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recognition, etc. associated with building a view model: &

where

ADAPTIVE IDENTIFICATION UNDER THE MAXIMUM CORRENTROPY
CRITERION WITH VARIABLE CENTER

The problem of identifying the parameters of a linear object in the presence of non-Gaussian noise is considered.
The identification algorithm is a gradient procedure for maximizing the functional, which is a correntropy. This
functionality allows you to get estimates that have robust properties. In contrast to the commonly used Gaussian
kernels, the centers of which are at zero and effective for distributions with zero mean, this paper considers a
modification of the criterion suitable for distributions with nonzero mean. The modification is to use correntropy
with a variable center The use of Gaussian kernels with a variable center will allow us to estimate unknown
parameters under Gaussian and non-Gaussian noises with zero and non-zero mean distributions and provide an
opportunity to develop new technologies for data analysis and processing. It is important to develop a robust
identification algorithm based on correntropy with a variable center. Their properties in the identification of
stationary and non-stationary objects are the subject of research. The goal is to develop a robust identification
algorithm that maximizes the criterion of correntropy with a variable center using center configuration
procedures and kernel width and to study its convergence in stationary and non-stationary cases under non-
Gaussian noise. Expressions for the steady-state value of the estimation error are obtained, which depend on
the type of noise distribution and the degree of non-stationarity of the estimated parameters The following tasks
are solved: to investigate the convergence of the algorithm and determine the conditions for the stability of the
established identification process. Methods of estimation theory (identification) and probability theory were
used. The following results were obtained: 1) the developed algorithm provides robust estimates in the presence
of noise having a distribution with zero and non-zero mean; 2) its convergence was studied in stationary and
non-stationary cases under conditions of Gaussian and non-Gaussian noise; 3) simulation of the algorithm was
carried out. 1) the developed algorithm consists of the development of a robust identification algorithm that
maximizes the criterion of correntropy with a variable center; 2) its convergence in stationary and non-
stationary cases in the conditions of Gaussian and non-Gaussian noise is investigated; 3) simulation of the
algorithm is performed. Conclusions: The results of the current study will improve existing data processing
technologies based on robust estimates and accelerate the development of new computing programs in real-time.

Keywords: correntropy; maximization; functional; gradient algorithm; asymptotic estimation; convergence;
identification accuracy; steady state.

Introduction where e; =y; —¥i: i =¢{ 1X; is the model output; ¢

is the vector estimate c*;
pl(ej) is some differentiable loss function satisfying

Many tasks of control, forecasting, pattern

Vil = C*TXn+1 +En1, (1) the conditions:
Y., is the observed output signal; 1) p(ei ) =0,
2) p(0)=0;

X1 = (XLns1, X2 0410 Xnnst) | iS the vector of input

signals Nx1; c*=(c;,c5,.c)' is the vector of the
required parameters Nx1; &, is the output -noise; n
is the discrete time, and are reduced to minimizing some
previously selected quality functional (identification
criterion)

F[en]ép(ei), )

3) plei)=pl-ei)
4) p(e;)=p(e;) for fei| =g

The identification problem is to find an estimate O
defined as a solution to the extremal minimum problem

F(6)=min ®3)

or as a solution to the system of equations
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where p'(e;))= ag(ei) is the function of influence.

i
If we introduce a weight function w(e)=p'(e)/e,

then the system of equations (4) can be written as
follows:

n 6ei
olejej—=0 5
2oz, (5)
and minimization of functional (2) will be equivalent to
minimization of the weighted quadratic functional, which
is most often encountered in practice

min3"ofe; 7 (6)
i=1

When choosing p(ei):O,Sei2 the function of
influence is p'(ej)=e;, i.e. grows linearly with
increasing, which explains the instability of the OLS

estimate to outliers and to noise, the distributions of
which have large tails.

A stable M-estimate is also an estimate C defined
as a solution to the extremal problem (3) or as a solution
to the system of equations (4), but the loss function p(e;)

is chosen to be different from the quadratic one.

There is a fairly large number of functionals that
provide robust M-estimates; however, the most common
are the combined functionals proposed by Huber [1] and
Hempel [2] and consisting of a quadratic one, which
ensures the optimality of estimates for a Gaussian
distribution, and a modular one, which makes it possible
to obtain more robust to distributions. with heavy tails
(outliers) estimate. However, the efficiency of the
obtained robust estimates substantially depends on the
numerous parameters used in these criteria and selected
on the basis of the researcher's experience.

The practical application of these functionals for
solving the identification problem was considered in
many works, in particular, in [3, 4]. Another approach to
obtaining robust estimates, devoid of the indicated
drawback, is the use of a combined criterion, using a
combination of the quadratic criterion and the criterion of
least modules [5, 6], the quadratic criterion and the fourth
degree criterion [7], the fourth degree criterion and the
least modulus criterion [8, 9]. It should be noted that the
use of the combined criterion turned out to be very
effective and much simpler in the implementation of the
identification procedure.

Another approach that is currently widely used is
the approach based on information characteristics of
signals, entropy, in particular. The functional used in this
case is an explicit functional of the probability density

function (PDF) and includes all the higher-order
statistical properties defined in PDF. Since entropy
measures the mean uncertainty contained in a given PDF,
minimizing it provides a reduction in error. Under
minimum error entropy (MEE) criterion, several
gradient-based adaptation algorithms, including the
LMS-like algorithm, i.e., the stochastic information
gradient algorithm, have been developed by the
researchers [10]. In [11] was analyzed the structure of the
MEE performance surface around the optimal solution,
and derived the approximate upper bound for the step-
size in ADALINE training. In [12] was developed an
unified approach for mean-square convergence
analysis for ADALINE training under MEE criterion.
However, in these works, the case of non-Gaussian noise
with a zero-symmetric distribution was considered.

In [13, 14], the concept of information theoretic
learning (ITL) was introduced, using as a criterion the
Rényi quadratic entropy, for which a nonparametric
estimate based on Parzen windows with Gauss kernels is
determined directly from data samples. In these works, it
was proved that when using the Rényi entropy, as a result
of training, the Rényi distance between the conditional
probability of the density function of the desired and
actual output signals for the given input signals is
minimized.

The results of numerous studies [15,16] indicate
that in the presence of non-Gaussian, in particular,
impulse noise, in measurements, an approach based on
information characteristics of signals is very effective,
while a criterion that considers all statistics of a higher-
order error signal turns out to be more appropriate.

Recently, when solving problems of identification,
filtration, etc. robust algorithms obtained not on the basis
of minimization (3), but on the basis of maximizing the
correntropy criteria [17, 18] are gaining popularity. The
maximum correntropy criterion (MCC) has recently
triggered enormous research activities in engineering and
machine learning communities since it is robust when
faced with heavy-tailed noise or outliers in practice.

In [19] an indirect adaptive control system by
reference model was proposed for modeling and
controlling hydraulic pressure in water supply systems.
The paper [20] is interested in distributed MCC
algorithms, based on a divide-and-conquer strategy,
which can deal with big data efficiently. In [21] a
proportionate-type normalized maximum correntropy
criterion with a correntropy induced metric zero
attraction terms is presented, whose performance is also
discussed for identifying sparse systems. In [22] the
shortcomings of existing performance assessment
methods and indicators are summarized firstly, and a
novel evaluation method based on generalized
correntropy criterion is proposed to evaluate the
performance of non-Gaussian stochastic system.
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The algorithms that maximize correntropy, are
simple to implement and efficient.

The paper structure is the following. Section 1
discusses the correntropy existing of algorithms that
maximize correntropy. In section 2 are given correntropy
learning algorithms with variable center. Sections 3 and
4 describe the study of the issues of convergence of the
algorithm in a stationary and non-stationary cases.
Numerical experiments are discusses in section 5. The
last section concludes research and describes future steps.

1. Formulation of the problem

Correntropy, defined as a localized measure of
similarity, has proven to be very effective for obtaining
robust estimates due to the fact that it is less sensitive to
outliers [15, 16].

For two random variables X and Y, the
correntropy is defined as
V(X,Y) =Mk (X, )}, @)

where Kk (e) is the rotation invariant Mercer kernels; o

is the kernel width. The most widely used in calculating
the correntropy are Gaussian, defined by the formula

(x-y)? }
262

When calculating the correntropy, it is necessary to

Ks(X,y) = le_m exp[— (8)

know the joint distribution of random variables X and
Y, which, as a rule, is not known. In practice, there are
usually a finite number of samples {x;,y;},i =12,...,N.

Therefore, the most simple estimate of the correntropy is
calculated as follows:

. N
V00 = 5 ko - 3i) ©
i=1

In tasks of identification, filtering, etc. as a
functional, the correntropy between the required output

signal d; and the output signal of the model (real) y; is

used. When using Gaussian kernels, the optimized
functional takes the form

1 1 N e? (10
Jeorr(N) = ——— exp| ——— |,
cort 2nc N i:n§\l+1 { 262 )

where e; =d; —y; is the identification error.

It is easy to see that the choice
1 eiz -
plej)= exp| —— satisfies the above
2nc 2c

requirements for ple;).

The gradient optimization algorithm (10) at N=1
will have the form [15, 16]

2
e
W1 =Wy +YeXp[_ 2n+21 Jen+1xn+1: (11)
c

where vy is the parameter that affects the rate of

convergence.

This algorithm has a significant drawback - a low
convergence rate, which significantly limits the
possibility of its use in research of non-stationary objects.
It should be noted that finding the optimal value of the

parameter vy that provides the maximum convergence
rate of the algorithm equal, as it is easy to show,

2 -1
e =(Vnabnal) (12)

2
where v, =exp —e”—+21 .
2c

In [17], to combat impulse noise, a recurrent
weighted least squares method (RLS) was proposed,
which minimizes the criterion

e%+1
Wi = €Xp| ———5 (13)

n+ 202

and having the form
Chyp=Cn+
Wn+1PnX T : 14
+ n+1_? 0l (Yn+1_cnxn+l)v ( )
A+WnXn1PnXn
T
1 W1PnXnsaXn4P
Pog =X [Pn __¥n+ln n_ljrl n+l™n J (15)
A+ WniaXnaPaXni

Here 0 <A <1 is the weighing factor.
Thus, when deriving the formula for calculating
P,.1 (15), we used the approximation

T
P+ = APy + WnaXnaXnat- (16)

As you know, introducing a parameter A into an
algorithm is advisable when identifying non-stationary
parameters. Another approach used to estimate non-
stationary parameters is the use of a limited number of
measurements in RLS, which leads to the algorithm of
the current regression analysis method.

The papers [18] considered the issue of configuring
all network parameters (weights, radii and window
width). In [23], the LSM was used for this purpose. It is
known that this method is inconvenient when
constructing a model in real time and when estimating
non-stationary parameters.

When using the criterion of maximum correlation,

the optimal model M* is obtained as follows

M* = argmaxV, (T, Y) = M{G, (e)},

MeM (17)
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where M is the space of models V. (T,Y) = M{G,(e)}is

the correntropy between target T and input signals Y ;
e=T-Y Iis the error; is the G,(e) is the Gaussian
kernel

1 e?
Goley) = ep 5z (@9

Since a function Gg(e) is a local function of

error e, correntropy can be used as an indicator of error
in information processing and machine learning
problems. It can be seen from (18) that the center of the
Gaussian nucleus is at zero. This circumstance can lead
to the fact that if the distribution of errors (noise) has a
nonzero mean, function (18) will not correspond to this
distribution. Therefore, the problem arises of choosing
such a correntropy function that would be effective for
noises having a nonzero mean.

One of the approaches to solving this problem is the
use of correntropy with variable center [24, 25]

Voo (T,Y) =M{Gy o (6)|G (X, y) =

2
_ 19
_ 1exp—{ecz}, (19)
\/ﬁc 20
where ¢ eR isthe center.
Questions of practical application of such

algorithms are considered in [26, 27].

The main task of this paper is to develop
algorithm for robust identification which maximizes the
criterion of correntropy with variable center and
investigation of its convergence performance in the
stationary and non-stationary cases in conditions of non-
Gaussian noises. We construct verification rules and
illustrate results of checking as well.

2. Correntropy learning algorithms

Using (19) we have

VG,C (T, Y) =
1 &) ((e-c)™ (20)
= M .
\/2ncn§02” n! [ o2"

When increasing ¢, the moments of higher orders

relative to the center will decrease faster, therefore, the
moment of the second order will prevail in the value
Vsc(T,Y). In particular, for c=M{e} and o —o,

maximizing the center C correntropy is equivalent to
minimizing the error variance.

Minimizing functional (19) with respect to the
parameters of the model, we obtain

8En+l =—exp (en+1 _C)z (en+1_c) N (21
ow 26° 262 M )
2
OBny =wexp[— (en;rzc) ](enﬂz—c); 22)
c c
aEn+1 —
o2

262 3

(e}

Taking these expressions into account, the
algorithms for correcting the network parameters will
have the form

Wi =Wp +

23
WF{()J() @

2
€41 —C (24)
+Yw EXp[_MJ(enﬂ _Cn+1)xn+1’
26n41
Char=Cp+
(en+1 — Cn+1)2 X (25)
TV OXP ———— (ensa—Cn
20041
2 2
On+1=0n—
2 2
e, —C en.—C (26)
_Yan+1eXP[—( n+l1 2n+1) ]( n+l 3n+1) .
207, Op

where vy, ,v¢.Ys are the algorithm parameters that
regulate the step size and affect the rate of its
convergence.

If the object under study has several outputs, then
the output signal will be a vector signal and the error will
also be a vector value.

Wpi1 =Wp + YeXp(_ ||en+1 - C||2R,1 Jen+1xn+1’ (27)

where [en 4 —c||;_1 =(ens1—¢)"RY(eq, —c)r RYis

the covariance matrix.
-1 -1
Rn+l = Rn -

2
_VRWn+1eXp(_"en+l_Cn+1||RHlJ (28)
><(en+1_CnJrl)(en+1_Cn+l)T-
Comparing (24)-(26) with (11), we see that the
implementation of the proposed algorithm with

parameters settings ¢ and o (or R ) is somewhat more
complicated than the implementation of a simple gradient
algorithm. It is clear that such a complication requires
additional memory costs for storing these parameters.

Consider the issues of convergence of the proposed
algorithm.
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3. Study of the issues of convergence
of the algorithm in a stationary case

Consider the estimation error
Onyg =Cpy—C . (29)
Then

T a
n+1 = Oni1Xns1 +Enst =€ns1 T Ensts (30)

where €51 = ®I+1Xn+1 is the aprior error.

In this case, the estimation algorithm can be written

as
W1 =Wy +7F(€n11) X041 (31)

(¢

2
where f(e 1) = exp{(e”;l—_zc)J(enﬂ —C)-

Writing down algorithm (31) with respect to
estimation errors, we have

On41=0n —vf(En12)Xn -
Multiplying both sides of this expression on the left

OI 41 by we get

[0n.al =[n]* ~21f (en1)efs +

(32)
#7202 ey )
Averaging both sides of (32), i.e.
{0l = Mo -
-2yM f(en+1)e%+1 + (33)

2npde 2 2
+y"M (en+1)||xn+1"
we obtain the condition for the convergence of algorithm
(31) in the mean square

O<y< ZM{f(enﬂ)egﬂ}

< : (34)
M2 (enen)n-al’ |
Consider a steady state. Since in steady state
lim M{0y.[? = tim m{o, |}
n—o0 n—o0
it follows from (33) that

2 ”mM{e%ﬂf (en+l)}:
n—oo (35)

=ytrR, lim M{]‘z(en+1)},
n—o0

where Ry = M{><n+1x1+1} is the covariance matrix of
input signals.
To calculate the steady-state value of the estimation
error, we define M{fz(enﬂ)”xml”z} u M{fz(en+1)}
Consider  the noise

(&~ N(O,cs% )). Using Price's theorem [28], we obtain

case of Gaussian

lim M {ezﬂf (en+l)} =limM {eﬁﬂf (e?‘Hl +§n+l)} =
n—>o0 n—o

= n|Lr1|\/|{(e';‘,+1)2}M{f'(en+1)}~ =
- limsu {exp[ (en+21 _ZC)Z ][1 (Enaa Z—C)z ]} i -
G c )

0 2 2
5 lim | exp (a9 1- (enn=¢) *
2ncy no= 262 o?

2
*exp[_(en*l_zce)} den+1v

20,

where
2 2.
Ge = M{(G?Prl)z +GEJ}’

Ce is the the center of the Gaussian error e, .

n

S= lim M{(aﬁ+1)2};

Similarly, we define
M2 (en o) |-

= nIi_)rr:O M{exp[— %J(en g- c)z} -

1, T (ensg —C)? >
= lim [ exp| -~ =/ e . —c
Gororm | p[ 27 JEmia o)

N—o0
—00

2
X exp[_ (en"'l—_ce)]den_ﬂ_

Substitution of (36) and (37) into (33) gives the

@37)

a

expression for the steady-state error lim M{(en +1)2}

n—

lim M{(eﬁ+1)2} = %,

Nn—o0

(38)

where

+00 2
A=ptR, lim | exp[—(%;l_zc)J(enﬂ —cfx
n%w_w o

>
x exp[— (nia=Ce) _ZCE) JdeMl;

or

(39)

where
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+20 _cP A=2M{f'(g-c)) -
A=ptR, lim | exp[—M](enﬂ—c)2 X Fe-o} ,
o, 2 R M{f(E-Of "(6-0) +[F'E -0 |-
Xexp{_ (en1 _Zce)Z Jdenﬂ; Substitution of (42), (43) into 546) gives
20 S ytrRXM{K(g—c) } 47)

This expression shows that lim M{(eﬁ+1)2}=0

nN—o0
when choosing y—0. Consider the case of non-

Gaussian interference. In this case, we use the Taylor
series expansion. In the steady state, the estimated
parameters change (are corrected) insignificantly.
Therefore, we can rewrite (33) as follows

2M{eaf(e)}= ytrRXM{fz(e)} (40)
We expand the function f(e) in a Taylor series,

limiting ourselves to terms of the second order of
smallness

fe)=f(e* +&)=f(&)+
+f'(&)e? +O.5f”(§)(ea )2 +o((ea )2) “1)
where

(&)= exp(— (gz— C2)2 J{l— (a;f)z J; (42)

(¢

@)=
:@@f_@—cfl(@—cf__%a—cq_ (43

262 4 2

(e} (e}
Assuming that the interference does not correlate
with the signals and the aprior error e? , we can write

Mt (¢)|=
= M{eaf(g) +f'(g)(ea)2 +o(ea)2} ~ (44)
=SMIf'(e)};
M2 ()}~ MiF2 (@) )+
) (45)
+SMF()F"(©) +[f'(®)]
Substituting (44) and (45) into (41), we have
SzytrRXM{fz(é’;—c)}, (46)

A
where

-ﬁm@ﬁqhﬂaﬁﬁﬁ@?f}

() c

K= exp(— @J K'= exp{— MJ

c 252

The obtained conditions for the convergence of the
proposed algorithm in the stationary case and the steady-
state value of the estimation error depend on the type of
noise distribution.

4. Study of the algorithm convergence
in a non-stationary case

Let us assume that the estimated parameters are
non-stationary, i.e.
Chiy=Ch+AC (48)
where Ac” = (Ac},Acs,...ACx) ' is the vector of a

random sequence Nx1 whose components have zero
mathematical expectation, the correlation matrix of

which is equal to R, = M{C*C*T}
Consider the error vector 0,4 =Cpi1 —Cns1

*
On41 =0n —Cnia +YF(Eni1)Xns1 =

. (49)
=0p —AC +yf(eni1)Xnst

Multiplying both sides of (49) on the left by 91+1
and calculating the mathematical expectation, we obtain

{6l |- M{on |2 - 20T 04 (en) +

+ YZM f? (en+1)||xn+1"2 +

2
+ M{“Ac* }+ M{xLlAc* }+ M{Ac*Txn+1}—
_ZYM{XIHAC*f (en+1)}v

Taking into account the statistical properties of
signals and noise, we have
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M {onaf? |~ fon -

MR 1F e+

(50)
+ sz{f 2 (en+1)||xn+1”2 }+ M{“AC*

2}
For Gaussian interference, using Price's theorem
gives

lim MiER.af (€)= 1im MR (6.1 +En.) =
nN—o0 n—oo

I|m M{( n+l)2}M{f'(en+1)}=

(en+1 _C)Z J{l_ (en+l — C)Z J} _
262 o2

lim SM{exp(—
n—o

(51)
(enis—cf (enss—cf
lim | ex = 1N+ X
\/ﬂce n—w '[ p[ 262 o2
2 3
Xexp{_ (en+12(:e)}den+l - LS
20¢ 2 9
(o} +Gi +S)2
MIf2(en,0)|=
2
= lim M<exp _M (en+l_c)2 =
n—oo 202
—— 1 lim -[ exp _lena=cl (ens1—c) x
\/%Ge n—o 262 "
v (52)
(en+l - Ce)
xexp| ——=——=2 |de, ;1 =
( 265 J n+l
3 03(S+ Gg)
(2c§ +o%+ zsﬁ
Considering that
2
M{“Ac* }: M{AC*AC*T}z trR,, for steady state
when  lim M{|en+l||2}= lim M{|9n||2} from expression
nN—o0 N—o0
(49) we obtain
25 ~
—= -
(02 + Gé +SF
53
’ytrRX(Gé +S) . trR 53)

(62 +20% +25) o

From this ratio, we can determine the value S
ytrR (Gé +SXG +G§ +ST

(62 4202+ 2ST

(54)
'{rRC(cs2 + Gé +SF
+ )
2y03
For o2 — oo, We have the value of S for the least
squares
2,41
trR, oz +y " trR

lims= x0TV e
G—®© Z—YIFRX

In the case of non-Gaussian noise, we have

M{e%ﬂf(enﬂ)}z

~ M{eﬁﬂf(énﬂ)"‘e?]+lf,(§n+l)}z (55)
=~ SMI{f (€021 )}
M f2 n+1 }
(56

4

{ §n+ n+:Lf §n+1)+05f” §n+1)en+l }
M2 )+ M F G+ (0 )P,

where
: E—cP |, (e-cf)
f<an+1)=exp(— ||
" (Z'am— _C)z ‘:ﬁ+ 3E:n+
f(§n+1)=exp(— = a‘n‘: |

Substituting (55) and (56) into (50), after simple
transformations we obtain

_ YA+ y_lB (57)
cC-yD '’
where
Y
A=1Ry M{(énﬂ - C)Z EXp(_MJ};
(e}
B=trR;

2
C=2M{|1- (én+1 —C
262

)

D = trRM{F},
F= {1+ 2(§n+l _0)4 _ 5(§n+1 _C)Z JX

c* 2

x exp[— M}

()
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This expression shows that S is a monotonically
non-increasing function of the parameter vy .

From the condition 8S/3y =0, an equation can be

obtained to determine the optimal value of the parameter
that provides the minimum value of S

ACy® + BDy-BC=0.
As can be seen from the results presented in this

section, the steady-state value of the estimation error
depends not only on the type of noise distribution, but

also on the degree of non-stationarity (Ac ) of the
estimated parameters.

5. Numerical experiments

Experiment 1. The problem of identification of a
stationary linear object, which is described by equation
(1) with the following parameters

0" = (~128;-96,-85; —64; —57,—48,-31;
—21;0; 2; 20; 32; 62; 97, 108;127)T
was considered.
Sequences of normally distributed quantities x(K) ~

N(0;1) were chosen as the input signal x(K).

When testing the robustness of the algorithms, an
independent noise distributed according to the Rayleigh
law with ¢ = 1 was added to the output signal of the
object.

The histogram of such noise is shown in fig. 1. The
simulation results for various values of the parameter are
shown in fig. 2.

This figure shows the graphs of changes in the error
when choosing the LSM algorithm and algorithm (31)
respectively, here

TR
RMSE= |- Jeq ¢ “ ,

where ®n and € denote estimated and target parameters
vectors respectively.
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Fig. 1. Noise distribution
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Fig. 2. Different algorithms results

Experiment 2. The comparison analysis was
performed to compare robust properties of the LSM
algorithm and algorithm (31) with different parameters.
Parameters of the linear object was taken the same as in
the Experiment 1. The results of the experiment are
shown in the Table 1. In this table the values of the
normalised error after 100 iteratios of each algorithm
simulation are presented.

Table 1
The Experiment 2 results
Algorithm/Noise Rayl_eigh, La‘“j'as’ Norinal,
c=1 c=3 c=3
LMS 0.36 0.29 0.21
(31) withc=0 0.12 0.08 0.054
(31) withc=1 0.015 0.009 0.006

As it can be seen from the Table 1 the (31)
algorithm with ¢ = 1 performs well for all considered
types of noise.

6. Discussion of the results

As the research results have shown, the use of the
correntropy functional for teaching ADALINE objects in
conditions of non-Gaussian noise makes it possible to
obtain robust estimates. The conditions for the
convergence of the gradient algorithm for learning a non-
stationary object in the presence of Gaussian and non-
Gaussian measurement noises are obtained, which are
determined by expression (34). In addition, a relation was
derived for the maximum achievable (asymptotic) a

priorierror lim M{(eﬁﬂ)z} in the presence of Gaussian
N—o0

noise in the form of formula (38). This expression shows

that lim M{(eﬁ+1)2}when choosing y — 0.

n—o0

The use of the Taylor series expansion made it
possible to obtain relations (46), (47) characterizing the
asymptotic learning error in the presence of non-
Gaussian measurement noises.
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Similar estimates are obtained for the non-statio-
nary case.

In addition, an equation is given, the solution of
which provides the minimum value of S.

The estimates obtained are quite general and depend
both on the degree of non-stationarity of the object

wc

useful signals R, and noises cg . Since these parameters

2
} and on the statistical characteristics of

are usually not known, for the practical application of the
obtained relations, one should use the estimates of the
indicated parameters. And so the training takes place in
the on-line mode, you can apply any recurrent procedure
for evaluating these parameters and use the resulting
estimates for step-by-step refinement of the parameters
included in the algorithms.

It should be noted that the estimates obtained in this

work depend on the parameter used in the algorithm ©
(kernel width) and y (convergence rate coefficient), the

problem of choosing values of which remains open.
However, these estimates allow the researcher,
when solving practical problems, to preliminarily
estimate the limiting capabilities of this algorithm and the
effectiveness of its application.
The results of online learning simulations have
shown the superiority and reliability of the new method.

Conclusions

In this paper, we have developed an adaptive robust
identification algorithm under the maximum correntropy
criterion with variable center.

The properties of its convergence in the stationary
and non-stationary cases in conditions of non-Gaussian
noises are investigated.

The estimates obtained are quite general and depend
both on the degree of non-stationarity of the object and
on the statistical characteristics of useful signals and
interference.

The results of the current study presented in Fig. 1
and in Table 1 are expected to improve existing robust
estimation-based data processing technologies and
accelerate the development of new real-time computing
applications.

In connection with the fact that the question of the

optimal choice of parameter values ¢ and y remains

open, it seems important and expedient to conduct
research in the direction of

1) studying the effectiveness of the developed
approach in teaching in the non-stationary case, when a
model other than the first-order Markov model is used to
describe non-stationarity;

2) establishing the dependence of the speed of the
learning algorithm on the degree of non-stationarity of
the object under study, i.e.;

3) development of recommendations for choosing

the optimal values of the parameters ¢ and y or the

rules for their correction.

Future research and development steps can be
dedicated to computation of parameters of discrete
atomic transform, which is a core of the algorithm DAC,
as well as construction of verification rules.

In addition, it seems appropriate to apply the
approach using the maximum correntropy criterion to the
problems of image recognition and processing in the
presence of non-Gaussian noise, considered in [29, 30].

Contribution of authors. Authors together
formulated of the problem, developed main concept,
models and algorithms, carried on and analysed results of
numerical experiments. All authors have read and agreed
to the published version of the manuscript.
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AJANITUBHA IJEHTU®IKALIA 3A KPUTEPIEM
MAKCHUMAJILHOI KOPEHTPOIIIi 31 3SMIHHUM IIEHTPOM

O. I'. Pyoenko, O. O. be3conos

Posrnsinaerbest 3anava imentudikaiii napaMeTpiB JiHIHHOTO 00'€kTa
Aunroput™ ineHTH(IKalil € rpalieHTHOO MPOLIEAYPOI0 MaKCUMi3allii (DYHKIIIOHANY, LIO SIBIISIE COOOI0 KOPEHTPOIIIIO.
Takmii QyHKIiOHAT NO3BOJSIE OTPUMATH OLIHKH, SIKI BOJOMAIIOTH POOACTHHUMHM BIACTHBOCTSAMH. Ha BinMiHy Bin
rayciBChbKHX SiJiep, 1110 3a3BUYail 3aCTOCOBYIOThCS, LICHTPH SKUX 3HAXOJATHCS B HYII 1 €)EeKTUBHHUX VIS PO3IOJLIIB 3
HYJIBOBHM CEPEIHIM, y pOOOTI pO3IiisiaeThcss MOIUQIKaLlis KPUTEPilo, MpHAATHA JJsl PO3MOILUIIB 3 HEHYJIbOBHUM
cepenHiM. Momudikailisi moyisArae y BUKOPHUCTAHHI KOPEHTPOIIIT 31 3MIHHAM LIEHTPOM. BHKOpHCTaHHS TayCiBCBKHUX
siep 31 BMIHHUM [EHTPOM JIO3BOJIMTH OLIIHIOBATH HEBIIOMI ITaApaMETPH 32 YMOB TayCiBCbKHX Ta HErayCiBChbKHX 3aBa]l,
110 MAIOTh PO3MO/ILIH 3 HYJIbOBUM Ta HEHYJILOBHUM CEpPENHIM 1 3a0€3MeUnTH MOXKIIUBICTh PO3POOKH HOBUX TEXHOJIOTI I
aHayi3y Ta 00poOKH NaHuX. BaxxiuBuM € po3po0ieHHs anroputMy pobacTHOI iieHTUdiKalii Ha OCHOBI KOPEHTPOIil
3i 3MiHHUM LEHTpOM. IX BacTMBOCTI TIpM ineHTH}IKALIT CTALIOHAPHUX Ta HECTALIIOHAPHUX 00’ €KTIB € MPeAMeTOM
JociimpkeHHs. MeTor MOoCIiKeHHS € po3po0JIeHHs alropuTMy podacTHOI iAeHTudiKallii, 110 MaKCUMi3ye KpuTepiit
KOpEeHTpoImii 31 3MIHHMM IEHTPOM 3 BHUKOPHCTAHHSIM TMPOLEAYp HAaJalITyBaHHS LEHTPIB Ta IMIMPUHH spa Ta
JOCHIDKeHHS #oro 30DKHOCTI B CTalliOHAPHOMY Ta HECTAIllOHAPHOMY BHITQJKAaX 32 YMOB HETrayCiBCHKHX 3aBal.
OTtpumaHO BHpa3yu U 3HAYEHb CTAJIOTO CTAaHY IOMMJIKH OIIHIOBAaHHS, AKi 3aJeXaTh BiJ] BUAY PO3MOMALTY 3aBaja Ta
CTeTleHI HEeCTaIliOHAPHOCTI TMapaMeTpiB, IO OIHIOIOTHECSA. PO3B’SA3yrOThCs Taki 3aBHAHHA. JOCTIAWTH 301KHICTH
AITOPUTMY Ta BU3HAYUTH YMOBH CTAJIOCTI YCTAJIEHOTO Tporecy ineHTudikarii. BUKOpUCTOBYIOTECS MeTOAU Teopii
omiHioBaHHA (imeHTH(diKaii) Ta Teopil WmMoBipHOCTI. OTprMaHO Taki pe3yabTaTH: 1) pO3pOOICHHI aNTOPUTM
3a0e3medye OTpUMaHHSI POOACTHHX OITIHOK 32 HAsSBHOCTI 3aBaj], IO MAIOTh PO3IONLT 3 HYJOBHM Ta HEHYIHOBHM
cepemHiM; 2) MOCHiHKEHO HOoro 301KHICTh y CTAalliOHAPHOMY Ta HECTAIlllOHAPHOMY BHIIAJKaX B YMOBAX rayCiBCHKHIX
Ta HETayCiBCHKHMX 3aBajl; 3) MPOBEICHO iMiTalliifHe MOJENIOBAHHS POOOTH anropuTMy. BHCHOBKH: pe3ymbTaTu
JOCIIKCHHS TO3BOJIATH ITOKPAIIWTH ICHYIOYiI TEXHOJNOrii OOpOoOKHM JaHMX HAa OCHOBI POOACTHHX OIIIHOK Ta
TIPUCKOPATH PO3pOOKY HOBUX OOUHCITIOBAIFHIX IPOrpaM y peaTbHOMY daci.

Kiro4oBi cioBa: KopeHTpoIis; MakcuMizarisi; (yHKIIIOHAJ, TPaJi€eHTHUH alTOpUTM; aCHMITOTHYHA OIliHKa;
30DKHICT; TOYHICTH 1IeHTH(IKAIIT; yCTATICHIH PEKUM.

3a HASBHICTIO HErayCiBChKHX 3aBal.
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AJATITUBHAS UIEHTU®UKAILIAA IO KPUTEPUIO MAKCUMAJILHOM
KOPEHTPOIINU C HEPEMEHHBIM IEHTPOM

O. I'. Pyoenko, A. A. becconos

PaccmaTpuBaercs 3amada uueHTH(UKAIMK MapaMETpPOB JIMHEHHOTO OOBEKTa NPH HAJIMYMK HErayCCOBCKHX
momMex. AJTOpUTM HACHTU(HUKAIWK SBJISETCS TPAJUCHTHOM TPOLENYpOH MaKcuMH3auuu —(yHKIMOHAA,
TIPE/ICTABISIONIET0 co0OH KOppaHTponHio. Takol (yHKIMOHAI MO3BOJSET IONYYUTH OLEHKH, O00Jaalomue
pobacTHBIMU CBOMcTBaMH. B oTiinune oT 0OBIYHO MPUMEHSIEMBIX TayCCOBCKHX SIJIEp, IIEHTPBI KOTOPBIX HaXOJSTCS B
Hyne U 3(GQEKTUBHBIX Uil PAClpeleieHU C HYJIEBBIM CpeJHHM, B pabOTe paccMaTpHBaeTCsl MOAW(HUKALS
KPHUTEpHsL, IPUTOIHAS IS paclIpeeICHUI C HEHYIEBbIM cpeHUM. MoauduKkanus 3aKiI04aeTcsl B UCIIOJIb30BaHUH
KOPpPIHTPOIIUU C MEPEMEHHBIM LEHTpOM lCronbp30BaHNE TayCCOBCKUX Siep C MEPEMEHHBIM LIEHTPOM ITO3BOJIUT
OLIEHMBATh HEU3BECTHBIE MTAPAMETPHI B YCIIOBHSX TayCCOBCKHX M HErayCCOBCKHX TMOMEX, MMEIOIINX PacIperieieHue
C HYJEBBIM M HEHYJIEBBIM CPEJHUM, M OOECIEYNTh BO3MOXKHOCTH DPa3pabOTKM HOBBIX TEXHOJOTWH aHalu3a U
00paboTKN JaHHBIX. JTO OOBSICHSIET BaYKHOCTH Pa3pabOTKH ajJropuTMOB pOOACTHOW HISHTH(HKAIMM Ha OCHOBE
KOPPIHTPOIUHU C NEPEMEHHBIM HEeHTpoM [lonydeHbl BhIpaKeHHs A 3HaYeHHH BETMYUH YCTOHYHMBOTO COCTOSIHUS
OLIMOOK OIIEHHBAHUS, KOTOPBIE 3aBUCST OT BHA PACTIPEIEICHUS TIOMEX M CTETIEHH HECTAIMOHAPHOCTH OLIEHUBAEMBIX
napameTpoB. X cBolicTBa Ipy WAESHTU(PHUKAIIMH CTAIIMOHAPHBIX M HECTAIMOHAPHBIX 0OBEKTOB SIBIISIOTCS MPEIMETOM
uccnenosanus. Lleaplo uccrnenoBaHusl  sABJIsieTCS  pa3paboTka  anroputMa  poOacTHOM — MACHTH(UKAIWH,
MaKCHMHU3UPYIOIIEr0 KPUTEPUH KOPPIHTPONHUHU C MEPEMEHHBIM IIEHTPOM C NPHMEHEHHEM MpoLenyp HacTpOWKH
HOEHTPOB U HIMPHUHBI AApa 1 UCCIECN0BAHUE €0 CXOANMOCTH B CTALIMOHAPHOM M HECTALTMOHAPHOM ClTydasiX B YCIIOBUAX
HETayCCOBCKHUX ITOMEX. HOJ'Iy'-IeHbI BBIpQXXEHUA IJIsI YCTAaHOBUBIICTOCSA 3HAYCHU OI_HI/I6KI/I OLCHUBAHWA, KOTOPLIC
3aBUCAT OT BHIA pacHpe€ACICHUA MOMEX M CTCICHU HECTAIIMOHAPHOCTU OICHHMBACMBIX IMapaMETpPOB. Pemrarorcst
ClIeIyIOIHe 3aa4U: HCCIIEIOBATh CXOAMMOCTh ajJrOPUTMA U OMPE/ICNIUTh YCIOBUS IOCTOSIHCTBA YCTAHOBHBIIETOCS
nporecca naeHTuuKanuu. Mcrnonb3yroTes MeToabl TEOPUH OLleHUBaHUS (MACHTU(UKALINK) U TEOPUU BEPOSTHOCTH.
[Mony4eHsl cnenyonye pe3yabTaThl: 1) pa3paboTaHHBIH AITOPUTM OOECIIEUHBAET MOJy4eHHE POOACTHBIX OICHOK
IIpU HAJIMYHUH IIOMEX, UMEIOIUX PACTIPEACITICHNE C HYJIEBBIM U HEHYJIEBBIM CPETHUM 2) HCCJICA0BAaHa €ro CXOoAuMOCTh
B CTallMOHApHOM M HECTALMOHAPHOM CIydasx B YCIOBHSX T'ayCCOBCKMX M HETayCCOBCKHX IIOMEX; 3) HMPOBEOCHO
HUMHTALOHHOE MOJEIUPOBaHUE PAOOTHl anropuTMa. BbIBOABI: pe3ylbTaThl UCCIIENOBAHUS MO3BOJAT YIIY4LIUTH
CYILIECTBYIOLIME TEXHOJIOIMH OOpaOOTKM JaHHBIX HA OCHOBE POOACTHBIX OLEHOK M YCKOPAT pa3pabOTKy HOBBIX
BBIYHCIIUTEIBHBIX IPOrPaMM B PEIbHOM BPEMEHHU.

KnrodeBble c10Ba: KOPPIHTPONUS; MAaKCUMHU3aIHs; QyHKIMOHAN; IpaJUeHTHBIN aIrOpUTM; aCHMIITOTHYECKAast
OLICHKA; CXOJMMOCTh; TOYHOCTb MICHTU(HUKALMH; YCTAHOBUBILIMICS PEXKHUM.
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