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GREEN'S FUNCTIONS OF THE FIRST AND SECOND BOUNDARY VALUE

PROBLEMS FOR THE LAPLACE EQUATION IN THE NONCLASSICAL DOMAIN

The subject of study is the Green's functions of the first and second boundary value problems for the Laplace
equation. The study constructs the Green's functions of the first and second boundary value problems for the
Laplace equation in space with a spherical segment in analytical form, as well as numerical analysis of these
functions. Research task: to formalize the problem of determining Green's functions for the specified domain;
using methods of Fourier, pair summation equations and potential theory to reduce mixed boundary value prob-
lems for auxiliary harmonic functions to a system of equations that has an analytical solution; investigate the
compatibility of the algebraic system for determining constants of integration; formulate and prove a theorem
about the jump of the normal derivative of the potential of a simple layer on the surface of a segment, with the
help of which to present the Green's function in the form of the potential of a simple layer; conduct a numerical
experiment and identify algorithms and areas of changing the parameters of effective calculations; analyze the
behavior of Green's functions. Scientific novelty: for the first time, Green's functions of Dirichlet and Neumann
boundary value problems for the Laplace equation in three-dimensional space with a spherical segment were
constructed in analytical form, the obtained results were substantiated, and a comprehensive numerical experi-
ment was conducted to analyze the behavior of these functions. The obtained results: mixed boundary value
problems in the interior and exterior of the spherical surface to which the segment belongs are set for the auxil-
iary harmonic functions; using the Fourier method, the problem is reduced to systems of paired equations in
series by Legendre functions, the solutions of which are found using discontinuous Mehler-Dirichlet sums. The
specified functions are obtained in an explicit view in two forms: series based on the basic harmonic functions
in spherical coordinates and the potential of a simple layer on the surface of the segment. To substantiate the
results, the lemma on the compatibility of the algebraic system for determining the constants of integration and
the theorem on the jump of the normal derivative of the potential of a simple layer on a segment are proved. A
numerical experiment was conducted to analyze the behavior of the constructed functions. Conclusions: the
analysis of numerical values of Green's functions obtained by different algorithms showed that the highest ac-
curacy of results outside the surface of the segment was obtained when using images of Green's functions in the
form of series. On the basis of the calculations, the lines of the level of the Green's functions of two boundary
value problems in the plane of the singular point, as well as the graphs of the potential density of the simple
layer for the Dirichlet problem and the potential jump for the Neumann problem on the segment at different
locations of the singular point were constructed. In the partial case of the location of a singular point at the
origin of the coordinates, the potential of the electrostatic field of a point charge near a conductive grounded
thin shell in the form of a spherical segment is found. The main characteristics of such a field are found in closed
form.

Keywords: Green's function; Dirichlet boundary value problem; Neumann boundary value problem; Laplace equa-
tion; harmonic function; spherical segment; simple layer potential; spherical functions; potential jump.

The Green's function was first introduced by
George Green in [1] for the Laplace equation. In the same
essay, Green showed the use of this function to find the

Introduction

The mathematical apparatus of Green's functions
has had a significant impact on the development of meth-
ods of mathematical physics over the past two centuries.
It had been widely used to represent solutions of linear
differential equations in space and in domains of different
dimensions, reduce boundary value problems to integral
equations, prove the existence of solutions to boundary
value problems, construct efficient numerical methods,
and analyze various types of physical fields with point
and distributed sources.

potentials of electrostatic and magnetostatic fields. Many
mathematicians of the 19th century after Green set out to
find solutions to the Dirichlet and Neumann problems for
various differential equations, following Green's method.
They obtained integral formulas, introduced functions
similar to Green's function, studied their properties and
applied them to solve problems in acoustics, hydrody-
namics, heat conduction, magnetism, electrodynamics,
elasticity theory for second-order linear differential equa-
tions of elliptic, hyperbolic and parabolic types. Among
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these scientists were H. Weber, L. Schlifli, C. Neumann,
F. Neumann, E. Betti, R. Lipschitz, H. Helmholtz, B.
Rieman, U. Dini and others. In commemoration of
Green's contributions, all similar functions were also
later called as Green's functions.

The problem of explicitly constructing the Green's
function was rather simply solved for the Laplace equa-
tion in a plane domain. Even B. Rieman drew attention
to the fact that the Green's function for a plane domain is
closely related to the analytic function that performs a
conformal mapping of the domain onto a unit circle. The
existence of such a function for a simply connected plane
domain with a piecewise smooth boundary follows from
the well-known Riemann theorem, which he proved in
1851 [2]. The latter circumstance made it possible to con-
struct Green's functions for many canonical domains on
the plane [4]. The Green's function for some canonical
spatial domains was constructed using the image method,
the method of separation of variables in the Laplace
equation in curvilinear coordinate systems, series in ei-
genfunctions of boundary value problems, and the
method of integral transformations [4]. To apply the im-
age method, a certain symmetry of the region is required,
which, for example, takes place for a half-space and a
sphere. Symmetry considerations were used by A. Green-
hill in a rectangular parallelepiped, expressing the
Green's function by series in elliptic theta functions [5].
The main difficulties in the implementation of the
method of separation of variables were associated with
the representation of the fundamental solution by a series
or an integral over the basis harmonic functions in the
corresponding area. In particular, they were overcome in
[6] in cylindrical and spherical coordinate systems. The
expansion of the Green's function for a rectangular paral-
lelepiped in terms of the eigenfunctions of the Laplace
operator is given by B. Riemann in his lectures [7]. Sim-
ilar approaches were applied to the Helmholtz equation,
the wave equation, the Klein-Gordon equation, the heat-
conduction equation [3, 4, 8, 9]. An interesting version of
the image method was proposed by A. Sommerfeld. In
[10], he constructed the Green's function in a closed form
for the problem of plane wave diffraction on a half-plane.
In this case, the method of images on Riemann surfaces
corresponding to multivalued solutions of the Helmholtz
equation was used. Later, this method was used by E. W.
Hobson, who constructed the Green's function for the La-
place equation for a disk [11]. The connection of the so-
lutions of the equations of the static theory of elasticity
with harmonic functions made it possible to solve the
problem of concentrated forces for an unbounded and
semi-limited homogeneous and isotropic elastic me-
dium [12-14]. The explicit construction of the Green's
tensor for the equilibrium equation in the displacements
of an anisotropic elastic space is given in the article [15]
using the integral Fourier transform.

The modern stage in the creation of the theory of
Green's functions began in the second half of the 20th
century. At this time, the ideas of the classics of natural
science developed in several directions. In potential the-
ory, one of the directions concerned multiply connected
domains. For a plane multiply connected domain
bounded by circles, the Green's function was found from
the solution of the null-field integral equation by expand-
ing the kernels of the equation and the function itself into
Fourier series in angular variables [16]. In a particular
case, a solution was obtained for an eccentric ring. The
Green's function for a multiply connected domain of the
complex plane bounded by polygons symmetric about
the real axis was constructed in [17]. The method is based
on a Schwarz—Christoffel conformal map of the part of
the upper half-plane exterior to the problem domain onto
a semi-infinite strip whose end contains some slits. For
multiply connected domains with circular boundaries on
the plane, Green's functions were constructed using the
analytical Schottky—KIein function [18]. In a number of
articles spatial multiconnected areas were considered.
Thus, in the article [19], in fact, a generalization of the
result of E. W. Hobson to the case of a system of coaxial
circular disks is given. The potential is represented by a
simple layer of charged disks. A system of integral equa-
tions of the Abel type is obtained for the charge densities
of disks. For a space with a system of arbitrarily located
spherical cavities, when constructing the Green's func-
tion, the addition theorems for spherical harmonics were
used [20]. In this case, the coefficients of expansions of
the desired functions into series in terms of spherical
functions must satisfy infinite systems of linear algebraic
equations.

The method of images also received a rebirth.
In [21], Green's functions for the Laplace equation in the
exterior and interior of a prolate spheroid, written as se-
ries in terms of harmonic basis functions in these do-
mains, are used to implement the imaging method. The
field created by the potential distribution in the form of a
Green's function is represented by two point sources of a
field in the exterior and interior of the spheroid and an
additional field created by a surface charge on a confocal
spheroidal surface located outside the main domain.

The techniques of integral Fourier transform and a
Kontorovich—Lebedev transform were used to find the
Green's function for two homogeneous wedges comple-
menting each other up to space [21].

The above methods have also been widely used in
problems of elasticity theory [23-30], acoustics [31],
wave dynamics [32], stationary hydrodynamics [33, 34],
and diffraction theory [35].

In [23], the Green's matrix was constructed using
the Fourier transform for a homogeneous and orthotropic
half-strip sandwiched between two absolutely rigid half-
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planes. The elements of the Green's matrix, which phys-
ically represent the displacements of the points of the
half-strip under the action of a concentrated force, are ex-
pressed in terms of elementary functions. Article [24]
presents a method for calculating the static Green's func-
tions in a multilayered transversally isotropic or isotropic
half-space. To obtain Green's functions in the trans-
formed domain, a cylindrical system of vector functions
and the propagator matrix method are used. In the arti-
cle [25], the Green's functions for a periodic system of
concentrated forces and dislocations for a plane and a
half-plane are constructed using the methods of the the-
ory of analytic functions. Paper [26] presents an analysis
of the problem of an external circular crack in a trans-
versely isotropic piezoelectric solid subject to normal
stresses and electric charges symmetrical about the plane
of the crack. The obtained Green's functions for a point
force and a point charge are recognized as exact and are
expressed in terms of elementary functions. In arti-
cle [27], Green's function is constructed, which charac-
terizes the coupled electroelastic fields in a composite pi-
ezoceramic wedge under the action of concentrated shear
forces or electric charges. Mellin and Fourier integral
transformations are used. In [28] the three-dimensional
Green's functions for anisotropic bimaterials are found
using two-dimensional Fourier transforms. The Green's
functions in the physical domain are expressed as the sum
of the spatial Green's function and an additional part in
the form of regular integrals. Paper [29] constructed
Green's functions with selected features of axisymmetric
and three-dimensional static elasticity problems for iso-
tropic layered half-spaces and layers. The Hankel integral
transform was used for axisymmetric cases and the Fou-
rier transform in the three-dimensional case. In [30]
Green's formulas for thermoelastic displacements and
stresses in a half-plane were obtained for a point heat
source.

It is important to note the directions of applications
of the Green's function. In addition to the traditional ones
described at the beginning of this section, there are works
devoted to diagnosing cavities in plane bodies by meas-
uring electrostatic or thermostatic characteristics at their
boundaries [36], modeling seismic and postseismic de-
formations of faults in the Earth’s crust [37], layered
nano- structures in semiconductors [38], stress and strain
fields in composite materials [39], inverse problems of
identifying sources of potential fields [40], etc.

In this article, the Green's functions of the first and
second boundary value problems for the Laplace equa-
tion are constructed analytically in a nonclassical do-
main, which is considered to be a space with a spherical
segment. The problems posed in it are reduced to solving
mixed non-axisymmetric boundary value problems of
potential theory. The class of mixed problems for the
equations of mathematical physics includes problems in

which there are lines of change of the type of boundary
conditions on the boundary surfaces. Studies of these
problems were widely developed in the second half of the
20th century. Some idea of the bibliography on this topic
can be obtained in the books [41, 42]. In the very formu-
lation of mixed problems, in contrast to the main prob-
lems, there are analytical difficulties associated with sat-
isfying the boundary conditions, and computational dif-
ficulties with the slow convergence of computational al-
gorithms. This may explain the small number of studies
that deal with non-axisymmetric mixed problems. In the
axisymmetric case, problems for a spherical segment in
space were considered in [42—-44]. In them, the exact sat-
isfaction of mixed boundary conditions was based on the
use of discontinuous Mehler — Dirichlet sums [45]

i cos[(n+1/2)t]P,(cos6) =

n=0
_ [2(cost—cose)]_1/2, 0<t<O<m, 1)
0, 0<0<t<m,
> sin[(n+1/2)t]P, (cos6) =
n=0
0, 0<t<O<m,
- ~1/2 @
[2(cosO—cost)] 74, 0<O<t<m.

In the book [42], a similar approach is applied formally
to a particular non-axisymmetric problem for a segment,
and the solution of the problem is only outlined, but not
brought to real results. In [46, 47], axisymmetric and re-
ducible problems were solved for a segment located in-
side some canonical bodies, and the addition of the seg-
ment surface to a complete spherical surface crossed the
boundary of the external body, i.e. the generalized Fou-
rier method was not suitable for solving such problems.

1. Problem Statement

In space R® Cartesian and spherical coordinates of
a point x will be denoted by (X1,X2,X3) and (r,0,p) re-

spectively. The connection between them is carried out
by formulas

X1 =rsinBcoso,
Xo =rsinBsing, 3
X3 =rcos®.

Consider a spherical segment in space

r={xeR3:r=R,0e[0,B], [0, 2x]}.

Let us pose the problem of finding the Green's func-
tion G(X,Xg), |Xg <R of the Dirichlet problem for the

Laplace equation in the domain R3\T', which satisfies
the following conditions:
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AG(X,%0) =0 VxeR3\T:x =X, 4) " = U7 )R 0e(pg =0 (16)
G(x,Xg) =F(x—Xg) +u(x,Xg) , (5) Therefore, the solution of the mixed potential theory
G(X, Xo)er =0 (6) problem (14) - (16) leads to finding the Green's function
’ e 1

where A —the Laplace operator, Xg — singular point of
the Green's function, F(x—Xxg) =—(4m|x—Xq Ntisa
fundamental solution of the Laplace equation, U(X,Xg)
is a harmonic function in the domain R3\T .

Harmonic function U(X,XO) we will find in the
form

+
u (Xixo)l |X |< Ry
u(x,xg) =9 @]
u (X, Xg) IXP R,

where u*(x,xy) — harmonic functions in the corre-
sponding areas, and the function u™(x,Xq) is regular at
infinity.

Regarding functions ui(x,xo) , on a spherical sur-

face the following conjugation conditions follow from
the potential properties:

(u+(x,x0)—u‘(x,x0))lr=R =0, 8

u* (%, Xo)r = (@n|x—Xo ), )

.
T
' ' [r=R,0e(B,]

Thus, to find the Green's function, it is necessary to

(10)

find harmonic functions u™(x,x,) in relevant areas that
satisfy the conditions (8) — (10).

Now consider the formulation of the problem of de-
termining the Green's function of the Laplace equation
for the Neumann problem. It satisfies the following con-
ditions:

AG(X,Xg) =0 VXER3\FZX¢X0, (11)

G(x,Xg) =F(x-Xxg)+u(x,x),  (12)
oG

a—n(X1Xo)|x6r =0, (13)

where n —normal to the surface of the segment.
As before, we will find the harmonic function
u(x,Xg) in the form (7). Then, with respect to the func-

tions ui(x,xo) on the spherical surface, we obtain the
following conjugation conditions:

[%Luxw—%%uxwlR=o, (14
ou* 1o 1
E( Xo)r = 4n an[lx X0 J (15)

of the Neumann problem.

2. Reduction of the first problem
to a system of paired equations

Let's write the Laplace equation in spherical coor-
dinates
2(r £)+ ! —(sm 9—)+
or o’ r2sino 90 00

1
+——>——5=0.
r?sinZ 0 6<p2
Next, we will use the expansion of the fundamental
solution of the Laplace equation into a series by spherical

functions [4]
1 (" /et
— X
47'C =0 r() / rn+l

n .
x Y (-)™P ™ (cos )Py (cos0)e™ @) (17)
m=-n
where the upper (lower) multiplier in curly brackets is se-

lected at I'<fy (r>1rp),

A

1
_2

F(x—Xq) ==

(r9.00,99) — spherical coordi-

nates of a point X, P™"(x) — attached Legendre function

of the first kind.
Considering the formula (17) and the symmetry of
the function G(x,xy) with respect to the plane

{p=povo=¢y+m} we will find the functions

ut(x, Xg) in the form of series

ut = i(%] i an mPn" (c0s0) cos[m(e—pg)] ,

n=0 m=0
r<R; (18)
_ *(R n+l n
u = Z(Tj > by mPr (cos6) cos[m(e— )]
n=0 m=0
r>R. (19)

The conjugation conditions and boundary condi-
tions (8)—(10) for functions (18), (19) lead to the system
of equalities

anm=bpm, N=0+0,Mm=0=+n. (20)
and the system of paired summative equations with re-
spect to the coefficients of expansions (18), (19)

o0 n
D> anmPy (cosb) cos[m(p—gg)] =
n=0m=0

=—F(x=Xo)y=r, 0€[0.B). p<[0,2n], (21)
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i (2n+1) i anmPy" (cos8) cos[m(¢ o)1 =0,

n=0 m=0
0e (B n], o[0,2n]. (22)
Substitute (17) into the right-hand side of equation (21),
then write down equations (21), (22) with respect to the
Fourier coefficients according to the system of functions

{cos[m(¢ — o) m=o

0
> anmPy (cos) =

n=m

_2- 5mo( ™ Z(roj

0e[0,B), meZ,

- (cos0y)P (cos6)

(23)

N E

(2n+1)a, P (cos0) =0 ,

T
3

0e,n], meZ,,
where 3, —the Kronecker symbol.
Let's transform the system (23), (24). Using the fact

(24)

that

m
P (cos0) = (-1 sin™ e(dP_nnEx)J :
dx [x=cos6
let's divide both parts of equality (23) by (-1)"sin™ 9,

after which we integrate them M times by variable cos6
m-1

iamPn (c0s6) = f,(6) + Y. €y mPn(cos6), 6€[0,B)
n=0 n=0

(25)

& i(2n+1)anmp (cos®)=0, 6e(B,n],

D" —
dcos6™ 1o

(26)
f,(0) = 2 om0 _qym Z( j ™ (cos0y)P, (cosH) .

Here, the constants of integration are denoted by c, ,, at
n=01..., m>1.
sum on the right-hand side is empty at m=0.

m-1, In formula (25), the second

3. Solving the system of paired equations

To solve the system of paired equations (25), (26),
we apply the method of Mehler-Dirichlet discontinuous
sums (1), (2), known from works [42-44]. First of all, we
note that since formulas (1), (2) are actually decomposi-
tions of functions from their right-hand sides into Fourier

series by functions

{cos[(n+1/2)t1}g, {Sin[(n+1/2)t]}—g on the seg-
ment [0, 7], then for the Fourier coefficients we obtain
the identities

trigonometric  systems  of

]
 (cos6) _EJ cos[(n+1/2)t] it

27

nOQ/Z(cost €0s0) (@7)
sin[(n+1/2)t]

,(cosB) = dt. 28

j a/Z(COSO cost) (28)

We will look for a solution of system (25), (26) in
the form

p
apm = Iwm(t) cos[(n+1/2)t]dt,
0

(29)

where O, (t) — some unknown function.
Considering that 6 e (B, ], let's substitute the inte-

gral (29) in the series located on the left side of equation
(26). After integration by parts, we get

oo B
> (2n +1)j<pm (t) cos[(n +1/ 2)t]dtP, (cos 6) =
n=0 0

=201, (B) i sin[(n+1/2)B]P, (cos6) -

n=0

p »
-2 j o ()Y sin[(n+1/2)t]P, (cos6)dt.  (30)

0 n=0
Here it is assumed that the function @,(t) is sufficiently

smooth and the permutation of the infinite sum and the
integral is admissible. Since t<p <0, then, according to

formula (2), the right-hand side of the last formula is
equal to zero, that is, equation (26) is identically fulfilled.
Substitute integral (29) into equation (25)

B w
[om ()Y cos[(n+1/2)t]P, (cos O)dt =
0 n=0

chm

Substitute the sum (1) in the left part of this equality, and
the integral (27) in the right part

(cos6), 6€[0,p).

m-1
| JW{ m(®)- chmcos[(m -

2 5m o P i( ) M (cosBy) cos[(n+= ) ]}
n=0

2n?
=0, meZ,.
Using the formulas of the direct and inverse integral
transformation of the Abel type, it is possible to solve the
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previous integral equation with respect to the function
om(t) (M=0)

(=250 " 5 (2 eyt
m 271?2R n=0 R n
2 m-1
xcos[(n+1/2)t]+= )" ¢, meos[(n+1/2)t] . (31)
Th=0
To determine integration constants {C, ﬁ’,ﬂ’:—é

(when m=0 this set is empty) we will require that the

n _
function (ai - aLJ be integrable on the sur-
or or
|(r,0,p)el’
face I'. Itis not difficult to understand that a necessary
condition for this is the integrability of the function
00
I;m(c0s6) = Y (2n+1)a, P (cos6)
n=0
with weight sin® on the segment ©<[0,p] for any

m >0 . Considering the formulas (30), (2), we write

om(B) _
dcoso™ | \/cosO-cosp

|, (c0860) = \2(-1)"sin™

_T om®dt | 32)
0 JcosO—cost

According to the method [42], let's transform (32), by re-
placing the variables, cos6=v, cost=u and the inte-

grand function ¢y, (t) = v, (u)

Im(v):ﬁ(_l)m(l_vz)mlzﬂ{Wm(Vo)+

dv™ | Jv-vg

JM} )

O\IV u

Let's integrate the integral in (33) by parts M times

In(v) =v2(-)™@-v?)™2 x
dm
d m

X

{ZXk(V,Vo)W%()(VoH
k=0

+] Xm<v,u>w$nm+”(u)d”}' (34)

Vo
T k-1/2
h V,Vp)=———(V-V ,
where 7k (V,Vp) F(k+1/2)( 0)

gamma function. Formula (34) shows that the function in
(32) has the singularity of order —m—1/2 at a point
v =V, and, in order to get rid of non-integrable singular-

rx) -

ities in (34), it is necessary to impose additional condi-
tions on the functions s, (u) :

W (Vo) =Win(Vo) ==y P (vg) =0 (35)

or, what exactly,
omB) =om@) =-=o V() =0.  (36)
Thus, to determine the integration constants
{Com}em s in (31) for each M, we have M conditions

(36). Let's find out the possibility of finding constants
from these conditions.
Lemma. For each m=12,...

B e(0,7) algebraic system

and arbitrary

m-1
Y Cm(n+1/2) cos[(n+1/2)B+ 1k / 2] = gy k.
n=0

k=01...,m-1

has a unique solution for any set {gm,k}rk“;ol eR™.

@37)

Proof. To prove the lemma, we show that the ho-
mogeneous system (37) has only a trivial solution. For
this, we will fix the integer m >0 and consider the func-
tion

m-1

P(t)= D c,cos[(n+1/2)t].
n=0
Let's multiply both parts of the previous equality by
2cos(t/2)
t ml t
Q(t) = 2cos§ P(t)= >, anCosicos[(n +1/2)t]=
n=0
m-1 m

m-1
=Y cycos[(n+1)t]+ > ¢, cos(nt) = Y- &, cos(nt),
n=0 n=0 n=0

where €y =Cp, €y =Cy+Chg (N=1+m-1),
Cm =Cm_1-
The function Q(t) can be rewritten as

Qt) = {e—imtémethi +"_+Ele(m+l)ti +2(~:0emti +

+8,e(M-Dt +---+(":m} :

The expression in the curly brackets is the inverse poly-
nomial relative to e'. If such a polynomial has a root elt
te(0,m) , then it has a root e~ the same multiplicity as

the first.
Assume that the homogeneous system (37) at

B e(0,m) has a non-trivial solution {cn}nmz_ol. Then the
function P(t) satisfies the conditions

P()=P(P)="-=P"I(p)=0.
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It is obvious that the same conditions are satisfied by the
function Q(t)eimt . Then the polynomial

P e2mt|

Cm (m+Dti

mti +

+---+Cie +2Cge

% A(m-D)ti ~
+Gie +eeet 8y

has a pair of complex conjugate roots e*'P | both multi-
ples of M . However, this polynomial has one more root
e'™ , different from those specified. If a polynomial of de-
gree 2m has 2m+1 roots, then it is identically equal to

zero, that is, the coefficients {€,}n., and with them

{cn}r","z‘ol, are zero. The resulting contradiction with the

assumption proves the lemma statement.
It follows from the lemma, formula (46) and condi-

tions (36) that the constants of integration {Cn,m ‘,iz‘yr,?:_é

are found uniquely from the system (37) when

(-D™2-8n0)
47R

xn%(rﬁoj Pn‘m(coseo)(n%) COS|:(n+%jB+%k}

that is, formula (31) uniquely defines the function
o (1)

Note that the function v, (u) at meZ, isan an-
alytic function on the interval (—1,1), and a derivative

Omk =

\ul(,,'f)(u) for each k eZ, is bounded in the neighbor-

hood of a point u=1. The latter follows from formula
(31) and the representation

cos[(k+1/2)arccosu] =
Kk m+1/2 _ k—-m
D e N S
0 2 2

This means that the conditions of smoothness of the func-
tion y,(u) , which were assumed above, are fulfilled.

4. Construction of the Green's function
of the first boundary value problem

Substituting the function ¢,(t) into formula (29),
we obtain

(38)

anm =% mt+Ynm:

where

5 (B) = sin(kp) 7

Bnk = K

’

{Sn+k+1([3) +8pk(B), n=Kk,
B+s2na(B), n=k,
o0 k
2-8mo m o —m
Ynm = ——2=(-1) B (—] P (cosOy) »
n,m 471:2R kgo n,k R k 0
l m-1
Onm=— z Bn,kck,m .
T k=0
Hence, the Green's formula of the first boundary value
problem is restored by formulas (5), (7), (18) — (20), (38)

G(X,Xg) = —(4m|x-Xo )+

o[ le
2P (cos8) cos[m(e - ¢p)],
+§{(R/r)””}n§) (ostycemte=onl

r<R
{ },r0<R.
r>R

The results of numerical calculations according to
formula (39) are shown in Fig. 1 and in tables 1, 2. Cal-
culations were carried out with the following parameter
values: B=n/3, ry/R=0.35, 6 =2n/5, ¢y =0.In
fig. 1 shows the level lines of the Green's function in the
plane x, =0 passing through a singular point.

(39)

|
-

Fig. 1. Level lines of the Green's function of the first
boundary value problem in the plane x, =0

Table 1 shows the numerical values of the Green's
function at some points of the plane x, =0, |X|< R (pa-
rameters are indicated above). Table 2 shows the relative
error in percent of the calculation of the Green's function
at the points of the plane x, =0, |X|< R atdifferent ra-

tios r/R and different angles © . The largest error is
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observed at 6=0, but in range 6=n/5+7n even with
the ratior /R =0.95 at least two valid significant digits
after the period are obtained.

Table 1
The value of the Green's function at the points
of the plane x, =0

06\r/R 0.75 0.85 0.95
0 -0.03167 -0.01704 | -0.004918
n/5 -0.06654 -0.03551 -0.01073
2n/5 -0.1303 -0.08931 -0.06358
3n/5 -0.1115 -0.08932 -0.07340
4r/5 -0.07462 -0.06422 -0.05586
T -0.05422 -0.04793 -0.04299

Table 2
The relative error of calculating
the Green's function (%)

6\r/R 0.75 0.85 0.95

0 0.004 0.18 10.3

/5 0.0005 0.02 1.07

2n/5 0.0002 0.007 0.16

3n/5 0.0002 0.007 0.13

4r/5 0.0004 0.01 0.2

i 0.003 0.07 1.18

5. Representation of a function u(x)
in the form of a potentially simple layer

A fundamental fact of classical potential theory is
the jump of the normal derivative of the potential of a
simple layer when passing through a closed Lyapunov
surface [48]. Let's prove a similar result for a surface with
edge I'.

Consider the potential of a simple layer for surfaces
I" with density f(y)

U(x) = jMdcy .

p1x=yl
Let's fix the arbitrary €<(0,8) and mark
I,={r=R,0€[0,—¢],p<[0,2n]}. Let's take an arbi-
trary point x=(r,8,0):r<R,0€[0,,—¢] and the point
€=(R,6,9) on the surface I', corresponding to it. Let
N = (sin Bcos@,sin Bsing,cos B) — unit vector of the nor-

ou
mal to the surface T, in the point & , GT(X) — derivative
3

of a function U(x) at a point X in the direction of the
normal ng. We will assume that

f(y) eC(ry) Vee(O.); [If(y)ldoy <o, (40)
r
Since the surface I is part of the Lyapunov surface, the
following integrals exist according to the properties of
the function U(x)

U (- f (y-xng) f(y)do, - jcosw(x,y) ()0

7 o,
ang} r |X—y|3 r |X_y|2 !
U (y-&ne) cosy(&,y)

= (&)= f(y)do, = | ——f(y)do, ,
on; 1[ e-yf l le-yF ’

where wy(X,y) — the angle between the vectors X
and y .

Theorem. For each €< (0,8) and an arbitrary point
g T, if conditions (40) are fulfilled, there are limits

ou* .
— (@)= lim —(x),
6n¢ r—>R$00n§
moreover
ou* ouU
— (&) =——(&)x2nf(¢). (41)
ong g

Proof. First, consider the analogue of the Gaussian
integral for a surface I"

G(X)ZI%(X'ZV)%

r |X_y|
where ¢(x,y) —the angle between the vectors y—x and
y . In fig. 2 shows three different options for the location

y ’

of the point x relative to the surface I" (|x; kR,
|El=R ,|x, > R). Let us denote the solid angle of a
cone with the vertex at point x; and the direction AB -
the edge of the surface I" - by o4 . Then the solid angle
at which the surface I' is visible from the point x; is
equal to 4n—ay . If the point x, directs to the point
& eI, then the solid angle is (4n—oy) >4n—a,
where o is the solid angle of the cone with vertex &;

and direction AB.

Note that, unlike a closed surface, for which the
solid angle relative to the internal point is equal 4r and
does not depend on the position of the point, the solid
angle 4x—q4 depends on the position x; .

Since cos<p(x,y)|x—y|‘2 do, with accuracy to the

sign is equal to the magnitude of the solid angle under
which the surface element is visible from the point X,
then

lim G(xq)=4n-a.
]
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Fig. 2. Solid angles for calculating the potential

The same G(&) =2n—y, where y —the solid angle of
the cone EAB. To calculate G(x,), we draw a cone
X,CD that touches the surface I" alongaline CD . We
denote by T'; the part of the surface I' that lies in the
middle of the line CD, and the solid angle at which T
is visible from the point x, - by ;. Then, since the angle
between y—x and y is obtuse, then

[P
i 1%,
Similarly
[ o0,
M, |X2_y|2
where o, — the solid angle of the cone x,CD . Now
lim [ £250(X2.Y) 4
X8 - |x2 —y|2

Oy =0 — @7,

=— lim o, =-o,
ot

where ® — the solid angle of the cone &,AB.

Let's return to the proof of the theorem. Let's choose
anumber &< (0,¢) . Let's mark

[ C0sQ(X,Y) . + ey [XI<R,
W(x) = i[_—|2f(Y)de ) iT@W(X) =W {|x|>R.
Let's write the function W(x) like this:

W(x) = wa(y)doy+ | SO0 Y) (4o

£ Ix=yP mr -y
- %(X’zy)[f(y)—f(g)]dcy @] Cos‘p(x’zy) doy +
Ty Xyl Ty |X=y]
+ COS(p—(X’Zy)f(y)dcy. (42)

M\l |X_y|
Since the function f(y) is continuous on Ty, the first

integral on the right in formula (42) converges uniformly
at point X =& (proof, as in the classical theory [48]). The

third integral on the right in (42) is also a continuous
function of X due to the continuity of the kernel and the
integrability of f(y). Then the limit transition in (42) at

x—>&el, (|X|<R) taking into account the limit of
the function G(x) gives

whg)= | S8 Dis() t(eyido, +F(@4n-ag) +

;, 16yl

coso(€,y) cosp(&,y)
+ | =22 (y)doy, = [ f (y)do,
F£5|é—yf ! £|a—yF ’

—F(E)2n—0p) +T(E)(dn— o) =W(E) +2nf () , (43)

where a5 — the solid angle of a cone with vertex &, the
direction of which is the boundary of the surface I'y.

Now denote by 6(,y) the angle between the vec-
tors & and y. Let's take that
w(X,Y) =06(X,¥)+¢(X,y) . Then the normal derivative
of the potential can be written as:

N - j%(x'zy)cose(g, y)f(y)do, -

ani T Ix=yl

into account

- j Sin(P—(X’;/)sin 0. y)f(y)doy .
L Ix-

(44)

The second integral in the last formula is a continuous
function of X, since |x—y|=2Rsin(6(&,y)/2) , and the

first integral coincides with the integral W(x) in which the
function f(y) was replaced by cos6(¢,y)f(y). Therefore,
the limit transition in formula (44) at x —>EeT,
(|xkR) gives

ou* cosg(é,
2 0= [  cosote oy +2(c)-
e 18-yl
sinp(&,y) . ou
[ oy (o, - S (0 +25t(2).
ris- e
The second formula (41) can be proved similarly.
Consequence. If the conditions of the theorem are
satisfied, the following formula is correct

1]oU* ou™
f(&)=—| —©-——(©)|. (45)
4n ang 6né
Formula (45) makes it possible to represent function
(7) by the potential of a simple layer. For this, obviously,
it is necessary to restore the density of this potential. Tak-

ing into account formulas (18), (19), (45), we have
1{ou™ au”
f0,0)=—| —-—| =
©.0) 47:[ o or ]IF

:# - cos[m(e—-p)] Y (2n+1)a, Py (cos6) =

m=0 n=0
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:# 2. cos[m(9 )]l (cos6),

m=0
where 1,(v) is determined by the formula (34).
Graphs of the potential density of a simple layer at
¢ =g, constructed according to calculations obtained

by formula (46), are shown in Fig. 3 Various options for
the location of the singular point relative to the surface
I" are considered. A characteristic increase of density
around the edge of the shell vy =cosp =0.5 is observed,

which is associated with the root feature at this point.

(46)

h
1,/R=0.65, 0,=27/5

0.3
1,/R=0.35, 0,=271t/5

021 1o /R=0.65, @4= /5

1 /R=0.35, @y=7/5

0.17

T
1.0V

Fig. 3. Graphs of the potential density
of a simple layer at ¢ =g

6. The electrostatic field of a point charge
near a grounded conducting spherical shell

As an example of the application of the results ob-
tained above, we present the problem of determining the
electrostatic field of a point unit charge near a grounded
conducting spherical shell located in a vacuum. We will
assume that the point charge is located at the point x =0
, and the spherical shell is given by the conditions speci-
fied in Section 1. To comply with the above formulas, we
consider that the charge is negative, and its numerical
value is equal to the electric constant &g . This task is in-
teresting because due to the axial symmetry of the elec-
trostatic field, some of its characteristics are found in a
closed form. It should be noted that the Green's function
(5) at xo =0 exactly determines the potential of the stud-

ied field. Here F(x—xg) is the potential of a point
charge, and u(x) is the potential of the field induced by

the shell.
Since the partial case of problem (14)—(16) is con-
sidered, we will present only some final results.

Due to axial symmetry, we find the function u*(x)
in the form

ui(x)=ian{(r/R) }Pn(cose), 47)
(R

n=o0 /r)n+1
o - 1 B-+sinp, n=0,
" 472R |sin[(n+DB]/ (n+1) +sin(nB) /n,n 0.

Further simplification of formula (47) is connected with
the explicit summation of series

© o
D sin(n+1)B WP (cos6) =
o N+l

= ImIn(z—cose+x/1—22cose+zz) , (48)

Z—Sm np u"P,(cos0) =
n

n=1
:—ImIn(l—zcose+\i1—22cose+22), (49)

where z=pe'®, =r/R . The functions in the right-hand

parts of formulas (48), (49) are multivalued functions of
a complex variable z . In order to be able to extract sin-
gle-valued branches of these functions, we will make cuts
in the complex z— plane, as shown in Fig. 4.

e-i0

Fig. 4. Cuts of the complex z—plane
for selection of single-valued branches
of multivalued functions

We will choose the branches in such a way that the indi-
cated functions take real values, and the roots take posi-
tive values at z  (0,1) . Since the series in formulas (48),

(49) converge at u=1, we will calculate their sums at
this value of the parameter 1 and 6 <[0,B) . Bearing in

mind the selection of single-valued branches of analytic
functions, we can write

arg(eiie —eiB) =—(n—BF0)/2,
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+i0 BF6 ou* ou”
e —e'P |- ZSm( ] , (0 R,0 R,6)=
5 0)= pe —(R,0)- po —(R,6)
therefore 1 2\/5 cosE \/5 cosE

1-2e" cos 0+ e = [2(cos0—cosB)e! ™2
e —cos0+1-2eP cos0+e'?P =
:(ﬁsing—Jcose—cosBJ(Jcose—cosB+i«/§cosg)_

Then

arg(eiﬁ —cos0+y1-2¢™ cos 0+ ) -
2 cos%

=arcty ———=—. 50
g«fcose—cosﬁ (50)
arg (l—eiB cos0+ xfl—ZeiB cos0+e'?P j =
N cosE
=p-mn+arctg 2 (51)

JcosB—cosp
Substitution of identities (50), (51) in formulas
(47) — (49) at p=1 gives

ar P<0P)

which corresponds to condition (9). Similarly at
0 (B, ] we have

arg (eiﬁ —cos0++1-2¢" cos+¢'? ) -
«/EsinE

u (R, e)—

2
—arcty————2 52
g,/cosﬁ—cose 52)
arg(l—eiﬁcose+ 1—2echose+ei2Bj=
\/EsinE
=p-arcty (53)

2
1jcosB—cose

and we get a formula for the function u™ (R, 6)

1 \ﬁsinE
u"(R,0) = —-—arctg
2

2
n°R Jeosp—cosb’

Note that the limit of the function u*(x) at 6

0B, n]. (54)

1 I . . -
yry which is consistent with the continuity
T

of the potential on the surface r=R.
In the closed form, it is still possible to find the
charge density that is induced on the surface I'

is equal to

= T
4n2R2

2
-darclg——==—=". (55
chose—cosB (53)

and the magnitude of the total charge on this surface

+
J/cos0-cosp

q:%(sinLHB). (56)

The last formula corresponds to the result given in [49].

It is interesting to note that the density of surface
charge depends only on the variable
t=cos(B/2)/cos(6/2), while the graph of the function
f(t), for example, at B==n/3,
in Fig. 5.

is the graph shown

£(t)
020f /
018

0.16

0.14 /

0.12 /

0.10

0.5 0.6 0.7 0.8 0.9 1.0 >t_
Fig. 5. Dependence of the charge density induced
on the shell on a variable t=cos(B/2)/cos(6/2)

atp=m/3

7. Green's function
of the Neumann problem

Now let's construct the Green's function of the Neu-
mann problem (11) — (13). For it, auxiliary harmonic

functions u* satisfy conditions (14) — (16). We will look
for them again in the form (18), (19). After satisfying the
conditions (14) — (16) with respect to the coefficients
anm bpm, We obtain a system

na, m=-(n+1)b,nm, N=0+00,Mm=0+n;
) Zcos[m ®=p ]z Nan Py (Cos6) =
n=m
-3 cosfm(g - <po)] mo( DM x

m=0
I n
x z (n+1) (—Oj P, ™ (cosB)PI" (cos6)
n=m R

0¢<[0,B), ¢ €[0,2x];
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2n+1an mPr(cos0) =0,

Z cos[m(¢—gp)] Z
m=0
96([3,7t],(pe[0,27c] .
Let's apply the above method to solve this system.
First, we reduce it to a system

m-1

Znanm (cos6) = )" €y Py (cOS6) -
n=0
2— 6 o
- Z(n+1)( j (=)™P;™ (cos6g)P, (cosb)
4in nem
0e[0,8), MeZ, ; (57)
. dm 2n+1
-1)"sin™ @ a, P, (cos0) =0,
(-1 dcosem;‘)nﬂ n,mPn (€0s6)
6e,n], meZ,, (58)

where c,, ,, —constants of integration, which we will find
from the formula

B
anm=(n+1) j om(t)cos[(n+1/2)t]dt .
0
From the formula (59) it follows that

sinf(n+1/2)p]
n®= 00

(59)

n+1

B
1/2 (I)q)m(t)sm[(n +1/2)t]dt.

A necessary condition for the convergence of the series

Znanm

(cos9) is the condition

om(B)=0,m=0,1,.... (60)
Then
& _ o gy SOSlH /2B gy L
n+l " (n+1/2)2 m (n+l/2)2
B
l 14
(i Pnelin it (@)

We impose one more condition on the function ¢, (t)
0on(0)=0,m=01,.... (62)
As in Section 3, equation (58) is satisfied automatically

using (61), and equation (57) leads to the differential
equation (m=>0)

m-1
(l)+1(|)m(t —%chmcos[(k+1/2)t]+( DM x
k=0
mO ) nm 0 ( 1) }
27[ . nzr:n(n )[ j (cos o)cos{ n+> t

(63)
Boundary conditions (60), (62) should be added to
the equation (63).

The solutions of the obtained set of boundary value
problems are functions

90()=-——tg(B/2)cos(t/2)
n°R

t .
(t/2)-
R

1 &1
- = = Pyc(cosby)ty(t), 64
2n2R|§k(Rj k(C0osbp) T (64)

omt)= zCOm[B tg(B/2)cos(t/2)—tsin(t/2)]-

T
()" 51 AS k Tk(t)
nZR kz k[ j P (c0so) () + Z >
m>1, (65)
where
50 = cos[(k-+1/2)t] - cos{(k +1/ 2)[&]% .

To determine the integration constants {c,, m}m_ln o We

will require that the function (u* —U )xer May be

bounded on the surface I". Since

(U~ U )per = =2 Z cos[M(e—pg)]x

<(-D)M(1-v o j “’m(“)d (66)

where  cost=u, Om(t) :\ym(u), cosf=v,
cosP =V, then it is necessary to estimate the bounded-
ness of the derivative in formula (66). The derivative of
the integral (66) has a singularity at the point v =vj. Its
order can be determined if the integral is integrated by
parts M+1 times.

di

W (Y) d
\/v " du=

m m+1
{Zxk(v Vo)u) (vg) +

+f At (VU2 (u)du
Vo
where the function y, (v,u) is defined in (34). Formula

(67)

(67) shows that the function (u* —U )rpp)er At the

point v =V has a singularity of order -m+1/2, and in

order to get rid of all the singularities in (67), it is neces-
sary to impose additional conditions on the function

Wm(U)

Wi (Vo) = Win(Vo) =--=w{(vg) =0  (68)
or, what is the same,
O (B) = omB) == (B)=0.  (69)
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Thus, to determine the integration constants B B
{Comim, m_l in (65) for each m>1 we have m condi- Men =jck(t)cn (Ddt, Ay =Itsin(t/2)cn(t)dt,

tions (69). Lets find out the possibility of finding con-
stants from these conditions.

For m=1 we find the constant of integration cq;
from the condition ¢;(3)=0

1 cos(B/2) 2) « Z

c
01~ 7R B+sinp

k
[Rj Lcasto)ek(B) . (70)

K
For m>1 we find the constants of integration from
the conditions

O (B) =0, ol (B) += cpm(m 0,
(™ (B) += w(m 2(@B)=0,

which follow from equalltles (60), (69). As a result, we
obtain a linear algebraic system with respect to

{Cn m}n_O

(71)

~Com c[i:(isl?g nzl (CnnTl)T’”(B )=
- ni [—j M costo)h(B), (72
milcn’m(n+1/2)kcos[(n+1/2)B+nk/2]:
" —Gmk, M=23...k=01...m-2, (73)
where
o = (21’: f(n 1)[ j P (c0s)(n +1/2) »

xcos[(n +1/2)B+nk/2].
After solving the system (72), (73), the harmonic
functions u*(x) can be restored by formulas (12), (18),
(19), substituting

nO p
t A -
n+1 2n2R|: Bg( j on+Yon

—Z (ro) Pk(coseo)uk'n], n=01...; (74)

m

=—00m[Btg(B/2)xOn val+ zzCk(rE—tkl)n

n+1

k
)" § 1[&;) _m
=I5 | P (cosblugn,  (75)
T[ZR k:zmk R "
m=1+oo,N=M=+o0
bpm=-Napm/(N+1), m=0+o0,n=m=o0, (76)

where

0 0
B
Min = [ Tk (©) Cp (D)t cn(t) =cos[(n+1/2)t].
0
The coefficients A, ,, v,, pgn, are calculated in a

closed form, but are not given here due to their bulkiness.

The results of numerical calculations using formu-
las (12), (18), (19), (74) — (76) are shown in Fig. 6 and in
tables 3, 4. Calculations were carried out with the follow-
ing parameter values: B=n/3, r,/R=0.35,

0g =2n/5, ¢g = 0. The level lines of the Green's func-
tion in the plane x, =oare presented in Fig. 6. It shows

a characteristic jump in the values of the Green's function
when passing through the surface of the segment, so
some of the level lines are not closed. Tables 3 and 4
show the values of the Green's function at individual
points of the plane x, =0 in which the singular point of

the Green's function is located, and the relative error of
the calculations in percent.

\ x4

Fig. 6. Level lines of the Green's function
of the Neumann problem in the plane x, =0

Table 3
The value of the Green's function of the Neumann
problem at the points of the plane x, =0

O\r/R 0.75 0.85 0.95
0 -0.06988 -0.07828 -0.08614
/5 -0.06470 -0.07533 -0.08790
2n/5 -0.02328 -0.01966 -0.01482
3rn/5 -0.01141 -0.00983 | -0.008331
4n/5 -0.008661 | -0.007659 | -0.006845
e -0.007918 | -0.007038 | -0.006099
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The obtained results show a significantly higher ac-
curacy of calculating the Green's function of the Neu-
mann problem than the Green's function of the Dirichlet
problem. Also, the decrease in accuracy is not in the vi-
cinity of point 0, as in the Dirichlet problem, but in the
vicinity of the point 7.

Table 4
The relative error of calculating the value
of the Green's function (%)

0\r/R 0.75 0.85 0.95
0 0.00009 0.002 0.03
/5 0.00014 0.003 0.04
2n/5 0.00016 0.004 0.09
3rn/5 0.0002 0.005 0.1
4n/5 0.00058 0.015 0.3
T 0.00079 0.02 0.4

Note that the jump of the Green's function on the
surface I" according to formula (66) and conditions (68)
can be expressed as follows:

IV, 9) = (UF —U"er = =2 3 cos[m(e— )] x
m=0

Mmv  (m+l)
<(-1)™(1-v?)2 j"’m—(“)du,
-u

—

(77)
Vo
where v =cos0, vy =cosf .
The graphs of jumps of the Green's function of the
Neumann problem on the surface I' at B=mn/3,
¢ = ¢y =0 are presented in Fig. 7.

0.5 0.75 1.0
ry/R=0.35, 8p=2w/5
ry /R =0.65, 8= 2w/5
0.125 ¥
r,/R = 0.35, 8= w/S
0.25
rg/R=0.65, 8= n/5
0.375
J

Fig. 7. Graphs of jumps of the Green's function
on the surface 1" at ¢ =,

The graphs show that the largest magnitude of
jumps is observed when the singular point approaches the
shell axis. At the edge of the shell (v=0.5), the values of
the jumps are equal to zero, which corresponds to the
continuity of the Green's function on the surface r=R out-
sideI".

Discussions

The results of the study, given in chapters 1-7,
showed that using the proposed methodology, the
Green's functions of the Dirichlet and Neumann bound-
ary value problems for the Laplace equation can be writ-
ten in the explicit form of either series of basic harmonic
functions for a sphere, or the potential of a simple layer
for the surface of a segment. The resulting formulas in-
clude a finite set of m unknown constants of integration,
which can be found by numerically solving a linear alge-
braic system for each m=1,2,.... Calculations using
various algorithms have shown that the highest accuracy
of Green's function calculation is given by representa-
tions in the form of series. A natural problem associated
with such an approach is a decrease in accuracy when ap-
proaching a spherical surface r=R. But the results of
the calculations show that the values of the Green's func-
tions are found with sufficient accuracy in almost the en-
tire range r/R=0+0.95 at ry/R €[0,0.65] (see Ta-

bles 2, 4). The problem area in the Dirichlet problem with
various numerical algorithms is the domain
{re[R,R+¢€],06€[0,B), ¢ €[0,2x]} with a sufficiently
small positive €. In this area, the absolute error of calcu-
lating the Green's function exceeds the absolute value of
the function itself, so the numerical results are not cor-
rect.

The Green's function of the Dirichlet problem (the
potential of an electrostatic field created by a point
charge near a grounded conducting shell) can be obtained
in the closed form of the imaginary parts of some analyt-
ical functions only when the point source of the field is
in the center of the spherical surface to which the segment
I belongs. The characteristics of the field on the surface
are expressed in terms of elementary functions.

The obtained results open up further opportunities
for finding Green's functions in regions of more complex
shape — doubly connected and multiply connected, one of
the boundaries of which is a spherical segment. Another
direction of the further development of the theory of
Green's functions is related to the use of more complex
boundary conditions in boundary value problems for the
equations of mathematical physics. Impedance-type con-
ditions are an example of such boundary conditions. An
overview of the results of using such conditions is given
in [50].
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Conclusions

The article is devoted to the problem of constructing
Green's functions of Dirichlet and Neumann boundary
value problems for the Laplace equation in a non-classi-
cal domain — a three-dimensional space with a spherical
segment. The statement of the problem leads to the need
to determine auxiliary harmonic functions — solutions of
mixed boundary value problems in the interior and exte-
rior of the spherical surface to which the segment be-
longs. Boundary value problems using the Fourier
method are reduced to systems of paired equations in se-
ries by Legendre functions, the solutions of which are
found using discontinuous Mahler-Dirichlet sums. The
specified functions are obtained in an explicit form in two
forms: series based on the basic harmonic functions in
spherical coordinates and the potential of a simple layer
on the surface of the segment. Each representation of
Green's functions contains a set of integration constants
that can be found from additional conditions of integra-
bility of the jump of the normal derivative of function on
the segment surface (Dirichlet problem) or boundedness
of the jump of the function itself on the segment surface
(Neumann problem). The Lemma is proved for the Di-
richlet problem, according to which the linear algebraic
system for determining the constants of integration for
each m=1,2,... has a unigue solution. The representa-

tion of the Green's function of the Dirichlet problem in
the form of the potential of a simple layer is based on the
Theorem, which is proven in the article about the jump
of the normal derivative of the potential of a simple layer
on a segment. This result generalizes the classical theo-
rem of the potential theory for closed Lyapunov surfaces
to the case of a spherical segment.

The analysis of numerical values of Green's func-
tions obtained by various algorithms showed that the
highest accuracy of results outside the surface r =R was
obtained when using representations of Green's functions
in the form of series. Numerical results and calculation
errors are given in the tables. On the basis of the calcula-
tions, the level lines of the Green's functions of two
boundary value problems were constructed in the plane
of the singular point. Also the graphs of the potential den-
sity of the simple layer for the Dirichlet problem and the
potential jump for the Neumann problem on the segment
at different locations of the singular point were con-
structed.

In the partial case of the location of a singular point
at the origin of the coordinates, the potential of the elec-
trostatic field of a point charge near a grounded conduct-
ing thin shell in the form of a spherical segment is found.
The main characteristics of such a field are found in
closed form.
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®YHKUII I'PIHA TIEPIIOT TA IPYT Ol KPAMOBUX 3AJIAY
JIJIs1 PIBHSIHHSI JIATIJIACA B HEKJTACHUYHIM OBJIACTI

Onexciii Hikonaes, Onexcandp I'onoeuenko, Hina Caguenko

IIpenmerom BuBUeHHA € GYHKIIT ['piHa meprmoi Ta apyroi kpaifloBux 3amad ais piBHAHHS Jlammaca. MeToro
JOCIiKeHHs € modynoBa ¢yHkuiit ['pina mepmroi Ta xpyroi kpaiioBux 3amad s piBHsSHHS Jlanmaca B mpocTopi 3i


https://www.sciencedirect.com/journal/engineering-analysis-with-boundary-elements
https://www.sciencedirect.com/journal/engineering-analysis-with-boundary-elements

Modelling and applied mathematics 49

c(epryHIM CErMEHTOM B aHATITUYHOMY BHIJISI, @ TAKOXK YHCETbHUH aHali3 ux GyHKUid. 3aBaaHHsa: popMamizy-
BaTH IpoOieMy BU3Ha4YeHHs (yHKIIH ['piHa muist 3a3HaueHoi obsacti; MeTogamu Dyp’e, MapHUX CyMaTOPHUX PiB-
HSHB 1 Teopii NOTeHIia Ty 3BeCTH MilllaHi KpaloBi 3a/a4i IJIst TOTOMIXKHUX FapMOHIYHHUX (YHKLIN IO CHCTEMH PiB-
HSHD, SIKa Ma€ aHAUTITHYHUI PO3B’S30K; TOCIHIIUTH HA CYMICHICT ayreOpaiuHy CUCTEMY sl BU3SHAUEHHS CTaIHX 1H-
TerpyBaHH:; c(hOPMYIIOBATH 1 JIOBECTH TEOPEMY IIPO CTPUOOK HOPMAJILHOI MTOXiTHOI IIOTEHIIaTy TPOCTOro Iapy Ha
TIOBEpXHi CErMeHTa, 3a JO0IMOMOToI0 K01 noAaty (yHKIito ['piHa y BUIIISAAI MOTEHIIANY IPOCTOrO MIapy; MPOBECTH
YHCIIOBUN €KCIIEPUMEHT 1 BUSIBUTH aJITOPUTMHU 1 00J1aCTi 3MiHH ITapaMeTpiB eheKTUBHIX 00UNCIICHB; POaHaTi3yBaTH
xapaxrep rnoBeainku ¢yHkmii ['pina. HaykoBa HoBu3Ha: Brepuie nodynoBano ¢yHkuii ['pina kpaitoBux 3amau Ji-
pixie i Helimana nuist piBHsHHS Jlamnaca B TpUBEMIpHOMY IIPOCTOpI 31 CpepUUHIM CETMEHTOM Y aHAIITHYHOMY BH-
IS, OOTPYHTOBAHO OTPUMaHi PE3yJIbTATH Ta MPOBEACHO BCEOIUHUI YHUCIIOBHI €KCITEPUMEHT JIJIS aHAJTI3Y TIOBETIHKH
mux GyHKnid. OTpuMAaHi pe3yJabTaTH: JUTsl JONOMIXHHUX TapMOHIYHUX (DYHKIIIH TTOCTABIICHO MillIaHi KpaHoBi 3a1adi
y BHYTPIIITHOCTI Ta 30BHIIIHOCTI CepUIHOI MTOBEPXHI, JI0 SKOI HAJIEXKUTh CerMeHT; MeTosioM Dyp’e 3a1adi 3Be1eHO
JI0 CUCTEM ITapHUX PIiBHSHB y psiAax 3a (GyHKIisiMU Jlexxanapa, po3B’sI3KU SIKMX 3HAXOATHCS 3a JJOIIOMOT' OO PO3PUB-
Hux cyM Menepa — Jipixine. Yka3ani ¢yHKIii OTpUMaHO B SIBHOMY BUTJISIII B BOX (popmax: psiiiB 3a Oa3MCHUMHU
rapMOHIYHUMH (QYHKIISIMH B c(hepUUHHX KOOPJMHATAX 1 MOTEHIialy MPOCTOro Iapy o MOBepXHi cerMeHra. J[is
OOIpYHTYBaHHS PE3yJbTATIB JOBEICHO JIEMY PO CYMICHICTh ajreOpaidHol CHCTEMH JIJIsl BU3HAYCHHS CTAJIMX 1HTET-
pYyBaHHs 1 TeopeMy PO CTPUOOK HOPMAJIBHOI ITOX1THOT MOTEHIIiay IPOCTOro mapy Ha cermeHTi. [IpoBeaeHo umcio-
BUI EKCIIEpPUMEHT JUIsl aHaJli3y MOBEIiHKM Mo0ynoBaHUX (QyHKIiH. BHCHOBKM: aHaIli3 YMCIOBUX 3HaUY€Hb (YHKIIN
I'pina, oTpuMaHuX 3a pi3HUMU aNTOPUTMaMH, TI0Ka3aB, 110 HAHOIIBITY TOUHICTh PE3YJbTATIB 1032 MOBEPXHEIO Cer-
MEHTa OTPUMaHO IPH BUKOPUCTaHHI 300paxxeHb GpyHkuii ['pina y ¢popmi psaiB. Ha ocHOBI po3paxyHKiB moOynoBaHi
JiHii piBHS QyHKUiH ['piHa [BOX KpalioBMX 33124 B IUIOIIMHI CHHTYJISIPHOT TOYKH, a TaKOXK rpadiky MIUTBHOCTI MOTe-
HIliaJly NpocTOoro mapy it 3aaadi Jlipixie i ctpuOka moTeHmiany s 3aaavi HeiiMana Ha cerMeHTI Mpu pi3HOMY
po3TallyBaHHI CHHTYJISIPHOI TOYKH. Y YaCTHHHOMY BUIAJKY PO3TAlIyBaHHS CUHTYJISPHOI TOYKH B ITOYATKY KOOPIHU-
HAT 3HAWJICHO MOTEHIIiaJ] eIEeKTPOCTATUYHOIO TOJISi TOYKOBOTO 3apsity OijIst MPOBiTHOT 3a3eMJICHOT TOHKOI 000IOHKH
y dopmi cepuynoro cermenTa. OCHOBHI XapaKTEPUCTUKHU TAKOTO MOJIs 3HAH/IEHO B 3aMKHEHOMY BUTJISIII .
KunrouoBi ciioBa: gynkuis ['pina; kpaiioBa 3amada [lipixie; kpaitoBa 3anaua Heiimana; piBusiaas Jlamaca; ra-
pMoOHIuHa (YHKIIisI; cheprUuHHUI CEerMeHT; OTEHIiall POCTOro mapy; chepruuHi GyHKIT; cTpuOOK MOTEHIaIy.
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