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Remote sensing images have found numerous applications nowadays. A traditional outcome or intermediate 

result of their processing is a classification map. Such maps are usually obtained from a pre-trained classifier 

and it is desired to have the produced classification maps as accurately as possible. The basic subject of this 

article is the factors determining this accuracy. The main among them are the quality of remote sensing data 

and classifier type, parameters and training approach. Image quality can be degraded due to several factors. 

One of them is distortions introduced by lossy compression that is widely used due to a huge volume of acquired 

data and the necessity to sufficiently decrease their size at transmission, storage and/or dissemination stages. 

Because of this, the main goal of this paper is to consider classification and lossy compression jointly. In par-

ticular, this means that the classifier learning can be performed for original (uncompressed, compressed in a 

lossless manner) images (if they are available) as well as for compressed data at hand (offered to a user for 
classification and further analysis). The task of this paper is to consider and compare these two options. The 

first one is the classifier learning for original images and further application to compressed data, where images 

can be compressed with different compression ratios while producing compressed data of different quality. The 

second option is the use of the classifier learning for compressed images, where compression parameters for 

training data can be approximately the same as for the images to which the classifier is applied. The main result 

is that the latter methodology can provide certain benefits compared to the classifier learning for original data 

if one has to classify compressed remote sensing data. Simulation data are obtained for a classifier based on a 

convolutional neural network. As images for training and verification, four real-life three-channel (visible 

range) Sentinel-2 remote sensing images of Kharkiv and Kharkiv region are employed that possess different 

complexity of the content and have four main classes. The practical recommendations are given. In conclusion, 

we can state that it is worth having classifiers trained for several degrees of compression and it is reasonable to 

compress complex structure images with special care. 
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1. Introduction 

 

Nowadays, remote sensing (RS) from satellites and 

airborne carriers including unmanned aerial vehicles and 

drones have found numerous applications including for-

estry, ecological monitoring, precision agriculture [1, 2], 

etc. Images produced by different sensors have to be pro-

cessed where processing includes a wide set of possible 

operations (stages) including georeferencing, calibration, 

denoising or deblurring, classification [3 - 6] and so on. 

RS data classification is a typical image processing stage 

[6 - 8] that can be either final or intermediate (pre-final, 

used for further parameter estimation for the obtained 

classes). Certainly, it is desired to provide as accurate 

classification as possible. In particular, improvement of 

classification accuracy might allow slightly worse qual-

ity of an acquired image as a result of increased distance 

between the sensor carrier and the sensed terrain the im-

age of which is formed.     

Classification accuracy depends on numerous fac-

tors [7 - 9] including a chosen set of features, a classifier 

used and its training methodology, number of classes pre-

sent in a given image and their potential separability, 

quality and properties of original images, image pre-pro-

cessing methods employed before classification, etc. 

This explains a great number of publications dealing with 

remote sensing data classification and challenges in im-

age processing that appear each year (see [4, 10, 11] and 

references therein).  

A general tendency in remote sensing is permanent 

increasing of image number and their average size. This 

causes problems in image transferring from a carrier to 

on-land center of data reception, processing and dissem-

ination and in image storage. Considerable efforts have 

been undertaken to develop efficient methods and algo-

rithms of image compression [12 - 14]. Note that com-

pression can be lossless and lossy [15, 16]. The latter is 

often subdivided into visually lossless and lossy [12, 13, 

17, 18].  
Below, we are not interested in lossless compression 

since it is usually unable to provide a desired compres-

sion ratio (CR). In turn, lossy compression introduces in-
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evitable distortions and they influence image classifica-

tion and object recognition accuracy [14, 19 - 21].  

If one has to classify a compressed image, two ap-

proaches to classifier training (most modern efficient 

classifiers presume training in one or another manner). 

The first approach assumes that training is carried out for 

samples that are not distorted, i.e. for original (uncom-

pressed) images that contain the same (or a larger num-

ber) of classes that are present in a compressed image to 

be classified. The second approach presumes that train-

ing of a classifier is carried out for compressed data, i.e. 

for a part of data of a compressed image to be classified 

or an image compressed with similar characteristics and 

acquired earlier.  

Both approaches have advantages and drawbacks to 

be discussed in the next Section. The goal of this paper is 

to compare these approaches. To restrict ourselves, we 

focus on lossy compression that introduces either invisi-

ble or not annoying distortions (if distortions are annoy-

ing, classification accuracy is usually considerably worse 

than required or potentially reachable; thus, it is desired 

to avoid such situations in practice [19]). Besides, we fo-

cus on image classification using trained neural net-

works. The reason for this is that neural network classifi-

ers are usually among the best since they possess ability 

to work with features that have non-Gaussian distribu-

tions [19, 20]. In addition, to simplify our analysis, we 

consider three-channel images (which can be visualized 

and easily analyzed by humans) and their pixel-wise clas-

sification (to avoid extra difficulties in analysis).      

This paper is organized as follows. The problem of 

the two-step method applied to SPIHT is defined, and its 

solution methodology is described in Section 2. The ex-

periment set is presented in Section 2 as well. The results 

and discussion are given in Section 3. Finally, Section 4 

summarizes the work. 
 

2. Problem statement and solution 

methodology 

 

a. Problem statement 
Suppose we have a compressed image or several im-

ages compressed in a similar way to be classified. As-

sume also that we know some parameters that describe 

compression. This can be compression ratio obtained for 

the considered image or quantization step with which the 

image has been compressed. This means that the com-

pressed image quality characterized by peak signal-to-

noise ratio (PSNR) or other metrics (e.g., mean square 

error or mean absolute deviation of introduced distor-

tions) can be predicted with quite high accuracy [18, 20] 

for a used technique.  

Then, three strategies of compressed image classifi-

cation are possible. Let describe them more in detail. Ac-

cording to Strategy 1, a classifier is trained in advance 

using original (uncompressed, reference) data acquired 

by the same sensor earlier. For this strategy, there are the 

following advantages. First, the classifier is already 

trained and ready for use for a given compressed image. 

Second, specialists that have performed such a training, 

most probably, had time and, thus, were able to define all 

possible classes, to find image fragments for training 

carefully, to optimize parameters of the designed classi-

fier and so on. Meanwhile, there are also several draw-

backs of this strategy. First, distribution of features for 

uncompressed and compressed images differ due to dis-

tortions introduced by lossy compression. Second, distri-

bution of features in reference and compressed images 

can differ for certain classes due to errors in calibration, 

seasonal variations of features, etc.  

For the second strategy, images compressed with 

parameters similar to parameters of compressing an im-

age to be classified can be used for classifier training. 

Then, before classification of a given compressed image, 

one can choose the classifier prepared for similar condi-

tions. An advantage of this strategy is that the classifiers 

are ready in advance. Another positive feature is that 

classifiers are “adapted” to compressed images. A ques-

tion is does this “adaptation” help in the sense of improv-

ing the classification accuracy? The drawbacks are that 

1) the classifier training requires considerable efforts and 

2) calibration errors and class feature seasonal changes 

might have the negative impact on classification accu-

racy.  

Finally, according to Strategy 3, classifier training 

is performed just for a compressed image to be classified. 

Image fragments that can be recognized as belonging to 

given classes with confidence, are used for training. 

Then, the trained classifier is applied to entire image to 

get the classification map. A possible advantage is that 

training is done for a part of the same compressed data 

that can be then subject to classification. Then, calibra-

tion errors and seasonal changes of features have no neg-

ative impact. However, training is needed for each com-

pressed image to be classified. This can require consider-

able efforts and highly qualified experts to perform the 

necessary operations quickly and carefully especially if 

time offered for classification is limited.  

For the latter two strategies, one has to know do they 

provide benefits in classification accuracy and, if yes, 

how larger these benefits are. In other words, is it worth 

carrying out more work and spend more time for this?  
Note that there are some already obtained results. 

The data presented in the papers [14, 18, 21] show that 

even if the classifier has been trained for original (un-

compressed) data and then applied to compressed im-

ages, the probability of correct classification can even in-

crease compared to classification accuracy for the corre-

sponding uncompressed image. One reason could be the 

presence of the noise in original image which is partly 
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suppressed by lossy compression. At the same time, in 

most cases, the probability of correct classification usu-

ally reduces if the introduced distortions become 

larger [18, 20].    

Thus, it is worth analyzing different “cross-classifi-

cation” situations, i.e. when training is carried out for one 

type of data and then applied to data of another type. To 

partly simplify our study, we do not consider possible 

calibration errors and seasonal changes of features. We 

just analyze the original RS data and several versions of 

these data after compression. 
 

b. Solution methodology 

It is clear that different methods of image lossy com-

pression introduce distortions with different characteris-

tics. So, we are standing before dilemma – either to ana-

lyze a particular method of image lossy compression 

(then the obtained results will lack generality) or to ana-

lyze many (at least, several) different methods (then, a 

question is what coders to consider). Fortunately, an al-

ternative approach to simulation of introduced distortions 

has been proposed recently [19]. It has been shown that 

distortions introduced by lossy compression under con-

dition that these distortions are not too intensive usually 

have distribution close to Gaussian and they are practi-

cally spatially uncorrelated. This means that additive 

white Gaussian noise (AWGN) can be used as a simpli-

fied model of distortions for distortions introduced by 

lossy compression. This approach has been shown possi-

ble for many compression techniques based on discrete 

cosine transform where these techniques are applied to 

multichannel images either component-wise or in 3D 

manner. A positive feature of this approach to analysis of 

compression influence on classification is that we do not 

need to know the compression technique applied. In turn, 

a given variance of AWGN can be recalculated to coder 

parameters as, e.g. quantization step. This means that, in 

fact, we might have an approximate correspondence be-

tween AWGN variance and parameters of compression 

technique.  

Therefore, we can easily create a set of images sim-

ulating different degrees of compression (in fact, contam-

inated by AWGN with different values of variance). For 

each image, we can then train the classifier. This classi-

fier can be then applied to either original (noise-free) im-

age or to noisy images with any value of noise variance. 

If the classifier training has been carried out for original 

image and then applied to noisy images, we simulate 

Strategy 1. If the training was performed for the same 

noisy image, Strategy 2 is simulated. If the training was 

done for the noisy image with AWGN variance that dif-

fers from noise variance for an image to be classified, we 

deal with Strategy 3.  

For this methodology of investigations, we have to 

use the same image fragments for classifier training and 

the same image fragments for estimation of classification 

accuracy. 
 

c. Experimental set 
Since CR and introduced losses depend on image 

characteristics, performance of compression should be 

analyzed for images of different complexity and, prefer-

ably, of natural scenes. Note that images with a simpler 

structure are usually characterized by a lower level of 

losses compared to images with a complex structure, 

where the complexity of the image can be characterized, 

for example, by entropy (higher entropy refers to images 

with a more complex structure) [18]. To analyze the ef-

fect of lossy compression (using AWGN model) on clas-

sification results, four three-channel images of the size 

512×512 pixels have been used. These images have been 

obtained from multichannel data acquired by Sentinel-2 

satellite sensor in August 2019 (see these fragments in 

Fig. 1). There are four visually distinguishable classes on 

the images: 1 – Urban, 2 – Water, 3 – Vegetation,  

4 – Bare soil, where color features for many classes in-

tersect [21]. Remote sensing images are fragments of the 

territory of Kharkov (images SS2 and SS4) and its envi-

rons (images SS1 and SS3), Eastern part of Ukraine. 

  

a) b) 

  

c)  d) 

 

Fig. 1. Three-channel image fragments used  

in our analysis: SS1 (a), SS2 (b), SS3 (c), and SS4 (d) 

 

Based on the actual data on the territory presented 

in these images, relatively homogeneous fragments of 

images representing separate classes have been identified 

by experts. Each of the selected fragments has been 

marked with a conditional color corresponding to a cer-

tain class: Urban – yellow, Water – blue, Vegetation – 

green, Bare soil – black. The sets of reference marked 
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pixels have been divided into two non-overlapping sub-

sets: the training and control (verification) sam-

ples (Fig. 2 and 3). 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 2. Fragments used for classifier training  

for the images SS1 (a), SS2 (b), SS3 (c), and SS4 (d) 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 3. Ground truth maps for the images SS1 (a),  

SS2 (b), SS3 (c), and SS4 (d) 

 

The sizes of the training samples were of the order 

of (4… 20) × 103 pixels, the sizes of the verification sam-

ples have been several times larger ((7… 50) × 103 pix-

els). 

To assess the impact of the compression ratio on the 

quality of classification, the sets of images have been cre-

ated that simulate different compression ratios, actually 

corrupted by AWGN with the following variance values: 

σ2 = 9, 25, 49, 100 which corresponds to PSNR values 

from about 39 dB to 28 dB. Figures 4 and 5 show exam-

ples of these images for variance values equal to 9 and 

100, respectively. 

 

 

a) 

 

b) 

 

c) 

 

Fig. 4. Test image SS1: real life Sentinel-2 images  

for country-side areas in Kharkiv region, Ukraine  

before compression (a) and after compression  

with providing σ2 equal to 9 (b) and  100 (с) 
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a) 

 
b) 

 
c) 

Fig. 5. Test image SS2: real life Sentinel-2 images  

for country-side areas in Kharkiv region, Ukraine  

before compression (a) and after compression  

with σ2 equal to 9 (b) and  σ2 equal to 100 (с) 
 

After obtaining feature sets (voxel values) of the 

considered classes, classification has been carried out us-

ing a trained neural network (NN). Nowadays, there are 

many neural network types and approaches to their train-

ing and optimization. For classification, we have em-

ployed a simple NN that is, nevertheless, effective for the 

classification of multi-channel data. The classifier used 

was a multilayer neural network (MLP) that uses super-

vised learning and backpropagation. Such neural net-

works have an input layer, an output layer and, at least, 

one hidden layer in between. With the exception of input 

neurons, all other neurons commonly use a non-linear ac-

tivation function.  The architecture details are the follow-

ing:  the NN has an input layer for incoming data of three-

color components, 4 hidden layers with 64, 32, 16 and 

8 neurons respectively. 

The optimal number of hidden layers, neurons in 

them, as well as the learning function were determined 

by experiments with a single data set. For hidden layers, 

the ReLU (Rectified Linear Unit) activation function is 

used, the output of which is 0 if the input is negative, and 

the input itself if this input is 0 or positive [19, 20] 

 

f (x) max(0,x),                            (1) 

 

max value,  if  x (max value);

f (x) x,  if threshold (max value);

nagative slope(x threshold),  otherwise;

  


  
  

   (2) 

 

where max − value: float ⩾ 0 is the maximum activa-

tion value, by default equal to none, which means unlim-

ited;  

negative − slope: float ⩾ 0 is the negative slope co-

efficient, by default equal to 0; 

threshold: float ⩾ 0 denotes the threshold value for 

thresholded activation, by default equal to 0. 

Linear activation function is used for the output 

layer. The MLP is trained using the RMSProp optimizer. 

This optimizer takes the root of the mean squares of the 

gradient's overall parameters. Mathematically, it can be 

written as 

 

t t 1

t 1

u g .
G






  

 
                    (3) 

 

We have used cross-entropy as a loss function, and 

F-measure as an efficiency estimation metric. This is a 

harmonic mean of accuracy and completeness (accuracy 

shows how many of the objects identified by the classi-

fier as positive are indeed positive; completeness shows 

how many of the positive objects were identified by the 

classifier). The harmonic mean has an important property 

– it is close to zero if at least one of the arguments is close 

to zero. In the multi-class case, this is the average of the 

F-measure of each class with weighting depending on the 

average parameter [14]. 

Let us start by analyzing the classification results of 

the original three-channel images using the neural net-

works trained for these images. 

Consider images with the simpler structure SS1 

(SS3) (Fig. 1, a and Fig. 1, c). We present the classifica-

tion results obtained only for the SS1 image, since for the 

SS3 image, which has a similar structure, the results are 

identical. The obtained confusion matrix is presented in 

Table 1. The corresponding map is given in Figure 6, a. 
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Table 1 

Confusion matrix for the original (noise  

or distortion-free) image SS1 classified  

by the neural networks trained for this image 
 

Class 
Probability of decision 

Urban Water Vegetation Bare soil 

Urban   0.710 0.0001 0.099 0.190 

Water 0.0001 0.991 0.005 0 

Vegetation   0.009 0.043 0.941 0.013 

Bare soil 0.044 0 0.095 0.862 

 

 
a) 

 
b) 

 

Fig. 6. Classification maps for original  

images SS1 (a) and SS2 (b) 

 

As one can see, the classes Water and Vegetation 

are recognized well. Meanwhile, there are many misclas-

sifications for the Bare Soil and Urban classes. This is not 

surprising and often occurs when trying to discriminate 

remote sensing data for classes that are “close” to each 

other. 

Let us consider test images SS2 (SS4) with a com-

plex structure (Fig. 1, b and Fig. 1, d). We present the 

classification results obtained only for the SS2 image, 

since for the SS3 image, which has a similar structure, 

the results are identical. The obtained confusion matrix is 

presented in Table 2. The corresponding map is given in 

Fig. 6, b.  

 

Table 2  

Confusion matrix for the original (noise  

or distortion-free) image SS2 classified  

by the neural network trained for this image 
 

Class 
Probability of decision 

Urban Water Vegetation Bare soil 

Urban   0.872 0.023 0.062 0.046 

Water 0.081 0.613 0.381 0.009 

Vegetation   0.017 0.022 0.899 0.061 

Bare soil 0.022 0.005 0.068 0.913 

 

Analysis of the results shows that there are quite 

many misclassifications for the Vegetation and, espe-

cially, Water classes. Thus, the Water and Vegetation 

classes are recognized worse than in the previous case 

(Table 1). However, the Urban and Bare soil classes are 

better recognized than in the previous case with probabil-

ities equal to 0.872 and 0.913, respectively. The total (ag-

gregate) probabilities for SS1 and SS2 images’ correct 

classification are equal to 0.95 and 0.86, respectively. 

Thus, more complex structure image is classified worse 

than the simpler structure one (the same holds for the im-

ages SS3 and SS4). 
 

3. Obtained results and discussion 
 
Let us consider the classification results according 

to strategy 1, i.e. training is carried out using the original 

image and classification if performed for images with ar-

tificially added noise that simulates distortions due to 

compression. This strategy is considered in detail in [18]. 

Let us present the results of image classification SS1 and 

SS2 for different variances. Particular classes’ and total 

probabilities of correct classification for the image SS1 

with different noise intensities are represented in Table 3.  

 

Table 3 
Particular class and total probabilities of correct  

classification for the image SS1 with different  

noise intensities – Strategy 1 

 

Class Original 
σ2 

9 25 49 100 

Urban   0.82 0.81 0.81 0.79 0.75 

Water 0.99 0.98 0.96 0.94 0.88 

Vegetation   0.93 0.91 0.87 0.81 0.70 

Bare soil 0.77 0.76 0.74 0.70 0.64 

Total 0.92 0.91 0.90 0.88 0.81 
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The corresponding maps are given in Figure 7. The 

presented results demonstrate that, firstly, the total prob-

abilities of correct classification have a steady tendency 

to decrease with increasing the noise variance (distortion 

level). The decrease may be acceptable for σ2 = 25, but 

it becomes inappropriate for larger σ2. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 7. Classification results for the SS1 image  

for original (a) and noisy images:  

b – σ2=9; c – σ2=25; d – σ2=49 

The reduction of classification accuracy also de-

pends on the image complexity. For example, the classi-

fication results for the SS2 test image (Fig. 8), presented 

in Table 4, show a decrease in all particular class proba-

bilities, as well as the total probabilities of correct classi-

fication with increasing the noise intensity.  

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 8. Classification results for SS2 fragment maps  

for original (a) and noisy images:  

(b – σ2=9; c – σ2=25; d – σ2=49 
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Table 4 

Particular class and total probabilities of correct  

classification for the image SS2 with different  

noise intensities – Strategy 1 
 

Class Original 
σ2 

9 25 49 100 

Urban   0.92 0.91 0.87 0.84 0.81 

Water 0.72 0.70 0.60 0.50 0.24 

Vegetation   0.64 0.60 0.57 0.51 0.42 

Bare soil 0.91 0.86 0.82 0.74 0.61 

Total 0.86 0.83 0.78 0.74 0.65 

 

The decrease may be considered acceptable for σ2 = 9, 

but it becomes too large for larger  σ2. Thus, we come to 

the need to provide PSNR of compressed data of the or-

der of 38 dB and higher, i.e. ensuring the invisibility of 

the introduced distortions (usually this happens if the 

PSNR exceeds 36 dB). 

Consider the classification results according to strat-

egy 3, i.e. both the training and classification are per-

formed using an image with the same introduced noise 

variance value. The classification results for the SS1 and 

SS2 images with different noise intensities are repre-

sented in Tables 5 and 6. The corresponding maps are 

given in Fig. 9. 

 

Table 5 

Particular class and total probabilities of correct  

classification for the image SS1 with different  

noise intensities – Strategy 3 
 

Class 
σ2 

9 25 49 100 

Urban   0.81 0.80 0.67 0.78 

Water 0.98 0.98 0.96 0.95 

Vegetation   0.91 0.90 0.84 0.80 

Bare soil 0.74 0.74 0.66 0.67 

Total 0.94 0.94 0.90 0.89 

 

The presented results demonstrate that, firstly, the 

total probabilities of correct classification only slightly 

decrease with increasing the noise variance. In this case, 

the reduction remains acceptable even at σ2 = 49 regard-

less of the complexity of the image. For example, for 

σ2 = 49, for Strategy 1 the total probabilities of correct 

classification are equal to 0.88 and 0.74 for the images 

SS1 and SS2, respectively. Meanwhile, for Strategy 3, 

these probabilities are equal to 0.90 and 0.80, i.e. suffi-

ciently larger. 

 

Table 6  

Particular class and total probabilities of correct  
classification for the image SS2 with different  

noise intensities – Strategy 3 
 

Class 
σ2 

9 25 49 100 

Urban   0.91 0.90 0.87 0.87 

Water 0.72 0.77 0.75 0.77 

Vegetation   0.59 0.60 0.55 0.49 

Bare soil 0.86 0.85 0.82 0.78 

Total 0.83 0.83 0.80 0.78 

 

Thus, the main feature of this strategy - "adaptabil-

ity" to compressed images - leads to a noticeable im-

provement in classification accuracy for compressed im-

ages compared to Strategy 1, especially if distortions due 

to lossy compression are considerable. 

Finally, consider the results of image classification 

in accordance with Strategy 2, which implies both learn-

ing and classification for both compressed images, but 

characterized by different degrees of compression.  

Let us illustrate the results with the data presented in  

Figures 10 – 13 and in Tables 7 and 8. 

The classification results show that if the values of 

the variances for the image we are training on and the 

image we are classifying are close, then the overall prob-

abilities of correct classification are only slightly reduced 

compared to Strategy 3. Otherwise, significant losses are 

possible. At the same time, in images with a more com-

plex structure, such losses are greater than in “simple” 

images. 
The dependences of the classification accuracy for 

compressed images on the chosen classification strategy 

is given in Fig. 14 for the images SS1, SS2, SS3 and SS4. 

These dependences show that Strategy 3 provides the 

best results. The results of Strategy 2 are close to it when 

choosing the classifier trained for images compressed 

with similar parameters (introduced losses). Strategy 1 is 

the worst and its use is especially undesired for images 

compressed with large CR and/or complex structure im-

ages. 
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a) 

 
b) 

 
c) 

 
d) 

 

Fig. 9. Classification results for the SS1 and SS2 images 

maps for noisy (σ2=9 (a) and (c); σ2=49 (b) and (d))  

images respectively for Strategy 3 

 
a) 

 

 
b) 

 

 
c) 

 

Fig. 10. Classification results for the SS1 image  

for noisy (σ2=9 (a); σ2=49 (b) and σ2=100 (c)) images,  

respectively, for Strategy 2 with noisy training  

image (σ2=9) 
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a) 

 

 
b) 

 

 
c) 

 

Fig. 11. Classification results for the SS1 image  

for noisy (σ2=9 (a); σ2=49 (b) and σ2=100 (c)) images,  

respectively, for Strategy 2 with noisy training  

image (σ2=49) 

 

 

Table 7  

Particular class and total probabilities of correct  

classification for the image SS1 with different noise  

intensities – Strategy 2 
 

Class σ2 = 9 σ2 = 25 σ2 = 49 σ2 = 100 

σ2 = 9 (training image) 

Urban   0.81 0.81 0.80 0.76 

Water 0.98 0.97 0.96 0.95 

Vegetation 0.91 0.89 0.86 0.80 

Bare soil 0.74 0.71 0.71 0.66 

Total 0.94 0.93 0.91 0.88 

σ2 = 49 (training image) 

Urban   0.82 0.80 0.67 0.75 

Water 0.98 0.98 0.96 0.96 

Vegetation   0.92 0.90 0.84 0.84 

Bare soil 0.76 0.74 0.66 0.68 

Total 0.94 0.93 0.90 0.90 

 

 

Table 8 

Particular class and total probabilities of correct  

classification for the image SS2 with different  

noise intensities – Strategy 2 
 

Class σ2= 9 σ2= 25 σ2= 49 σ2= 100 

σ2= 9 (training image) 

Urban   0.91 0.88 0.87 0.82 

Water 0.72 0.75 0.70 0.71 

Vegetation   0.59 0.59 0.53 0.49 

Bare soil 0.86 0.84 0.79 0.70 

Total 0.83 0.81 0.78 0.73 

σ2 = 49 (training image) 

Urban   0.89 0.89 0.87 0.87 

Water 0.78 0.80 0.75 0.69 

Vegetation   0.64 0.58 0.55 0.48 

Bare soil 0.86 0.83 0.82 0.76 

Total 0.83 0.82 0.80 0.77 
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b) 

 
c) 

 

Fig. 12. Classification results for the SS2 image  

for noisy (σ2=9 (a); σ2=49 (b) and σ2=100 (c)) images,  

respectively, for Strategy 2 with noisy training  

image (σ2=9) 

 
 

 
a) 

 
b) 

 
c) 

 

Fig. 13. Classification results for the SS2 image  

for noisy (σ2=9 (a); σ2=49 (b) and σ2=100 (c)) images  

respectively for Strategy 2 with noisy training  

image (σ2=49) 
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a) b) 

 

 

c) d) 
 

Fig. 14. Classification results for SS1 (a), SS2 (b), SS3 (c) and SS4 (d) images 

 

4. Conclusions 
 

We have considered three strategies to NN classifier 

learning for processing compressed three-channel remote 

sensing images. According to Strategy 1, training is done 

for distortion-free data. It might seem slightly surprising, 

but this Strategy occurs less efficient than training for 

compressed images (Strategies 2 and 3), especially if an 

image to be classified is compressed with a quite large 

CR and/or for complex structure images. In turn, classi-

fier training is expedient for compressed images (in gen-

eral, Strategy 2), especially if compression parameters 

(level of introduced distortions) are practically the same 

as for an image the classifier is applied to. This means 

that in practice one might carry out preliminary training 

of several classifiers for several levels of distortions. As 

the simplest case, it is possible to have two pre-trained 

classifiers, one for visually lossless compression (PSNR 

about 37 dB) and one for lossy compression with visually 

noticeable distortions (PSNR about 32 dB). Note that 

PSNR for compressed image can be determined for at the 

stage of its compression and such PSNR can be added to 

file heading as auxiliary information. 

One opportunity to improve classification not stud-

ied in this paper is to perform post-classification that is 

able to incorporate knowledge (classification results) 

from neighbor pixels [22, 23].  
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ПРО МЕТОДОЛОГІЇ НАВЧАННЯ КЛАСИФІКАТОРІВ  

ІЗ ЗАСТОСУВАННЯМ СТИСНЕНИХ  

ЗОБРАЖЕНЬ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ 

Г. А. Проскура, О. С. Рубель, В. В. Лукін 

В даний час зображення дистанційного зондування Землі знайшли безліч застосувань. Найчастіше кін-

цевим або проміжним результатом їх обробки є класифікаційна карта. Такі карти зазвичай отримують за до-

помогою попередньо навченого класифікатора, і однією з вимог, що пред'являються до них, є їх точність. 

Основним предметом статті є чинники, що визначають цю точність. Основними з них є якість даних ДЗЗ та 

тип класифікатора, параметри та підхід до навчання. Якість зображення може погіршитися через кілька фак-

торів. Одним з них є спотворення, що вносяться стиском з втратами, який широко використовуються у зв'язку 

з величезним обсягом даних і необхідністю значно зменшити їх обсяг на етапах передачі, зберігання та/або 

розповсюдження. З цієї причини основною метою статті є спільний розгляд класифікації та стиснення із втра-

тами. Зокрема, це означає, що навчання класифікатора може проводитися як для вихідних (нестиснених, сти-

снутих без втрат) зображень (за їх наявності), так і для наявних стислих даних (пропонованих користувачеві 

для класифікації та подальшого аналізу). Завдання цієї статті полягає в тому, щоб розглянути та порівняти ці 

два варіанти. Перший - це навчання класифікатора на вихідних зображеннях і подальше його застосування до 

стиснених даних, де зображення можуть бути стиснуті з різним ступенем стиснення. Другий варіант - вико-

ристання навчання класифікатора для стиснених зображень, де параметри стиснення для навчальних даних 

можуть бути приблизно такими, як і для зображень, до яких застосовується класифікатор. Основний резуль-

тат полягає у тому, що остання методологія здатна забезпечити певні переваги проти навчання класифікатора 

для вихідних даних, якщо необхідно класифікувати стислі дані дистанційного зондування Землі. Результати 

отримані для класифікатора на основі нейронної згорткової мережі. Як зображення для навчання та перевірки 

використовуються чотири реально існуючі триканальні (видимий діапазон) зображення Sentinel-2” Харкова 

та Харківської області, які характеризуються різною за складністю структурою та містять чотири основні 

http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2019.1.02
http://nti.khai.edu/ojs/index.php/reks/article/view/reks.2019.1.02
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класи об'єктів на місцевості. Надано практичні рекомендації. Як висновки можна констатувати, що варто 

навчати класифікатори для декількох ступенів стиснення і з особливою обережністю стискати зображення 

складної структури. 

Ключові слова: стиснення з втратами; триканальні зображення; класифікація; нейронна мережа; навча-

льні дані. 
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