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PREDICTIVE MODEL OF COVID-19 EPIDEMIC PROCESS
BASED ON NEURAL NETWORK

The COVID-19 pandemic, which has been going on for almost three years, has shown that public health systems
are not ready for such a challenge. Measures taken by governments in the healthcare sector in the context of a
sharp increase in the pressure on it include containment of the transmission and spread of the virus, providing
sufficient space for medical care, ensuring the availability of testing facilities and medical care, and mobilizing
and retraining medical personnel. The pandemic has changed government and business processes, digitalizing
the economy and healthcare. Global challenges have stimulated data-driven medicine research. Forecasting the
epidemic process of infectious processes would make it possible to assess the scale of the impending pandemic
to plan the necessary control measures. The study builds a model of the COVID-19 epidemic process to predict
its dynamics based on neural networks. The target of the research is the infectious diseases epidemic process in
the example of COVID-19. The research subjects are the methods and models of epidemic process simulation
based on neural networks. As a result of this research, a simulation model of COVID-19 epidemic process based
on a neural network was built. The model showed high accuracy: from 93.11% to 93.96% for Germany, from
95.53% to 95.54% for Japan, from 97.49% to 98.43% for South Korea, from 93.34% up to 94.18% for Ukraine,
depending on the forecasting period. The assessment of absolute errors confirms that the model can be used in
healthcare practice to develop control measures to contain the COVID-19 pandemic. The respective contribution
of this research is two-fold. Firstly, the development of models based on the neural network approach will allow
estimate the accuracy of such methods applied to the simulation of the COVID-19 epidemic process. Secondly,
an investigation of the experimental study with a developed model applied to data from four countries will con-
tribute to empirical evaluation of the effectiveness of its application not only to COVID-19 but also to other
infectious diseases simulations. Conclusions. The research’s significance lies in the fact that automated decision
support systems for epidemiologists and other public health workers can improve the efficiency of making anti-
epidemic decisions. This study is especially relevant in the context of the escalation of the Russian war in Ukraine
when the healthcare system's resources are limited.
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Introduction

The COVID-19 pandemic, which has been going on
for almost three years, has shown that public health
systems are not ready for such a challenge [1]. As of
September 2022, more than 630 million people fell ill
worldwide, more than 6.5 million of whom died [2].

In the context of the spread of COVID-19, national
health systems have experienced an excessive load,
which included a lack of medical personnel, a shortage of
necessary equipment, overburdened hospitals, a lack of
diagnostics and specific treatment, etc. In some countries,
such as the UK and lItaly, a higher proportion of severe
and extremely severe forms of novel coronavirus
infection has been observed, which has led to a rapid
depletion of human resources for providing medical care,
the stock of biomedical materials, and beds to
accommodate patients [3, 4]. South Korea has
experienced a shortage of hospital beds, resulting in

patients dying at home while waiting to be admitted to
the hospital [5]. With the onset of the pandemic in the
United States, there was a shortage of personal protective
equipment and medical personnel in the country [6].
Measures taken by governments in the healthcare
sector in the context of a sharp increase in the pressure
on it include containment of the transmission and spread
of the virus, providing sufficient space for medical care,
ensuring the availability of testing facilities and medical
care, and mobilizing and retraining medical
personnel [7]. Some countries have timely introduced
innovative approaches to contain the pandemic. For
example, thanks to mass screening of morbidity and
technologies for contact tracing of infected patients,
Singapore made it possible to introduce 14-day isolation
of people who had contact with patients [8]. In countries
with high healthcare funding, such as Sweden, the
capacity of the national healthcare system made it
possible to provide patients with specialized beds, which
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made it possible not to implement a complete
lockdown [9]. However, no country has been able to
properly implement the full range of measures necessary
to contain the spread of new coronavirus infection.

The pandemic has changed government and
business processes, digitalizing the economy and
healthcare. Global challenges have stimulated data-
driven medicine research aimed at the analysis of medical
data [10], automated medical diagnostics [11], analysis
of medical images [12], the study of molecular
structures [13], identification of factors affecting the
development of the disease [14] and spread of the
epidemic process [15], etc.

Forecasting the epidemic process of infectious
processes would make it possible to assess the scale of
the impending pandemic to plan the necessary control
measures.

Therefore, this study aims to build a model of the
COVID-19 epidemic process to predict its dynamics
based on neural networks. The research is targeted at the
infectious diseases epidemic process by the example of
COVID-19. The research subjects are meth-ods and
models of epidemic process simulation based on neural
networks.

To achieve the aim of the research following tasks
have been formulated:

1. Methods and models of COVID-19 forecasting
should be analyzed.

2. A simulation model of the COVID-19 epidemic
process based on neural networks should be developed.

3. The selection of hyperparameters of the
developed model should be optimized using the grid
search method.

4. Verification of the developed model should be
provided.

5. Results obtained during the experimental
studies should be analyzed.

The respective contribution of this research is two-
fold. Firstly, the development of models based on the
neural network approach will allow estimating the
accuracy of such methods applied to the simulation of the
COVID-19 epidemic process. Secondly, an investigation
of the experimental study with a developed model
applied to data from four countries will contribute to
empirical evaluation of the effectiveness of its
application not only to COVID-19 but also to other
infectious diseases simulations.

In this paper, section 1, namely the current research
analysis, provides the current state of COVID-19 epi-
demic process simulation methods and models. Section
2, namely Materials and Methods, provides methods of
neural network models development, methods of soft-
ware implementation, and model of COVID-19 based on
neural network. Section 4 provides the results of forecast-
ing of COVID-19 morbidity for Germany, Japan, South

Korea and Ukraine. Conclusions describe the outcomes
of the investigation.

Given research is part of a project on development
of complex intelligent information system for epidemio-
logical diagnostics, the concept of which is discussed
in [16].

1. Current Research Analysis

Methods for predicting the dynamics of infectious
morbidity have been known for more than a century, and
research in this direction begins with the work of Ker-
mack and McKendrick. They formulated the classical
SIR model [17]. Models of the epidemic process have
significantly developed with the spread of the COVID-
19 pandemic. At the same time, most of the research is
still based on the compartmental approach, i.e., the de-
velopment of the classic SIR model developed almost
100 years ago.

Thus, in [18], two compartmental models of the dy-
namics of the incidence of COVID-19 were considered
to study individual behavior during the spread and con-
tainment of the epidemic. The results show that the best
investment strategy in social distancing reduces the epi-
demic peak for infected cases. By increasing the vaccine
coverage, the epidemic peak for infected cases decreases.
The authors of [19] use the SEIR model to model the dy-
namics of COVID-19 in Slovenia. The standard model
has been extended to distinguish between age groups,
symptomatic versus asymptomatic disease progression,
and vaccinated and unvaccinated populations.

The study [20] is devoted to developing a compart-
mental model of COVID-19, which includes the effect of
unconnected infectious links of the transmission. The dis-
continuous ties model proposed by the authors quantita-
tively describes the mechanism of suppression of second-
ary transmission of COVID-19. The study results show
that the shape of epicurves of confirmed cases is deter-
mined by the probability of unrelated infectious associa-
tions, and the magnitude of cases is proportional to the
exponent of the base reproduction number in each infec-
tious burst generated by the virus, the base reproduction
number.

The authors of [21] extend the SEIRD model of the
COVID-19 epidemic process by adding a vaccinated
population and forming a global model. The study results
show that 30-day forecasts reproduce the spread of the
infection well, better for regional than national data. The
study [22] adapts the SIR epidemiological model to study
the evolution of the spread of COVID-19 in Germany and
Brazil. The authors propose a simple probabilistic
method for the evolution of active cases, which is helpful
for automatically estimating the parameters of an epide-
miological model.
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However, the compartmental approach to modeling
the epidemic process has some disadvantages, including
insufficient accuracy, low adaptability of the model to
external factors, the high computational complexity of
the model, etc.

Models based on machine learning show higher ac-
curacy in predicting the dynamics of COVID-19. The
study [23] considers ARIMA, SARIMA, and Prophet
models to predict daily new cases and cumulative con-
firmed cases of COVID-19 in the US, Brazil, and India
over 30 days. The authors of [24] explore standard statis-
tical machine learning models for COVID-19 modeling:
linear regression, least total shrinkage and determination
administrator, and support vector machine. To improve
accuracy, the authors apply exponential smoothing to
each model. The resulting ensembles effectively predict
the dynamics of COVID-19 over the next 30 days and the
impact of proactive assessments, such as social exclusion
and isolation, on the spread of COVID-19.

The authors of [25] use a random forest model to
predict the number of COVID-19 cases at the US county
level. At the same time, the authors propose a new func-
tion for training input data. The training uses case projec-
tions created by matching the estimated effective repro-
ductive number against real-time test data until they are
maximally correlated, helping the model better fit the ep-
idemic trajectory set by traditional models.

The study [26] proposes to apply Bayesian optimi-
zation to tune Gaussian process regression hyperparame-
ters to develop an efficient model for predicting recov-
ered and confirmed cases of COVID-19 in India and Bra-
zil. The authors of [27] propose a comprehensive fore-
casting ensemble framework based on six single predic-
tion models, including time-varying Jackknife model av-
eraging, time-varying parameters, time-varying parame-
ter SIR, logistic regression, polynomial regression, auto-
regressive moving average.

All considered models based on statistical machine
learning methods show accuracy sufficient for use in
public health practice. However, only some models can
use a large set of heterogeneous input data.

On the other hand, some works devoted to applying
the neural network approach to modeling COVID-19
show even more relevant results in the healthcare system.

Thus, the study [28] is devoted to building a model
based on artificial neural networks to predict the effective
reproductive number R; trend. At the same time, the au-
thors use various architectures of neural networks, such
as Feed Forward, Mono-Dimensional Convolutional, and
Lon Short-Term Memory. As a result, the authors ob-
tained an R; forecast with daily time resolution instead of
the weekly resolution provided by official sources.

The authors of [29] compared the prediction perfor-
mance of linear and non-linear prediction models using
daily COVID-19 incidence data. In particular, Nonlinear

Autoregressive Neural Network-work, Autoregressive
Integrated Moving Average, TBATS, and Exponential
Smoothing are considered. The results showed that the
model based on neural networks shows the highest accu-
racy.

The study [30] proposed an approach based on
multi-source deep transfer learning to effectively predict
the dynamics of COVID-19 in conditions of a small
amount of data. This approach overcomes the problems
of low variance and high bias in the model. The authors
show that in addition to the dynamics of morbidity, the
population density and economic conditions of the se-
lected territory are also critical. Long Short-Term
Memory architecture is used for modeling.

Paper [31] proposes a Convolutional Neural Net-
work with Long Short-Term Memory architecture using
a spatio-temporal approach to predict the dynamics of
COVID-19 for 7 days. Spatiotemporal representation al-
lows you to borrow data from neighbors for cell-level
prediction. This allows accurate forecasts at the county
level, which is essential for optimizing the allocation of
healthcare resources in real-time.

Taking into account recent advances in the develop-
ment of neural network models for the analysis of epi-
demic data, in this study, we propose a model of the
COVID-19 epidemic process based on a neural network.

2. Materials and Methods

2.1. Development of Neural Network Model

Training the developed network configuration is
carried out iteratively following the error backpropaga-
tion method. At the first stage of each iteration, the data
of the following training example is fed to the neurons of
the input layer and propagated from the first layer to the
last. In contrast, the initial value of each neuron is calcu-
lated by the formula (1):

OUT, = f,(ZN-; OUT,w,,), 1)

where OUT, and OUT, are output values of q and p neu-
rons;

fais activation function;

Wyq IS connection between p and ¢ neurons weight co-
efficient.

At the second stage of the training iteration, the
weight coefficients of neural connections are recalculated
according to formula (2). Recalculation is performed
starting from the last layer and ending with the first:

Wpq = (i + 1) = wpq (i) + n5,0UT,, 2)

where wyq(i+1) is new value of connection between p and
g neurons weight coefficient;
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Wyyq is old value of pg-connection weight coefficient;
n is speed of training;
dq is delta coefficient of neuron g;
OUT, is output value of neuron p.
The delta coefficient involved in the calculation of
weight values for the original layer is calculated by the
formula (3) and for hidden layers by formula (4):

84 = OUT,(q — OUT,)(vq — OUT,),  (3)
84 = OUT,(1 — OUT,) TN, OUT,wyq, (4)

where OUT,, OUT,, are input values of neurons g and p;
Wpyq IS connection between p and g neurons weight co-
efficient;
v is valid value.

2.2. Features of Neural Network Model Software
Implementation

The Dense layer implements the operation:
output = activation (dot (input, kernel) + bias),

where activation is the element-by-element activation
function passed as the activation argument, Kernel is the
weight matrix created by the layer, and Bias is the bias
vector created by the layer (only applies if use_bias is
True). If the input to the layer has a rank greater than 2,
it is smoothed before the output from the Kernel. The ar-
guments are:

—units are natural numbers, the dimension of the
source space;

—activation is the activation function to use. If noth-
ing is specified, no activation is applied (i.e. "linear" ac-
tivation: a(x) = x);

—use_hias is a boolean whether the layer uses a bias
vector;

—kernel_initializer is the initializer for the Kernel
weight matrix;

—bias_initializer is the initializer for the bias vector;

—kernel_regularizer is a regulator function applied
to the Kernel weight matrix;

—bias_regularizer is the regularizer function ap-
plied to the bias vector;

—activity regularized is the regulator function ap-
plied to the layer's output (its "activation");

—kernel_constraint is a constraint function applied
to the Kernel weight matrix;

—bias_constraint is the constraint function applied
to the bias vector.

The Dropout layer randomly sets the fraction of in-
put units to O each time it is updated during training,
which helps prevent overfitting. The arguments are:

—rate which floats between 0 and 1 and is a percent-
age of input blocks to turn off;

—noise_shape is a 1D integer tensor representing
the shape of the binary dropout mask that will be multi-
plied by the input;

—seed is a Python integer to use as a random seed.

Flatten layer, Keras.Layers.Flatten (data_format =
None) flattens the input. The argument is data_format, a
string, one of channels_last (default) or channels_first,
the order in which the sizes are passed on the inputs. The
purpose of this argument is to preserve weight ordering
when switching the model from one data format to an-
other. channels_last corresponds to form inputs (batch,
..., channels), and channels_first corresponds to form in-
puts (batch, channels, ...).

The Input layer, Keras.engine.input_layer.Input() is
used to initialize the Keras tensor. A Keras tensor is an
underlay tensor object (Theano, TensorFlow, or CNTK)
that we augment with specific attributes to allow us to
build a Keras model simply by knowing the model's in-
puts and outputs. Its arguments:

—shape is a tuple of shape (integer), regardless of
batch size. For example, shape=(32,) indicates that the
expected input will be batches of 32-dimensional vectors;

—batch_shape is a shape tuple (integer), including
batch size. For example, batch_shape=(10, 32) indicates
that the expected input will be batched with ten 32-di-
mensional vectors. batch_shape=(None, 32) specifies
that batches with any number of 32-dimensional vectors;

—name is an optional name string for the layer. It
must be unique in the model. It will be automatically gen-
erated if it is not provided;

—dtype is the data type expected in the input as a
string (float32, float64, int32, ...);

—sparse is a Boolean function indicating whether
the created holder is sparse;

—tensor is an additional existing tensor to wrap in
the input layer.

The Reshape layer, Keras.layers.Reshape(tar-
get_shape) reformats the output into a specific shape. The
argument is target_shape, the target shape which is a tu-
ple of integers. The input form is arbitrary, although all
sizes in the input form must be fixed. The keyword argu-
ment input_shape (a tuple of integers that does not in-
clude a reference axis) is used when using this layer as
the first layer in the model.

The Permute layer, keras.layers.Permute(dims)
keeps the size of the input according to the given pattern.
It is useful, for example, for connecting RNNs and con-
volutions. The argument is dims, a tuple of integers,
which does not include sample dimensions. Indexing
starts from 1. For example, (2, 1) takes on the first and
second dimensions of the input parameter. The input
form is arbitrary. The keyword argument input_shape (a
tuple of integers that does not include a reference axis) is
used when using this layer as the first layer in the model.
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ActivityRegularization layer, keras.layers.Activi-
tyRegularization (11 = 0.0, 12 = 0.0) is a layer that applies
an update to input data based on a cost function. The key-
word argument input_shape (a tuple of integers that does
not include a reference axis) is used when using this layer
as the first layer in the model.

Activations can be used either through the activa-
tions layer or the activations argument supported by all
previous layers. The following activation functions are
available:

—Elu is an exponential linear block that returns an
exponential linear activation function: x if x>0 and al-
pha*(exp(x)-1) if x<0;

—Softmax activation function that returns a tensor
as the output of a softmax transformation;

—Selu is scaling exponential linear unit (SELU).
SELU is: scale*elu(x, alpha), where alpha and scale are
predefined constants. The values of alpha and scale are
chosen such that the mean and variance of the inputs are
maintained between two successive layers as long as the
weights are properly initialized (see Lecun_normal ini-
tialization). The number of inputs is "large enough™ (see
links for more information). Returns a resized exponen-
tial activation function: scale*elu(x, alpha);

—Softplus activation function, which returns the
Softplus activation function: log(exp(x)+1);

—Softsign activation function, which returns the
softsign activation function: x/(abs(x)+1);

—Relu is a rectification, linear block with default
values that returns element by element. max(x,0). Other-
wise: f(x)=max_value for x>=max_ value, f(x)=x for
threshold<=x<max_value, f(x)=alpha*(x - threshold);

—Tanh is the activation function in the form of a hy-
perbolic tangent, that returns the hyperbolic function:
tanh(x) = (exp(x) — exp(-x))/(exp(x) + exp(-X));

—Sigmoid is an activation function in the form of a
sigmoid, that returns the sigmoidal activation function:
1/(1+exp(-x));

—Hard_sigmoid is the "hard" sigmoid activation
function, which is faster to compute than the sigmoid ac-
tivation function. It returns: 0 if x<-2.5, 1 if x>2.5,
0.2*x+0.5 if -2.5<=x<=2.5;

—Exponential (basic) activation function, that re-
turns the exponential activation function: exp(x);

—Linear (that is, identification) activation function
returns the incoming tensor, unchanged.

A metric is a function used to evaluate the perfor-
mance of the model. Metric functions are provided in the
metrics parameter when the model is compiled. The met-
ric function is similar to the loss function, except that the
results of the metric evaluation are not used when train-
ing the model. Any of the loss functions can be used as a
metric function. Available metrics: accuracy, binary_ac-

curacy, categorical_accuracy, sparse_categorical_accu-
racy, top_k categorical_accuracy, sparse_top_k_ cate-
gorical_accuracy, cosine_proximity, clone_metric.

The optimizer is one of the two arguments required
to compile Keras. It is possible to either instantiate the
optimizer before passing it to model.compile() or call it
by name. In the latter case, the default optimizer settings
will be used. The following optimizers are available:

—SGD, Stochastic Gradient Descent Optimizer in-
cludes momentum support, learning rate decay, and
Nesterov momentum;

—RMSprop optimizer is recommended to leave the
parameters of this optimizer at their default values
(except for the learning rate, which can be freely config-
ured);

—Adagrad is an optimizer where the learning rate
depends on specific parameters adapted to how often the
parameter is updated during training. The more updates a
parameter receives, the slower the learning rate. It is rec-
ommended to leave the optimizer parameters at their de-
fault values;

—Adadelta is a more robust extension of Adagrad
that adapts the learning rate based on a sliding gradient
update window instead of accumulating all the gradients
from previous years. Thus, Adadelta continues to learn
even when many updates have been made. Compared to
Adagrad, there is no need to set the initial learning rate in
the original version of Adadelta. Like most Keras opti-
mizers in this version, the user can set the initial learning
rate and decay factor. Leaving the parameters of this op-
timizer at their default values is recommended;

—Adam optimizer is the default parameter corre-
sponding to the parameters specified in the original work;

—Adamax is a variant of Adam based on the infinity
norm;

—Nadam is a Nesterov Adam optimizer. Just as
Adam is essentially RMSprop with momentum, Nadam
is RMSprop with Nesterov momentum.

2.3. Neural Network Model of COVID-19
Epidemic Process

Building a neural network system includes pro-
cessing input data, developing an architecture, and train-
ing the network. There is no general implementation al-
gorithm for each listed stage; the system configuration
depends on many factors covered by a particular task. So,
to obtain a forecast, when developing a neural network,
the nature of the predicted time series, the desired form
of obtaining the forecast, the forecasting horizon, the re-
quirement for the time of obtaining the forecast, and the
volume of input data are taken into account. Flexibility
and lack of strict formalization in the development of the
system provide a wide range of opportunities for re-
search, improvement, and adaptation of existing models
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of neural networks in order to improve the accuracy of
the forecast.

When solving the forecasting problem, the neural
network system is built in the following way: the input
layer contains several neurons, to which the values of the
time series under study are supplied, and the last layer
consists of one neuron, the output of which is a forecast.

The disadvantage of implementing this algorithm is
relatively fast error accumulation.

As aresult of the research, a solution was developed
and tested to eliminate the drawback described above to
increase the forecast's accuracy. According to the results
obtained, it is proposed to make the following changes to
the architecture of the predictive neural network:

—increase the number of neurons in the initial layer,
determined by the number of prediction steps;

—introduce connections between neurons of the in-
itial layer.

An increase in the accuracy of the forecast occurs
due to the connection of the output neurons with each
other so that the value obtained on the first output neuron
is fed to the input of the second output neuron, and the
value obtained on the first and second is taken into ac-
count on the third, etc. In other words, for each next neu-
ron of the initial layer, in addition to the signals from the
neurons of the penultimate layer, the signals received al-
ready at the previous outputs of the network should be
fed.

To predict the dynamics of COVID-19, the follow-
ing neural network was built with the structure: 6 pairs of
layers Dense (relu activation, 64 neurons) and Dropout,
the last layer is Dense (relu activation), one output, opti-
mizer is rmsprop, error function is mse.

3. Results

Developed neural network model was implemented
in the Python programming language. An experimental
study was carried out to forecast new cumulative cases of
COVID-19 in specified territory for 3, 7, 10, 14, 21 and
30 days.

3.1. COVID-19 Dynamics Forecasting

Data from the John Hopkins Coronavirus Resource
Center [32] on new cases of COVID-19 was used for the
pilot study. A neural network model has been applied to
predict new cumulative COVID-19 cases in Germany,
Japan, South Korea, and Ukraine. These countries were
selected because The dynamics of the spread of COVID-
19 and the control measures implemented in these terri-
tories differed. The forecast was built for the dynamics of
the epidemic process until February 24, 2022, because
The escalation of the Russian war in Ukraine has signifi-

cantly affected the dynamics of COVID-19 and the reg-
istration of new cases on the territory of Ukraine. The
dashboard does not provide data on the spread of
COVID-19 in Ukraine after February 24, 2022.

Figure 1 presents the results of predicting new cu-
mulative cases of COVID-19 in Germany. Figure 2 pre-
sents the prediction results for new cumulative cases of
COVID-19 in Japan.
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Figure 3 presents the results of predicting new cu-
mulative cases of COVID-19 in South Korea.
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Figure 4 presents the results of predicting new cu-
mulative cases of COVID-19 in Ukraine.
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Fig. 4. Forecasting of COVID-19 new cases
in Ukraine

3.2. Forecast Accuracy Estimation

Using the relative error of the training data, one can
assess the adequacy of the constructed model. Relative
errors were calculated for retrospective cumulative new
cases forecast for 3, 7, 10, 14, 21, and 30 days to assess
the accuracy of the constructed forecasts. The relative er-
ror of the forecasted data shows the accuracy of the con-
structed forecast of cumulative new cases of COVID-19.

Table 1 presents the values of relative error for 3, 7,
10, 14, 21, and 30 day forecasts of cumulative new
COVID-19 cases in Germany, Japan, South Korea, and
Ukraine. Relative error values show the accuracy of the
model obtained but are not informative for use in public
health practice. Therefore, indicators of the average ab-
solute error were also calculated, shown in Table 2.

The results of building test models showed that it
takes 50 to 55 days of information on the incidence to
train the model, so 55 days were used to train the model.
That is, such a model cannot be used at the pandemic's
beginning.

Table 1
Relative error of forecast (%)
Duration of forecast Germany Japan South Korea Ukraine
(days)
Training 3 12,2841 22,3998 1,9539 13,7484
Forecast 3 6,8896 4,4620 2,5084 5,8373
Training 7 12,3262 22,5172 1,9517 13,8039
Forecast 7 6,2943 4,4612 2,3792 5,8247
Training 10 12,3562 22,6063 1,9507 13,8439
Forecast 10 6,2792 4,4614 2,3142 5,9379
Training 14 12,4020 22,7264 1,9523 13,8974
Forecast 14 6,0395 4,4636 2,1418 6,0404
Training 21 12,4740 22,9403 1,9609 13,9856
Forecast 21 6,1131 4,4683 1,8332 6,3146
Training 30 12,5513 23,2229 1,9761 14,0927
Forecast 30 6,5074 4,4734 1,5740 6,6558
Table 2
Mean absolute error of forecast (number of cases)
Duration of forecast Germany Japan South Korea Ukraine
(days)

Training 3 197468 32652 1473 74829
Forecast 3 430169 77053 11583 213606
Training 7 196427 32361 1416 73883
Forecast 7 388059 77030 10783 211625
Training 10 195590 32141 1377 73102
Forecast 10 381425 77027 10358 214719
Training 14 194834 31843 1338 75994
Forecast 14 45122 9633 1182 27097
Training 21 193181 31310 1296 69992
Forecast 21 352587 77120 7940 223187
Training 30 190476 30606 1259 67131
Forecast 30 357787 77180 6674 229591
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3.3. Optimizing Model Hyperparameters
with Mesh Search

Almost every machine learning method has hy-
perparameters - characteristics, the value of which deter-
mines the model's training process. The process of find-
ing the best hyperparameters is called hyperparameteri-
zation.

In order to automate the selection of hyperparame-
ters, the GridSearchCV class was used. The method using
this class is straightforward:

—a grid is supplied with different values for each
hyperparameter;

—for each sample from the Cartesian product of
sets, the model is trained,;

—with the help of different metrics, the models are
compared with each other;

—based on the comparison results, the best model is
selected.

Let us assume that our model has three hyperparam-
eters - alpha, gamma, and n_iter. Let the following pos-
sible values be given to them:

—alpha=1[0.1, 0.2, 0.3, 0.4, 0.5];

—gamma=1[1,2,34,5,6,7,8,9, 10];

—n_iter = [100, 200, 300, 400, 500].

According to the laws of combinatorics, the total
number of trained models is 5*10*5=250. All these mod-
els are compared using the evaluation metric, and the best
one is selected.

To evaluate the model on more than just the training
data passed to the fit() method, use the PredefinedSplit
class and create a pipeline like this:

X, y =data

X_train, X_test, y_train, y_test = train_test_split (X,
y)

cv = PredefinedSplit ([- 1 if x in X_train else 0 for x
in X])

# Create Pipeline

pipeline = Pipeline {(...)
# Create GridSearch

grid_search = GridSearchCV (estimator = pipeline,
cv=cv,..)

# Fit model

grid_search.fit (X, y)

# Get best model for current task

model = grid_search.best_estimator_

Conclusions

The article is devoted to developing a neural net-
work model for predicting the dynamics of the incidence

of COVID-19 in a selected area. The adequacy of the
model was tested on data on the incidence of COVID-19
in Germany, Japan, South Korea, and Ukraine, taken
from the John Hopkins Coronavirus Resource Center.

The model showed high accuracy: from 93.11% to
93.96% for Germany, from 95.53% to 95.54% for Japan,
from 97.49% to 98.43% for South Korea, from 93.34%
up to 94.18% for Ukraine, depending on the forecasting
period. The assessment of absolute errors confirms that
the model can be used in healthcare practice to develop
control measures to contain the COVID-19 pandemic.

The scientific novelty of the study lies in a new ap-
proach to solving the problem of predicting epidemic
processes. As part of the approach, several neural net-
works are created, tested by mistake, and the best config-
uration of the neural network parameters is automatically
selected. The final forecast is built based on the best
model. Thus, the proposed model does not require man-
ual tuning, which allows its use in automated decision
support systems for epidemiological diagnostics.

The study's practical significance lies in the fact that
automated decision support systems for epidemiologists
and other public health workers can improve the effi-
ciency of making anti-epidemic decisions. This study is
especially relevant in the context of the escalation of the
Russian war in Ukraine when the healthcare system's re-
sources are limited.

Future research development. The simulation
model of the COVID-19 epidemic process developed as
part of this study is highly accurate. The adequacy of the
model is sufficient to assess the further development of
the pandemic in a specific area. However, the disad-
vantage of all models based on neural networks is their
low interpretability. So, specialists making decisions re-
garding preventive measures cannot identify factors in-
fluencing the development of infectious morbidity.
Therefore, further research aims to combine neural net-
works, statistical machine learning, and agent-based
models to obtain a hybrid information support decision-
making system about epidemic well-being. The concept
of the proposed system is described in [16], some of the
models which are parts of the system were published in
[33]. Using agent-based models will make it possible to
conduct experiments to evaluate the information content
of external factors that affect the dynamics of the epi-
demic process. Furthermore, neural network models of
epidemic processes will improve the accuracy of fore-
casts by calibrating the agent-based model on the results
obtained using machine learning models.

Contributions of authors: conceptualization —
levgen Meniailov, Dmytro Chumachenko; methodol-
ogy - Serhii Krivtsov, levgen Meniailov,
Dmytro Chumachenko; formulation of tasks -
levgen Meniailov, Kseniia Bazilevych, Dmytro



Modelling and applied mathematics

15

Chumachenko; analysis — Serhii Krivtsov, Dmytro
Chumachenko; development of model — Serhii
Krivtsov, levgen Meniailov, Kseniia Bazilevych,
Dmytro Chumachenko; software — Serhii Krivtsov;
verification -  levgen  Meniailov, Dmytro
Chumachenko; analysis of results — levgen Meniailov,
Dmytro Chumachenko; visualization -  Serhii
Krivtsov, levgen Meniailov; writing — original draft
preparation -  levgen  Meniailov, Dmytro
Chumachenko; writing — review and editing — Serhii
Krivtsov, Kseniia Bazilevych.

All the authors have read and agreed to the pub-
lished version of the manuscript.

Acknowledgment. The study was funded by the
National Research Foundation of Ukraine in the frame-
work of the research project 2020.02/0404 on the topic
“Development of intelligent technologies for assessing
the epidemic situation to support decision-making within
the population biosafety management”.

References (GOST 7.1:2006)

1. COVID-19: a multidisciplinary review [Text] /
N. Chams, S. Chams, R. Badran et al. // Frontiers in Pub-
lic Health. — 2020. — Vol. 8. — Article No. 383.
DOI: 10.3389/fpubh.2020.00383.

2. Worldometer: COVID-19 Coronavirus Pan-
demic [Electronic resource]. — 2022. Available at:
https://www.worldometers.info/coronavirus/ -
31.08.2022.

3. Comparing public perceptions and preventive be-
haviors during the early phase of the COVID-19 pan-
demic in Hong Kong and the United Kingdom: cross-sec-
tional survey study [Text] / L. Bowman, K. O. Kwok et al.
// Journal of medical Internet research. —2021. —Vol. 23,
iss. 3. — Article No. e23231. DOI: 10.2196/23231.

4. Santeramo, F. G. On the management of COVID-
19 pandemic in ltaly [Text] / F. G. Santeramo, M. Tappi,
E. Lamonaca // Health Policy. — 2021. — Vol. 125, iss. 8.
—P. 995-1001. DOI: 10.1016/j.healthpol.2021.05.014.

5. Flattering the curve on COVID-19: South Ko-
rea’s measures in tackling initial outbreak of Corona-
virus [Text] / D. Lee, K. Heo et al. // American Journal
of Epidemiology. —2021. — Vol. 190, iss. 4. — P. 496-505.
DOI: 10.1093/aje/kwaa217.

6. Diagnostics for COVID-19: moving from pan-
demic response to control [Text] / R.W. Peeling,
D. L. Heymann, Y. Y. Teo, P. J. Garcia // Lancet. — 2022.
— Vol. 399, iss. 10326. — P. 757-768. DOI: 10.1016/
S0140-6736(21)02346-1.

7. Comparative study of government response
measures and epidemic trends for COVID-19 global pan-
demic [Text] / C. Wang, H. Zhang, Y. Gao, Q. Deng //
Risk Analysis: an official publication of the Society for
Risk Analysis. — 2022. — Vol. 42, iss. 1. — P. 40-55.
DOI: 10.1111/risa.13817.

8. Abdou, A. M. Good governance and COVID-19:
the digital bureaucracy to response the pandemic (Sin-
gapore as a model) [Text] / A. M. Abdou // Journal of
Public Affairs. — 2021. — Vol. 21, iss. 4. — Article No.
€2656. DOI: 10.1002/pa.2656.

9. Open schools, COVID-19, and child and teacher
morbidity in Sweden [Text] / J.F.Ludvigsson,
L. Engerstrom, C. Nordenhall, E. Larsson // The New
England Journal of Medicine. — 2021. — Vol. 384, iss. 7.
—P. 669-671. DOI: 10.1056/NEJMc2026670.

10. Predictive modeling based on small data in clin-
ical medicine: RBF-based additive input-doubling
method [Text] / I. Izonin, R. Tkachenko et al. // Mathe-
matical Biosciences and Engineering. — 2021. — Vol. 18,
iss. 3. — P. 2599-2613. DOI: 10.3934/mbe.2021132.

11. Agent-oriented data clustering for medical mon-
itoring [Text] / V. Strilets, V. Donets, M. Ugryumov,
S. Artiuch, R. Zelenskyi, T. Goncharova // Radioelec-
tronic and Computer Systems. — 2022. — No. 1 (101). —
P. 103-114. DOI: 10.32620/reks.2022.1.08.

12. Solutions to the 3™ model problem of pressure
measurement in the area of maxillary sinus anastomosis
[Text] / A. Nechyporenko, V.Reshetnik, D. Shyian,
V. Alekseeva, R. Radutny, V. Gargin // CEUR Workshop
Proceedings. — 2020. — Vol. 2753. — P. 275-284.

13. Semi-refined carrageenan promotes generation
of reactive oxygen species in leukocytes of rats upon oral
exposure but not in vitro [Text] / A. Tkachenko, Y. Kot,
V. Kapustnik et al. // Wiener Medizinische Woch-
enschrift. — 2021. — Vol. 171, iss. 3-4. — P. 68-78.
DOI: 10.1007/s10354-020-00786-7.

14. Evaluation of the informative features of car-
diac studies diagnostic data using the Kullback method
[Text] / O. Skitsan, I. Meniailov, K. Bazilevych, H. Pa-
dalko // CEUR Workshop Proceedings. — 2021. — Vol.
2917. —P. 186-195.

15. Monitoring of urban freight flows distribution
considering the human factor [Text] / N. Davidich,
A. Galkin, S. lwan, K. Kijewska, I. Chumachenko, Y. Da-
vidich // Sustainable Cities and Society. — 2021. —vol. 75.
— Article 1D 103168. DOI: 10.1016/j.s¢cs.2021.103168.

16. The concept of developing a decision support
system for the epidemic morbidity control [Text] / S. Ya-
kovlev, K. Bazilevych, D. Chumachenko, T. Chu-
machenko et al. // CEUR Workshop Proceedings. —
2020. —Vol. 2753. — P. 265-274.

17. Kermack, W. O. A contribution to the mathe-
matical theory of epidemics [Text] / W. O. Kermack,
A. G. McKendrick // Proceedings of the Royal Society
London. — 1927. — Vol. 115, iss. 772. — P.700-721.
DOI: 10.1098/rspa.1927.0118.

18. Dashtbali, M. A compartmental model that pre-
dicts the effect of social distancing and vaccination on
controlling COVID-19 [Text] / M. Dashtbali, M. Mirzaie
/I Scientific Reports. — 2021. — Vol. 11. — Article No.
8191. DOI: 10.1038/s41598-021-86873-0.

19. Extended compartmental model for modeling
COVID-19 epidemic in Slovenia [Text] / M. Fosnaric,
T. Kamensek, J. Z. Gros, J. Zibert // Scientific Reports. —



16 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2022, no. 4(104) ISSN 2663-2012 (online)
2022. — Vol.12. - Article No. 16916. — Article No. 105915. DOI: 10.1016/j.compbiomed.

DOI: 10.1038/s41598-022-21612-7.

20. Ikeda, Y. A new compartment model of COVID-
19 transmission: the broken-link model [Text] / Y. lkeda,
K. Sasaki, T. Nakano // International Journal of Environ-
mental Research and Public Health. — 2022. — Vol. 19,
iss. 11. — Article No. 6864. DOI: 10.3390/
ijerph19116864.

21. Antonelli, E. Switched forced SEIRDV compart-
mental models to monitor COVID-19 spread and immun-
ization in Italy [Text] / E. Antonelli, E. L. Piccolomini,
F. Zama // Infectious Disease Modelling. — 2022. — Vol.
7,iss. 1. —P. 1-15. DOI: 10.1016/j.idm.2021.11.001.

22. Batista, A. A. An epidemiological compart-
mental model with automated parameter estimation and
forecasting of the spread of COVID-19 with analysis of
data from Germany and Brazil [Text] / A. A. Batista,
S. H. da Silva // Frontiers in Applied Mathematics and
Statistics. — 2022. — Vol. 8. — Article No. 645614.
DOI: 10.3389/fams.2022.645614.

23. Prediction and analysis of COVID-19 daily new
cases and cumulative cases: times series forecasting and
machine learning models [Text] / Y. Wang, Z. Yan et al.
/I BMC Infectious Diseases. — 2022. — Vol. 22. — Article
No. 495. DOI: 10.1186/s12879-022-07472-6.

24. Administered machine learning models for
COVID-19 future forecasting [Text] / K. Atchaya,
M. Darshinii, R. Harini, T. Suganya // Journal of Phys-
ics: Conference Series. —2021. — Vol. 1916. — Article No.
012157. DOI: 10.1088/1742-6596/1916/1/012157.

25. Galasso, J. A random forest model for forecast-
ing regional COVID-19 cases utilizing reproduction
number estimates and demographic data [Text] / J. Gal-
asso, D. M. Cao, R. Hochberg // Chaos, Solitons, Frac-
tals. — 2022. — Vol. 156. — Article No. 111779.
DOI: 10.1016/j.chaos.2021.111779.

26. Alali, Y. A proficient approach to forecast
COVID-19 spread via optimized dynamic machine learn-
ing model [Text] /Y. Alali, F. Harrou, Y. Sun // Scientific
Reports. — 2022. — Vol. 12. — Article No. 2467.
DOI: 10.1038/s41598-022-06218-3.

27. COVID-19 epidemic forecasting based on a
comprehensive ensemble method [Text] / Y. Bai, Z. Qian,
Y. Sun, S. Wang // System Engineering Theory and Prac-
tice. — 2022. — Vol. 42, iss. 6. — P.1678-1693.
DOI: 10.12011/SETP2021-3005.

28. An artificial neural network-based approach for
predicting the COVID-19 daily effective reproduction
number Rtin Italy [Text] / A. Gatto, V. Aloisi et al. // Al.
- 2022. - Vol. 3, iss. 1. — P.146-163.
DOI: 10.3390/ai3010009.

29. Saliaj, L. An application of neural network to
predict COVID-19 cases in Italy [Text] / L. Saliaj,
E. Nissi // Engineering Proceedings. — 2022. — Vol. 18,
iss. 1. — Article No. 11. DOI: 10.3390/
engproc2022018011.

30. Garg, S. A novel approach for COVID-19 infec-
tion forecasting based on multi-source deep transfer
learning [Text] / S. Garg, S. Kumar, P. K. Muhuri //
Computers in Biology and Medicine. — 2022. — Vol. 149.

2022.105915.

31. A deep learning approach for spatio-temporal
forecasting of new cases and new hospital admissions of
COVID-19 spread in Reggio Emilia, Northern Italy
[Text] / V. Sciannameo, A. Goffi et al. // Journal of Bio-
medical Informatics. — 2022. — Vol. 132. — Article No.
104132. DOI: 10.1016/j.jbi.2022.104132.

32. Coronavirus Resource Center. Johns Hopkins
University & Medicine. 2022 [Electronic resource]. —
Available at: https://coronavirus.jhu.edu/map.html —
31.08.2022.

33. On COVID-19 epidemic process simulation:
three regression approaches investigations [Text] /
D. Chumachenko, 1. Meniailov, K. Bazilevych, O. Chub
// Radioelectronic and Computer Systems. —2022. — A2 1
(101). — P. 6-22. DOI: 10.32620/reks.2022.1.01.

References (BSI)

1. Chams, N., Chams, S. etal. COVID-19: a multi-
disciplinary review. Frontiers in Public Health, 2020,
vol. 8, article no. 383. DOI: 10.3389/fpubh.2020.00383.

2. Worldometer: COVID-19 Coronavirus Pan-
demic, 2022. Awvailable at: https://www.worldome-
ters.info/coronavirus/ (accessed 31.08.2022).

3. Bowman, L., Kwok, K.O. et al. Comparing pub-
lic perceptions and preventive behaviors during the early
phase of the COVID-19 pandemic in Hong Kong and the
United Kingdom: cross-sectional survey study. Journal
of medical Internet research, 2021, vol. 23, iss. 3, article
no. e23231. DOI: 10.2196/23231.

4. Santeramo, F. G., Tappi, M., Lamonaca, E. On
the management of COVID-19 pandemic in Italy. Health
Policy, 2021, vol. 125, iss. 8, pp.995-1001. DOI:
10.1016/j.healthpol.2021.05.014.

5. Lee, D., Heo, K. et al. Flattering the curve on
COVID-19: South Korea’s measures in tackling initial
outbreak of Coronavirus. American Journal of Epidemi-
ology, 2021, vol. 190, iss. 4, pp. 496-505. DOI:
10.1093/aje/kwaa217.

6. Peeling, R.W., Heymann, D. L., Teo, Y.Y., Gar-
cia, P.J. Diagnostics for COVID-19: moving from pan-
demic response to control. Lancet, 2022, vol. 399,
iss. 10326, pp. 757-768. DOIl: 10.1016/S0140-
6736(21)02346-1.

7. Wang, C., Zhang, H., Gao, Y., Deng, Q. Com-
parative study of government response measures and ep-
idemic trends for COVID-19 global pandemic. Risk
Analysis: an official publication of the Society for Risk
Analysis, 2022, vol. 42, iss. 1, pp. 40-55. DOI:
10.1111/risa.13817.

8. Abdou, A. M. Good governance and COVID-19:
the digital bureaucracy to response the pandemic (Singa-
pore as a model). Journal of Public Affairs, 2021, vol. 21,
iss. 4, article no. e2656. DOI: 10.1002/pa.2656.

9. Ludvigsson, J. F.,  Engerstrom, L.,  Norden-
hall, C., Larsson, E. Open schools, COVID-19, and child
and teacher morbidity in Sweden. The New England



Modelling and applied mathematics

17

Journal of Medicine, 2021, vol. 384, iss. 7, pp. 669-671.
DOI: 10.1056/NEJMc2026670.

10. Izonin, 1., Tkachenko, R. et al. Predictive mod-
eling based on small data in clinical medicine: RBF-
based additive input-doubling method. Mathematical Bi-
osciences and Engineering, 2021, vol. 18, iss. 3,
pp. 2599-2613. DOI: 10.3934/mbe.2021132.

11. Strilets, V., Donets, V., Ugryumov, M., Ar-
tiuch, S., Zelenskyi, R., Goncharova, T. Agent-oriented
data clustering for medical monitoring. Radioelectronic
and Computer Systems, 2022, no. 1 (101), pp. 103-114.
DOI: 10.32620/reks.2022.1.08.

12. Nechyporenko, A., Reshetnik, V., Shyian, D.,
Alekseeva, V., Radutny, R., Gargin, V. Solutions to the
3rd model problem of pressure measurement in the area
of maxillary sinus anastomosis. CEUR Workshop Pro-
ceedings, 2020, vol. 2753, pp. 275-284.

13. Tkachenko, A., Kot, Y. et al. Semi-refined car-
rageenan promotes generation of reactive oxygen species
in leukocytes of rats upon oral exposure but not in vitro.
Wiener Medizinische Wochenschrift, 2021, vol. 171, iss.
3-4, pp. 68-78. DOI: 10.1007/s10354-020-00786-7.

14. Skitsan, O., Meniailov, 1., Bazilevych, K., Pa-
dalko, H. Evaluation of the informative features of car-
diac studies diagnostic data using the Kullback method.
CEUR Workshop Proceedings, 2021, vol. 2917, pp. 186-
195.

15. Davidich, N., Galkin, A., Iwan, S., Kijew-
ska, K., Chumachenko, I., Davidich, Y. Monitoring of
urban freight flows distribution considering the human
factor. Sustainable Cities and Society, 2021, vol. 75, ar-
ticle id 103168. DOI: 10.1016/j.s¢s.2021.103168.

16. Yakovley, S., Bazilevych, K., Chu-
machenko, D., Chumachenko, T. et al. The concept of
developing a decision support system for the epidemic
morbidity control. CEUR Workshop Proceedings, 2020,
vol. 2753, pp. 265-274.

17. Kermack, W. O., McKendrick, A. G. A contri-
bution to the mathematical theory of epidemics. Proceed-
ings of the Royal Society London, 1927, vol. 115, iss. 772,
pp. 700-721. DOI: 10.1098/rspa.1927.0118.

18. Dashtbali, M., Mirzaie, M. A compartmental
model that predicts the effect of social distancing and
vaccination on controlling COVID-19. Scientific Re-
ports, 2021, wvol. 11, article no. 8191. DOI:
10.1038/s41598-021-86873-0.

19. Fosnaric, M., Kamensek, T., Gros, J.Z., Zib-
ert, J. Extended compartmental model for modeling
COVID-19 epidemic in Slovenia. Scientific Reports,
2022, vol. 12, article no. 16916. DOI: 10.1038/s41598-
022-21612-7.

20. Ikeda, Y., Sasaki, K., Nakano, T. A new com-
partment model of COVID-19 transmission: the broken-
link model. International Journal of Environmental Re-
search and Public Health, 2022, vol. 19, iss. 11, article
no. 6864. DOI: 10.3390/ijerph19116864.

21. Antonelli, E.,  Piccolomini, E. L., Zama, F.
Switched forced SEIRDV compartmental models to
monitor COVID-19 spread and immunization in Italy. In-
fectious Disease Modelling, 2022, vol. 7, iss. 1, pp. 1-15.

DOI: 10.1016/j.idm.2021.11.001.

22. Batista, A. A., da Silva, S. H. An epidemiologi-
cal compartmental model with automated parameter esti-
mation and forecasting of the spread of COVID-19 with
analysis of data from Germany and Brazil. Frontiers in
Applied Mathematics and Statistics, 2022, vol. 8, article
no. 645614. DOI: 10.3389/fams.2022.645614.

23. Wang, Y., Yan, Z. et al. Prediction and analysis
of COVID-19 daily new cases and cumulative cases:
times series forecasting and machine learning models.
BMC Infectious Diseases, 2022, vol. 22, article no. 495.
DOI: 10.1186/s12879-022-07472-6.

24. Atchaya, K., Darshinii, M., Harini, R.,
Suganya, T. Administered machine learning models for
COVID-19 future forecasting. Journal of Physics: Con-
ference Series, 2021, vol. 1916, article no. 012157. DOI:
10.1088/1742-6596/1916/1/012157.

25. Galasso, J., Cao, D. M., Hochberg, R. A ran-
dom forest model for forecasting regional COVID-19
cases utilizing reproduction number estimates and demo-
graphic data. Chaos, Solitons, Fractals, 2022, vol. 156,
article no. 111779. DOI: 10.1016/j.cha0s.2021.111779.

26. Alali, Y., Harrou, F., Sun, Y. A proficient ap-
proach to forecast COVID-19 spread via optimized dy-
namic machine learning model. Scientific Reports, 2022,
vol. 12, article no. 2467. DOI: 10.1038/s41598-022-
06218-3.

27. Bai, Y., Qian, Z., Sun, Y., Wang, S. COVID-19
epidemic forecasting based on a comprehensive ensem-
ble method. System Engineering Theory and Practice,
2022, wvol. 42, iss. 6, pp.1678-1693. DOI:
10.12011/SETP2021-3005.

28. Gatto, A., Aloisi, V. et al. An artificial neural
network-based approach for predicting the COVID-19
daily effective reproduction number Rt in Italy. Al, 2022,
vol. 3, iss. 1, pp. 146-163. DOI: 10.3390/ai3010009.

29. Saliaj, L., Nissi, E. An application of neural net-
work to predict COVID-19 cases in Italy. Engineering
Proceedings, 2022, vol. 18, iss. 1, article no. 11.
DOI: 10.3390/engproc2022018011.

30. Garg, S., Kumar, S., Muhuri, P. K. A novel ap-
proach for COVID-19 infection forecasting based on
multi-source deep transfer learning. Computers in Biol-
ogy and Medicine, 2022, vol. 149, article no. 105915.
DOI: 10.1016/j.compbiomed.2022.105915.

31. Sciannameo, V., Goffi, A. etal. A deep learning
approach for spatio-temporal forecasting of new cases
and new hospital admissions of COVID-19 spread in
Reggio Emilia, Northern Italy. Journal of Biomedical In-
formatics, 2022, wvol. 132, article no. 104132
DOI: 10.1016/j.jbi.2022.104132.

32. Coronavirus Resource Center. Johns Hopkins
University & Medicine, 2022. Available at: https://coro-
navirus.jhu.edu/map.html (accessed 31.08.2022).

33. Chumachenko, D., Meniailov, I., Bazilevych,
K., Chub, O. On COVID-19 epidemic process simula-
tion: three regression approaches investigations. Radioe-
lectronic and Computer Systems, 2022, no. 1 (101), pp.
6-22. DOI: 10.32620/reks.2022.1.01.



18 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2022, no. 4(104) ISSN 2663-2012 (online)

Haoinuna 0o pedaxyii 25.08.2022, posensanyma na peoxoneeii 20.11.2022

MPOTHO3HA MOJEJIb ENIJIEMIYHOI'O TPOIIECY COVID-19
HA OCHOBI HEMPOHHOI MEPEKI

Cepezin Kpuesyos, €ezen Mensniinos, Kcenia bazineeuu, /Imumpo 4ymauenxo

Mangemis COVID-19, mo TpuBae Maibke Tpu pOKH, IOKa3ana, [0 CUCTEMH OXOPOHH 3/I0pOB's HE TOTOBI 10
TAKOTr0 BUKIIMKY. 3aXO0JH, SKi BXXHBAIOTHCS ypAaMu y cepl OXOPOHH 3/I0pPOB'St B YMOBaxX Pi3KOro IMOCHJICHHS! HaBa-
HTa)XCHHsI Ha Hel, BKIIOYAIOTh CTPUMYBAHHS Iepeiadi Ta MOMMPEHHS BipyCy, HalaHHS JJOCTaTHHOTO MPOCTOPY IS
HaJIaHHS MEIMYHOI JIOIIOMOTH, 3a0e3MeueHHs JOCTYITHOCTI JIabopaTopiil /Ui TeCTyBaHHS Ta MEAWYHOI JOIIOMOTH, a
TaK0X MOOLTI3allil0 MeperiaroToBKH MeAnYHUX KazapiB. [Tlanaemis 3MiHMIa fepkaBHI Ta Oi3HEC-TIpoliecH, onudpy-
BaBIIM €KOHOMIKY Ta OXOPOHY 3/10poB'si. ['1100abHI BUKIMKH CTUMYJIIOBAJIHN JOCIHIPKEHHS B Taily3i MEIUIMHHA Ha
ocHOBI jaHuX. [IporHo3yBaHHs emifeMiqyHOro nepediry iH(ekuiitHuX mporeciB JO3BOIMIO O OLIHUTH MacIITadH na-
H7IEMII, 1110 HaCYBa€ThCs, JUIsl IUTaHYBaHHS HEOOX1THUX 3aXx0/1iB 00poThOH. MeTo10 JocaiKeHHs € TOOy10Ba MOJIENi
enigeMiynoro npouecy COVID-19 mis nmporHo3yBaHHs HOTo JJMHAMIKHM Ha OCHOB1 HeHpoHHHX Mepex. O0’€eKkT poc-
JIIKeHHsT — eriieMiYHui nporec iHpeKiiHuX 3axBoptoBadb Ha npukinaai COVID-19. Ilpeamer pocJaimkeHHs —
MOJIEJ Ta METO/IN MOJISITIOBAHHS €ITiIEMIYHOTO MPOIleCcy Ha OCHOBI HEHPOHHUMX Mepex. B pe3yabraTi nociimkeHHs
noOyoBaHo imMiTaniiHy Moaens emigeMigaoro npounecy COVID-19 Ha ocHOBI HelipoHHOT Mepexi. Moaenb noka3zana
BHCOKY TOUHICTB: BiZ 93,11% 10 93,96% mns Himeuunnwu, Bix 95,53% 1o 95,54% s SAnowii, Bix 97,49% no 98,43%
s [liBnennoi Kopei, Bin 93,34% 1o 94,18% ams Ykpainu, 3aeKHO BiJf epioay nporHo3yBaHHs. OriHka adcoiro-
THHX TIOXHOOK IiTBEP/KYE, IO MOAEIb MOXe OyTH BUKOPUCTaHA B MPAKTUIII OXOPOHHU 3JI0POB'S ISl PO3POOKH 3a-
XOJ1iB KOHTPOIIIO 3a cTpuMyBaHHsM nanaemii COVID-19. Buecok nporo nociipkeHHs y rany3pb nojsiitauii. [To-me-
pie, po3poOka Moyieneil Ha OCHOBI HEHPOMEPEKEBOr0 iIX01y A03BOJIUTH OL[IHUTH TOYHICTh TAKMX METOJIB CTOCO-
BHO MoJIeNoBaHHs emnifemiynoro npouecy COVID-19. [o-npyre, BUBYSHHS €KCIIEPUMEHTAIBHOTO OCIIPKEHHS 13
3aCTOCYBaHHSIM PO3pOOJIEHOT MOJIENI IO JaHWX 13 YOTHPHhOX KpaiH CHpUSATHME eMITipUYHIN OLiHII epeKTUBHOCTI 11
3actocyBanHs He nuiie 10 COVID-19, a i 1o iHIMX cuMysnii iHpeKLiHHIX 3aXBOPIOBaHb. BUCHOBKH. 3HAYNMICTh
JOCITIJDKEHHSI TIOJISITa€ B TOMY, 1[0 aBTOMAaTH30BaHI CHCTEMH MiITPUMKH MTPUHHATTS PillleHb eMieMi10JIoraMu Ta iH-
MMM TPaliBHUKaMH OXOPOHHU 3[I0POB'sl IAIOTh 3MOT'Y MiIBUIUTH €()EeKTHBHICTh NPUHHATTS MIPOTUEITIJEMIYHUX Pi-
mieHb. Le mociikeHHst 0coOIMBO aKTyajdbHE B YMOBaX ecKaallil pociichbkol BiliHM B YKpaiHi, KOJH pecypcu cuc-
TEMH OXOPOHH 3/I0pPOB'sl OOMEKEHI.

Karwuosi cioBa: eninemMiuyHa MOJelNb; €IiIGMIYHUNA TPOIEC; MOIECTIOBAHHS eIMiJeMii; iMiTaliiiHe MoJeso-
BanHs; COVID-19; HeiipoHHa Mepexa.
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