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AUTONOMOUS FLIGHT INSURANCE METHOD OF UNMANNED AERIAL
VEHICLES PAROT MAMBO USING SEMANTIC SEGMENTATION DATA

Autonomous navigation of unmanned aerial vehicles (UAVS) has become in the past decade an extremely at-
tracting topic, also due to the increasing availability of affordable equipment and open-source control and pro-
cessing software environments. This demand has also raised a strong interest in developing accessible experi-
mental platforms to train engineering students in the rapidly evolving area of autonomous navigation. In this
paper, we describe a platform based on low-cost off-the-shelf hardware that takes advantage of the Matlab/Sim-
ulink programming environment to tackle most of the problems related to UAV autonomous navigation. More
specifically, the subject of this paper is the autonomous control of the flight of a small UAV, which must explore
and patrol an indoor unknown environment. Objectives: to analyse the existing hardware platforms for autono-
mous flight indoors, choose a flight exploration scenario of unknown premises, to formalize the procedure for
obtaining a model of knowledge for semantic classification of premises, to formalize obtaining distance to ob-
stacles using data camera horizontally employment and building on its barrier map. Namely, we use the method
of image segmentation based on the brightness threshold, a method of training the semantic segmentation net-
work, and computer algorithms in probabilistic robotics for mobile robots. We consider both the case of navi-
gation guided by structural visual information placed in the environment, e.g., contrast markers for flight (such
as path marked by a red tape), and the case of navigation based on unstructured information such as recogniza-
ble objects or human gestures. Basing on preliminary tests, the most suitable method for autonomous in-door
navigation is by using\ object classification and segmentation, so that the UAV gradually analyses the surround-
ing objects in the room and makes decisions on path planning. The result of our investigation is a method that
is suitable to allow the autonomous flight of a UAV with a frontal video camera. Conclusions. The scientific
novelty of the obtained results is as follows: we have improved the method of autonomous flight of small UAVs
by using the semantic network model and determining the purpose of flight only at a given altitude to minimize
the computational costs of limited autopilot capabilities for low-cost small UAV models. The results of our study
can be further extended by means of a campaign of experiments in different environments.

Keywords: unmanned aerial vehicles; convolutional neural network; semantic segmentation; flight control sys-
tem; occupancy grid.

group, enabling the exploration of large, complex, and
unknown environments, like in these competitions [1].
Also, it is important to develop innovation effectively

Introduction

Autonomous systems that belong to the field of ar-

tificial intelligence applications will become increasingly
important for technical system developers in the future.
The tasks of interaction on heterogeneous platforms of
autonomous technical systems are among the priority ar-
eas of investment in many countries. Such technical com-
plexes find various applications, for example, for filming
territories affected by military conflicts, natural disasters,
or places difficult to access for patrolling.

In this paper we develop platform to perform tasks
such as: monitoring of various areas, inspection of base-
ments, and dungeons, reconnaissance with semi-autono-
mous navigation. Having the capability to autonomously
plan, reconfigure, and perform tasks for an unmanned
aerial vehicle (UAV) is a crucial component of UAVs

and to provide solutions to the problems that matter to
roboticists and society. It becomes necessary to have de-
velopment platforms that facilitate the acquisition of
basic competences and skills for programming video pro-
cessing methods using low-cost small UAV models.

The research is targeted at the choosing a way of
structuring visual information for the autonomous flight
of a low-cost small UAV; then simulate and perform a
test flight over a given area indoors with the construction
of a map of the detected obstacles. The object of the study
is the monitoring of indoor processes using video infor-
mation obtained by an autonomous UAV. The subject of
the research is the methods and means of processing
video information received from a UAV video camera,
using semantic data segmentation technologies.
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Structurally, the information is presented as fol-
lows: in the first section, the existing hardware platforms
for autonomous flight was analysed. In the second sec-
tion, the methods of structuring visual information was
analysed, and in the third section, the strategies and
choice of a flight research scenario in unknown spaces
was analysed. In the fourth section, the developed
method and results in the form of constructed barrier
maps was presented. To develop a method of autono-
mous UAYV flight based on video camera data, the seman-
tic segmentation network learning method, computer al-
gorithms in probabilistic robotics for mobile robots were
used.

1. Analysis of existing hardware platforms
and scenarios for autonomous indoor flight

UAYV autonomous operation modelling is practiced
on micromodels, among which the most popular are:
PARROT Mambo model, DJI Tello EDU, DJI RO-
BOMASTER TT, and Bitcraze Crazyflie. The hardware
platform of such UAVs allows for autonomous flight in-
doors. To work with these UAV models are provided: a
software development kit for Parrot Copters [2]; Tello
SDK 2.0 [3]; ROBOMASTER TT SDK 3.0 [4]; open li-
braries for copter Crazyflie [5]. Well-known program-
ming environment MATLAB contains packages to sim-
ulate these UAVs [6, 7]. DJI UAVs models have more
limitations when planning an autonomous flight since the
control systems are closed for modifications, and very
popular tools such as the Bitcraze Crazyflie UAV model
cannot be reprogrammed with high-level languages.
Therefore, the PARROT model was chosen for further
consideration. MATLAB platform and built-in UAV
PARROT tool has a high degree of connectivity [8], and
integrated simulation based on hardware allows you to
perform a quick and realistic test of both aircraft and
flight scheduling algorithms.

When performing tasks with autonomous UAVS, it
is important to determine the purpose of the flight to set
algorithms for the behavior of the UAV in real time, con-
sidering the characteristics of the environment and of the
tasks to be executed. It is also necessary to implement
some form of accelerated task planning, in case of per-
turbations, or changes in environmental conditions.
Three types of tool kits have been applied in such scenar-
ios: localization, mapping, and planning. The localization
kit uses onboard sensor information, such as that pro-
vided by a stereo camera [8, 9]. The used architecture
gives an accurate localization result (error < 0.3 m). It al-
lows you to obtain a cloud of points, which can later be
used in the system for fly planning. But this subsystem is
not available for low-cost small UAV [10]. To solve such
problems, the analysis of visual information coming from
cameras installed on board UAVs is often used [11].

In studies [9, 11], localization is carried out in conjunc-
tion with flight planning. Here, the flight must occur in a
prepared room where the specified markers are located,
usually of a contrasting colour. In work [9], a visual
toolkit was proposed for flight planning. This is im-
portant for teaching visual navigation techniques on in-
expensive UAV models. In [10] are proposed collision-
free path planner based on the rapidly exploring random
trees variant, for safe and optimal navigation of robots in
3D spaces. When developing an alternative that works
only on camera video data, it is necessary to compare the
results with such models.

Theoretical research on this problem is aimed at de-
veloping methods for structuring visual infor-
mation [11, 12] and its transformation into data and com-
mands to change the behavior of UAVs. When imple-
menting these methods in the practice of UAV flights, it
is important to process the input data: eliminate noise in
the obtained images, consider external flight factors
(wind, lighting), and consider hardware errors.

2. Methods for structuring visual
information of UAV PARROT

Smart UAV technologies include two main areas of
research. The first area includes the development of in-
telligent flight controllers and path planning methods.
The second area focuses on applying deep learning tech-
niques to extract useful information from sensory data
collected by the drone [13]. For autonomous UAVS, these
areas of study are often considered together because after
extracting useful information (for example, from a
video), it is necessary to make real-time decisions (e.g.,
path or task planning) based on such data.

One very straightforward option is to use computer
vision has the main or unique source of information, and
perform autonomous navigation accordingly [14, 15].
This is also the scenario investigated in this paper. For
example, consider the movement of a UAV over a curved
line drawn on the floor. The proposed model consists of
two parts (fig.1): analysis of video stream image data and
operation of the control system. In this task, it is im-
portant to recognize a line that is in contrast with other
flooring elements [16]. In case of corners appearing, it is
necessary to change the yaw angle, and in case there is
no line on the video stream image, the UAV must find
the landing marker (circle) and land.

Reference [17] suggests deep learning as a tool to
develop a vision-based UAVs Pursuit-Evasion. A deep
convolutional neural network (CNN) is used to detect ob-
jects of interest (UAV) and estimate the necessary con-
trols for the follower UAV to keep the target UAV within
its field of view and the closest possible to the centre of
the image frame.
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YOLO v2 was used as the UAV detector since it was the
best performing in complex outdoor conditions and faster
enough to enable the processing at a rate of 30fps for a
real-time tracking of the UAV. Deep learning and CNN
are also used to train agents that control mini UAVs
based on hand gestures in [18].

Following the example of implementing semantic
segmentation for terrestrial autonomous vehicles [19],
this method of extracting data from video is used to con-
trol the movement of UAVs [20, 21]. The work [22] pro-
vides a link for applying a trained semantic network for
UAV, which is used outside. The main semantic segmen-
tation algorithms which are used for UAV video data are:
grayscale image processing, conditional random field,
and deep learning. The datasets for image segmentation
are used as input data for setting up the semantic segmen-
tation system and subsequent decision making about the
flight plan based on video data. After training the system,
it is necessary to check the correctness of its operation.
The most popular metrics are Pixel Accuracy, Mean
Pixel Accuracy (mPA), Intersection over Union (loU),
Jaccard index, Dice index, and F1-score [23].

The practical result of this work is the creation of an
obstacle avoidance system for UAVs using only a mo-
nocular camera (available in low-cost small UAVs).
In [22] used the feature point detector Speeded Up Ro-
bust Features for fast processing of obstacles, on un-
known positions. Extended StixelWorld [20] used colour
information to learn the model’s obstacles. Deep neural
network models have recently demonstrated remarkable
performance improvements shown to outperform most
traditional methods. Also, vision-based methods have
poor performance under extreme illumination conditions
such as shadows and direct sunlight.

The choice of the UAV visual information structur-
ing method significantly affects the amount of data re-
ceived, and therefore the speed of obtaining it. Accord-
ingly, an autonomous UAV control system will be algo-
rithmically connected to the visual information pro-
cessing subsystem.

3. Scenarios of autonomous flight
of UAV PARROT using visual data

Consider the scenarios that are used by UAVs for
autonomous flight, considering visual information in-
doors:

- patrolling the environment. In this scenario, the
dimensions of the environment are known in advance.
Based on the data on the size of the premises and the tech-
nical capabilities of the UAV, the route (snake, chaotic,
etc.), landing conditions are selected. Visual information
can be transmitted during the flight or analysed after
landing. In the Parrot Mambo model, it is possible to
monitor from the lower camera, originally built into the
UAV body, but it is intended for navigation. For live
broadcasting, an additional camera equipped with a trans-
mitter is used. Reviews indicated that in the case of
Mambo PARROTS, the transmitted image lags behind
the actual camera view [2];

- recognition and observation of the object
(fig. 2). Here, an object must be known in advance, which
can be stationary (for example, a line drawn on the floor)
or moving (for example, people or another UAV). Pre-
liminary training or adjustment of the video information
processing subsystem for this object is required. During
the flight, the UAV analyses the features of a given object
in the focus of the camera, after recognition, as a rule, its
location is estimated and algorithms for changing the co-
ordinates, speeds, or angles of the UAV flight are per-
formed;

- exploration of an initially unknown area indoors
(fig. 3). In such a case, it is necessary to have semantic
information from a deep learning model. Based on these
data, a virtual map is created during the flight. Since we
assume that the PARROT UAV flies at a certain altitude,
and due to the limited computing capabilities of the video
information processing subsystems and the control sys-
tem, we assume that the mapping will be restricted to 2D
maps.
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Fig. 3. Virtual 2D map

The map consists of minimal square blocks (block side
length I). The choice of block size is related to the UAV
movement algorithm. Fig. 3 shows an example of how
the system works. The map contains free Vfree, occupied
Vocc and unknown Vun areas for flights.

4. The method of exploration of an initially
unknown area indoors

The PARROT UAVs are equipped with a FPV cam-
era that provides images measuring 640x360 pixels. The
image data are used to develop vision-based algorithms.
Therefore, the image data obtained from the FPV camera
is a 360-by-640-by-3 matrix of type uint8, in RGB for-
mat.

For simulation purposes, it is important to define
how to represent the camera «Field of View» (FOV). The
camera will be attached at the centre of UAV recording
toward its X-Axis body frame. To be able to represent the
camera FOV, we will need the following camera specifi-
cations:

- depth of view D, which represents the maximum
distance the camera can clearly record D=2 m;

- the angle in which the camera lens can rec-
ord (® = 110°).

These parameters give an approximate coverage of
the considered area of 1 m x 2 m. To prepare the data and
the autonomous flight algorithm, the UAV made a test
with video recording. The resulting video was processed
in the subsystem pixelLabelTraningData (c). As a result,
data were obtained (“Image datastore” and “Pixel label
datastore”) for training the semantic segmentation net-
work (the function trainNetwork was used).

The resulting semantic segmentation network
(SSN) will be used to automate the flight with the follow-
ing conditions:

- the flight will be made above the floor,

- when recognizing furniture objects, it is neces-
sary to estimate the distance to them, for subsequent
placement on a virtual map.

The next important task is to determine the distance
to the detected furniture objects. To calculate the dis-
tance, you should know the internal and external param-
eters of the camera. The internal parameters of the cam-
era can be found using the calibration procedure in (Sin-
gle Camera Calibrator App) and the external parameters:

- the height of its placement above the floor
(UAV flight height — h, fig. 4),

- tilt angle (depends on the pitch angle).

To find the distance to the object on the segmented
frame, the coordinates of the rectangular area (bbox) de-
scribing the UAV are found, and the coordinates of the
point t1 are calculated, and then, using the coordinate
transformation, the coordinates of the point t1 are calcu-
lated in the “top view” coordinate system [24]. In the new
system, the x coordinate is the distance to the opposite
object (L).
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Fig. 4. Determining the distance to obstacles

The resulting trained SSN model and determining
the distance to obstacles method are used in the UAV
flight algorithm.

The method consists of the following steps:

1. The virtual space matrix Occupancy grid is ini-
tialized. The UAYV is taking off, and the cell in which the
UAV is taking off is considered the Vfree area, and the
rest are Vun.

2. The UAV makes a 360° turn, after which 4 image
data corresponding to 0°, 90°, 180°, 270° are processed.
In each image, the number of pixels corresponding to the
"floor" category is calculated. The results were ranked
and recorded in the priority direction matrix.

3. If UAV movement direction, with the highest pri-
ority belongs to the Vfree category:

3.1. The UAV turns to an appropriate angle.

3.2. The distance L to the obstacle is estimated.

3.3. Cells that are at a distance L are fixed as Vocc.

3.4. The UAV flies the distance L/2 and stops, each
flight cell is fixed as Vfree in the matrix Occupancy grid;
then step 2 is performed (fig. 5).

Else: if the directions of movement are not com-
pleted: the next priority is chosen, else the completion of
the UAV flight.

40
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Fig. 5. Occupancy grid

The occupancy grid is a grid of values, each of which in-
dicates an obstacle in a specified area. Values can be bi-
nary (0 for empty cells, 1 for cells occupied by an obsta-
cle) or take values in a given range, indicating the possi-
bility of the specified area.

On fig. 5, the height of the obstacles is set randomly.
Thus, the map considers a room 4x5 m with 5 obstacles,
which are pieces of furniture.

The quality of the proposed method depends on the
algorithm of semantic segmentation, which is used at the
second stage. The standard measure used to evaluate the
performance of semantic segmentation’s algorithms is
the loU. Given an image, the loU measure gives the sim-
ilarity between the predicted region and the ground-truth
region for an object present in the image, and is defined
as the size of the intersection divided by the union of the
two regions [23]:

loUc = TPc¢/(TPc + FPc + FNc),

where TPc, FPc, FNc denote the number of true-positive,
false-positive, and false-negative pixels, respectively for
class c. After evaluating the recognition results of indi-
vidual classes, we found the average loU (Tabl. 1).

Table 1
loU measure
loU for class: Result
floor 0.93
furniture objects 0.47
walls 0.88
windows 0.24
Averaged loU 0.63

The video stream data received after the test flight was
segmented. The segmentation results were compared
with manual segmentation. A result 10U>0.5 is consid-
ered acceptable.
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5. Discussion

Clearly, some limitations have to be considered,
which include the battery autonomy (about 10 minutes)
and the computational power onboard of the UAV. These
limitations can be considered, however, also a means to
challenge the creativity of the users. With regard to this
aspect, this paper only presents some of the preliminary
ideas and their margins for improvement. We have
shown that the hardware is suitable for perform a phased
flight of an unknown area based on the segmentation of
the environment. Using it, as well as the method of ob-
taining the distance to objects-obstacles of the MATLAB
library, we have successfully developed an algorithm for
the autonomous flight of a small UAV. In the future, it is
necessary to conduct a detailed campaign of experiments
to assess the benefits and limitations of the semantic seg-
mentation and develop more robust (less sensitive to pa-
rameter calibration) and adaptive autonomous planning
and navigation algorithms.

The specific drawbacks that should be taken into ac-
count are mainly related to the sensing devices used, that
is, the monocular camera has the drawback of the high
sensitivity to lighting conditions; such as direct sun light
may led to a lack of information.

Conclusions

The autonomous flight method of UAV Parot
Mambo using semantic segmentation data for objects in-
doors is developed in the article.

The scientific novelty of the study lies in a was im-
proved the method of autonomous flight of small UAVs
by using the semantic network model and determining
the purpose of flight only at a given altitude to minimize
the computational costs of limited autopilot capabilities
for low-cost small UAV models.

The study's practical significance lies in the fact that
we design a model-based algorithm on Simulink and
Matlab through simulation, and study how to test it by
deploying on the Hardware of a Parrot Mambo Fly mini-
drone through the interfaces provided with its Hardware
support package in Simulink. We used the generated
source code in real-time applications such as rapid proto-
typing, simulation, and hardware-in-the-loop tests with
Simulink Coder.

During the test flight, the results of the semantic
segmentation were displayed on the screen to assess the
quality of the resulting neural network. In parallel, statis-
tics were collected to calculate the loU. Because of sev-
eral flights, 1oU=0.63 was obtained, which is an accepta-
ble result for further application in UAV automatic flight
algorithms.

Further research will be aimed at solving the prob-
lem of occupancy map construction accuracy and in-
creasing UAV flight time. We are planning changes in
the UAV hardware architecture because the coordinates
of obstacles will also be obtained from additional de-
vices: lidar, laser pointer. It will make it possible to spec-
ify the coordinates of both the UAV position and the po-
sition of surrounding objects. The software architecture
will be changed too. For the final calculation of the coor-
dinates provided by various sensors, the capabilities of
the open packages ROS2 and the NAV2 tool will be used.
The planned decision is to maintain the capability to
hardware-in-loop testing of the actual flight control sys-
tem. This will significantly speed up the developing of a
flight control system.
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METOJ 3ABE3NNEYEHHSI ABTOHOMHOI'O IOJILOTY BE3NNJIOTHOT'O JUTAJIBHOI'O
AITAPATY PARROT MAMBO 3 BUKOPUCTAHHSAM JAHUX CEMAHTUYHOI CETMEHTALII

/laegio Haco, Onvza Ilozyoina, Cepeiit Auiun,
Amnopiii Ilozyoin, Poccenna bapmono

3a oCTaHHE JECATHIITTA aBTOHOMHA HaBiramist Oe3mioTHuX JitanpHux anapaTiB (BIUIA) € HamsBuuaitao mpu-
BaOJIMBOIO TEMOIO, Y TOMY YHCHIi Yepe3 IMiABUIICHHS JOCTYITHOCTI 00JafHAHHS Ta MPOTPAMHOTO 3a0e3MeUeHHS 3 Bi-
KPUTUM BHXIJHAM KOOM IJIsl KEpYBaHHS Ta 00poOKM maHuX. [TomuTt Ha JaHi TEXHOJIOTIT BUKIMKAB BEJMKHHN 1HTEpec
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JI0 PO3pPOOKU JTOCTYIHUX €KCIIEPUMEHTAIBHUX IUIaT(OPM JUTsl HABYAHHS CTY/ICHTIB 1H)KEHEpHHX CIIeliallbHOCTEH B
IIBUJIKO PO3BHUBAIOUIN rary3i aBTOHOMHOI HaBirarii. Y miff cTaTTi MU onmucyeMo miatdopmy, mo 6a3yeTbes Ha HENO-
poromy ob0yasHaHHI, sIKa BUKOPHCTOBYE TIEpEeBaru cepenoBHIla nporpamysanHs Matlab/Simulink st BupimenHs
mpo0JieM, TOB'sI3aHMX 3 aBTOHOMHOIO Hairamieto BITJIA. 3okpema, mpeaMeToM Iii€l cTaTTi € aBTOHOMHE KepyBaHHS
nonbotoM HeBenmkoro BITJIA, sikuit Mae qociipkyBaTy Ta MaTpyJIiOBaTH HEBiJOME CEpElOBHINE B NMpHUMillIeHi. 3a-
BIAHHS: POAHAII3YBATH ICHYIOUI arapaTHi I1aTGopMH Uil aBTOHOMHOT'O TIOJILOTY B TIPUMILIIEHHI, BUOpATH cTpaTe-
Ti0 aBTOHOMHOT'0 ITOJILOTY JIJIS AOCIIPKEHHS HEB1IOMHX TIPUMIIIECHB, (hOpMalTi3yBaTH MPOIEAYPY OTPHUMAHHS MOJIEII
3HaHb JIJIsI CEMAHTHYHOI Ki1acu(iKalii npuMinieHb, popMaltizyBaTH OTpUMaHHS BiJICTaHi 10 IEPENIKO/] 3a JOIIOMOT 00
KaMepH, 110 BCTAHOBJIEHO TOPU3OHTAJIBHO 1 IIO0Y/I0BH KapTH MEPEHIKO. A came, MM BUKOPUCTOBYEMO: METOJ CETMe-
HTalii 300pa)keHHsT Ha OCHOBI MOPOTY SICKPaBOCTi, METOJ] HABYAHHS MEPEXi CEMAaHTUYHOI CErMEHTallil, aJlrOpUTMHU
TiepeMillIeHHs, 110 3aCHOBAHO HA CTOXAaCTHYHUX MOJIENISIX POOOTOTEXHIKH. MM pO3MIIsaeMo K BUMAJOK HaBirarii,
3aCHOBaHOI Ha CTPYKTYpOBaHil Bi3yaspHIH iH(pOpMAIlii, po3MilleHill Y HaBKOJIMIIHEOMY CEpPEIOBHI, HAPHKIAL,
KOHTPACTHI MapKepH IS ONBOTY (HAMPHKIIAA, YSPBOHA MAapPKEP-CTPIUKa HaJl KOO 3IiHCHIOETHCS TOJIT), TaK i BH-
TaJIOK HaBiraii, 3aCHOBaHOI Ha HECTPYKTYpOBaHii iH(opMalii: Taki K 00'€KTH, 1110 PO3II3HAIOTHCS, 00 KECTH JII0-
neii. Ha mizncTaBi morepeaHix BUMPoOyBaHb HAWOUIBII i AXO/SIIAM METOJIOM aBTOHOMHOI HaBIraIlil y IpUMIIICHHI €
Knacudikauis Ta cermenTanis 00'exTiB, mo06 BITJIA moctynoBo aHasi3yBaB HAaBKOJNHWIIHI 00'€KTH Y IPUMIIICHHI Ta
npuiiMaB pillleHHs 00 IUTaHYBaHHS CBO€ET TpaekTopii. Pe3yapTaToM Haloro JOCIIIXKEHHs € METO/, SIKUH i IXOJUTh
JUTs 3a0e31eueHHs1 aBTOHOMHOT0 1ostboTy BITJIA 13 hpoHTanbHOM0 Biteokamepoto. BiucHoBku. HaykoBa HOBU3HA Ofie-
pKaHHX Pe3yJbTATIB MOJIATAE B HACTYITHOMY: YIOCKOHAJIEHO METOJ] aBTOHOMHOI0 MoiboTy Manux BITJIA 3a paxyHox
BHUKOPHCTaHHS CEMaHTUYHOI MEPEXKEBOT MOJIEIi Ta BU3HAYEHHSI METH TIOJILOTY JIMIIIE Ha 3a/1aHii BUCOTI ISt MiHIMi-
3a1ii 00YMCITIOBAILHUX BUTPAT OOMEKEHHX MOXKJIMBOCTEH aBTOMUIOTY Hegoporux mozenei Mainux BILJIA. Pesynb-
TaTH HAIIOTO AOCII/IKEHHSI MOXKYTh OYTH PO3IIMPEH] LIISIXOM MPOBECHHS cepii eKCIIEPUMEHTIB ISl PI3HUX YMOB.

Karouosi ciioBa: 6e3misIOTHI JTiTANbHI allapaTH; 3rOPTKOBa HEHPOHHA MepeXa; CeMaHTHYHA CerMEHTALlisl; CHC-
TeMa KepyBaHH: MOJIBOTOM; CiTKa 3aiHATOCTI.
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