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ON CLASSIFIER LEARNING METHODOLOGIES WITH APPLICATION
TO COMPRESSED REMOTE SENSING IMAGES

Remote sensing images have found numerous applications nowadays. A traditional outcome or intermediate
result of their processing is a classification map. Such maps are usually obtained from a pre-trained classifier
and it is desired to have the produced classification maps as accurately as possible. The basic subject of this
article is the factors determining this accuracy. The main among them are the quality of remote sensing data
and classifier type, parameters and training approach. Image quality can be degraded due to several factors.
One of them is distortions introduced by lossy compression that is widely used due to a huge volume of acquired
data and the necessity to sufficiently decrease their size at transmission, storage and/or dissemination stages.
Because of this, the main goal of this paper is to consider classification and lossy compression jointly. In par-
ticular, this means that the classifier learning can be performed for original (uncompressed, compressed in a
lossless manner) images (if they are available) as well as for compressed data at hand (offered to a user for
classification and further analysis). The task of this paper is to consider and compare these two options. The
first one is the classifier learning for original images and further application to compressed data, where images
can be compressed with different compression ratios while producing compressed data of different quality. The
second option is the use of the classifier learning for compressed images, where compression parameters for
training data can be approximately the same as for the images to which the classifier is applied. The main result
is that the latter methodology can provide certain benefits compared to the classifier learning for original data
if one has to classify compressed remote sensing data. Simulation data are obtained for a classifier based on a
convolutional neural network. As images for training and verification, four real-life three-channel (visible
range) Sentinel-2 remote sensing images of Kharkiv and Kharkiv region are employed that possess different
complexity of the content and have four main classes. The practical recommendations are given. In conclusion,
we can state that it is worth having classifiers trained for several degrees of compression and it is reasonable to
compress complex structure images with special care.

Keywords: lossy compression; three-channel images; classification; neural network classifier; training data.

used and its training methodology, number of classes pre-
sent in a given image and their potential separability,

1. Introduction

Nowadays, remote sensing (RS) from satellites and
airborne carriers including unmanned aerial vehicles and
drones have found numerous applications including for-
estry, ecological monitoring, precision agriculture [1, 2],
etc. Images produced by different sensors have to be pro-
cessed where processing includes a wide set of possible
operations (stages) including georeferencing, calibration,
denoising or deblurring, classification [3 - 6] and so on.
RS data classification is a typical image processing stage
[6 - 8] that can be either final or intermediate (pre-final,
used for further parameter estimation for the obtained
classes). Certainly, it is desired to provide as accurate
classification as possible. In particular, improvement of
classification accuracy might allow slightly worse qual-
ity of an acquired image as a result of increased distance
between the sensor carrier and the sensed terrain the im-
age of which is formed.

Classification accuracy depends on numerous fac-
tors [7 - 9] including a chosen set of features, a classifier

quality and properties of original images, image pre-pro-
cessing methods employed before classification, etc.
This explains a great number of publications dealing with
remote sensing data classification and challenges in im-
age processing that appear each year (see [4, 10, 11] and
references therein).

A general tendency in remote sensing is permanent
increasing of image number and their average size. This
causes problems in image transferring from a carrier to
on-land center of data reception, processing and dissem-
ination and in image storage. Considerable efforts have
been undertaken to develop efficient methods and algo-
rithms of image compression [12 - 14]. Note that com-
pression can be lossless and lossy [15, 16]. The latter is
often subdivided into visually lossless and lossy [12, 13,
17, 18].

Below, we are not interested in lossless compression
since it is usually unable to provide a desired compres-
sion ratio (CR). In turn, lossy compression introduces in-
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evitable distortions and they influence image classifica-
tion and object recognition accuracy [14, 19 - 21].

If one has to classify a compressed image, two ap-
proaches to classifier training (most modern efficient
classifiers presume training in one or another manner).
The first approach assumes that training is carried out for
samples that are not distorted, i.e. for original (uncom-
pressed) images that contain the same (or a larger num-
ber) of classes that are present in a compressed image to
be classified. The second approach presumes that train-
ing of a classifier is carried out for compressed data, i.e.
for a part of data of a compressed image to be classified
or an image compressed with similar characteristics and
acquired earlier.

Both approaches have advantages and drawbacks to
be discussed in the next Section. The goal of this paper is
to compare these approaches. To restrict ourselves, we
focus on lossy compression that introduces either invisi-
ble or not annoying distortions (if distortions are annoy-
ing, classification accuracy is usually considerably worse
than required or potentially reachable; thus, it is desired
to avoid such situations in practice [19]). Besides, we fo-
cus on image classification using trained neural net-
works. The reason for this is that neural network classifi-
ers are usually among the best since they possess ability
to work with features that have non-Gaussian distribu-
tions [19, 20]. In addition, to simplify our analysis, we
consider three-channel images (which can be visualized
and easily analyzed by humans) and their pixel-wise clas-
sification (to avoid extra difficulties in analysis).

This paper is organized as follows. The problem of
the two-step method applied to SPIHT is defined, and its
solution methodology is described in Section 2. The ex-
periment set is presented in Section 2 as well. The results
and discussion are given in Section 3. Finally, Section 4
summarizes the work.

2. Problem statement and solution
methodology

a. Problem statement

Suppose we have a compressed image or several im-
ages compressed in a similar way to be classified. As-
sume also that we know some parameters that describe
compression. This can be compression ratio obtained for
the considered image or quantization step with which the
image has been compressed. This means that the com-
pressed image quality characterized by peak signal-to-
noise ratio (PSNR) or other metrics (e.g., mean square
error or mean absolute deviation of introduced distor-
tions) can be predicted with quite high accuracy [18, 20]
for a used technique.

Then, three strategies of compressed image classifi-
cation are possible. Let describe them more in detail. Ac-
cording to Strategy 1, a classifier is trained in advance

using original (uncompressed, reference) data acquired
by the same sensor earlier. For this strategy, there are the
following advantages. First, the classifier is already
trained and ready for use for a given compressed image.
Second, specialists that have performed such a training,
most probably, had time and, thus, were able to define all
possible classes, to find image fragments for training
carefully, to optimize parameters of the designed classi-
fier and so on. Meanwhile, there are also several draw-
backs of this strategy. First, distribution of features for
uncompressed and compressed images differ due to dis-
tortions introduced by lossy compression. Second, distri-
bution of features in reference and compressed images
can differ for certain classes due to errors in calibration,
seasonal variations of features, etc.

For the second strategy, images compressed with
parameters similar to parameters of compressing an im-
age to be classified can be used for classifier training.
Then, before classification of a given compressed image,
one can choose the classifier prepared for similar condi-
tions. An advantage of this strategy is that the classifiers
are ready in advance. Another positive feature is that
classifiers are “adapted” to compressed images. A ques-
tion is does this “adaptation™ help in the sense of improv-
ing the classification accuracy? The drawbacks are that
1) the classifier training requires considerable efforts and
2) calibration errors and class feature seasonal changes
might have the negative impact on classification accu-
racy.

Finally, according to Strategy 3, classifier training
is performed just for a compressed image to be classified.
Image fragments that can be recognized as belonging to
given classes with confidence, are used for training.
Then, the trained classifier is applied to entire image to
get the classification map. A possible advantage is that
training is done for a part of the same compressed data
that can be then subject to classification. Then, calibra-
tion errors and seasonal changes of features have no neg-
ative impact. However, training is needed for each com-
pressed image to be classified. This can require consider-
able efforts and highly qualified experts to perform the
necessary operations quickly and carefully especially if
time offered for classification is limited.

For the latter two strategies, one has to know do they
provide benefits in classification accuracy and, if yes,
how larger these benefits are. In other words, is it worth
carrying out more work and spend more time for this?

Note that there are some already obtained results.
The data presented in the papers [14, 18, 21] show that
even if the classifier has been trained for original (un-
compressed) data and then applied to compressed im-
ages, the probability of correct classification can even in-
crease compared to classification accuracy for the corre-
sponding uncompressed image. One reason could be the
presence of the noise in original image which is partly
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suppressed by lossy compression. At the same time, in
most cases, the probability of correct classification usu-
ally reduces if the introduced distortions become
larger [18, 20].

Thus, it is worth analyzing different “cross-classifi-
cation” situations, i.e. when training is carried out for one
type of data and then applied to data of another type. To
partly simplify our study, we do not consider possible
calibration errors and seasonal changes of features. We
just analyze the original RS data and several versions of
these data after compression.

b. Solution methodology

It is clear that different methods of image lossy com-
pression introduce distortions with different characteris-
tics. So, we are standing before dilemma — either to ana-
lyze a particular method of image lossy compression
(then the obtained results will lack generality) or to ana-
lyze many (at least, several) different methods (then, a
question is what coders to consider). Fortunately, an al-
ternative approach to simulation of introduced distortions
has been proposed recently [19]. It has been shown that
distortions introduced by lossy compression under con-
dition that these distortions are not too intensive usually
have distribution close to Gaussian and they are practi-
cally spatially uncorrelated. This means that additive
white Gaussian noise (AWGN) can be used as a simpli-
fied model of distortions for distortions introduced by
lossy compression. This approach has been shown possi-
ble for many compression techniques based on discrete
cosine transform where these techniques are applied to
multichannel images either component-wise or in 3D
manner. A positive feature of this approach to analysis of
compression influence on classification is that we do not
need to know the compression technique applied. In turn,
a given variance of AWGN can be recalculated to coder
parameters as, e.g. quantization step. This means that, in
fact, we might have an approximate correspondence be-
tween AWGN variance and parameters of compression
technique.

Therefore, we can easily create a set of images sim-
ulating different degrees of compression (in fact, contam-
inated by AWGN with different values of variance). For
each image, we can then train the classifier. This classi-
fier can be then applied to either original (noise-free) im-
age or to noisy images with any value of noise variance.
If the classifier training has been carried out for original
image and then applied to noisy images, we simulate
Strategy 1. If the training was performed for the same
noisy image, Strategy 2 is simulated. If the training was
done for the noisy image with AWGN variance that dif-
fers from noise variance for an image to be classified, we
deal with Strategy 3.

For this methodology of investigations, we have to
use the same image fragments for classifier training and

the same image fragments for estimation of classification
accuracy.

c. Experimental set

Since CR and introduced losses depend on image
characteristics, performance of compression should be
analyzed for images of different complexity and, prefer-
ably, of natural scenes. Note that images with a simpler
structure are usually characterized by a lower level of
losses compared to images with a complex structure,
where the complexity of the image can be characterized,
for example, by entropy (higher entropy refers to images
with a more complex structure) [18]. To analyze the ef-
fect of lossy compression (using AWGN model) on clas-
sification results, four three-channel images of the size
512x512 pixels have been used. These images have been
obtained from multichannel data acquired by Sentinel-2
satellite sensor in August 2019 (see these fragments in
Fig. 1). There are four visually distinguishable classes on
the images: 1 — Urban, 2 — Water, 3 — Vegetation,
4 — Bare soil, where color features for many classes in-
tersect [21]. Remote sensing images are fragments of the
territory of Kharkov (images SS2 and SS4) and its envi-
rons (images SS1 and SS3), Eastern part of Ukraine.

Fig. 1. Three-channel image fragments used
in our analysis: SS1 (a), SS2 (b), SS3 (c), and SS4 (d)

Based on the actual data on the territory presented
in these images, relatively homogeneous fragments of
images representing separate classes have been identified
by experts. Each of the selected fragments has been
marked with a conditional color corresponding to a cer-
tain class: Urban — yellow, Water — blue, Vegetation —
green, Bare soil — black. The sets of reference marked
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pixels have been divided into two non-overlapping sub- To assess the impact of the compression ratio on the
sets: the training and control (verification) sam-  quality of classification, the sets of images have been cre-
ples (Fig. 2 and 3). ated that simulate different compression ratios, actually

corrupted by AWGN with the following variance values:
6% =9, 25, 49, 100 which corresponds to PSNR values

N\l
from about 39 dB to 28 dB. Figures 4 and 5 show exam-
o ples of these images for variance values equal to 9 and
‘ ’ - 100, respectively.
|
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Fig. 2. Fragments used for classifier training
for the images SS1 (a), SS2 (b), SS3 (c), and SS4 (d)

c) d)

Fig. 3. Ground truth maps for the images SS1 (a),
SS2 (b), SS3 (c), and SS4 (d)

The sizes of the training samples were of the order Fig. 4. Test image SS1: real life Sentinel-2 images
of (4... 20) x 10° pixels, the sizes of the verification sam- for country-side areas in Kharkiv region, Ukraine
ples have been several times larger ((7... 50) x 10° pix- before compression (a) and after compression

els). with providing o2 equal to 9 (b) and 100 (c)
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Fig. 5. Test image SS2: real life Sentinel-2 images
for country-side areas in Kharkiv region, Ukraine
before compression (a) and after compression
with o2 equal to 9 (b) and o2 equal to 100 (c)

After obtaining feature sets (voxel values) of the
considered classes, classification has been carried out us-
ing a trained neural network (NN). Nowadays, there are
many neural network types and approaches to their train-
ing and optimization. For classification, we have em-
ployed a simple NN that is, nevertheless, effective for the
classification of multi-channel data. The classifier used
was a multilayer neural network (MLP) that uses super-
vised learning and backpropagation. Such neural net-
works have an input layer, an output layer and, at least,
one hidden layer in between. With the exception of input
neurons, all other neurons commonly use a non-linear ac-

tivation function. The architecture details are the follow-
ing: the NN hasan input layer for incoming data of three-
color components, 4 hidden layers with 64, 32, 16 and
8 neurons respectively.

The optimal number of hidden layers, neurons in
them, as well as the learning function were determined
by experiments with a single data set. For hidden layers,
the ReLU (Rectified Linear Unit) activation function is
used, the output of which is 0 if the input is negative, and
the input itself if this input is O or positive [19, 20]

f(x) = max(0, x), (D)

max— value, if x> (max— value);
f(x) =4 x, if threshold > (max — value); 2)
nagative —slope(x — threshold), otherwise;

where max — value: float > 0 is the maximum activa-
tion value, by default equal to none, which means unlim-
ited;

negative — slope: float > 0 is the negative slope co-
efficient, by default equal to 0;

threshold: float > 0 denotes the threshold value for
thresholded activation, by default equal to 0.

Linear activation function is used for the output
layer. The MLP is trained using the RMSProp optimizer.
This optimizer takes the root of the mean squares of the
gradient's overall parameters. Mathematically, it can be
written as

n
U =———="0,1 (3)
‘ G, , +¢ o

We have used cross-entropy as a loss function, and
F-measure as an efficiency estimation metric. This is a
harmonic mean of accuracy and completeness (accuracy
shows how many of the objects identified by the classi-
fier as positive are indeed positive; completeness shows
how many of the positive objects were identified by the
classifier). The harmonic mean has an important property
—itis close to zero if at least one of the arguments is close
to zero. In the multi-class case, this is the average of the
F-measure of each class with weighting depending on the
average parameter [14].

Let us start by analyzing the classification results of
the original three-channel images using the neural net-
works trained for these images.

Consider images with the simpler structure SS1
(SS3) (Fig. 1, aand Fig. 1, c). We present the classifica-
tion results obtained only for the SS1 image, since for the
SS3 image, which has a similar structure, the results are
identical. The obtained confusion matrix is presented in
Table 1. The corresponding map is given in Figure 6, a.
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Table 1
Confusion matrix for the original (noise
or distortion-free) image SS1 classified
by the neural networks trained for this image

Probability of decision
Class
Urban | Water | Vegetation | Bare soil
Urban 0.710 | 0.0001 0.099 0.190
Water 0.0001 | 0.991 0.005 0
Vegetation | 0.009 | 0.043 0.941 0.013
Bare soil 0.044 0 0.095 0.862

Fig. 6. Classification maps for original
images SS1 (a) and SS2 (b)

As one can see, the classes Water and Vegetation
are recognized well. Meanwhile, there are many misclas-
sifications for the Bare Soil and Urban classes. This is not
surprising and often occurs when trying to discriminate
remote sensing data for classes that are “close” to each
other.

Let us consider test images SS2 (SS4) with a com-
plex structure (Fig. 1, b and Fig. 1, d). We present the
classification results obtained only for the SS2 image,
since for the SS3 image, which has a similar structure,
the results are identical. The obtained confusion matrix is
presented in Table 2. The corresponding map is given in
Fig. 6, b.

Table 2
Confusion matrix for the original (noise
or distortion-free) image SS2 classified
by the neural network trained for this image

Probability of decision
Class
Urban | Water | Vegetation | Bare soil
Urban 0.872 | 0.023 0.062 0.046
Water 0.081 | 0.613 0.381 0.009
Vegetation | 0.017 | 0.022 0.899 0.061
Bare soil 0.022 | 0.005 0.068 0.913

Analysis of the results shows that there are quite
many misclassifications for the Vegetation and, espe-
cially, Water classes. Thus, the Water and Vegetation
classes are recognized worse than in the previous case
(Table 1). However, the Urban and Bare soil classes are
better recognized than in the previous case with probabil-
ities equal to 0.872 and 0.913, respectively. The total (ag-
gregate) probabilities for SS1 and SS2 images’ correct
classification are equal to 0.95 and 0.86, respectively.
Thus, more complex structure image is classified worse
than the simpler structure one (the same holds for the im-
ages SS3 and SS4).

3. Obtained results and discussion

Let us consider the classification results according
to strategy 1, i.e. training is carried out using the original
image and classification if performed for images with ar-
tificially added noise that simulates distortions due to
compression. This strategy is considered in detail in [18].
Let us present the results of image classification SS1 and
SS2 for different variances. Particular classes’ and total
probabilities of correct classification for the image SS1
with different noise intensities are represented in Table 3.

Table 3
Particular class and total probabilities of correct
classification for the image SS1 with different
noise intensities — Strategy 1

02
Class Original

9 25 | 49 | 100
Urban 0.82 0.81 | 0.81 | 0.79 | 0.75
Water 0.99 0.98 | 0.96 | 0.94 | 0.88
Vegetation 0.93 0.91 | 0.87 | 0.81 | 0.70
Bare soil 0.77 0.76 | 0.74 | 0.70 | 0.64
Total 0.92 0.91 | 0.90 | 0.88 | 0.81
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The corresponding maps are given in Figure 7. The
presented results demonstrate that, firstly, the total prob-
abilities of correct classification have a steady tendency
to decrease with increasing the noise variance (distortion

level). The decrease may be acceptable for o> = 25, but
it becomes inappropriate for larger o?.

Fig. 7. Classification results for the SS1 image
for original (a) and noisy images:
b —6%=9; ¢ — 6%=25; d — 6%=49

The reduction of classification accuracy also de-
pends on the image complexity. For example, the classi-
fication results for the SS2 test image (Fig. 8), presented
in Table 4, show a decrease in all particular class proba-
bilities, as well as the total probabilities of correct classi-
fication with increasing the noise intensity.

Fig. 8. Classification results for SS2 fragment maps
for original (a) and noisy images:
(b - 0%=9; ¢ — 6°=25; d — 6?=49
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Table 4
Particular class and total probabilities of correct
classification for the image SS2 with different
noise intensities — Strategy 1

0.2
Class Original

9 25 | 49 | 100
Urban 0.92 091 | 0.87 | 0.84 | 0.81
Water 0.72 0.70 | 0.60 | 0.50 | 0.24
Vegetation 0.64 0.60 | 0.57 | 0.51 | 0.42
Bare soil 0.91 0.86 | 0.82 | 0.74 | 0.61
Total 0.86 0.83 | 0.78 | 0.74 | 0.65

The decrease may be considered acceptable for 6% = 9,
but it becomes too large for larger 2. Thus, we come to
the need to provide PSNR of compressed data of the or-
der of 38 dB and higher, i.e. ensuring the invisibility of
the introduced distortions (usually this happens if the
PSNR exceeds 36 dB).

Consider the classification results according to strat-
egy 3, i.e. both the training and classification are per-
formed using an image with the same introduced noise
variance value. The classification results for the SS1 and
SS2 images with different noise intensities are repre-
sented in Tables 5 and 6. The corresponding maps are
given in Fig. 9.

Table 5
Particular class and total probabilities of correct
classification for the image SS1 with different
noise intensities — Strategy 3

o2
Class

9 25 49 100
Urban 0.81 0.80 | 0.67 | 0.78
Water 0.98 | 0.98 | 0.96 | 0.95
Vegetation 091 | 090 | 0.84 | 0.80
Bare soil 0.74 0.74 0.66 0.67
Total 094 | 094 | 0.90 | 0.89

The presented results demonstrate that, firstly, the
total probabilities of correct classification only slightly
decrease with increasing the noise variance. In this case,
the reduction remains acceptable even at 62 = 49 regard-
less of the complexity of the image. For example, for

o? = 49, for Strategy 1 the total probabilities of correct
classification are equal to 0.88 and 0.74 for the images
SS1 and SS2, respectively. Meanwhile, for Strategy 3,
these probabilities are equal to 0.90 and 0.80, i.e. suffi-
ciently larger.

Table 6
Particular class and total probabilities of correct
classification for the image SS2 with different
noise intensities — Strategy 3

0.2
Class

9 25 49 100
Urban 0.91 0.90 0.87 0.87
Water 0.72 0.77 0.75 0.77
Vegetation 0.59 0.60 0.55 0.49
Bare soil 0.86 0.85 0.82 0.78
Total 0.83 0.83 0.80 0.78

Thus, the main feature of this strategy - "adaptabil-
ity" to compressed images - leads to a noticeable im-
provement in classification accuracy for compressed im-
ages compared to Strategy 1, especially if distortions due
to lossy compression are considerable.

Finally, consider the results of image classification
in accordance with Strategy 2, which implies both learn-
ing and classification for both compressed images, but
characterized by different degrees of compression.
Let us illustrate the results with the data presented in
Figures 10 — 13 and in Tables 7 and 8.

The classification results show that if the values of
the variances for the image we are training on and the
image we are classifying are close, then the overall prob-
abilities of correct classification are only slightly reduced
compared to Strategy 3. Otherwise, significant losses are
possible. At the same time, in images with a more com-
plex structure, such losses are greater than in “simple”
images.

The dependences of the classification accuracy for
compressed images on the chosen classification strategy
is given in Fig. 14 for the images SS1, SS2, SS3 and SS4.
These dependences show that Strategy 3 provides the
best results. The results of Strategy 2 are close to it when
choosing the classifier trained for images compressed
with similar parameters (introduced losses). Strategy 1 is
the worst and its use is especially undesired for images
compressed with large CR and/or complex structure im-
ages.
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Fig. 10. Classification results for the SS1 image
Fig. 9. Classification results for the SS1 and SS2 images for noisy (=9 (a); =49 (b) and 6?=100 (c)) images,
maps for noisy (¢?=9 (a) and (c); 5*=49 (b) and (d)) respectively, for Strategy 2 with noisy training
images respectively for Strategy 3 image (c°=9)
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Fig. 11. Classification results for the SS1 image
for noisy (62=9 (a); 6?=49 (b) and 5?>=100 (c)) images,
respectively, for Strategy 2 with noisy training
image (c°=49)

Table 7

Particular class and total probabilities of correct
classification for the image SS1 with different noise
intensities — Strategy 2

Class 02=9|0%2=25|02=49 | =100
o? = 9 (training image)
Urban 0.81 0.81 0.80 0.76
Woater 0.98 0.97 0.96 0.95
Vegetation 0.91 0.89 0.86 0.80
Bare soil 0.74 0.71 0.71 0.66
Total 0.94 0.93 0.91 0.88
02 = 49 (training image)
Urban 0.82 0.80 0.67 0.75
Water 0.98 0.98 0.96 0.96
Vegetation 0.92 0.90 0.84 0.84
Bare soil 0.76 0.74 0.66 0.68
Total 0.94 0.93 0.90 0.90
Table 8

Particular class and total probabilities of correct
classification for the image SS2 with different

noise intensities — Strategy 2

Class 0°=9 | 6%=25 | 6?=49 | 6%=100
02= 9 (training image)
Urban 0.91 0.88 0.87 0.82
Water 0.72 0.75 0.70 0.71
Vegetation 0.59 0.59 0.53 0.49
Bare soil 0.86 0.84 0.79 0.70
Total 0.83 0.81 0.78 0.73
02 = 49 (training image)
Urban 0.89 0.89 0.87 0.87
Water 0.78 0.80 0.75 0.69
Vegetation 0.64 0.58 0.55 0.48
Bare soil 0.86 0.83 0.82 0.76
Total 0.83 0.82 0.80 0.77
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Fig. 12. Classification results for the SS2 image Fig. 13. Classification results for the SS2 image
for noisy ((?2:9 (a); 6°=49 (b) anq 02:190 (C)) |mages, for noisy (62=9 (a); 6?=49 (b) and 5?=100 (c)) images
respectively, for Strategy 2 with noisy training respectively for Strategy 2 with noisy training

image (c?=9) image (6°=49)
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Fig. 14. Classification results for SS1 (a), SS2 (b), SS3 (c) and SS4 (d) images

4. Conclusions

We have considered three strategies to NN classifier
learning for processing compressed three-channel remote
sensing images. According to Strategy 1, training is done
for distortion-free data. It might seem slightly surprising,
but this Strategy occurs less efficient than training for
compressed images (Strategies 2 and 3), especially if an
image to be classified is compressed with a quite large
CR and/or for complex structure images. In turn, classi-
fier training is expedient for compressed images (in gen-
eral, Strategy 2), especially if compression parameters
(level of introduced distortions) are practically the same
as for an image the classifier is applied to. This means
that in practice one might carry out preliminary training
of several classifiers for several levels of distortions. As
the simplest case, it is possible to have two pre-trained
classifiers, one for visually lossless compression (PSNR
about 37 dB) and one for lossy compression with visually

noticeable distortions (PSNR about 32 dB). Note that
PSNR for compressed image can be determined for at the
stage of its compression and such PSNR can be added to
file heading as auxiliary information.

One opportunity to improve classification not stud-
ied in this paper is to perform post-classification that is
able to incorporate knowledge (classification results)
from neighbor pixels [22, 23].
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PO METOJI0JIOT'TI HABUAHHS KJIACUPIKATOPIB
I3 3ACTOCYBAHHSIM CTUCHEHHUX
30BPAKEHb JUCTAHIIAHOI'O 30HTYBAHHS

I'. A. Ilpockypa, O. C. Pybens, B. B. Jlykin

B nanwit yac 300pakeHHs TUCTAHIIITHOrO 30HyBaHHs 3eMJIl 3HAMILIN Oe3id 3acTocyBaHb. Haityacrime KiH-
LeBUM a00 MPOMIKHUM Pe3yJbTaToM 1X 00poOKku € kiacudikaiiitna kapra. Taki kKapTu 3a3BUyail OTPUMYIOTH 32 JI0-
TIOMOT'OI0 TIOTIEPEIHFO HABUEHOTO KIacU(ikaTopa, i OJHIEI0 3 BHUMOT, IO MPE'SIBISIOTHCS IO HHUX, € X TOYHICTb.
OCHOBHUM MPEAMETOM CTATTI € YUHHUKH, 1[0 BU3HAYAIOTH 110 TO4HICTh. OCHOBHUMH 3 HUX € sIKicTh Janux J133 Ta
THUI KJacudikaropa, napamMeTpy Ta IiJXiJ] 10 HaBYaHHs. SIKiCTh 300pa)KeHHsT MOXKE MOTIPIIUTUCS Yepe3 KuTbka (ak-
TopiB. OZHNM 3 HUX € CIIOTBOPEHHS, [0 BHOCATHCS CTHCKOM 3 BTPAaTaMHU, KU IHPOKO BUKOPHCTOBYIOTECS Y 3B'A3KY
3 BENUUE3HUM OOCSTOM JaHUX 1 HEOOXIHICTIO 3HAYHO 3MEHIIUTH TX 00CST Ha eramax mepeaadi, 30epiranHs ta/abo
PO3TOBCIOKEHHS. 3 i€l MPIYUHA OCHOBHOIO METOI0 CTATTi € CIIIFHUN PO3TIIy Kiacuikamii Ta CTHCHEHHS i3 BTpa-
TaMu. 30KpeMa, Ie 03HaJa€, 10 HaBYaHHS KIacu(pikaTopa MOXKe MPOBOTUTHCS SIK A7 BUXiTHUX (HECTHCHEHUX, CTHU-
CHyTHX 0e3 BTpat) 300pakeHb (3a X HasSBHOCTI), TaK 1 [UTSI HASBHUX CTHCIHX JaHUX (IIPOIIOHOBAaHUX KOPUCTYBAUEBi
Jutst kiacugikaiiii Ta moJanbIlIoro aHaizy). 3aBAaHHS 1€l CTATTI MOJIATa€e B TOMY, 1100 PO3TJISTHYTH Ta MOPIBHATH IIi
nBa BapianTu. [lepmmii - 1ie HaB4aHHA KIacu(ikaTopa Ha BIXITHUX 300payKSHHSX 1 OAAJBIIE HOTO 3aCTOCYBAaHHS 10
CTHCHEHHX JaHUX, JIe 300payKeHHS MOXKYTh OyTH CTHCHYTI 3 Pi3HIM CTyIIeHEM CTUCHEHHS. J[pyruii BapiaHT - BUKO-
pHCTaHHS HaBYaHHA KJIacu(ikaTopa sl CTHCHEHHUX 300paXkeHb, Je MapaMeTpH CTHCHEHHS ISl HaBYAIBHUX JaHUX
MOXYTBh OYTH TIPUOIN3HO TAKAMH, SIK 1 IUTSI 300pakeHb, 10 SIKAX 3aCTOCOBYEThCA Kiacudikarop. OCHOBHUN pe3y.ib-
TAT TOIAATAaE y TOMY, [0 OCTAaHHS METOMOJIOTIS 3JaTHA 3a0e3MEUNTH TIEBHI TIepeBary MpoTH HaBUaHHs Ki1acugikaTopa
JUTS BUXITHUX JTAHWX, SKIIO HEOOXiMHO KITacU(iKyBaTH CTHCII JaHi QUCTAHIIHHOTO 30HAYBaHHA 3emui. Pesympratu
OTpHMaHi JJIs Kiacuikatopa Ha OCHOBI HEHPOHHOI 3TOPTKOBOI Mepexi. Sk 300pakeHHs TSl HAaBUAHHS Ta TIEPEBipKH
BHKOPHCTOBYIOTHCS WOTHPH PEajbHO iCHYIOUI TpUKaHAIBHI (BHOUMHUI Iianma3oH) 300paxenns Sentinel-2” Xapkosa
Ta XapKiBChKOi 00J7acTi, SIKI XapaKTepU3YIOTHCS PI3HOIO 33 CKIAJHICTIO CTPYKTYpPOIO Ta MICTSATh YOTHPH OCHOBHI
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KJacu 00'exTiB Ha MicueBocTi. HagaHo mpakTudHi pekoMeHpaarii. Ik BUCHOBKH MOXXHA KOHCTaTyBaTH, IO BapTo
HaBYaTH Kiacu]ikaTopu Al JEKIJIbKOX CTYIEHIB CTHCHEHHS 1 3 0COOJIMBOIO OOEPEXHICTIO CTHCKATH 300pakKeHHS
CKJIaJHOI CTPYKTYpH.

Koaro4oBi ciioBa: cTHCHEHHS 3 BTpaTaMy; TPUKaHAIBHI 300pa)KeHHsT; Kiacudikamis; HeHpOHHa Meperka; HaBda-
JIBbHI JaHi.
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