
which this data can be placed in the "document.xml" ele-
ment. This method retrieved an average of 40.4 % of the
textual content of documents.

In contrast to previous studies, the study [13] was
conducted with compressed data using limited infor-
mation about the internal structure of the OOXML pack-
age. Here, the authors searched for clusters containing the
beginning of the "document.xml" element and then ap-
plied unsupervised learning techniques. On average, they
achieved 54.35 % to 90.54 % of recovered documents for
different input data. However, it seems that in this work,
the authors did not consider the case of fragmenting data
and limited themselves to the first part of the "docu-
ment.xml" element without searching for other data
blocks.

Some researchers [14] have developed docs’ text
recognition software that can work with corrupt the pic-
tured texts. However, the proposed methodology does
not solve the problem of recovering compressed text
data.

The general concept of document reconstruction is
presented in [9]. However, despite the prospects of re-
covering full texts and obtaining a wide range of other
forensically important data, the issue of OOXML file re-
construction is not sufficiently studied. Existing works
mostly ignore it. This is primarily because on disk space,
an OOXML document can look like a set of fragments
related to different types of data, primarily media files.
As arule, they are already compressed and stored in their

formats, such as JPEG [15], GIF [16, 17], and BMP [18]
and their different modifications [19, 20].

However, it is worth noting that works in related
fields are devoted to a syntactical approach to analyzing
file fragments [8, 21, 25]. This approach can be used to
analyze the content of a specific object by using
knowledge about its internal structure. An example of
this approach is the reconstruction of JPEG, JPG, PNG,
BMP graphic files [8, 21, 22, 23, 24, 25, 26], SQLite da-
tabases [27], DOC files [28], other graphics [29, 30], and
text data [8, 31], etc.

Thus, using information about the internal structure
and content of OOXML files for their reconstruction is a
promising but little-studied approach.

1.3. The purpose and tasks of research

The study develops a syntactical method for recon-
structing OOXML documents based on knowledge about
the internal structure of ZIP archives, the internal struc-
ture of XML elements of the Microsoft Office package,
and the features of the Deflate compression algorithm.
This paper does not consider the recovery of embedded
data in OOXML documents (for example, graphic im-
ages).

To achieve this goal, we must solve the following
tasks:

- identify the key elements of the OOXML package
as a ZIP archive to specify its fragments;

- develop a syntactical method for restoring an
OOXML document without considering embeddings;

- analyze the effectiveness of the developed method
on publicly available datasets.

The main contribution of the researched method is
an approach to recovering highly fragmented OOXML
files from unallocated space and RAM. Also, this method
allows to achieve access to the partial texts of damaged
OOXML documents, their internal metadata, etc.

Structurally, the paper consists of the following sec-
tions. An analysis of the OOXML file structure and a de-
scription of the syntactical method for reconstruction are
presented in Section 2. Section 3 describes the datasets
used to evaluate the method’s effectiveness and provides
the analysis. Section 4 contains a discussion of the ob-
tained results. The last section provides the conclusions
of the paper and directions for future research.

2. Syntactical method
for reconstructing OOXML files

2.1. Analysis of OOXML files structure

Since the 90s, the main format of Microsoft Office
has become binary files with the standard extensions
*.doc, *.xls, *.ppt. However, starting with Microsoft
Office 2007, XML-based files — Office Open XML

168

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

documents — began to be used by default [32]. The last
ones had the standard extensions *.docx, *.xlIsx, *.pptx.

In 2006, the Ecma International — European associ-
ation for standardizing information and communication
systems — adopted the OOXML files format as the Ecma-
376 standard. In 2008, the specification was approved by
the International Organization for Standardization and
the International Electrotechnical Commission as
ISO/IEC:29500.

Office Open XML documents are a regular ZIP ar-
chive that consists of a number of related elements. Such
a ZIP archive is also called a package. It has a similar
structure to Microsoft Office documents, spreadsheets,
and presentations that differs in that the majority of their
content is stored in XML elements of various structures
in directories named "word", "xI", and "ppt", respec-
tively. In the following, we will use examples based on
Microsoft Word documents.

Fig. 1 shows the typical internal structure of a
DOCX file, where [32]:

- "[Content_Types].xml" file — a content-type item
that describes the content stored in the package elements,
including media type, subtype, and other optional param-
eters;

- other XML files — elements that contain different
parts of the document, such as main document story,
properties, headers, footers, comments, metadata, etc.
From the forensic viewpoint, a brief description of the
most important elements of the OOXML package is
given in Table 1;

- RELS files — package-relationship ZIP items that
indicate the types of relationship between the initial and
final parts of the package. These items do not affect the
content of other elements.

----- [Content_Types].xml

----- Jo _rels

e rels

----- . docProps
app.xml
core, xml
-----)i word
_rels
theme

document, xml
fontTable. xml
settings. xml

styles, xml

webSettings. xml

Fig. 1. Typical contents of a DOCX package

Simultaneously, each above elemen has its own
clearly defined standard structure [32] and contains in-

formation that may be important in resolving issues oc-
curring in computer forensics [33, 34].

Table 1
Descriptions of some XML elements

Title Description

Extended file metadata such as total

app.xml editing time, hyperlinks, the number
of pages, words, characters, etc.
Basic file metadata such as the name
of the document's author, the

core.xml username who last modified it; con-

tent created, last modified, and last
printed timestamps, etc.

document.xml | Main content of the document

Information about each comment, its

comments.xm| author, date and time of its creation
Contact information for each person
people.xml who authored at least one comment
or revision in the document
All document properties, including
settings.xml those that allow establishing links

between different versions of files

2.2. Analysis of the structure
of OOXML files as ZIP archives

The ZIP file format was introduced in 1989 by
PKWARE. Details of the specification and a general de-
scription of the internal structure of this file type are pro-
vided by the developer in the form of application notes
[35], which are periodically updated.

From the viewpoint of the internal structure of an
OOXML document as a ZIP archive [32], it starts with a
sequence of local file headers and file data. Each element
of the archive has its header with its metadata. In some
cases, descriptors may follow the file data. There are rec-
ords of the central directory at the end of the archive file.
They contain a copy of the metadata for each local ele-
ment and its location, etc. All of this is summarized by
the last record, which contains metadata of the central di-
rectory and information about its location. A simplified
structure of a ZIP archive is shown in Fig. 2.

Local file header 1

File data 1

Data descriptor 1 (optionally)
Local file header 2

File data 2

Data descriptor 2 (optionally)

S 3¢ 3 sk 3 se sk s s sk sk sk sie e sk ke i e sie sk e s sl i e s sl e e sk s sk sk sl sk sk sk
Last local file header

Last file data

Last data descriptor (optionally)
Central directory header 1

Central directory header 2
3¢ 3¢ 3l 3k 2 se 3o s o s s sk e s sk ke i se s ke s s sl e e sk ke ke e sk sk sk s sk sk sk

Last central directory header
End of central directory record

Fig. 2. The structure of a ZIP file

Specialized systems of data processing

169

Additionally, each mentioned above element of the
archive has its own signature [35]:

- local file header - 0x504b0304;

- central directory header - 0x504b0102;

- end of the central directory - 0x504b0506;

- descriptor - 0x504b0708.

2.3. Deflate compression method

Local elements of an OOXML file can be stored in
an archive with or without compression [32]. As a rule,
PNG, JPG, JPEG, GIF, TIFF files, XLSX tables, PPTX
presentations, and other media data remain uncom-
pressed. Simultaneously, XML, RELS elements, and em-
beddings in the form of BIN, EMF, WMF, PPT, DOC,
XLS, DTTF, and DOCX files are stored in a compressed
state.

Deflate is a typical compression method used in
OOXML documents [32, 36]. One of the main features
of this algorithm in the context of this work is the ability
to restore part of the compressed data before the point of
stream corruption [37].

2.4. Proposed reconstruction method

The proposed method is based on the use of
knowledge about the internal structure of OOXML files,
in particular:

- the internal structure of ZIP archives — to deter-
mine the locations of key clusters of an OOXML docu-
ment and verify data. Every local element has a unique
signature, detailed information on its exact location from
the beginning of the file, and other metadata. Mentioned
data are contained in the central directory, whose records,
in turn, have their own signature and occupy the last clus-
ters of the file;

- features of the deflate compression algorithm —to
find the potential next cluster in the chain. Such clusters
can be detected by appending their data to the end of the
damaged compressed stream and the absence of errors
during the subsequent decompressing of the resulting
fragment;

- the internal structure of individual XML elements
of the OOXML package — to filter out false positives.
This is possible by comparing the decompressed stream
with the typical structure of these elements.

The algorithm for reconstructing OOXML files
consists of the following steps:

1. Search for clusters containing the central direc-
tory data and local headers.

2. Determining the correct location of the detected
clusters.

3. Sequential iterative — by searching the cluster by
cluster — determination of the location of other data
blocks with their verification.

1) At the first stage, all clusters are actually divided
into three groups, for which:

- searching for clusters containing signatures of cen-
tral directory headers and its end — 0x504b0102 and
0x504b0506, respectively. These clusters are the last
clusters of the file and contain detailed information about
the location of local elements;

- searching for clusters containing signatures of lo-
cal file headers — 0x504b0304. These clusters contain
comprehensive information about each local element and
the initial part of the compressed data.

2) At the next stage is to place the clusters with the
central directory records in the correct order; for this pur-
pose is to find the first record of the central directory in
each detected cluster and to determine the relative offset
of the local header in its offsets 42-45. Subsequently, the
clusters are arranged in an ascending order of the de-
tected indicators.

If the central directory is correctly restored, in the
vast majority of cases, the first entry will contain data on
the "[Content_Types].xml" element with an offset value
of 0x00000000. All other elements will have succes-
sively increasing local offsets. Simultaneously, there may
be extreme cases when the headers of the first central di-
rectory entry and/or its end (footer) are divided between
clusters. These missing clusters can be found separately
in this situation, but this is uncritical for file reconstruc-
tion.

Fig. 3 shows an example of a central directory,
where its first entry and end are highlighted in red, and
consistently increasing offsets of local headers and the
central directory itself relative to the beginning of the file
are highlighted in blue. The latter values are stored in Lit-
tle-Endian byte order.

After reconstructing the central directory, it is nec-
essary to analyze its entries and determine the sequence
of local elements, their names, information about their
compression type, compressed data sizes, CRC-32
hashes, the offset of the local element header relative to
the beginning of the file, etc. After that, based on the off-
sets of local file headers, it is necessary to determine the
location of each cluster where the local elements begin
(Fig. 4) and set all unfilled cluster chains — their begin-
ning, length, and end (Fig. 5).

3) In the third stage, the local elements of large
sizes, namely their compressed data, are reconstructed
separately one by one. For example, Fig. 6 shows a struc-
ture of the local header, additional field, and compressed
content of a typical first element of an OOXML docu-
ment named "[Content_Types].xml".

Depending on the number of unknown clusters, two
similar algorithms are used separately for each local ele-
ment, differing only at the data validation phase.

170 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)
Relative Offset of Local Header
Offset(h) 00 Ol 02 03 04 05 06 07 02 0% OA OB OC ODJPE OF Decoded text
0O00ETFO 16 OR A7 BO FC 64 2A 5D BA B7 79 42 31 E0|p5 C3 ..§°sd*KE-yBla.T
0000ES00 DF AL AS A 09 BA 6B F5 D3 7F DD 03 00 0f JF FF fA€8h.ckxY.3...a8
0000E810 03 0050 25 01 02 2D 00 12 00 06 00 0B OOLP0 00] - .PRuumeeevenn..
0000Es20 [21700 00 25 36 am g g €3 07 00 00f1s cof r...eNa...c.....
0000ES30 |00 00 00 00 00 00 oo oo [BC_00 00 _o¢
000OE840 |SB 43 6F 6E 74 65 6E 74 5F 54 79 70 65 73 5D 2E| [Content Types]
0000E8s0 |78 ep ecfs0 4B 01 02 2D 00 12 00 06 00 05 00 00 XMIPK..—........
0000ES60 00 21 00 1E 91 1A BT EF 00 00 00 4E 02 00 00 OB .!..'.-;m...N....
0000EST0 00 00 00 00 00 00 00 00 00 00 00 00 00[D2 03 00 wvveeueenenn. V.
O00CE880 00| 5F 72 65 6C 73 2F 2E 72 €5 6C 73 50 4B 0l 02 . rels/.relsPK.
0000ES8S0 2D 00 14 00 06 00 08 00 00 00 21 00 78 D5 BA 52 —......... o xxe,
o Central Directory o e
0000ED20 70 2E 78 6D 6C 50 4B 0L 02 2D 00 14 00 06 00 0% p.xmlPK..—......
0000ED30 00 00 00 21 00 74 3F 33 7& C2 00 00 00 28 01 00 ...!. £292B. .. (
O000ED40 00 1E 00 00 00 00 o e, 00 00 00 00 0B -ieiiiiiin
OO0OEDSO0 EE 00 00| 63 75 73 €D €C 2F 5F 72 65 =..customXml/ re
Q000EDED 6C 73 2F 69 74 65 6D 38 2E 78 6D 6C 2E 72 65 6C ls/iteml.xml.rel
0000EDTO 0€ 00 00 00 00 15 00 15 00 SE 05 00] SPH...oun.o... B
0000EDED 00 .

Offset of start of central directory

Fig. 3 Example of a central directory for a DOCX document

Compression type Offset Cluster File name
@ Deflated - Bxe Q b’ [Content_Types].xml’
1 Deflated - Bx3d3 2] b'_rels/.rels’
2 Deflated - Bx6f3 2] b'word/document . xml’
3 Deflated - Bxddch 4 b'word/_rels/document.xml.rels’
4 Deflated - Bx5816 5 b'word/footnotes.xml’
S Deflated - @x5be2 5 b'word/endnotes.xml’
6 HNo compression - BxSdee 5 b'word/media/imagel.png’
7 HNo compression - Bx7311 7 b'word/media/image2.png’
8 No compression - Bx813d 8 b'word/media/image3.png’
9 No compression - Oxaddl 18 b'word/media/imaged.png’
108 Deflated - Bxabfc 1@ b 'word/theme/themel. xml "
11 Deflated - Bxb27e 11 b'word/settings.xml’
12 Deflated - Bxc247 12 b'customXml/iteml. xml"
13 Deflated - Bxc367 12 b'custom¥ml/itemPropsl.xml”
14 Deflated - Bxcda? 12 b'word/numbering.xml"
15 Deflated - Bxcbs1 12 b'word/styles.xml’
16 Deflated - Bxdada 13 b'word/webSettings.xml’
17 Deflated - Bxdels 13 b‘word/fontTable.xml’
18 Deflated - Bxepd3 14 b'docProps/core.xml’
19 Deflated - Bxeled 14 b'docProps/app.xml”
28 Deflated - Bxetec 14 b'customXml/_rels/iteml.xml.rels’

Fig. 4 Information about the initial clusters of local elements

‘

-2
~d
-

Fig. 5 The top row shows the clusters divided into three groups based on the results of the first stage (blue indicates
clusters with local headers, orange - with records of the central directory, and white - clusters whose location needs
to be determined); the bottom row shows their locations based on the results of the second stage

Specialized systems of data processing 171
Compressed Size Extra Field Length
offset(h) 00 01 02 03|04 05 06 0T 08 09 OL OB ocjlon OE OF Decoded text
00000000 00 06 00 08 00 00 OO0 S| PE....ii.o.. LI
00000010 on 0. oo ool 3 Header 13 23] EBME...Cuuvevens [C
00000020 |6F €E 74 €5 6E 74 S5F 54 79 70 65 73 5D 2E 78 €D| ontent Types].xm
00000030 |6CJ20 A2 04 02 28 AO 00 02 00 00 00 00 00 00 00 L %..(«vuvennnn.
00000040 [o0 00 00 00 C Q208 => 520 hYtES 00 00 00 O0f «evvvvmnnnnnnnns
00000050 |00 00 00 00 ¢ 00 00 00 O0f «vvvvvnnnnnnnnnn
.............. Extra Field
00000220 00 00 00 00 Ow we we wwo ww ww ww oo 00 00 00 000 .o
00000230 o] 0 iz 0. o e CeEE.L
00000240 |3 CH 3 ZE 44 L4 53 17 3E 96| _u,mallV:®.DnS.>—
00000250 [2A 58 Cl €D SA DC 8% 06 F3 22 BS 55 FB EF BD ES | *XEmsb™. y"RUunSiHk
00000260 €3 90 D2 77 T, - .~ "0 .~ "~~~ 3 0D DC 2C| cpTvh: »I'Io9sl.BE
.............. 0x19A => 410 bytes
QO0003R0 FS 3D TE : File Data {cDmpressed}- A3 10 FF)| %=~:,m.ERer.CJ.a
000003B0 |70 EC CD Lo e ce am oo e = waw —w w3 FA ES F3| peH.IxAxX.j.Hway
000003C0 |41 7E 1E 14 A8 1D D9 7C F9 44 8E BF 01 00 00 FF| A~..E.M|mDBRi...=
00000300 |FF 03 0050 4B 05 04 14 00 06 00 OF 00 00 00 21 A..PE.......... !
000CC3E0 00 1E 91 1& B7 EF 00 00 00 4E 02 00 00 OB 00 08 LIS« S 2 D,
000003F0 02 5F 72 €5 &C 73 2F 2E 72 &5 6C 73 20 B2 04 02 . rels/.rels ..
Fig. 6 Example of a structure of the local header, additional field,
and compressed content of a typical first element of an OOXML document
Known CRC-32 of the decompressed stream
I il 1
| |
. E g !
0 1]
| : k= =
=R E g EE o3
........ %E g 5 g-},g
E = 8 =K é
& |
E - [- 7 ? ?

Fig. 7 Situation with one skipped cluster

Thus, when only one cluster remains unknown
among the data of a local element, it is possible to define
the skipped fragment by calculating the CRC-32 hashes
of the uncompressed data stream of this local element.
This case is simplified in Fig. 7.

Therefore, if the length of the unknown fragment is
equal to one cluster, the following steps should be taken:

1) from the cluster preceding the unknown frag-
ment, cut the last part starting from the beginning of the
compressed data stream of the last local element present
in this cluster;

2) add the data from the cluster whose location is
unknown to the data obtained in step 1;

3) from the cluster that follows the unknown frag-
ment, cut the first part of the data starting from the zero
offset and ending with the local header of the first local
element in this cluster, and then add this byte stream to
the data obtained in step 2. Occasionally, the part of the
data to be cut may end with the beginning of the de-
scriptor (bytes '0x504b0708');

4) attempt to unzip the obtained compressed stream;

172

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

5) if the attempt fails, repeat the process from step
2 with the next cluster, the location of which is still un-
determined;

6) in the case of a successful attempt to calculate the
CRC-32 hashes of decompressed data;

7) if the CRC-32 hash value does not match the
value specified in the central directory, repeat the process
from step 2 with the next cluster, the location of which is
still undetermined,;

8) if the CRC-32 hash value matches the value spec-
ified in the central directory, the cluster search process is
considered complete.

In other words, this is searched for a cluster for
which there are no stream corruption points when filling
the space between the beginning and end of the com-
pressed data, and the uncompressed data has a CRC-32
hash value identical to that specified in the corresponding
central directory entry, in the local element header and/or
in the corresponding descriptor.

The logic of the search process is shown schemati-
cally in Fig. 8, and the input and the result are shown in
Fig. 9.

Unlike the previous case, if there is a sequence of
length k of unknown classifiers with their total number n,
the number of possible combinations is n!/(n-k)!. It will
tend to the value n* for large values of n. In real cases,
achieving a positive result for a full search task is un-
likely and time-consuming.

In addition, OOXML documents belong to complex
files and may contain embeddings of other data types,
some of which are stored in uncompressed form. Such
elements have not been studied in the context of this work
and require the use of separate methods for their recon-
struction.

Therefore, for local elements that occupy at least
four clusters in a file, it is proposed to determine one next
cluster in the chain at each step, for which the following
actions should be performed (using XML files as an ex-
ample):

1) from the cluster preceding the unknown frag-
ment, cut the last part starting from the beginning of the
compressed data stream of the last local element present
in this cluster;

2) add the data from the cluster whose location is
unknown to the data obtained in step 1;

3) attempt to unzip the obtained compressed stream;

4) if the attempt fails, repeat the process from step
2 with the next cluster, the location of which is still un-
determined;

5) in the case of a successful attempt to compare the
XML structure of the decompressed part of the data with
the typical XML structure of the corresponding local el-
ement of the OOXML package;

6) in the case of a damaged XML structure, repeat
the process from step 2 with the next cluster, the location

of which is still undetermined,;

7) in the case of a correct XML structure, the cluster
search process is considered complete;

8) further repeat the search process until the last
cluster in the chain is found;

9) add the data from all detected clusters to the data
obtained in step 1, and add the first part of the data from
the cluster that follows the end of the unknown fragment,
starting from the zero offset and ending with the local
header of the first element present in this cluster. Occa-
sionally, the part of the data to be cut may end with the
beginning of the descriptor (bytes '0x504b0708");

10) conduct verification by calculating the CRC-32
hash of decompressed data.

The logic of the search process is shown schemati-
cally in Fig. 10, and the input and result are shown in
Fig. 11.

It is also possible that the header of a local element
is located on the border of two clusters and is divided be-
tween them. This is not a problem because, in this case,
according to the data of the central directory, it is neces-
sary to sequentially calculate the offset of the local file
header relative to the beginning of the archive and then
to calculate the offset of the beginning of the compressed
stream relative to the beginning of the cluster, and finally
search for the corresponding data block.

If the last cluster of the local element is unknown, it
is necessary to define the size of its compressed stream
from the central directory, then determine the size of the
last fragment, and use only the first part of the clusters of
the corresponding length when searching.

It is worth paying more attention to the stage of ver-
ification of intermediate data, which is key when search-
ing for clusters of local elements with two or more un-
known fragments. Here, verifying the decompressed data
by hashes is impossible, so the first step is to look for a
cluster that may be the next in the chain. This uses a fea-
ture of the deflate algorithm when the decompressor can
restore a part of the compressed local file to the beginning
of the corrupt bitstream [37]. When another piece of in-
formation is added to the initial part of the compressed
data, any bitstream is potentially valid [10]. As a result,
these situations are possible when trying to decompress:

- an error;

- false positive decompressed data stream, where
the first part of the content has a typical XML structure,
and the last fragment contains an erroneous set of char-
acters (Fig. 14);

- successfully unzipped data, where all the content
has a typical XML structure (Fig. 15).

A option for verifying the content of the restored
part of the local element to filter out false positives is to
reconstruct the XML tree to its typical structure and
check its integrity. This process is shown schematically
in Fig. 12 on the example of the element "footnotes.xml",

Specialized systems of data processing 173

the simplified structure of which is shown in Fig. 13. "w:footnote” element. Generally, the essence of this pro-

Simultaneously, it additionally checks for incrementally cess is the same for all other elements of the OOXML

increasing identifiers specified in the attributes of the package but differs in detail depending on the complexity
of the internal structure of the XML tree.

12 12 || 12 | |
9 | 9 | o | v
6 6| v
2| v 2

N o S | 0 | 0

Failed attempt Failed attempt Success attempt

Fig. 8 The clusters marked in white are checked for compliance one by one

Fig. 9 The top row shows the clusters whose location was unknown, and the bottom row shows their location
according to the interim results of the third stage (clusters with local headers and central directory records
are highlighted in blue, and clusters whose location has been determined are highlighted in green)

12 ‘
2l 1 | |
6 6 6
> T 2 | Y 2| Y
SN o[- N 2 [o [> [N o | o SN
Search for the 1st cluster Search for the 2nd cluster Search for the 3rd cluster

Fig. 10 The clusters marked in white are checked for compliance one by one

Fig. 11 The top row shows the clusters whose location was unknown, and the bottom row shows their location
according to the interim results of the third stage (clusters with local headers and central directory records
are highlighted in blue, clusters whose location has been determined are highlighted in green)

- <w:footnotes >

+ <w:footnote w:id="-1">
+ <w:footnote w:id="0">

+ <w:footnote w:id="1"= - <w:footnotes >

+ <w:footnote w:id="2"> + <w:footnote wiid="-1"=
+ <w:footnote w:id="3"> + <w:footnote w:id="0">
+ <w:footnote w:id="4"> + <w:footnote w:id="1">
+ <w:footnote w:id="5"> + <w:footnote w:id="2">
- <w:footnote w:id="6"> + <w:footnote w:id="3"=>
+ <w:p w:rsidRDefault="00557758" + <w:footnote w:id="4">
w:rsidR="00557758"> + <w:footnote w:id="5">
< /w:footnote - <w:footnote w:id="6">
=W :footnote w:id="7"= + <w:p w:rsidRDefault="00557758"
.p w:rsidRDefault="005577 Wf:rstith="l30557?58">
wrsidR= 557758"> </w:footnote=
"PStyle wivar=iEpotnoteText"/>
- =wirPr=
<w:rFonts w:hAnsiTheme=

Fig. 12 Data manipulation before verification

174

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

<w:footnotes>
<w:footnote wild="##">
LWIpE
AKAKEKNKN
AKAKEKNKN
</Wips
</w:footnote>
</w:footnotess

Fig. 13 Simplified internal structure of the "footnotes.xml" element

The beginning of
the local element

<?¥ml version="1.0" encoding="UTF-3" standalone="yes"?>

<w:idocument>

<wibody>

<withl><withlPrr<w:thlW wiw="0" witype="auto"/><w:jc
wival="center"/><w:tblCellSpacing wiw="0"

Witype="dxa"/><withlCellMar><w:ileft wiw="0" w:type="dxa"/><wiright wiw="0"
w:type="dxa"/></w:tbhlCellMar><w:thlLook
wival="0000"/></w:thlPr><w:thlGrids><wigridCol wiw="9360"/></withlGrid><witr
w:rsidR="0021594L" w:rsidRPr="005673F4" w:rsidlr=

R R R R R R R e S PP P e e e e e

L R R S R R R R R R e R s e R s aaRE
<wir wiraidRPr="005&73F4"><w:rPr><w:rFonts w:iascii="Verdana"
w:hAnsi="Verdana"/><w:b/><w:bls/><wrcolor wival="000000"/><w:sz
wival="15"/><w:szCs wival="15"/></wirPr><w:t>Department Of

Defensed/ Wit {/Wir></Wipr</WIitCr<{/WITE><WITE W:irsidR="0021594A™
w:rsidRPr="005673F4"

4096 bytes of
some data

b'=us, 05:vaadVerwlt="0"><w:rPht:1pl

wi:hAnsmPr>yf"Veeemerdpal=us, 05:vaadVerwlt="0"><w:rPht:1p0
w:hRnsmPr>yi~Veeemerdpal=us, 05:vaadVerwlt="0"><w:rFht:1p0
wihAnsmPrryfocii=ybwiw="0gr><w:it:itr»<eiisz tl5673F4" wirsidRDefault="esrs0"
witype=
R
R R R R R R R e S PP P e e e e e
><witcP><w"kl4tsDPrFonts w:a3haceRAc :rFowna™/><
Ohxe2></wiprder<w\xal: szm"w:auw: t>e></h.="0021v) onta"22" cww:hcDdr<ww:r
wiw:torrpypTc:ta30021594021v) onta™22" cww:hcDd><or
wival="00yRdana"/><w:color wival="00yRdana"/><w:color

wival="00yRdana”/ »<wicolor wival="00yRdana™/><wicolor
wival="00yRdana"/»<w:color w:ival="00yRdana"20"73F40,lp oSpt:frcrryyr><wa"
w:00_t75" alt="jr><w:rFontscel<</ljr>hW wdw:cololam"eerPr>tR
</witPr>sw:rPht:1p0

Wi iwihAnoOd: te”/ >rFonA1Mau"0gr>icw: rPr>aw:rPht: 1prOvRda™
(w:rsidRu3F4:rsidRn20™/wac/ ><w<"/>na"/><
ip/fal=r><wDnlidRu3F4:raideimrnw:rPhjustRei:sz ipow: :nrhb/>E'

Fig. 14 An example of a false positive result during decompression

The beginning of
the local element

<?¥ml versior="1.0" encoding="UTF-8" standalone="ye3™?>

<w:document>

<wibody>

<w:thl»<w:thlPri><w:thlW wiw="0" w:type="auto"/><u:jc
wival="center"/><w:thlCellSpacing wiw="0"

witype="dia"/><withlCellMar><wileft wiv="0" witype="dxa"/><Wiright wiw="0"
w:type="dza"/></w:thlCellMar><w: thlLook
wival="0000"/></withlPr><withlGrids<wi:gridCol w:iw="9%360"/></w:ithlGrid><w:tr
w:rsidR="00215941" w:rsidRPr="005£73F4" w:rsidlr=

B R R E e
R R R PR R PR
<w:r WirsidREr="005673F4"><wirPr><w:rFcnts w:ascii="Verdana"
wihlnsi="Verdana"/><w:b/><wibls/><wicolor wival="000000"/><wisz
wival="15"/><w:3zC3 wival="15"/></wirPr><w:t>Department Of
Defensed/wit:/Wir></wipr</witc></Witrx<witr w:rsidR="0021594A"

w:rsidRPr="05673F4 [WTFONLS w:ascii="Symbol" w:HAnS1="Symbol

4096 bytes of
some data

W:CS=TOYmBOLT/ saw:bla/ ><wicolor wival="000000"/><w:sz w:val="20"/><w:szCs
wival="20"/ < /WirPrr<wit>LCtE ON requests<d/wit><,/Wirl<w:ir
w:rsidRPr="0(5673F4"><w: rPre<w:bla/><w:color wival="000000"/><w:sz
wival="14"/><wi3zCs wival="14"/></wirPr»><w:t ¥ml:space="preserve">»for

information from potential grant applicants</w:tr</wir></wip>
R R AR R b kA kR ARk ke

B R R E e
<w:bCs/><wicclor wival="FF0000™/><w:sz
wWival="20"/></wW:rPr><w:t>***RELOCATION EXFENSES AND/OR INCENTIVEZ RRE HNOT
AUTHORIZED* **\ xc2\xal</w: t»</Wirs</Wipsr</witcr</uitr></withl><w:ip
wirsidR="0021594A" w:irsidRPr="005673F4" wi:rsidRDefault="00215%4A"
w:rsidP="005€73F4"><w:pPro<wiwidowlontrol/ ><w:autoSpaceDE/><w: autoSpacell/ ><w
radjustRightInd/><w:rPrx<w:rFonts wiascii="Verdana"

wihAnsi="Verdana"/><w:sz wival="20"/><w:i3zC3
wWival="20"/></w:rPr></wipPr></wipsr</witcr<witcr<u: tePrr<witoH wiw="0"
witype="auto"/><wivhklign wival="center"/></witcPrr<wip wirsidR="C021554A"

W

W

:r3idRPr="0(5673F4" w:rsidRCefault="0021594A"
:r3idP="005€73F4"><w:pPrr<wiwidowControl/ »<w: autoSpaceDE/><w: autcSpaceDl/ >

Fig. 15 An example of successful decompression

Specialized systems of data processing

175

3. Results of experiments
3.1. Preparing data for testing

The input isa DOCX document evenly divided into
N-byte size parts. The last fragment of the document after
the last byte is filled with 0x00 characters up to the size
of N bytes. After that, all the obtained fragments are ran-
domly mixed and presented as an input array for further
analysis. It is necessary to obtain the correct order of frag-
ments and restore the original document, and if this is not
possible, restore parts of its XML elements.

Since the standard cluster size in various file sys-
tems in the vast majority of real tasks is 4096 bytes, this
value of N was used here.

3.2. Datasets description

In order to test the suitability of the proposed
method for reconstructing OOXML documents, two da-
tasets, Govdocsl [38] and NapierOne [39], were used.
The md5 hashes of all files from each dataset were com-
pared before conducting the experiments. Also, files
smaller than 4096 bytes were ignored.

Govdocsl dataset [38] (created in 2009) contains
different files. Among the 163 DOCX documents, 157
unique files are larger than 4096 bytes.

NapierOne dataset [39] (created in 2021) contains
data from publicly available web resources from the
gov.uk domain, including 5000 DOCX documents (4992
unique);

Tables 2, 3, and fig. 16 provide general information
about file sizes in the mentioned datasets. Table 4 pro-
vides information about the size characteristics and com-
pression type of the vast majority of local elements in
DOCX files.

3.3. Analysis of results

To test the effectiveness of the proposed method,
we used the Govdocsl and NapierOne datasets described
above, as well as the following software tools: Anaconda
Navigator 2.3.2, python 3.8.8, HxD Hex Editor 2.5.0.0,
Microsoft Office 365 version 16.0.16026.20002, Au-
topsy 4.20.0.

Table 2
Information about file sizes in datasets
Dataset Unique files File size, bytes Av. file size, bytes | Awv. file size, clusters
Govdocsl 157 102299494595 214150 52.8
NapierOne 4992 1145114580050 303552 74.61
Table 3
Information about file sizes in datasets
Dataset File size, clusters
1-8 9-16 17-24 25-32 33-40 41-48 49+
Govdocsl Files 86 17 10 8 8 2 26
% 54.78 10.83 6.37 5.10 5.10 1.27 16.56
Napierone Files 1071 1314 665 418 227 191 1106
P % 21.45 26.32 13.32 8.37 4.55 3.83 22.16
60%
50%
40%
30%
m Govdocs1
20% Napierone
10%
I [] B m —_
1-8 9-16 17-24 25-32 33-40 41-48 49+

File sizes, 1n clusters

Fig. 16 Information about file sizes in datasets

176

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

Information about local elements

Table 4

Element compressed size,

Elements that occupy

. bytes Compressed at least 3 clusters
Element name Files elements,
min max average % Elements %
[Content_Types].xm| 157 358 613 410 100 0 0.0
- 4992 346 1085 452 100 0 0.0
document.xml 158 695 243512 20080 100 85 53.8
5296 348 2534430 26218 100 3708 70.02
* rels 390 185 3576 302 100 0 0.0
22098 184 15259 292 100 7 0.03
settings.xml 158 618 9330 1837 100 8 5.06
5297 590 34186 2233 100 275 5.19
styles.xml, 158 1527 8759 2720 100 6 3.8
stylesWithEffects.xml 7293 1501 137209 4326 100 654 8.97
numbering xml 119 567 22587 3068 100 10 8.4
4238 464 17187 2618 100 272 6.42
app.xml 157 374 6495 629 100 1 0.64
4992 308 15513 539 100 1 0.02
corexml 157 327 540 404 100 0 0.0
4992 311 822 382 100 0 0.0
header*.xml, 244 301 5468 540 100 1 0.41
footer*.xml 12205 301 479616 1175 100 159 1.30
footnotes.xml, 160 356 2070 386 100 0 0.0
endnotes.xml 7720 360 44797 591 100 18 0.23
word/theme/™ xml 157 1635 1808 1689 100 0 0.0
5102 997 3241 1634 100 0 0.0
item*.xml, 80 133 1249 235 100 0 0.0
itemProps*.xml 16414 2 31603 409 100 5 0.03
webSettings.xm 158 164 3490 336 100 0 0.0
5297 164 35288 533 100 14 0.26
fontTablexml 158 380 836 540 100 0 0.0
5297 380 1612 647 100 0 0.0
custom.xml 10 157 420 298 100 0 0.0
2039 223 2066 444 100 0 0.0
. . 0 - - - - - -
word/diagrams/*.xml - |—g5 793 12616 1931 100 14 368
* 0 — — — — — —
word/charts/ xml 492 162 6851 1576 100 1 02
*.png, *.jpeg, 430 113 1812417 52843 0 369 85.81
*.gif, *.jpg,
*.dat, * tiff, 10338 35 3496512 81312 0.10 7857 76.00
* tif, *.svg, *.tmp
*.bin, *.emf, 99 242 565986 50820 100 59 60.20
*wmf, *.ppt,
2526 142 9159432 162342 100 1268 50.20
*.doc, *.xls, *.dttf
*.docx 0 _ _ _ _ _ _
45 10632 3380231 257913 100.0 45 100.0
* * 0 — — — — — —
XIS, *.ppix 176 | 8475 | 14478286 | 456897 0 176 100.0

Specialized systems of data processing

177

Information about the number

Table 5
of files with large local elements

Number of files with elements Number of files with XML Number of files with
Dataset elements that occupy
that occupy at least 3 clusters uncompressed elements
at least 3 clusters
Govdocsl 111 (70.70 %) 88 (56.05 %) 53 (33.76 %)
NapierOne 4314 (86.42 %) 3753 (75.18 %) 3329 (66.69 %)

Table 6 summarizes the overall results for the num-
ber of reconstructed files from each dataset, showing the
number and percentage of:

a) fully reconstructed OOXML documents;

b) fully reconstructed OOXML documents that par-
tially lack the end of the central directory — the last part
of up to 21 bytes;

c) fully reconstructed OOXML documents exclud-
ing uncompressed embeddings in the following formats:
PNG, JPEG, GIF, etc.;

d) fully reconstructed OOXML documents except
for also compressed embeddings in formats such as EMF,
WMF, DOC, XLS, PPT, DOCX, etc.;

e) OOXML documents whose reconstruction pro-
cess failed with errors;

f) OOXML documents that were excluded from the
analysis due to the presence of XLSX, PPTX embed-
dings.

Table 7 presents statistical information on the re-
sults of reconstructing individual local elements.

Table 8 shows the number of successfully recovered
clusters of "document.xml" files and, accordingly, the
percentage of their fragments partially recovered for
cases where errors occurred during the reconstruction of
this element. Additionally, the largest reconstructed frag-
ments among the files from the Govdocs1 and NapierOne
datasets were local elements of "document.xml", which
occupied 60 and 223 clusters, respectively. At the same
time, the reconstructed files themselves had sizes of 2319
and 702 clusters, respectively.

As a result of testing the proposed method's effec-
tiveness, as seen in Table 6, it was possible to achieve an
efficiency rate of 82.97 % for document reconstruction
on two datasets in total. Simultaneously, 34.38 % of files
were fully reconstructed, 0.43 % were reconstructed ex-
cept for the last 21 bytes at most, and another 48.16 % of
documents were reconstructed without errors except for
embedding. In the latter case, the documents had fully re-
covered texts, internal metadata, parameters, etc., but had
gaps in place of media data. In essence, this is a simpli-
fied version of detecting fragments of a document with-
out images in unallocated space and then reconstructing
the file. The simplification lies in the total dataset being
thousands of times smaller than in real cases, and all frag-
ments a priori belong to the same document.

The emphasis was placed on the recovery of XML
elements that contain the main content of the OOXML
document and are most common among the elements that
occupy at least three clusters. As can be seen in Table 4,
such elements include the "document.xml" file, which
occupies at least 3 clusters in 69.5 % of cases; the "'styles-
WithEffects.xml", "settings.xml", "styles.xml", "num-
bering.xml" - 5.2 % to 8.9 %; as well as both structurally
similar "header*.xml" and "footer*.xml", which are large
in a little more than 1 % of cases in total. The elements
"footnotes.xml", "endnotes.xml" and "webSettings.xml|"
were also accounted for. Other XML and RELS ele-
ments, which in few cases can reach large sizes or whose
structure can differ significantly from the typical one,
were ignored.

4. Discussion

Testing the algorithm's effectiveness showed that
the proposed method of reconstructing OOXML docu-
ments works. The best effectiveness of reconstructing
OOXML files was achieved on the Govdocsl dataset.
This could be due to the fact that the NapierOne dataset
was created in 2021, and, as a result, the documents in it
(in particular, the local elements "document.xml") have a
more complex structure.

As can be seen in Table 7, the largest number of er-
rors when restoring individual local elements — about
14 % — was observed when working with "docu-
ment.xml" files. All other XML elements were success-
fully reconstructed in 99 % of the cases. This can be ex-
plained by the fact that most of the errors occurred at the
last stage of the search when filtering out false positives,
namely, during the process of comparing the XML struc-
ture of the decompressed part of the data with the typical
XML structure of the corresponding local element. In the
case of the "documents.xml" files, this number of errors
was caused by their complex structure with different ele-
ments, including elements with graphic data, etc. Errors
in the reconstruction of data blocks related to, for exam-
ple, the "header*.xml" and "footer*.xml" files were also
mainly caused by the presence of media data. Modifying
methods similar to [40] may be helpful in the latter cases.
The relatively simple structure of the other XML ele-
ments and/or their small sizes made achieving such effi-
ciency in their reconstruction possible.

178 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)
Table 6
Results of reconstructing OOXML files
Fully restored, Fully recov-
Fully re- | but with miss- | ered, but with . .
b sto)r/ed ing uncom- | missing com- Skipped files
Jataset Fully but with- ressed em- ressed em- With errors (with XLSX,
(unique files) restored presss presss PPTX
out a beddings of beddings of embeddings)
footer other data other data
types types
153
Govdocsl (97.45 %) 4 0
(157) 99 1 36 17 (2.55 %) (0.00 %)
(63.06 %) | (0.64 %) (22.93 %) (10.83 %)
4119
NapierOne (82.51 %) 783 90
(4992) 1671 21 2090 337 (15.69 %) (1.80 %)
(33.47 %) | (0.42 %) (41.87 %) (6.75 %)
Table 7
Information about reconstructing OOXML local elements
Number of elements that occupy With errors
Element name Files at least 3 clusters
Elements % Elements %
document. xml 158 85 53.8 2 1.27
5296 3708 70.02 754 14.24
* rels 390 0 0.0 0 0.0
22098 7 0.03 3 0.01
settings.xm| 158 8 5.06 1 0.63
5297 275 5.19 2 0.04
styles.xml, 158 6 3.8 0 0.00
stylesWithEffects.xml 7293 654 8.97 4 0.05
numbering.xml 119 10 84 1 0.84
4238 272 6.42 1 0.02
app.xml 157 1 0.64 0 0.00
4992 1 0.02 1 0.02
corexml 157 0 0.0 0 0.00
4992 0 0.0 0 0.00
header*.xml, 244 1 0.41 0 0.00
footer*.xml 12205 159 1,30 52 0.43
footnotes.xml, 160 0 0.0 0 0.00
endnotes.xml 7720 18 0.23 1 0.01
item*.xml, 80 0 0.0 0 0.00
itemProps*.xml 16414 5 0,03 1 0.01
. 158 0 0.0 0 0.00
webSettings.xml 5297 14 0.26 0 0.00
Table 8

Information about reconstructing "document.xml" elements

Element name With errors Number of cluste_rs occupied by | Successfully identified clusters
Elements % elements with errors Clusters %
document.xml 2 1.27 41 6 14.63
754 14.24 18215 2154 11.83

Specialized systems of data processing

179

As can be seen in Table 8, the proposed method for
reconstructing OOXML files allows extracting 85.76 %
to 98.73 % of full texts from documents for different
cases. A similar problem was solved in [13], where the
authors obtained a result of 54.35 % to 90.54 % of the
detected texts of documents in the RAM under other in-
put data and conditions. However, it seems that the au-
thors did not consider fragmented data blocks that did not
contain the signatures of the local file headers
0x504b0304 since the key data structures were searched
for by this expression, ignoring other significant parts of
OOXML files. Also, fragments, where local header sig-
natures were located on the borders of non-contiguous
clusters, could be skipped. As for elements that occupy
several non-contiguous data blocks in unallocated space,
itis highly likely to skip text from intermediate fragments
using the signature-based data recovery method.

In contrast to this work, the method proposed in this
study allows for detecting the above non-contiguous data
blocks. This possibility is proven by the fact that the larg-
est successfully reconstructed "document.xml™ elements
were 60 and 223 clusters for the Govdocsl and Na-
pierOne datasets, respectively. In the former case, 60
fragments were found among about 2300 other clusters,
and in the latter case, among 702 clusters. This can be
roughly compared to searching for data blocks of the
"document.xml" element among the unallocated space.

Additionally, the proposed method allowed the re-
covery of about 11 % of OOXML documents in which
the reconstruction of the "document.xml" elements failed
(Table 8).

During the study, if a document contains an unfilled
sequence of 2-4 clusters size, identifying these missing
fragments by completely searching through all possible
options was not a goal. Although such a task is quite fea-
sible with a limited number of clusters, it is far from real
cases.

It is also worth paying attention to the following
fact, which did not affect the results of the current study
but may cause uncertainty when recovering from unallo-
cated space OOXML files and ZIP archives in general.
For example, if the header of the end of the central direc-
tory is located on the border of two non-contiguous clus-
ters (less than 1 % of cases in general), when only one or
two of its bytes (0x50 or 0x504b) are contained in the
former of them, it is impossible without additional anal-
ysis to exactly determine whether these bytes are the be-
ginning of the signature of the next record of the central
directory or its end. As a result, there is an ambiguity
about the actual archive size and number of its elements.

Conclusions

For the first time, a syntactical method for recon-
structing OOXML files has been developed which can be

used to recover highly fragmented OOXML documents.
The method is based on the analysis of the internal struc-
ture and content of this file type and is suitable for search-
ing fragments of OOXML files in unallocated space and
RAM.

The high efficiency of OOXML file reconstruction
using this particular method exceeds the results obtained
by other researchers and has been experimentally proven.
The method's effectiveness was evaluated on public da-
tasets such as Govdocsl and NapierOne.

The practical significance of the proposed method
lies in reconstructing OOXML documents based on the
use of knowledge about the internal structure of OOXML
files, regardless of the language of the document
and/or its content. Its main advantage over other re-
search [11, 12] is that it works with compressed data
streams and does not require decompressing the entire
text for its reconstruction. The proposed method al-
lows improving the OOXML file carving techniques and
approaches used in [13] and to search for data blocks of
OOXML documents that do not have clear markers, such
as the signatures of local file headers, etc.

The obtained scientific results show its effective-
ness at the level of 82.97 % of successfully reconstructed
documents, among which 34.38 % of files were entirely
reconstructed, 0.43 % were fully reconstructed except for
the last 21 bytes at most, and another 48.16 % of docu-
ments were reconstructed without errors except for em-
beddings. Simultaneously, 85.76 % to 98.73 % of the an-
alyzed OOXML files had fully recovered the main texts
of the documents. Additionally, about 11 % of the main
texts were restored from OOXML documents whose re-
construction was completed with errors.

Although the method presented in this paper was
applied to data fragmented into 4096-byte chunks, which
corresponds to the standard cluster size in various file
systems, it is quite possible to apply it to data blocks of
arbitrary sizes.

Theoretically, the proposed algorithm allows recov-
ering any ZIP archive or a specific part of it that uses the
deflate compression method. To achieve this, first it is
necessary to study the structure of its local elements and
determine the markers by which the data will be verified.

This study does not solve the issue of reconstructing
OOXML documents that contain uncompressed embed-
dings in the form of files with a similar internal structure
(for example, XLSX and PPTX files). Here, it is neces-
sary to separate the local elements of the embedded file
from similar or analogous elements of the main docu-
ment.

Additionally, local elements such as PNG, JPEG,
GIF, JPG, and EMF, etc., were not processed because
they de facto belong to other data types with their own
internal structure and require separate methods for their

180

Radioelectronic and Computer Systems, 2023, no. 1(105)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

reconstruction. In these cases, the text of the recon-
structed files will be fully viewable, for example, in the
Microsoft Word application but without displaying me-
dia data

Future research should be focused on increasing
the proposed method's efficiency by reducing the number
of errors when comparing XML structures at the last
stage of the algorithm. This can be done by applying
models and methods of intellectual analysis (for example,
using dictionary-based techniques). Another important
direction of research should be the question of recovering
highly fragmented OOXML files in unallocated space
and memory dumps.

Contribution of authors: conceptualization of the
problem, supervision and editing of work — Viacheslav
Moskalenko; development of the method, analysis and
visualization of the results — Maksym Boiko.

All authors have read and agreed with the published
version of the manuscript.

References

1. Cantrell, G., & Runs Through, J. The five levels
of data destruction: A paradigm for introducing data re-
covery in a computer science course. 2019 International
Conference on Computational Science and Computa-
tional Intelligence (CSCI), Las Vegas, NV, USA, 2019,
pp. 133-138. DOI: 10.1109/CSCI149370.2019.00029.

2. Ali, N. U. A, Igbal, W., & Shafqgat, N. Analysis
of windows OS’s fragmented file carving techniques: A
systematic literature review. Advances in Intelligent Sys-
tems and Computing, 2019, vol. 800, pp. 63-67. DOI:
10.1007/978-3-030-14070-0_10.

3. Ramli, N. I. S., Hisham, S. |., & Razak, M. F. A.
Survey of File Carving Techniques. In Lecture Notes on
Data Engineering and Communications Technologies,
2021, vol. 72, pp. 815-825. DOI: 10.1007/978-3-030-
70713-2_74.

4. Sari, S. A., & Mohamad, K. M. A Review of
Graph Theoretic and Weightage Techniques in File Carv-
ing. Journal of Physics: Conference Series, 2020, vol.
1529, iss. 5, article no. 052011. DOI: 10.1088/1742-
6596/1529/5/052011.

5. van der Meer, V., Jonker, H., & van den Bos, J.
A contemporary investigation of NTFS file fragmenta-
tion. Forensic Science International: Digital Investiga-
tion, 2021, vol. 38(Suppl.), article no. 301125. DOI:
10.1016/j.fsidi.2021.301125.

6. Lee, H., Lee, H.-W. Block based Smart Carving
System for Forgery Analysis and Fragmented File Iden-
tification. Journal of Internet Computing and Services,
2020, wvol. 21, no. 3, pp. 93-102. DOI:
10.7472/jksii.2020.21.3.93.

7. Memon, N., & Pal, A. Automated reassembly of
file fragmented images using greedy algorithms. IEEE
Transactions on Image Processing, 2006, vol. 15, iss. 2,
pp. 385-393. DOI: 10.1109/TIP.2005.863054.

8. Ravi, A., Kumar, T. R.,, & Mathew, A. R. A
method for carving fragmented document and image
files. 2016 International Conference on Advances in Hu-
man Machine Interaction (HMI), Kodigehalli, India,
2016, pp. 1-6. DOI: 10.1109/HM1.2016.7449170.

9. Shanmugasundaram, K., & Memon, N. Auto-
matic reassembly of document fragments via context
based statistical models. 19th Annual Computer Security
Applications Conference, 2003. Proceedings., Las Ve-
gas, NV, USA, 2003, pp. 152-159. DOI:
10.1109/CSAC.2003.1254320.

10.Brown, R. D. Improved recovery and recon-
struction of DEFLATEd files. Digital Investigation,
2013, wvol. 10(Suppl), pp. S21-S29. DOI:
10.1016/J.DIIN.2013.06.003.

11. Al-Sharif, Z. A., Bagci, H., Abu Zaitoun, T., &
Asad, A. Towards the memory forensics of ms word doc-
uments. Advances in Intelligent Systems and Computing,
2018, vol. 558, pp. 179-185. DOI: 10.1007/978-3-319-
54978-1_25.

12. Tagdelen, Kubilay & Siizen, Ahmet. Analysing
and Carving MS Word and PDF Files from RAM Images
on Windows. Tehnicki vjesnik, 2022, vol. 29, no. 5, pp.
1714-1720. DOI: 10.17559/TV-20210218122046.

13. Ali, N. U. A,, Igbal, W., & Afzal, H. Carving of
the OOXML document from volatile memory using un-
supervised learning techniques. Journal of Information
Security and Applications, 2022, vol. 65, article no.
103096. DOI: 10.1016/j.jisa.2021.103096.

14. Dergachov, K., Krasnhov, L., Bilozerskyi, V. &
Zymovin, A. Methods and algorithms for protecting in-
formation in optical text recognition systems. Radioelec-
tronic and Computer Systems, 2022, no. 1, pp. 154-169.
DOI: 10.32620/reks.2022.1.12.

15. Standard ECMA TR/98 JPEG File Interchange
Format (JFIF). Available at: https://www.ecma-interna-
tional.org/publications-and-standards/technical-re-
ports/ecma-tr-98/. (accessed 12 january 2023).

16.G | F (tm) Graphics Interchange Format (tm) A
standard defining a mechanism for the storage and trans-
mission of raster-based graphics information. Com-
puServe Inc., 1987. Available at:
https://www.w3.org/Graphics/GIF/spec-gif87.txt.
(accessed 12 january 2023).

17. Ali, Hamza A. & Ne’ma, Bashar M. Effective
Variations on Opened GIF Format Images. IJCSNS,
2008, vol. 8. No. 5, pp. 70-75.

18.Bitmap Image File (BMP), Version 5. Sustaina-
bility of Digital Formats: Planning for Library of Con-
gress Collections. Available at: https://www.loc.gov/

https://www.sciencedirect.com/journal/digital-investigation/vol/10/suppl/S
https://hrcak.srce.hr/tehnicki-vjesnik

Specialized systems of data processing

181

preservation/digital/formats/fdd/fdd000189.shtml.
(accessed 12 january 2023).

19. Fedorchenko, 1., Oliinyk, A., Stepanenko, A.,
Korniienko, S., Kharchenko, A., & Laktionov, V. Devel-
opment of a method for compressing images on the basis
of JPEG algorithm. Technology Audit and Production
Reserves, 2020, vol. 2, no. 2(52), pp. 32-34. DOI:
10.15587/2706-5448.2020.202433.

20.Barannik, V., Krasnorutsky, A., Shulgin, S,
Yeroshenko, V., Sidchenko, Y., & Hordiienko, A. Image
compression based on classification coding of constant-
pitched functions transformers. Radioelectronic and
Computer Systems, 2021, no. 3, pp. 48-62. DOI:
10.32620/reks.2021.3.05.

21.Ali, R. R., & Mohamad, K. M. RX_myKarve
carving framework for reassembling complex fragmenta-
tions of JPEG images. Journal of King Saud University -
Computer and Information Sciences, 2021, vol. 33, iss.
1, pp. 21-32. DOI: 10.1016/J.JKSUCI.2018.12.007.

22.Chang, X., Wu, J., & Hao, F. JPEG fragment
carving based on pixel similarity of MED-ED. Chinese
Control Conference (CCC), Guangzhou, China, 2019,
pp. 8862-8866. DOI: 10.23919/ChiCC.2019.8865161.

23.Durmus, E., Korus, P., & Memon, N. Every
Shred Helps: Assembling Evidence from Orphaned
JPEG Fragments. IEEE Transactions on Information Fo-
rensics and Security, 2019, vol. 14, iss. 9, pp. 2372-2386.
DOI: 10.1109/T1FS.2019.2897912.

24, Hilgert, J. N., Lambertz, M., Rybalka, M., &
Schell, R. Syntactical Carving of PNGs and Automated
Generation of Reproducible Datasets. Digital Investiga-
tion, 2019, vol. 29(Suppl.), pp. S22-S30. DOI:
10.1016/j.diin.2019.04.014.

25.Tang, Y., Fang, J., Chow, K. P,, Yiu, S. M., Xu,
J., Feng, B., Li, Q., & Han, Q. Recovery of heavily frag-
mented JPEG files. DFRWS 2016 USA - Proceedings of
the 16th Annual USA Digital Forensics Research Con-
ference, 2016. DOI: 10.1016/j.diin.2016.04.016.

26.Uzun, E., & Sencar, H. T. Jpg Scraper : An Ad-
vanced Carver for JPEG Files. IEEE Transactions on In-
formation Forensics and Security, 2020, vol. 15, pp.
1846-1857. DOI: 10.1109/T1FS.2019.2953382.

27.Zhang, L., Hao, S., & Zhang, Q. Recovering
SQL.ite data from fragmented flash pages. Annales Des
Telecommunications — Annals of Telecommunications,
2019, vol. 74, pp. 251-460. DOI: 10.1007/s12243-019-
00707-9.

28.Lin, W., & Xu, M. A Microsoft Word docu-
ments carving method based on interior virtual streams.
Advanced Materials Research, 2012, vol. 433-440, pp.
3028-3032. DOI: 10.4028/www.scientific.net/ AMR.
433-440.3028.

29.Paixdo, T. M., Berriel, R. F., Boeres, M. C. S.,
Koerich, A. L., Badue, C., de Souza, A. F., & Oliveira-

Santos, T. Self-supervised deep reconstruction of mixed
strip-shredded text documents. Pattern Recognition,
2020, wvol. 107, article no. 107535. DOI:
10.1016/J.PATCOG.2020.107535.

30.Bhawal, S., & Tabassum, M. Forensic image re-
construction based on efficient morphological opera-
tional model. Advances in Intelligent Systems and Com-
puting, 2019, vol. 814, pp. 297-307. DOI: 10.1007/978-
981-13-1501-5_26.

31. Alothman, A. F., Wahab Sait A. R. Managing
and Retrieving Bilingual Documents Using Artificial In-
telligence-Based Ontological Framework. Comput Intell
Neurosci., 2022 vol. 2022, article no. 4636931. DOI:
10.1155/2022/4636931.

32.Standard ECMA-376 Office Open XML File
Formats. Awvailable at: https://www.ecma-interna-
tional.org/publications-and-standards/standards/ecma-
376/. (accessed 12 january 2023).

33.Didriksen, E. Forensic Analysis of OOXML
Documents, 2014. Available at: https:/ntnuopen.
ntnu.no/ntnu-xmlui/bitstream/handle/11250/198656/
EDidriksen.pdf. (accessed 12 january 2023).

34.Fu, Z., Sun, X,, Liu, Y., & Li, B. Forensic inves-
tigation of OOXML format documents. Digital Investi-
gation, 2011, wvol. 8, iss. 1, pp. 48-55. DOI:
10.1016/j.diin.2011.04.001.

35.ZIP File Format Specification, version 6.3.10,
PKWare, Inc., 2022. Available at: https://pkware.
cachefly.net/webdocs/casestudiess/ APPNOTE.TXT. (ac-
cessed 12 january 2023).

36.Fu, Z., Sun, X., Zhou, L., & Shu, J. New foren-
sic methods for OOXML format documents. Lecture
Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics), 2014, vol. 8389, pp. 503-513. DOI:
10.1007/978-3-662-43886-2_36.

37.Brown, R. D. Reconstructing corrupt DE-
FLATEd files. Digital Investigation, 2011, vol.
8(Suppl.), pp. S§125-S131. DOl 10.1016/
j.diin.2011.05.015.

38. Garfinkel, S., Farrell, P., Roussev, V., & Dinolt,
G. Bringing science to digital forensics with standardized
forensic corpora. Digital Investigation, 2009, vol.
6(Suppl.), pp. S2-S11. DOIl: 10.1016/j.diin.2009.
06.016.

39. Davies, S. R., Macfarlane, R., & Buchanan, W.
J. NapierOne: A modern mixed file data set alternative to
Govdocsl. Forensic Science International: Digital In-
vestigation, 2022, vol. 40, article no. 301330. DOI:
10.1016/J.FSIDI.2021.301330.

40. Chukhray, A., & Havrylenko, O. The method of
student’s query analysis while intelligent computer tutor-
ing in SQL. Radioelectronic and Computer Systems,
2021, no. 2, pp. 87-96. DOI: 10.32620/reks.2021.2.07.

https://www.sciencedirect.com/journal/digital-investigation/vol/10/suppl/S

182 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2023, no. 1(105) ISSN 2663-2012 (online)

Haoituna 0o pedaryii 12.09.2022, posenanyma na peoxoneeii 20.02.2023

CUHTAKCHYHUI METO/I PEKOHCTPYKIIIi OOXML-®AWJIIB
3 BACOKHM PIBHEM ®PAIMEHTAIIIL

Maxcum Boiixo, B’auecnae Mockanenko

[MommpeHoto 3agauero KOMI IOTEPHO-TEXHIYHOT EKCTIEPTH3H € BiTHOBJIEHHS (aiiiB, ISl IKUX BiJICYTHI MeTaaaH1
¢aiinoBoi cucremu. J{is monryky ¢parmenTis (aiiiB y Hepo3noAiIEHOMY MPOCTOpP1 HalyacTille 3aCTOCOBYETHCS Me-
TOJM BiJHOBJICHHS 32 CHUTHAaTypaMu (KapBiHT), Ki iJieaIbHO IMAXOAATH Il HedparMeHToBaHUX (aiimiB. OmHaK
MoAi0HI METOM 1 OCHOBaHI Ha HUX 1HCTPYMEHTH, HeeeKTHBHI st BigHoBIeHHS OOXML-daiiniB, siKi MatoTh BUCO-
Kuil piBeHb (parMeHTariii. JlaHi MeTomu He 3a0€3MEeUyIOTh JOCTOBIPHOTO BU3HAYCHHS MPABUIIBHOTO TOPSIKY (par-
MeHTIB. Y 3B’s13Ky 3 TuM, 1m0 OOXML-daiinu aeisrots coboro ZIP-apxiBu Ta, sIK HACIIIOK, 30€piraroTh JaHi Ha JUC-
KOBOMY IIPOCTOpi B CTUCHEHOMY BHIJIS/IL, TO B TAKOMY pa3i TaKOXX Hee(heKTUBHHMHU € TEXHIKA PEKOHCTPYIOBaHHS
JOKYMEHTIB Ha 0a3i aHami3y CliB, CIOBOCIIONYYEHb TOLIO. Y pOOOTI MPOMOHYETHCS CHHTAKCHYHUI METOJ PEKOH-
crpykuii OOXML-nokyMeHTiB, sikuii 0a3yeThCsi HA BUKOPUCTaHHI 3HaHb MPO BHYTPIIIHIO CTPYKTYPY LLOT'O THITY
(aiiniB He3aeKHO Bix 1X BMicTy. Po3rnsiHyTO Jeraii peaiizaiiii airopuT™My BiJIHOBJIEHHS Ta OCOOJMBOCTI BiJJHOB-
JIEHHSI OKPEMUX THITIB JIOKAJIbHUX EIEMEHTIB JIOKYMEHTY. TecTyBaHHs e(eKTHBHOCTI aJrOPUTMY 31HCHIOBAIOCS HA
Habopax manux Govdocsl i NapierOne. [IporoHoBaHHY METO PO3TIITHYTO HA MPHUKIIAII PO3MIpPIiB OJOKIB JaHUX PO-
3mipom 4096 GaiiT, 0 BiANOBiAA€E CTaHAAPTHOMY PO3Mipy KiacTepa pi3HUX (aiinoBux cucreMm. ExcriepiMeHTanbHi
pe3yNbTaTH MiATBEPAMIN IPUAATHICTH METOY LISl PAKTUYHOTO BUKOPUCTAHHS 3 3aralIbHUM MTOKa3HUKOM y 82,97 %
BiZIHOBJIEHUX (aiiniB, cepex sikux 34,38 % pekoHcTpyioBaHO noBHICTIO, 0,43 % — 32 BUHATKOM OCTaHHIX MaKCUMyM
21 Gaiit, me 48,16 % — 3a BUHATKOM BKJIaJIeHb O JOKYMEHTIB, SIKi MOTPeOYIOTh 1HIIUX MiAXOAiB. B ocTaHHBOMY
BUIAJIKY JOCSITHYTO MOXITUBOCTI OTPHUMaHHS TIOBHICTIO pOOOYOro JOKyMeHTa 0e3 BiIoOpakeHHs! B HbOMY TpadiuyHux
300pa)keHb, BMICTY iHIINX BKJIaAeHb Toio. HassHicte B OOXML-paiinax rem-konie CRC-32 po3apxiBoBaHOro 1Mo-
TOKY JAQHHX KOXXKHOTO JIOKAJILHOTO €JIEMEHTA JIO3BOJISIE OHO3HAYHO MiATBEPIUTH KOPEKTHICTh BiJHOBJICHHS iH(Op-
Malttii Ta i ninicHicTb. [Ipu boMy €peKTUBHICTh METOY CYTTEBUM YHHOM 3JIEKHUTD BiJl CIIOCO01B Bepudikallii 1aHnx
MIPU PEKOHCTPYKIIIT JIOKAJIbHUX EIEMEHTIB, 10 3aiiMatoTh y (aiiii moHaiMeHIle Tpu kinacrtepu. ToMy nanuit MeTos
nepe0a4aeThCsl PO3BUBATH LIISIXOM PO3POOKK HOBHX MeXaHi3MiB Bepudikalii xml-einemeHTiB.

KarwouoBi ci1oBa: KOMIT'IOTEpHO-TEXHIYHA €KCIIEPTH3a; BiIIHOBIICHHS IaHUX, KapBiHT (ailliB; CHHTAKCUYHHUNA
KapBiHT (aiiniB; pparmenraitis; pekorctpykiis daittis; Office Open XML; OOXML; daitn DOCX; ZIP-apxis; cTuc-
HenHst DEFLATE.

Boiiko Makcum BosogumupoBuu — acrn. kad. koM’ iotepHux Hayk, CyMChKUil Jep)KaBHHUN YHIBEPCUTET,
Cymu, YkpaiHa; CT. I€TeKTUB, Y TIPaBIiHHS aHAJITUKY Ta 00poOku iH(opmaii, HaionansHe anTHKOpYyMIiiiHe 010po
VYkpainu, KuiB, Ykpaina.

Mockanenko B’siuecsiaB BacuiboBHY — KaH/. TEXH. HAayK, JIOL., JOL. Kad. KOMIT IOTepHUX HayK, CyMChKHIA
nepkaBHuM yHiBepcuTer, Cymu, YKpaiHa, NOKTOpaHT Kad. KOMIT'IOTEPHHX CHCTeM, Mepex Ta KibepOesmnekwu,
Hanionanshuii aepokocMmiunuii yHiBepcuteT iM. M. €. JKykoBcbkoro “XapkiBchbkuil aBianidHuil iHCTUTYT”, XapKiB,
VYkpaiHa.

Maksym Boiko — PhD student of Computer Sciences Department of Sumy State University, Sumy, Ukraine;
senior detective, Information Processing and Analysis Department, the National Anti-corruption Bureau of Ukraine,
Kyiv, Ukraine,
e-mail: mboiko25@gmail.com, ORCID: 0000-0003-0950-8399.

Viacheslav Moskalenko — PhD, Associate Professor of Computer Science Department of Sumy State Univer-
sity, Sumy, Ukraine; Doctoral Student of Department of Computer Systems, Networks and Cybersecurity, National
Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine,
e-mail: v.moskalenko@cs.sumdu.edu.ua, ORCID: 0000-0001-6275-9803, Scopus Author ID: 57189099775.

mailto:mboiko25@gmail.com

