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FRACTAL NATURE OF ARTERIAL BLOOD OXYGEN SATURATION DATA

The subject matter of this study was the processing of arterial blood oxygen saturation data (Sa0O;). The aim
was to investigate the downsampling procedure of the SaO, records on a broad range of scales. The object of
study was a small data set (20 subjects, about 164 seconds duration, sampling rate 300 Hz) borrowed from the
well-known portal of medical databases Physionet. The tasks to be solved are a test of the dataset heterogenei-
ty, downsampling of the SaO, series and its increments in a broad range of possible, checking the randomness
of Sa0O2 series increments, argumentation in favor of applying the theory of Levy-type processes to the SaO,
increments and proving of their self-similarity, the definition of the geometrical fractal and its Hausdorff di-
mension. The methods used are the Levy-type processes theory, statistical methods, boxes-covering method for
fractal structures, the autocorrelation function, and programming within MAPLE 2020. The authors obtained
the following results: the dataset comprises three subsets with different variability; the records and their in-
crements remain scale-invariant if the switching frequencies remain lower than the reduced sample rate; the
increments of SaO, records are a Levy-type and self-similar random process; the fractal is the set of positions
of the non-zero increments (switch-overs) from a geometrical viewpoint. Conclusions. The scientific novelty of
the results obtained is as follows: 1) the fractal nature and the self-similarity of SaO, records and their incre-
ments were proved for the first time; 2) authors found the fractal Hausdorff dimensions for the subsets in the
range (0.48...0.73) in dependence on variability; 3) authors found the principal possibility of the SaO, data
sizes essential reducing without losses of vital information.
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1. Introduction

Arterial blood gas satiety (ABG) studies most
commonly are performed about oxygen (Sa0.). They
have recently been paid particular attention because of
the COVID-19 pandemic. Hypoxia, the shortage of ox-
ygen, often disguised and accompanying this disease, is
a reason for it [1-4]. SaO; trials are more difficult, ex-
pensive but direct, and exacter meanwhile [5]. The au-
thors meant wider used peripheral oximetry (or pulse
oximetry, SpO- [6]), making the comparison.

A typical SaO, time series (a blood saturation rec-
ord), like most medical signals, does not comprise high-
frequency components. An exception is noise, of course.
Hence, a typical sampling rate also might not be too
high. Thus, the downsampling is helpful in the handling
of oversampled medical signals with minimal infor-
mation losses.

Let here and further mean the digital, or discrete-
time, signals of the computer age. What is mainly lost
there at the downsampling? Firstly, a certain number of
points on the time domain, depending on the downsam-
pling factor. Secondly, the frequency resolution drops,
and minimal frequency rises in the frequency domain.
So, one gets the possibility to save the peculiarities of a
larger scale, losing small details here and there. Besides,
one can reduce the dataset size to the benefit of its stor-
age and transfer.

Downsampling is a similarity mapping that in-
creases the distance between setpoints from a mathe-
matical point of view [7]. If the actual process is self-
similar, then one can get a sequence of fractional copies
of the process, which are more or less similar to the pro-
totype. Of course, in a specific range of scales, that is,
downsample factors.

Self-similarity or fractal nature is inherent in gen-
eral metabolic processes [8]. In particular, the authors of
[9] noted some fractal features of SpO- variability in
healthy adults. Authors working with fractals disagree.
They still cannot offer a unified definition of fractals.
Therefore, the choice of essential features of fractals [7]
is still, shall we say, "a matter of taste and conven-
ience."

The SaO; dataset [10] displays heterogeneity: three
subsets differing vitally by the variability of blood oxy-
gen saturation analogous to the SpO; data [11]. Besides,
the non-zero increments of any SaO; series within each
of the above subsets match the Poisson distribution with
three various flow intensities of events [10].

2. Aim and tasks

Now we can wpmuiate the main aim of the article.
The downsampling in its bonds with the fractal nature
of the arterial blood oxygen saturation process is the
focus of research. We mean here both the SaO, series
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and its increments as the subjects of the study. A kind of
"action plan™ for such an aim includes the following five
stages:

— test of the heterogeneity and definition of the
well-grounded allocation on subsets for data [10];

— downsampling of the SaO, series and its in-
crements in a wide range of possible scales with an
analysis of changes;

— checking the randomness of SaO; series incre-
ments by autocorrelation functions;

— argumentation in favor of applying the theory
of Levy random processes [12] to actual distributions of
increments;

— searching of the geometrical fractal and its
Hausdorff dimension.

3. Methods: data set
and computing means

There we consider SaO, data for the small dataset
(n=20 persons) from data [13] submitted in [14]. The
""2018 PhysioNet/Computing in Cardiology Challenge"
database was contributed in 2018 by two Massachusetts
General Hospital's (MGH) laboratories.

MGH has gathered this database included 1,985
subjects monitored for sleep disorders. The data were
partitioned into balanced training (n = 994), and test sets
(n = 989). The reader can find more details describing
this database in the sources [14, 15].

3.1. Data set selection
and pre-processing

At first, 25 anonymous persons were selected ran-
domly from the above test set. Then, the artifacts with
either massive arrays of heavy outliers (3 records) or
without increments (2 records) were sifted out. The da-
taset was cut off to 20 persons in this way. Note, the
gotten dataset overlaps but is not quite identical to [10]
one. There, in particular, figured one record without
increments, that is, pure constant.

Besides, we focused on relatively short-time
(about 3-minute duration) measure spans, though the
complete records were up to one hour long. The primary
sampling rate was equal to 200 Hz [14]; thus, the
3-minute duration of a signal means 36000 samples. For
the comfort of downsampling, we have decreased this

number up to a lower value: N, = 32768 = 2

3.2. Computing means

All computing, including the graphics, was per-
formed within Maple 2020 [16]. All necessary programs
were also written within this computer mathematics

system, albeit mostly its program packages mainly were
enough for our research.
A discrete-time will be in use here and below. Let

N, be the initial number of samples (points), and Sg is

the primary sample rate before the downsampling. Then
the discrete moments (points, samples) are:

t.. =

0 Ci=(12,.0N). )

(%)
Gl

Suppose the factor of downsampling has such a form :

c=2; m= (0,1,...,Iogz(N0)). )]
Let m become the title of the logarithmic factor of

downsampling. Then m = 0 matches to the initial rec-

ord, and non-zero values match to downsampled one:

tim = [Sig]xc; i= (1,2,...,Nm=%]. 3)

Thus, the distance between the two nearest neighboring
points (samples) increases by 2™ .at the downsampling.

Their number and sample rate decrease by 2™ at the
same time. To be sure, the duration of observation (T)
stays invariant:

T=ty -to=ty “tim (4)

4. Results

4.1. Heterogeneity of the dataset
and distribution on subsets

It would be possible to show the heterogeneity of
the dataset by box plots similar to [10, 11]. The inter-
quartile range (IQR) as the most robust statistical meas-
ure of variability is the base of such charts. Albeit, one
can use and another way, based on IQR, but through the
so-called normal plot. Such a plot allows comparing the
factual distribution of a random value with the normal
Gauss one.

Figure 1 presents the normal plot for interquartile
ranges of the dataset. The horizontal axis shows the ex-
pected values, assuming the normal Gauss distribution,
the vertical one - the observed values. One can see the
clear separation of dots, which matches the different
personal records into three subsets with divers variabil-
ity. Dots form a typical "devil's stairs" with three rungs.

The variations inside each subset are minor. The
one exception for the upper subset with maximal varia-
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bility might be considered an ordinary outlier. Still, the
differences among the subsets are statistically signifi-
cant on the 0.99 confidence levels (p-values<0.001).
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Fig. 1. The normal plot for interquartile ranges
(IQR) of the dataset subjects. The thin line matches
the Gauss distribution, the dots — the factual one

The bulks of subsets (6, 8 and 6 in order of ascend-
ing variabilities) are evident from Fig. 2. Since grouping
tactics were different, the values are not precisely equal
to those (7, 9 and 4) reported in [10]. We shall be back
yet to this divergence a bit later. The results will be pre-
sented mainly for two subsets with minimal and max-
imal variabilities because the same results for the mid-
dle subset are intermediate.

4.2. Downsampling of SaO; records
and their increments

Figure 2 presents typical SaO; records and their
increments for two subjects from subsets with minimal
and maximal variabilities at different logarithmic
downsampling factors (see expression (2)). The upper
two rows match a subject with two observed levels of
oxygen saturation and 11 non-zero increments. Each
non-zero increment is a switch-over between these two
levels [10]. Two lower rows of Fig. 2 matrix match
another subject with ten observed levels and 37 switch-
overs among them.

Fig. 2 reflects the diversities between subsets with
minimal and maximal variabilities of the blood oxygen
saturation. Besides, one can mark that the graphs of the
first two columns are well similar within their rows,
whereas the graphs of the third columns of each row
look like fairly “distorted” copies from the first and
second columns.

This distortion effect is especially evident for in-
crements. Their number on the interval of observation
has to be invariant. Besides, the interval itself also is
constant at downsampling (see expression (4)). Hence,
the frequency of switch-overs, that is, the frequency of
Poisson's flow of events [10], is saved too.
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Fig. 2. SaO; records (the first and the third rows) and their increments (second and fourth rows) for two subjects
of the subsets with minimal variability (first and second rows) and with the maximal one (third and fourth rows).
The columns match the different logarithmic factors of downsampling: 0, 7 and 9 from the left
to the right respectively. All amplitudes are given in percent
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The maximal number of switchings is observed in
the subset with maximal variabilities and is equal to 42.
It matches the switching frequency of 0.256 Hz. Thus,
the reduced sample rate has to be at least twice higher
than this value. One can get, taking into mind that

sg = 200 and (2) the following inequality:

0.256 < 200 )

< 2m+l'

This inequality has positive integer-type solutions only
from the range m =[0,1,...,9]. So, the maximal loga-

rithmic factor of downsampling is limited and equal to 8
in our case. One can ensure the similarity of downsam-
pled signals to the original one and the invariance of
switching frequencies only up to this factor.

What if it will be exceeding? Then the known ef-
fect of aliasing will begin, which the reader can see in
the third column of Fig. 2. This effect distorts signals
dropping down even the numbers of switching, which
have to be an invariant of downsampling.

The reader can convince of the random nature of
switch-ower processes by the analysis of the autocorre-
lation functions of increments (Fig. 3).

Note that downsampling is very helpful in the case
of computing correlograms, recurrence plots, data ma-
trices, etcetera. The point is that such calculations need

the machine-time that is rising as O(nz) . It being "over

and above" if the series is lengthy enough. In particular,
if we were to calculate these correlograms for the pri-
mary data (m = 0, n = 32768), this would take away
much time with an ordinary computer.

4.3. Does the switch-over process be one
of the Levy random ones?

A random process ( X = {Xt :t>0}) is the Levy
one if [12]:
i. it has the right limit (X, = X,) and existing
left limit (X,_);
ii. itisinitiated from the origin (X, = 0);
ii. for 0 <s<t, X, - X, isequal in distribution to
Xios

iv. for 0<s<t X,-X,  is independent of

{X,: uss}.
The switching processes, presented by Fig. 2 (the

second and fourth rows) as increments of blood satura-
tion, are continuous in probability (i). Although the

spectra of possibilities are discrete and even binary, they
can bhe equal to zero or non-zero. The process begins
from the origin (ii), has stationary (iii), independent (iv)
increments. Yes, it is a Levy random process in such a
case and sense.
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Fig. 3. Normalized correlograms for switching
processes: the upper plot relates to the subject from
the minimal variability subset, the lower one
to the subject from the opposite subset. The dash
lines note the 95 % confidence intervals

Two mainly discussed patterns of Lévy processes
are the Wiener process, else often called the Brownian
motion one, and the Poisson process. The divergence is
in the probability distributions: either Gauss' or Pois-
son's. Note that this difference is minor for the large
enough numbers of trials. In this case, the Poisson dis-
tribution tends to Gauss one. That is the statement of the
central limit theorem (CLT) of the probability theory.

What should it mean in this context, "a large
enough number of trials?". The answer is inequality (5).
Let rewrite it in terms of switching numbers (n) versus
numbers of points on the observing interval after the

downsampling (N ). Then one will get:

N,>n. (6)
The lower the downsampling factor, the more potent the
last inequality, and any Poisson process will be closer to
the Wiener one.

Neither Gauss nor the Poisson distribution de-
scribes the probabilities of switch-overs (increments),
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precisely at least. Both are unimodal, whereas the histo-
grams and estimations of probability density function
for increments point out three existing modes: primary
mode for zero probability and an additional two lower
for positive and negative non-zero probabilities.

Neither Gauss nor the Poisson distribution de-
scribes switching probabilities (increments), at least not
precisely. Both are unimodal, while histograms and
probability density function estimates for the increments
indicate three existing modes: the primary mode for
zero probability and two additional lower ones for posi-
tive and negative non-zero probabilities.

However, these distributions can still be an excel-
lent approximation to reality. Lets show that the switch-
ing process, which is already clear, is of the Levy type,
is quite close to the same Wiener type. Firstly, any Wie-
ner process has zero expectation:

E[\Nt] =0. (7

Any switching process also has a zero-equal ex-
pectation. It is evident from Fig. 2 and simply testable.
Hence, the variances of both processes are just the ex-
pectation of their quadrates. Secondly, any Wiener pro-
cess is self-similar, thence:

EW’] = @ EW.], ®)

where ¢ is the scale coefficient. It means that the vari-
ance of the Wiener process is c-time lesser than for the
scaled Wiener one.

Taking into mind (2), one can get the following
dependence of the variance on logarithmic downsam-
pling factor for a self-similar process with zero expecta-
tion:

Var(X(m)) = 2™ x Var(X(0)). 9)

Fulfilling condition (9) for the switch-over process
would mean that this process is self-similar, like the
Wiener one. Fig. 4 shows that such an assumption has a
solid fundament.

The expression (9) looks like a straight line with a
slope equal to unity within the semi-logarithmic coordi-
nates if one uses the logarithms with a base equal to 2.
The slope will be equal to In(2)~ 0.693, if one uses the

natural logarithms. Pay attention to the dependencies in
Fig. 4. They are straight lines, but only in a limited
range, introduced above. Table 1 testify that the slopes
of all three lines are virtually equal to the unity.

Thus, the switching process for blood oxygen satu-
ration levels is Levy-type and self-similar in the defined
range of downsampling factors (scales). Nevertheless, it

does not equal neither the Wiener process nor the Pois-
son one by distribution. Here we mean increments of
Sa0;, speaking about the random process. That is why
the other values, switching number, for instance, can
have almost the Poisson distribution within subsets [10].

log[2](Var)

g 1L 2 § 4 5 8 7 8 8

m

Fig. 4. The dependences of variations in subsets
on the logarithmic factor of downsampling
in semi-logarithmic coordinates: the lower line
matching the subset with minimal variability,
the upper one - the subset with maximal variability

Tablel
The slopes of the lines of Figure 4
Standard
Subsets Slopes deviation
Minimal variability 1.004 0.002
Middle variability 0.980 0,010
Maximal. variability 0.986 0.009

4.4. Where are the genuine fractals here?

The dependences of Fig. 2 are multi-fractals, more
precisely bi-fractals, since functions of blood oxygen
saturation have two types of singularities: "up" and
"down"[10, 17, 18]. Functions of Fig. 2 have zero-equal
derivatives almost everywhere. "Almost" in this case
means with except a set of positions (points) with zero
Lebesgue measure [10, 17].

These sets of positions are one-dimensional frac-
tals by themselves [10, 17]. Hence, each of them has a
Hausdorff dimension between 0 and 1. One can find the
fractal dimension by the known covers method [19] in
one dimension space. The number N(r) of non-empty

segments of length (scale) r needed to cover the fractal
set of points depends onr as:

N@ ~rP. (10)
The relation (10) is the scaling law, and D is the fractal
(Hausdorff) dimension. Table 2 shows the gotten
Hausdorff dimensions.
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We have obtained the Hausdorff dimension of Ta-
ble 1 under the condition m = 0. Although the fractal
will remain invariant in the range m = [0,1, .... ,9]. Fur-
ther, the positions within the fractal begin to merge and
blur (see Fig.2). One can evaluate the quality of the
scaling law (10) fulfillment by determination coeffi-
cients (R?): as close is it to 1 as the law fulfills better.
The range of scales was r [5,...,100] seconds in our

case.

Table 2
Fractal (Hausdorff) dimensions of the positions where
the switch-over of oxygen saturation levels take places

Subsets D gtar_‘d?‘rd R?
eviation
Minimal variability | 0.48 0.03 0.97
Middle variability | 0.70 0.08 0.92
Maximal variability | 0.73 0.06 0.95

All estimations are between 0 and 1. That is,
switchovers fractal dimension is between points and
lines. The range of values for D (Table 1) is close to the
fractal dimensions of random "Cantor dust" [20].

Note, these estimations are not too precise. The
reason is a small number of switch-overs on the
watched interval (from 8 to 38). Nonetheless, the subset
with minimal variability has the lower fractal dimen-
sion. Its dimension is closer to the dimension of a Wie-
ner process zeros (0.5 [20])

4.5, Discussion of results

Fractality and self-similarity of fractal structures
are crucial to the insight of the above results [10, 19,
21]. Many physiological systems such as blood vessels,
breathing airways and vessels, pulmonary alveoli sys-
tem, molecules of deoxyribonucleic acid (DNA), heart-
beats, and even gait patterns all show fractal characteris-
tics as well [21]. However, the fractal nature of blood
oxygen saturation had begun to clarify recently [9 — 11].

We used the most reliable statistical measure of
variability to distribute subjects across subsets, i.e., in-
terquartile differences. This way differs from the meth-
od [10], where the selection was by the closeness of the
numbers of switchings. Therefore the capacities and
composition of the subsets turned out to be somewhat
different also. For example, we got (6, 8 and 6) subjects
in the three subsets against (7, 9 and 4) in [10].

Here it is appropriate to discuss the capacity of the
dataset used in the article (20 persons). It is relatively
small. Still, it turned out quite enough to detect its het-
erogeneity, classify switching process type, and prove
its self-similarity. In other words, the capacity of this
dataset is enough for qualitative studies. On the other
hand, such a capacity of the dataset is not enough for

quantifications, discussed in the previous paragraph. It
touches on our first estimations of Hausdorff dimen-
sions: they are not too precise. Such estimates need an
extended dataset.

The step-like shape of signals, discrete and limited
spectra of observed saturation levels (from 2 to 10), the
same amplitudes of increments are inherent in the SaO;
series. The increments are independent and identically
distributed random samples. A non-zero increment is a
rare event in comparison with the number of trials
(Np)

Positions of the blood saturation levels switch-
overs are forming the one-dimensional stochastic frac-
tal. This fractal preserves its structure in a wide enough
scale of downsampling factors. As a result, such values
as the number of switchings, observed saturation levels,
relations among the inter-switch time intervals, and
switching frequencies turned out scale-invariant.

The switching of the oxygen saturation levels has
all hallmarks of the random self-similar process of
Levy-type. Moreover, the right continuous probability
ensures this process is also strong Markov-type [12, 22].
Still, this process is neither Wiener nor Poisson exactly.
Though the Poisson distribution roughly depicts the
number of switchings on the interval [10].

This fractal has a Hausdorff dimension differing
from zero (its Lebesgue dimension). Curiously the frac-
tal dimension of the subset with minimal variability is
almost equal to zero of a Wiener process (0.48 against
0.5 [20]). The dimensions of the two subsets are higher
(0.7...0.73), and their difference with the previous sub-
set is statistically significant.

Thus, downsampling of SaO, data over a wide
range might be without losing essential information
about the oxygen saturation process. Only the known
Nyquist-Shannon condition for frequencies limits the
upper bound of the downsampling ratio. More compact
data is easier to transfer and process. It might be helpful
in clinical practice, especially at the pandemic time.

The proving of self-similarity of SaO, increments
is one of the new results in the problem. Besides, the
authors, the first time, detected the Levy-type and Mar-
kov-type of these processes. They pointed out the one-
dimensional geometrical fractals (the switching posi-
tions) and also made estimations of their Hausdorff di-
mensions.

5. Conclusions

Let us formulate the conclusions according to the
tasks from the introduction section.

1. The randomized SaO, data set, purified from ar-
tifacts, has natural heterogeneity. The data set has three
subsets varied by their variability, which is statistically
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significant. The relative fractions of subsets are 30 %,
40 %, and 30 % in variability ascending order.

2. Downsampling saves the SaO; series and their
increments and many of their parameters. They turned
out scale-invariant in the wide range of downsampling
factors (scales). The well-known Nyquist-Shannon con-
dition defines the upper bound of the downsampling
scales.

3. The increments of the SaO; series, describing
the switch-overs among the observed saturation levels,
are random, independent, and identically distributed.
They have identical magnitudes in addition.

4. The switching process is a random Levy-type
one, which is self-similar. However, it does not precise-
ly match Wiener or Poisson processes because it has
three-modal distribution.

5. The set of positions (points, time moments) for
non-zero increments (switching) is a stochastic, one-
dimensional fractal. Its Hausdorff dimensions are be-
tween 0 and 1 and vary for three subsets. The fractal
preserves itself at the downsampling.

Future research directions

Nowadays, the authors are seeing two straight
paths concerning the onward perspectives of the re-
search. It is the study of pathological blood oxygen satu-
ration, especially linked with COVID-caused pneumo-
nia. Besides, it is a more broad study of self-similarity
probably inherent in many medical signals.
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OPAKTAJIbHA IIPUPOJA JAHUX HACUYEHHS
APTEPIAJIbHOI KPOBI KUCHEM
I'. II. Yyiixo, €. C. /lapnanyk

O0’ekTOM CTATTi € 00pOOKa TaHKUX MPO HACHUCHHS apTepianbHOi KpoBi kKucHeM (Sa0,). MeTa mossrae B To-
My, 00 AOCHIANTH TPOLEAYPY 3HWKEHHS YacTOTH AMCKpeTu3alii 3anuciB SaO; B IIUPOKOMY Jiana3oHi MacIiTa-
6iB. IIpeqmeTom mocitinkennsi OyB HeBenukuii HaOip nanux (20 ocib, TpuBamicTh O6JaM3bKO 164 ceKyHIHU, YacToTa
muckperusanii 200 I'i), 3an03uueHuit 3 BiIOMOro noprainy MeAn4Hux 06a3 nanux Physionet. BupimrytoTbes 3aBnan-
Hsl: TIEpeBipKa HEOJHOPITHOCTI HAOOPY JaHUX, 3HWKEHHS AUcKperu3anii psay SaO2 Ta Horo mpupocTiB y MHUPOKO-
My Jiala30Hi MOXKIIMBHUX, IEPEBipKa BUIMAJAKOBOCTI MPHUPOCTIB psaay SaO,, apryMeHTallisl Ha KOPUCTh 3aCTOCYBAHHS
Teopii mporueciB Tuiry JleBi. 10 mpupoctiB SaO» Ta IOBEINEHHS IX CaMONOAIOHOCTI, BH3HAYEHHS T'€OMETPUIHOTO
¢paxrany Ta Horo xaycropdoBoi po3mipHOCTi. BukopucTaHi MeToau: Teopis mpomeciB tumy JleBi, craTucTH4HI
METOJH, METOJ] MOKPUTTSI OJIOKIB Jisi (PPaKTABHUX CTPYKTYp, aBTOKOpENAIiiiHA (YHKIIis, IPOrpaMyBaHHs B paM-
kax MAPLE 2020. ABTopH oTpuMaiH Taki pe3yJabTaTH: Habip JaHWX CKIIAJA€THCS 3 TPHOX MiAMHOXHUH 3 PI3HUMHU
BapiaOeNbHOCTSIMY; 3aICH Ta iX MPUPOCTH 3ANHIIAOTHECS HE3MIHHAMHU B MacIITadi, SKIO YaCTOTH IEePEeMHUKAHHS
3QIIMIIAIOTHCS HIDKYAMHM, HDK 3MEHIIIEHa YacToTa MUCKpeTH3allii; 30impmenHs 3anuciB Sa0, € BUMAaIKOBHM IIpOIIe-
coM tumy JIeBib 1o Toroxx camornoniounm; paxran — 1e Habip MONOKEHb HEHYIHOBUX MPUPOCTIB (MIEPEMUKAHB) 3
reoMeTpuYHOl ToUkH 30py. HaykoBa HOBH3HA OTPHMAHUX Pe3yJIbTATIB IOJIATAE B HACTYITHOMY: 1) BIiepiie goBe-
IeHo (paKTaIbHy IPUPOAY Ta CaMONoAiOHICTh 3ammciB SaO; Ta iX MPUPOCTIB; 2) aBTOPH 3HAUMLTH (paKTaIbHI PO-
3MipHOCTI Xaycnopda s miaMHoxuH B miana3oHi (0,48...0,73) B 3anexHocTi Big BampiabenbHOCTI; 3) aBTOpH BU-
SIBIJTH TIPUHIIAIIOBY MOYIMBICTh iICTOTHOTO 3MEHIIIEHHSI po3MipiB gaHNX Sa02 6e3 BTpaT KUTTEBO BAXKIHUBOI iH(OP-
mari.

Kuro4oBi cjioBa: HacH4eHHsI KHCHEM; KOPOHABIpYC; 3HIDKEHHS IOUCKpeTn3aiii; gpakTany; mporecu Jlei; ca-
MOITOIiOHICTB.
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DPAKTAJIBHASA ITPUPOJJA JAHHBIX HACBIIHIEHUSA
APTEPUAJIbHOM KPOBH KMCJIOPOI0OM
I. IT1. Yyiixo, E. C. /lapnanyx

OO0BEKTOM CTATBU SBISETCS 00pa0OTKA JAHHBIX O HACHIIICHHM apTepUAbHOW KpoBH KucIopomaoMm (Sa0y).
Lenb cocTouT B TOM, YTOOBI MCCIIECIOBATEH MPOICTYPY MOHIDKAIOIICH TUCKpeTH3anuu 3amuceid SaO2 B MIHMPOKOM
nranasoHe Macmtabos. [lpeamerom umcciaenoBanus Obi1 HEOONBIION HaOOp MaHHBIX (20 YeloBeK, IUTEIHHOCTH
okoy10 164 cekyHn, yacrora auckperusarpm 200 '), 3aMMCTBOBAHHBIN U3 W3BECTHOTO MOPTajia MEAMIIMHCKHUX 0a3
nmaHHEIX Physionet. Pemmaemble 3ama4u: mpoBepKa HEOAHOPOMHOCTH HA0Opa JaHHBIX, JaAYHCOMIUIAHT psiga SaO; u
€ro NMPHUPALICHUH B MIMPOKOM JTHANa30HE BO3MOXKHBIX, NMPOBEPKA CIy4allHOCTH NpupanieHuid psaa SaO», aprymeH-
Talys B NOJIb3Y NPUMEHEHHs TeOpHH TponeccoB THmna JleBn. k npupamenusm SaOz U 10Ka3aTeNbCTBO UX CaMOIIO-
J00us1, onpesieNieHre reoMeTpuIeckoro (pakrana U ero xaycaopgooi pazmepHoctd. Ucmosib3yeMble MeTOABI:
Teopusi MpoleccoB THma JIeBH, CTaTUCTUUECKHE METOJbl, METO]] MOKPHITUS NPSMOYTOIBHUKOB ISl (hpaKTaIbHBIX
CTPYKTYp, aBTOKOppENSHOHHAas (yHKIMs, nmporpamMmupoBanue B pamkax MAPLE 2020. ABropamu mNONydeHBI
CIIE/IIONIHE Pe3yabTaThl: HA00p JaHHBIX COCTOUT M3 TPEX MOAMHOXECTB C Pa3IMYHOH M3MEHUYMBOCTBIO; 3aITHCH U
WX IpUpPalIEHHs] OCTAIOTCS MacliTaOHO-WHBApUAHTHBIMHU, €CIIM YacTOTBHI MEPEKIIIOYEHHS OCTAIOTCS HHXKE, 4eM
YMEHBIIICHHAS YaCcTOTa JUCKPETU3AIUN; pUpaIieHus 3amuceit Sa0;, MpeaCTaBIsIOT co00i caMOMoI00HbIN CITydai-
HBIN npouecc Tuma JleBn; ¢dpakran - 3T0 HAOOp MOJOKEHHH HEHYJIEBBIX NMPHUPALICHUH (MIEPEKITIOYEeHHH) ¢ TeoMeT-
puueckoii ToukH 3peHusi. HayuHasi HOBH3HA NMOJYyYeHHBIX Pe3yJabTaToB 3aKJII0UaeTcs B CleqylomemM: 1) BrepBble
JoKa3aHa (pakTaibHas MPUPoa U camornogodue 3anuceid Sa0z M UX MpHUpaleHnid; 2) aBTOphI HAUTK (paKTaNbHbIe
pasmepHocTi Xaycnopda s noagMHoecTB B nuanazoHe (0,48...0,73) B 3aBUCMMOCTH OT W3MEHYMBOCTH; 3) aB-
TOPBI OOHAPYKHIIM TPHHIMITHAIBHYIO BO3MOXKHOCTh CYIIECTBEHHOI'O YMEHBIIECHHs Pa3MepoB JaHHbIX Sa0, 0e3
NOTEPh KU3HEHHO BaXKHOU MH(POPMAIHH.

KuioueBble cjioBa: HaChIIEHUE KHCIOPOJOM; KOPOHABHPYC; AayHCOMILUIHHT; (pakTaibl; npouecchl Jlesu; ca-
Monozaooue.
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