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CONVOLUTIONAL NEURAL NETWORK HYPERPARAMETER OPTIMIZATION

APPLIED TO LAND COVER CLASSIFICATION

In recent times, machine learning algorithms have shown great performance in solving problems in different
fields of study, including the analysis of remote sensing images, computer vision, natural language processing,
medical issues, etc. A well-prepared input dataset can have a huge impact on the result metrics. However, a
correctly selected hyperparameter combined with neural network architecture could highly increase the final
metrics. Therefore, the hyperparameters optimization problem becomes a key issue in a deep learning algo-
rithm. The process of finding a suitable hyperparameter combination could be performed manually or auto-
matically. Manual search is based on previous research and requires enormous human efforts. However, there
are many automated hyperparameter optimization methods have been successfully applied in practice. The au-
tomated hyperparameter tuning techniques are divided into two groups: black-box optimization techniques
(such as Grid Search, Random Search) and multi-fidelity optimization techniques (HyperBand, BOHB). The
most recent and promising among all approaches is BOHB which, which combines both Bayesian optimization
and bandit-based methods, outperforms classical approaches, and can run asynchronously with given GPU re-
sources and time budget that plays a vital role in the hyperparameter optimization process. The previous study
proposed a convolutional deep learning neural network for solving land cover classification problems in the
EuroSAT dataset. It was found that adding spectral indexes NDVI, NDWI, and GNDVI with RGB channels in-
creased the result accuracy (from 64.72% to 84.19%) and F1 (from 63.89 % to 84.05%) score. However, the
convolutional neural network architecture and hyperparameter combination were selected manually. The re-
search optimizes convolutional neural network architecture and finds suitable hyperparameter combinations
applied to land cover classification problems using multispectral images. The obtained results must increase
result performance compared with the previous study and given budget constraints.

Keywords: hyperparameter optimization; EuroSAT; BOHB; convolutional neural network; land cover; remote

sensing.

Introduction

In recent years machine learning algorithms are
widely used in different areas. The deep learning solu-
tions show high performance in robotics and autono-
mous vehicle control, text recognition [1, 2], automatic
license plate recognition [3], natural language processing
[4], neuroscience research [5], applications in computer
vision [6], remote sensing problems [7, 8], medicine
issues [9, 10]. Deep learning (DL) is a part of machine
learning algorithms that is applied to various areas,
showed high performance solving many types of prob-
lems and based on the theory of artificial neural net-
works [11].

In general, building an effective machine learning
model is a complex and time-consuming process that
involves determining the appropriate algorithm and ob-
taining an optimal model architecture by tuning its hy-
perparameters [12]. In practice, it is needed to search
continuously, apply different sets of values, retrain mod-
els, analyze, and compare result metrics to get the best
model. Therefore, hyperparameters optimization prob-

lem (HPO) becomes a key issue in a machine learning
algorithm.

Compared with other machine learning algorithms,
deep learning models usually have many hyperparame-
ters that must be tuned. And their optimization plays a
vital role in the prediction accuracy of algorithms [13].
Finding good external artificial neural network parame-
ters could highly increase result metrics in a reasonable
amount of time. On the other hand, because of the huge
number of parameters, the issue becomes more complex,
and it is unclear to understand how the parameters inter-
act with each other to affect the final performance. Since
all neural network models have an input layer, and an
output layer, the complexity of a deep learning model
mainly depends on the number of layers and the number
of neurons of each layer, which are two main hyper-
parameters to build deep learning models [14].

The research aims to optimize convolutional neural
network (CNN) architecture and find suitable hyperpa-
rameters combination applied to land cover classification
problem using multispectral images. The obtained results
must increase result performance in comparison with the
previous study [1] and given budget constraints.

© Vladyslav Yaloveha, Andrii Podorozhniak, Heorhii Kuchuk, 2022



116

Radioelectronic and Computer Systems, 2022, no. 1(101)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

1. Hyperparameter Optimization Problem

Hyperparameter optimization methods are used to
optimize the architecture and internal parameters of a
deep learning model. These methods provide evaluation
of the optimal hyperparameter combinations from given
search space configuration within the predefined budg-
ets [15].

For given input data X, n hyperparameters
{n,ny...np} with algorithm A the hyperparameter

problem aims to find an optimal configuration of n
hyperparameters, which maximizes the performance of
A in X [16]. The optimization problems can be classi-
fied as constrained or unconstrained optimization prob-
lems based on whether they have constraints for the
decision variables or the solution variables [12].

Hyperparameters in deep learning take different
values and constraints (for instance, the number of neu-
ral network layers and the number of neurons in dense
layers usually have different degree order). So, the op-
timization problem in the research is defined as maxi-
mization constraint one and can be expressed by the
next equation:

n =arg maxf (n),
neR

R={neN|g;(n)<0h;(n)=0},

where f(n) is the objective function, n isthe hyperpa-

rameter configuration that produces the value of f(n),

R is the feasible region that limits possible values from
the configuration search space S, gj(n),i=12...,k are

the inequality constraint functions,
hj(n)=0,j=12,...,1 are the equality constraint func-

tion, N is the domain of n. The mathematical expres-
sion of the function f varies, depending on the objec-
tive function of the chosen deep learning algorithm and
the result metric. On the other hand, in practice, time
budgets are an essential constraint for optimizing mod-
els and must be considered. It often requires a massive
amount of time to optimize the objective function of a
model with a reasonable number of hyperparameter
configurations [12].

2. Hyperparameter
Optimization Methods

The process of finding suitable hyperparameters
could be done manually or automatically. Manual
search is based on previous results, guessing, and data
scientist experience. It goes through different neural

network architectures and input setups until some pre-
defined stopping criterion. But manual tuning is ineffec-
tive for many problems due to certain factors, including
many hyperparameters, complex models, time-
consuming model evaluations, and non-linear hyperpa-
rameter interactions. These factors have inspired in-
creased research in techniques for automatic optimiza-
tion of hyperparameters and make it possible for users
to apply machine learning models to practical problems
effectively [12, 15].

In principle, the automated hyperparameter tuning
techniques can be classified into two main categories:
black-box optimization techniques and multi-fidelity
optimization techniques [15]. The most widely known
and used optimization approaches for deep learning
issues are considered below.

2.1. Black-box Optimization Approaches
2.1.1. Grid Search

The main idea of the Grid Search algorithm is
based on setting a grid of search space configuration,
evaluating all possible combinations, and selecting the
best one. The solution is easy to implement and parallel-
ize. However, a grid experiment with a fine-enough
resolution for optimization would be prohibitively ex-
pensive [17] and it does not scale well for large configu-
ration spaces, as the number of trails grows exponential-
ly with the number of hyperparameters [18]. And the
next experiment doesn’t use previous knowledge to con-
figure the search space to find better hyperparameters
configuration. This could lead to many redundant com-
binations. The computational complexity of the algo-
rithm increases exponentially, so it is suitable when we
have optimization problem with strict constraints and
search space is small.

2.1.2. Random Search

Another widely known alternative to Grid Search
is Random Search. As the name implies, the trial con-
figuration in random search is generated by selecting
hyperparameters independently and randomly. Random
search is also effortless to implement and could be run
asynchronously, which is important for big amounts of
data and deep learning issues (such as images classifica-
tion) and provides better solutions than grid search.

In [17] it is shown that random experiments are
more efficient than grid experiments for hyperparameter
optimization in the case of several learning algorithms
on several datasets, and its computational complexity is
O(n) [19]. On the other hand, as function evaluations

are very expensive, random search requires a long opti-
mization period.
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2.1.3. Bayesian Optimization

Bayesian optimization is a state-of-the-art optimi-
zation framework for the global optimization of expen-
sive black-box functions, which recently gained traction
in HPO by obtaining new results in tuning artificial neu-
ral networks for image classification, speech recognition,
and language modeling [20]. Bayesian optimization con-
sists of two main components which are surrogate mod-
els for modeling the objective function and an acquisi-
tion function that measures the value that would be gen-
erated by the evaluation of the objective function at a
new point [15]. A probabilistic model of the objective
function f is obtained using Bayes’ theorem:

P(fDrn ) o< P(Dyn [T)P(F),

where Dy, —hyperparameters configurations,

f — objective function.
Gaussian processes have become the standard sur-
rogate for modeling the objective function in Bayesian
optimization [21]. One of the main limitations of the

Gaussian processes is the runtime complexity of O(n3)

the number of data points which limits their paralleliza-
tion capability [17].

2.2. Multi-fidelity
Optimization Approaches

Increasing size of the input data, number of internal
and external neural network parameters make black-box
performance evaluation harder because it requires more
time and computational resources. Training a combina-
tion of hyperparameters could easily exceed from hours
to even several days [22].

A widely used technique to speed up such optimi-
zation is to probe a selected combination of hyperparam-
eters on a subset of the input data and train it only for a
few iterations. Multi-fidelity methods cast such manual
heuristics into formal algorithms, using so-called low
fidelity approximations of the actual loss function to
minimize [20]. Bandit-based algorithms have shown
strong performance, especially for optimizing deep
learning algorithms [23].

2.2.1. HyperBand

HyperBand is a bandit-based powerful multi-
fidelity algorithm. While recent approaches use Bayesian
optimization to adaptively select configurations, Hyper-
band focuses on speeding up random search through
adaptive resource allocation and early stopping. The

technique is formulated as a pure-exploration on sto-
chastic infinite-armed bandit problem where a prede-
fined resource like iterations, data samples, or features is
allocated to randomly sampled configurations [23].

The algorithm divides the given total budget B in-
to k pieces and allocates them to each configuration
b=B/k. Then, it calls successive halving technique
[24] on each random sample configuration. Hyperband
shows great success with deep neural networks and per-
forms better than random search and Bayesian optimiza-
tion [20]. The algorithm complexity is O(nlogn) .

2.2.2.BOHB

Authors of the recent optimization algorithm
BOHB [25] propose to combine both Bayesian optimiza-
tion and bandit-based methods, to achieve strong any-
time performance and fast convergence to optimal con-
figurations. BOHB can run asynchronously and uses the
resources effectively. It outperforms both Bayesian op-
timization and Hyperband on a wide range of problem
types, including high-dimensional toy functions, support
vector machines, feed-forward neural networks, Bayesi-
an neural networks, deep reinforcement learning, and
convolutional neural networks [25].

For a given budget, BOHB relies on the Hyperband
algorithm to determine how many parameters combina-
tions to evaluate with it. Despite Hyperband at the be-
ginning of the trial, BOHB uses a model-based search
instead of the random selection of configurations. Once
the desired number of configurations for the iteration is
reached, the standard successive halving procedure is
carried out using these configurations. Authors keep
track of the performance of all function evaluations

g(x,b)+¢ of configurations x on all budgets b to use

as a basis for models in later iterations. BOHB’s Bayesi-
an optimization component resembles the Tree-
Structured Parzen estimator [26] but differs by using
multidimensional kernel density estimators [20]. The
computational complexity of BOHB is O(nlogn).

The algorithm was successfully applied to hyperpa-
rameters optimization of support vector machines, feed-
forward neural networks, Bayesian neural networks,
deep reinforcement learning agents, and convolutional
neural networks. For tuning ConvNet the CIFAR-10
dataset is used and achieved a test error of
2.78%+ 0.09% which is better than similar re-
search [25].

Among all considered optimization approaches
above the BOHB algorithm was selected for experiments
due to its high performance, comparative computational
complexity, and availability of asynchronous execution.
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3. Experiments Setup

3.1. Previous Work

Modern artificial neural networks are used for solv-
ing remote sensing problems. The remotely sensed im-
ages usually have more complicated and diverse pat-
terns, thus higher requirements are imposed on the pro-
cessing methods of them [27]. However, deep learning
automates the process of finding valuable feature repre-
sentation on complex data. It is applied in many aspects,
including land cover and classification [28], agriculture
yield prediction [29] and analysis [30], crop-types classi-
fication [31], detecting fire hazardous forest areas [32].

In [1] was proposed simple convolutional deep
learning neural network (see Fig. 1) for solving land
cover classification problem on the EuroSAT dataset
[33]. It was found that adding spectral indexes (NDVI,
NDWI, GNDVI) as additional features with RGB chan-
nels could highly increase result accuracy (from 64.72%
in baseline approach to 84.19%) and F1 (from 63.89 %
to 84.05%) score. But in the research the deep learning
model and hyperparameter combination were selected
manually. In the current work, we focus on increasing
classification metrics by conducting hyperparameters
optimization.

The proposed baseline model in Fig. 1 consists of
sequences of convolutional and max-pooling layers. For
all next experiments, we chose ReLu(x)=max(0,X)

activation function among neural network layers. At the
final stage, the softmax activation function is defined as:

X;
e I
Wi =g

D"
j=1

where X =(Xg...X39) and X; represents i-th class in

EuroSAT dataset classes. After each max-pooling layer
BatchNormalization layer is added for preventing over-
fitting problem.

3.2. Search Space Configuration

The hyperparameters in models are divided into
two types: structure-related parameters (rough-tuning)
and learning-related ones (fine-tuning). These hyperpa-
rameters must be set before training a model configura-
tion.

For searching suitable hyperparameters we must
define the search space configuration. After we will
search through the space of parameters, assessing the
performance of each neural network by training it until
some stopping criterion (depending on the budget avail-
able) [34].

Tables 1 and 2 below highlight the overall search
space configuration and hyperparameters range for the
convolutional neural network optimization problem con-
sidered in the study.

3.3. Optimization Tools

For carrying out experiments, we used Ray Tune
[35]. It is a unified framework for model selection and
training that provides a narrow-waist interface between
training scripts and search algorithms. A trial is defined
as a single training run with a fixed initial hyperparame-
ter configuration. An experiment is a collection of trials
supervised by Tune using one of its trial scheduling
algorithms. During the search, many trials are evaluated
in parallel. Hyperparameter search algorithms examine
trial results in sequence and make decisions that affect
the parallel computation. The Ray framework provides
the underlying distributed execution and resource man-
agement. Each trial in Tune runs in its Python process
and can be allocated a given number of CPU and GPU
resources through Ray [33]. The Ray Tune execution
pipeline is shown in Fig. 2.

As the integrated development environment (IDE)
Google Collaboratory was selected. It is a project that
has the objective of disseminating machine learning edu-
cation and research. It is free of use and based on Jupyter
Notebook. The environment provides either Python
runtimes with the essential deep learning libraries (such
as TensorFlow, Keras etc.) and GPU support for parallel
computing that is considered to run the training process
in a feasible time [36].

3.4 Research Experiments Pipeline

The process of searching hyperparameters includes
an estimator, a search space, an optimization method
(BOHB) for hyperparameter combinations, and an eval-
uation function (validation accuracy) to compare results
obtained with different sets of parameters.

For all experiments next resources and constraints
were used:

T, =10-3600,
Niger = 500,
Ny =1500,
Acc,, =0.99

where Ty, —time budget (in seconds) per iteration,
N}ter,—max number of training iterations, N's —max

number of samples, Acc'va| —max validation accuracy.
The experiments pipeline is shown in Fig. 3.
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Fig. 1. Baseline convolutional neural network architecture

Table 1

Neural network architecture-related search
space configuration

Hyperparameter Range
Conv filters {16, 32, 64, 128, 256, 512}
Conv layers {1,2,3,4,5}
Dense layers {1, 2}
Dense units [128; 2048]
Dropout rate {0.0,0.1, ..., 0.5}

Table 2

Neural network learning-related search
space configuration

Hyperparameter Range
Learning rate [1le—10;0.1]
Batch size {25, 50, 75, 100}

Validation split

{0.1,0.15, ..., 0.4}

12 regularization

[1le—10;0.1]

Optimizer

{Adam, RMSprop, SGD}

Ray Tune Pipeline

Run

Ray Tune
API

Algorithms

Trial
Schedulers

Fig. 2. Ray Tune execution pipeline

Rough tuning

Yes Ray Tune
Pipeline

Fine tuning

Ray Tune
Pipeline

Fig. 3. Research experiments pipeline (i,j=0,1=2)
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4. Results and Discussion
4.1. Rough-tuning stage

On the rough-tuning stage, the search space config-
uration for convolutional neural network architecture
was selected from Table 1, and learning-related parame-
ters were taken and fixed from the baseline model
(see Table 3).

Table 3
Fixed learning-related hyperparameters on rough stage
Hyperparameter Value
Learning rate le—-6
Batch size 50
Validation split 0.2
12 regularization Not used
Optimizer RMSprop

After each iteration we filter hyperparameters con-
figurations by the next criterion:

@)

|Acc; — AcCyq | <&
Acc; =9,

where Acc; — train accuracy of k -th iteration, Acc,, —

validation accuracy of k-th iteration, ¢ and & —
thresholds.

Filtering trials is needed to remove unpromising
hyperparameters configurations, reduce configuration

space and general search complexity.

A Cony, Cony .., Conyy .. Co
ooy ey " Layers " Filters "2 Fil

Crs B

For first iteration and given time budget T, the to-

tal number of BOHB training trials were 1016. After
applying conditions (1) with ¢=0.1 and §=0.85 14
best configurations left. The filtered training trials and
accuracy values on each epoch are illustrated in Fig. 4.
For visualization high-dimensional or multivariate data it
is convenient to use parallel plots. For each of n dimen-
sion the parallel lines are drawn that vertically and equal-
ly spaced and considered as axes. High-dimensional plot
for current iteration is presented in Fig. 5.

As we can see from the high-dimensional plot in
Fig. 5 the input range for the 4-th convolutional filter and
the hidden neurons range in dense layers could be de-
creased. The final search space configuration for the next
iteration is shown in Table 4. The current iteration didn’t
decrease the input space significantly.
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Fig. 4. Best rough-tuning filtered training trials, i =0
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Fig. 5. High-dimensional trials plot, ¢ =0.1, 6 =0.85
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Table 4

Architecture-related search space configuration, i =1

Hyperparameter Value

Conv filters

e convl o {16, 32, 64, 128, 256, 512}

e conv?2 o {16, 32, 64, 128, 256, 512}

e conv3 o {16, 32, 64, 128, 256, 512}

e conv4 o {16, 32, 64, 128, 256, 512}

e convbs o {16, 128, 256, 512}

Conv layers {1,2,3,4,5}

Dense layers {1, 2}

Dense units

e layerl e [333; 1953]

o layer 2 e [188; 1969]

Dropout rate {0.0,0.1,0.2,0.3,0.4, 0.5}

After the second iteration among 1015 training tri-
als, 5 best configurations were filtered according to (1).
Fig. 6 and 7 show the results of the experiment. As we
can observe from the high-dimensional plot the number
of dense layers decreased from two to one, and for the
current problem, the suitable number of convolutional
layers is three. Furthermore, we got a single value of 512
for filters in the third convolutional layer. As we reached
the stopping criterion (i=1) and the time budget limit
the network-related hyperparameters are selected from
the best trial. The result training accuracy is 0.9227 (see
Fig. 6) and validation accuracy is 0.8373.
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Fig. 6. Best rough-tuning filtered training trials, i =1

Final optimized convolutional neural network ar-
chitecture is presented in Fig. 8.

4.2. Fine-tuning stage

On fine-tuning stage, we selected the search space
configuration from Table 2 and fixed optimized neural
network architecture (see Fig. 8). The first fine-tuning
experiment has consisted of 23 trials (¢=0.05 and
5=0.9). Fig. 9-10 show the training process for 4 best
learning-related hyperparameters combinations after
filtering.
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Fig. 7. High-dimensional trials plot (¢ =0.1, §=0.9)
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ﬁ% 0.65 b 3 tion is shown in Table 5. In comparison with the archi-
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cuted trials, one is left (see Fig. 11). The result training
accuracy is 0.983 and validation accuracy is 0.963. Table
6 highlights final optimized learning-related hyperpa-
rameters for the convolutional neural network.
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Fig. 10. High-dimensional trials plot, ¢ =0.05, 3=0.9
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Table 5
Learning-related search space configuration, j=1
Hyperparameter Value
Learning rate [0.00148; 0.06138]
Batch size {25, 50, 100}
Validation split {0.15, 0.35}
12 regularization [0.00057; 0.07905]
Optimizer {Adam, RMSprop, SGD}
0.95 5
2 0.90 [ ]
é 0.85 5
:
g 0.80 b
& o5t :
0.70 | 1
065 1 1 1 Il 1 Il
0 10 20 30 40 50
Trial
Fig. 11. Best fine-tuning filtered trial, j=1
Table 6
Optimized learning-related
hyperparameters combination
Hyperparameter Value
Learning rate 0.04590
Batch size 25
Validation split 0.15
12 regularization 0.05506
Optimizer SGD

The graphs in Fig. 12, 13 illustrate the training and
validation classification accuracies dependence on
epochs for final optimized convolutional neural network
with architecture defined in Fig. 8 and learning-related
hyperparameters from Table 6. Original accuracy and
loss curves are distorted by noise, so to capture the trend
they had smoothed them out by replacing the actual loss
and accuracy values with an exponential moving average
with factor oo =0.4.

As we can observe from graphs 23 epochs are
enough to learn the optimized model (to prevent overfit-
ting EarlyStopping [37] with the patience of 5 was used).
The total training time was approximately 10 minutes,
while the baseline model [1] took more than 3 hours
(438 epochs). Such difference between training time and
the number of epochs could be explained due to the big-
ger value of learning rate (1e—6 in baseline model vs
0.04590 in optimized one) that leads to a higher speed of
convergence.
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Fig. 12. Classification accuracy of the optimized model
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Fig. 13. Classification loss of the optimized model

Table 7 shows the percentage improvement of the
F1 score metric for each class in the EuroSAT dataset.
The neural network optimization process allowed highly
increase the F1 for Herbaceous Vegetation, Permanent
Crop, and Highway classes (up to 20%). Only the Forest
class among ten showed a slight decrease of the score.
The final classification accuracy of the optimized model
on the test dataset (15% from all images) increased from
84.19% to 95.31+ 1.73% and F1 score — from 84.05% to
95.33+ 1.72%. The obtained results outperformed the
selected baseline model from previous research [1].

Table 7
F1 metric comparison table of baseline
and optimized models (%)

No Class Baseline | Optimized | A”
1 |River 88.78 96.90 8.12
2 |Highway 73.17 94.18 21.01
3 |PermanentCrop 67.52 88.97 21.45
4 |Industrial 88.95 97.04 8.09

Herbaceous
5 Vegetation 71.34 91.85 20.51
6 | AnnualCrop 84.72 93.06 8.34
7 |Pasture 77.02 92.50 15.48
8 |Forest 93.55 93.33 -0.22
9 |Residential 93.46 98.74 5.28
10 |Sealake 96.67 99.07 2.4

"~ Difference between baseline and optimized columns
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Conclusions

Deep learning has made remarkable progress in dif-
ferent fields of study such as natural language pro-
cessing, computer vision and it shows promising results
in classification and analyzing remote sensing images.
Despite a well-prepared input dataset shows high per-
formance, optimizing hyperparameters in deep neural
networks could increase final metrics. Among all opti-
mization techniques (black-box and multi-fidelity ones)
BOHB algorithm is the latest, effective in solving the
optimization problem, and could be used by the modern
Ray Tune framework.

The current research is devoted to exploring an op-
timal range of possible hyperparameters and finding the
best configurations on a given budget automatically.
Final optimized convolutional neural network structure
and learning-related hyperparameters values are present-
ed in Fig. 8 and Table 6. It is obtained an overall in-
crease of F1 score (Table 7) for almost all classes in the
EuroSAT dataset (Herbaceous Vegetation, Permanent
Crop, and Highway — up to 20%). Final classification
accuracy and F1 score of the optimized model on the test
dataset outperformed baseline results: from 84.19% to
95.31+ 1.73% and from 84.05% to 95.33+ 1.72% re-
spectively. In [38] authors presented a 4-convolution
neural network, used all 13 spectral bands, and achieved
a result accuracy was 94.90%. In [33] authors got result
accuracy 98.57% using ResNet-50 model. But the model
contains approximately 23 million trainable parameters
and consists of 50 layers. In the current research, we got
comparative results, but the proposed neural network is
simple (3 convolutional layers and only one dense layer)
with a smaller number of trainable parameters and needs
less time for training.

In further research, the comprehension of black-box
optimization algorithms and BOHB will be provided.
Also, augmentation technics that increase result model
performance will be used in the next works. While the
process of hyperparameters optimization requires a big
number of resources using low-dimensional data could
speed it up [39].
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ONTUMIBALISI 'ITEPITAPAMETPIB 3rOPTKOBOI HEWPOHHOI MEPEXKI
JJIS1 KTACU®IKAILIL BEMEJIBHOI'O ITIOKPUTTSL

B. A. Anogeza, A. O. Iloooposcnsak, I. A. Kyuyx

OcraHHIM YacoM aJITOPUTMHU MAIIMHHOTO HABYAaHHS IMPOJEMOHCTPYBAJIM BUCOKY €(DEKTHBHICTD ITijl 4ac BHUpI-
LICHHS 3a/1a4 Y Pi3HUX O0JIACTSAX, BKIIIOYAIOYH aHaJ3 300pakeHb JTUCTAHIIITHOTO 30HAYBaHHS, KOMIT IOTEPHOTO 30-
py, 00poOKy IpHUpOAHOI MOBH, MEINYHUX POOIIEM Tommo. Bigomo, mo modpe miaroToBieHuH Habip BXiTHUX TaHIX
MOJKE MaTH BEJTMUE3HUH BIUTUB Ha pe3yabTyioui MeTpukn. OQHAK 1 mMpaBWIBHO Mmigibpana KoMOiHAaIis TimeprapamMe-
TPiB apXITEeKTypH HEHPOHHOI Mepeki MOKE 3HAYHO ITIABUIIUTH KiHIIEBI pe3yiapTaTd. ToMy mpobiiemMa OnTHMAalIbHO-
ro BHOOpY TimepmapaMeTpiB CTae KIIOYOBOIO B aNTOPUTMI TNIMOOKOro HaBYaHHA. lle mocmimkeHHS Mae Ha MeTi
3HAHTH apXiTeKTypy 3rOPTKOBOI HEHPOHHOI MEpeXi 3 BiAMOBITHOIO KOMOIHAIIIEIO TillepriapaMeTpiB A1l 3a1adi KIacH-
(hikari 3eMeIFHOTrO MTOKPUTTS 32 JTOTIOMOT'0I0 MYJTBTUCTIEKTPATEHIX 300PayKeHb Ta ITiABUIIUTH PE3YIBTYIOUi METPUKU
13 3aJaHUMH OFOKETHUMHE OOMekeHHsIMH. [Iporiec momryKy BiamoBiaHO kKoMOiHamil rineprapaMeTpiB MoXxe 31IiCHIO-
BaTHCA Bpy4HY 200 aBTOMaTHYHO. PydHNil momryk 3acHOBaHHI Ha TOMEPEHIX JOCIIKEHHSX 1 moTpedye BEeTHIe3HIX
JOIICBKUX 3YCHIIb. 3 1HIIOrO OOKY, iCHye 06araTo aBTOMaTH30BAHUX METO/IB ONTHUMI3aIli] TileprapaMeTpiB, SKi yCITiIl-
HO 3aCTOCOBYIOTHCS Ha TIpakTwili. Taki METOIM HAIAIIITYBAHHS TillepriapaMeTpiB MOAUISIOTECS Ha JIBi Tpymi: black-box
Mmeroan ontumizamii (taki sk Grid Search, Random Search) i multi-fidelity meromu (HyperBand, BOHB). HaiiHosi-
TIIAM 1 TIEPCIIEKTUBHUM cepejl yeix mimxonis € BOHB, sikuit moesnye sk GatieciBebky omrumizariro, Tak i bandit-based
MeToH. BiH MOXe BUKOHYBATHUCh aCHHXPOHHO 3 3aanumMu GPU pecypcamu Ta OrOHKETOM Yacy, 110 Biirpae BayIIH-
BY pOJIb Y TIPOIIEC ONTHMI3aIlil TireprapaMeTpiB. Y MonepeaHOMY JOCIIKEHH] 3aIPOIOHOBAaHO 3TOPTKOBY HEHPOH-
HY MEpEXY INTHOOKOr0 HaBYaHHSI ISl BUPIIICHHSI Po0ieMu Kiacudikanii 3eMenbHOro TOKPUTTS Ha OCHOBI EUroSAT.
HonaBanus criekrpanbaux iHaekciB NDVI, NDWI, GNDVI pa3om i3 kananamu RGB gano 3Mory miJIBUIIATH TOY-
HicTs Kacudikarii (3 64,72% no 84,19%) 1 F1 metpuky (3 63,89% mo 84,05%). IIporte apxiTekTypa 3ropTKOBOI HEM-
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POHHOI Mepexi Ta KoMOiHallis rineprapamMeTpiB Oyau oOpaHi BpyuHy. Lle mocmipkeHHsT Mae Ha MeTi 3HATH apXiTe-
KTypYy 3TOPTKOBOi HEMPOHHOI MEpeXi 3 BiJIIOBIIHOI0 KOMOIHAIII€I0 TileprapaMeTpiB I 3aaadi Kiacudikamii 3eme-
JIHOTO TIOKPUTTS 32 JOIIOMOI'0I0 MYJIBTHCHEKTPAJIbHUX 300pakeHb Ta MiJBUIINTH PE3YIbTYIOUl METPHUKH i3 3aja-
HUMH OO/pKeTHUMHU oOMekeHHsMH. [IpoTre apxiTekTypa 3ropTKOBOi HEHpOHHOI Mepexi Ta KoMOiHais rineprnapa-
MeTpiB Oynu oOpani BpyuHy. Lle mociimpkeHHsT Mae Ha MeTi 3HAWTH apXiTEeKTypy 3rOPTKOBOI HEHMPOHHOI Mepexi 3
BiJITIOB1THOIO KOMOIHAIIIEO TineprapamMeTpiB uId 3a1a4i Kiacudikaii 3eMeJIbHOr0 MOKPHUTTS 3 JOIIOMOTOI0 MYJIb-
TUCIIEKTPAJIEHUX 300payKeHb Ta MiIBUIUTH PE3YAbTYIOUi METPHUKH 13 3alaHUMH OFOJDKETHUMH OOMEXEHHSIMHU.

Karouosi cioBa: ontumizanis rinepnapametpis; EUroSAT; BOHB; sroprkoBa HelipoHHa Mepexa; 3eMelbHe
TIOKPUTTSI; JUCTAHIIIHE 30HyBaHHS.

ONTUMU3AIINSA TUTTEPIIAPAMETPOB CBEPTOUYHOI HEMPOHHOI CETH
JJIA KTACCUPUKALIUU 3EMEJIBHOI'O ITIOKPBITUA

B. A. Anogeza, A. O. Ilodoposcunx, I'. A. Kyuyk

B mocneanee BpeMs alrOpUTMbI MAITHHHOTO O0YYEHUS MPOJICMOHCTPUPOBAIHN BHICOKYIO 3()()EeKTUBHOCTh TpH
peIleHUH 3a/1a4 B pa3IMyHbIX 00JIaCTsIX, BKIIOYAs aHAJIN3 U300paKCHUN JUCTAHIIMOHHOTO 30HMPOBAHUS, KOMITbFO-
TEPHOrO 3peHUs1, 00PaOOTKY MPUPOTHOTO SI3bIKA, MEAUIIUHCKHUX MPOOJIeM | T. A. VI3BECTHO, YTO XOPOIIO MOArOTOB-
JICHHBIA HA0Op BXOMHBIX JAHHBIX MOXKET CHJIBHO TOBJIMATH HA PE3YIbTHPYIONHEC MEeTpUKUA. OIHAKO U MPABUIBHO
moJo0paHHasi KOMOMHAIIMS THIIEPIAPaMETPOB apXUTCKTYPhl HEHPOHHOW CETH MOXET 3HAYMUTEIHHO MOBBICHTH pe-
3ynbTaThl. [103TOMY MpobieMa ONTUMAJILHOTO BEIOOpa THITEPIapaMeTPOB CTAHOBHUTCS KIFOYCBOM B aJlTOPUTME TITY-
00koro oOyueHus. 1lenpi0 JaHHOTO UCCIICAOBAHUS SBISCTCS MOMCK apXHUTEKTYPhl CBEPTOYHON HEHPOHHOW CETH C
COOTBETCTBYIOIICH KOMOHMHAIIMEH THIIepHIapaMeTpoB I 3a1adyd KIACCH(DUKAIUKM 3€MEJIBLHOIO MOKPBITHS C ITOMO-
HIBI0 MYJIBTUCTIEKTPAIBHBIX U300pa)KEHUI M MOBBIIICHHE 3HAYCHUH Pe3yIbTHPYIONINX METPUK C 3a/IaHHBIMU OFOJI-
JKETHBIMH orpaHndeHusMu. [Ipoliecc moucka COOTBETCTBYIONIEH KOMOWHALIMK THIIEPIIAPAMETPOB MOXKET ITPOH3BO-
JOUTBCS pr‘IHy}O UJINX aBTOMATUYCCKU. Py'-IHOI‘/II IIOUCK OCHOBAH Ha npem)mymnx HUCCIICAOBAHUAX U Hy)K]laeTCﬂ B
6OJ'IBUJI/IX YECIOBCUYCCKUX yCI/IJ'II/IHX. C )lpyT‘OI‘/II CTOpOHI)I, CyLHeCTByeT MHOI'O aBTOMaTPBHpOBaHHBIX METOAOB OIITUMMU-
3alUM TUIIEpIapaMeTpoB, YCIEUIHO IPUMEHSEMBIX Ha MpakTuke. Takue MEeToabl HACTPOWKH THIIEpIIapaMeTpoB Jie-
nsiTest Ha fBe rpymmsl: black-box meromst ontumusanmu (takue kak Grid Search, Random Search) u multi-fidelity
metonsl (HyperBand, BOHB). CambIiM HOBBIM M IIEPCIIEKTUBHBIM CPEIU BeeX MOIXooB sBisiercs BOHB, o0benu-
HSIOIMI Kak OaliecoBCcKyro onTuMu3anuio, Tak u bandit-based mMetonsl. OH MOXET BBIIOJHATHCS ACHHXPOHHO C
3amanubiMu GPU pecypcamu 1 Gr0JDKETOM BPEMEHH, YTO UIPAET BAKHYIO POJIb B MPOLIECCE ONTHMHU3AIMU TUTIepIia-
pametpoB. B nipenBapuTenbHOM HCCIIEI0OBAHUN NPEATIOKEHa CBEPTOUHAS HEHPOHHAsI CeTh TIIYOOKOro 00y4eHHs JUIst
peleHus TpodIeMbl KIIACCU(HUKALIMK 3eMEJILHOTO TOKPHITUS Ha ocHOBe EUrOSAT. Jlo0aBiieHne CrieKTpalibHBIX WH-
nekcos NDVI, NDWI, GNDVI Bmecre ¢ kanaiamu RGB 1m0o3B0iHI0 MOBBICUTH TOYHOCTH Kiaccupukaiuu (c
64,72% no 84,19%) u F1 merpuxy (c 63,89% no 84,05%). OnHako apXUTeKTypa CBEPTOYHOM HEMPOHHOH CETH U
KOMOMHAIIMSI THIIepIapamMeTpoB ObLia BbIOpaHa Bpy4HY0. LleNibl0 JaHHOTO HMCCIIeIOBaHUsl SIBJISETCS TIOUCK apXHu-
TEKTypHl CBEPTOYHON HEHPOHHOI CEeTH ¢ COOTBETCTBYIOIIEH KOMOMHALIMEH THIIepIapamMeTpoB IS 33Ja4H KIacCH-
(UKauKM 3eMEIbHOr0 MOKPBITUSI C MTOMOIIBI0 MYJIBTHCHEKTPAIBHBIX M300pa)KeHHH M TIOBBIINICHUE 3HAYCHHN pe-
3YJABTHPYIOIIUX METPHUK C 33J[aHHBIMU OI0/PKETHBIMH OIpaHUYCHHSIMHU.

KarwueBbie cioBa: ontuMmuzanus runeprnapamerpoB; EUrOSAT; BOHB; ceprouHast HelipoHHasi ceTbh; 3e-
MeJIbHOE TIOKPBITHE; TUCTAaHIIMOHHOE 30HANPOBAHHUE.
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