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A GENETIC ALGORITHM OF OPTIMAL DESIGN OF BEAM
AT RESTRICTED SAGGING

A genetic algorithm for solving the problem of optimal beam material distribution along length at a given re-
striction on maximum sagging value is suggested. A review of literature sources is conducted and it was shown
that existing solutions cover partial cases only in which the position of the point with maximum sagging was
defined previously. In the paper presented I-section beam with constant proportions is considered, i.e., beam
width, caps, and web thickness are proportional to beam height in the current cross-section. A statically de-
termined beam is being considered. The load applied to a beam can be arbitrary, including cases of non-
symmetrical loads and differently oriented ones. The position of point(s) at which beam sagging is maximum
are unknown at the beginning of optimization and are found in the process solution. The problem is solved in
the linear definition. Beam mass was assumed to be an optimization criterion. The method of finite differences
is used for beam sagging finding, i.e., for the solution of the differential equation of the bending beam with a
variable cross-section. Discretization allows transforming the problem of design into the problem of beam
height determination at a system of reference points. At this stage, found values of beam height must satisfy re-
strictions on reference point displacements. The suggested technique allows controlling beam displacement
quite flexibly because restrictions on point displacement are considered separately and do not depend on each
other. The suggested objective function is the linear superposition of beam mass and the possible penalty in
case of beam maximum sagging over exceeding predefined values. The application of a genetic algorithm al-
lows getting sets of beam thicknesses those, which guaranty reaching the minimum of the objective function.
The model problem is solved. It is shown that the suggested algorithm allows effectively solves problems of op-
timal design of beams with restrictions on the maximum sagging value. The suggested approach can be devel-

oped for strength restrictions, statically undetermined structures, etc.
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1. Introduction

There are many papers devoted to structural ele-
ments optimization. Optimization process can be con-
cluded both in finding optimal parameters for definite
structural parameters only [1-3] and in solving problem
of structural optimization and finding function of opti-
mal material distribution through structure volume.
Beams are one of the most widespread structural ele-
ments and many papers are devoted to their optimal
design [4]. This fact is stipulated by following: beam is
relatively simple 1D-object. Generally, a problem of
optimization is in finding such material distribution
along beam length, which ensures minimal structural
mass at some restrictions. At solving of such kind of
problems definite parameters of beam cross-section are
assumed to be frozen, for example, beam width. In this
case a problem can be transformed to optimal beam
height distribution along beam length. One of the most
wide-spread restrictions applied is strength condition
fulfilling (or condition of equal strength) of a structure.
Other known restrictions are restriction on given point
translation (displacement) [5-7], integral restriction of

compliance [8], restrictions on free oscillations frequen-
cy [9], different types of buckling etc. If one analyzes
behavior of cantilevered beam loaded with bending
moments of the same sign it is possible to make conclu-
sion that maximum sagging can be observed at free
edge of a beam. The fact that location of a point which
corresponds of maximum sagging is knows before anal-
ysis makes problem to be simpler and allows to formu-
late variation problem in classical form. However, gen-
erally predict coordinate of maximum deflection is not
possible. This is stipulated by following: beam transla-
tions are derived differential equation with variable co-
efficients and displacements of a structure depend on
material distribution along beam length, and also on
location of applied load and boundary conditions.

In the paper [10] one of the authors suggested
solving of beam optimization problem based on idea of
beam discretization and consequent finding of beam
optimal heights according to system of reference points
disposed along beam length. Application of the method
of finite differences allowed to transform optimization
problem to the problem of non-linear separable pro-
gramming, which in its turn can be transformed to the
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problem of linear programming by means of lineariza-
tion. But unfortunately, described approach can’t be
generalized and developed for statically undetermined
beams and for non-linear bended beams.

Therefore, the current paper more universal ap-
proach is developed. It is based on principally another
ideas and can be spread for statically undetermined
beams, another types of restrictions and equations of
beams bending. Genetic algorithm is the basement of
the method suggested.

Application of genetic algorithms for solution
problems of topological optimization of structures is
quite popular [4]. The reason of this relative simplicity
and efficiency of genetic algorithms [11]. Large amount
of papers deal with optimization of laminated compo-
sites structure because genetic algorithm operates with
discrete sets of parameters [12]. In such cases, each el-
ement of sets of parameters describes characteristics of
correspondent layer. However, there are some modifica-
tions of the method, which allow optimizing geomet-
rical parameters distribution along structure length. For
such cases calculation of displacements and stresses
inside structure at given set of geometrical parameters is
conducted, for example, by finite elements method [13-
15], that can lead to calculation slowing.

This paper suggests approach for beam design
based on discretization of a structure by length and de-
termination of beam heights at the system of reference
points. Displacements of beam with variable cross-
section are calculated by conventional method of finite
differences, which possesses high calculation rate.

Aim of the paper is solution of beam optimization
task and development of the structures optimization
method which can be generalized and applied for wide
class of novel problems.

2. Problem formulation

Let’s consider double-edge supported beam with
variable cross-section and length L. Equation of beam
bending has following view

=M(x), @h)

where EI(x)- beam bending rigidity; w(x) - transver-
sal displacement; M(x) - bending moment in corre-
spondent section.

Boundary conditions

w(0)=w(L)=0, )

Let’s assume that beam cross-section keeps its

proportions along entire beam length. In this case beam
bending rigidity is the fourth order function of some
linear dimension of beam section, for example, its
height

El(x) =EK,h*(x),

where K, - coefficient depending of bean cross-section
shape; h(x) — beam height at section with coordinate x .

Beam cross-section in this case depends on beam
height powered by two:

S(x)=Kg-h?(x),

where Kg - is coefficient, which equals to ratio of beam
cross-section area to area of square with side length
h(x).

Volume of beam can be determined as

L L
V= [S(x)dx =K [h? (x)dx. 3)
0 0

If the density of beam material is averaged through
current section then mass of a beam is proportional to
beam volume and equals to product of beam volume
multiplied by density.

Beam loaded with bending moment assigned as
function of beam length M(x). Therefore, beam is

deformed under bending moment. Transversal beam
displacements (sagging) have following restrictions

do <w(x)<dy, xe(0;L). 4)

Here we assume that dy <0 and d; >0 because

beam side edges are unmovable (2). If |dg|=]|d;| then
condition (4) can be written as |w (x)| <dy.

Thus, one has to find dependence h(x), which

guarantees minimal structural volume (i.e. and mass) (3)
at restrictions on displacements (4). In their turn, dis-
placements are described by equation (1).

3. Solution composing

To solve the problem let’s compose algorithm
based on simultaneous application of the method of fi-
nite differences for direct problem solving (composing
solution of sagging equation (1)) and genetic methods of
optimization to find beam height at reference points.
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Beam was divided by system of nodes with nu-
meration 0 to N . Division increment — 6:%. Equa-

tion (1) in the form of difference has the view

82 M,
Wiq —2W; + Wi =——1, 5
i-1 i i+1 K, hi4 ()
where i - node number; M; and h; - correspondent

bending moment and beam height at node y3ie i .
Beam heights h; at each node are considered to be
given and known.

It leads form boundary conditions (2) then

Wg =Wy =0.

Considering this condition system (5) in matrix
form can be written as

AW=0Q, (6)
M,
2 1 Py
1 2 1 !
M,
A 1 21 o §° v
= , = — 2 s
K,
1 -2 1
1 Mn_1
4
]
Wy
w
w=| ?
WN-1

Restrictions (4) can be written as

dg <w; <dy, i=12,..,N-1, )
l.e. restrictions are applied to translation of each
node. If discretization id quite frequent, elastic line of
beam is smooth and doesn’t contain slope breaks then
replacement of restriction (4) with restriction (7) doesn’t
influence significantly to precision of problem solving.
Integral (3) can be found numerically with applica-
tion quadratic formulas of trapezia. Considering that
beam has hinged edges supported where mending mo-
ments are equal to zero (then hg =hy =0), one can get

relationship

vza-Ks(hf+h§+h§+...+h2N_l). ®)

Application of genetic algorithm for finding opti-
mal set of beam heights h; at nodes i=12,..,N-1
requires introduction of so-called fitness-function.
Reaching of this function minimum guarantees minimal
volume of beam (8) and fulfilling of restrictions (7). The
member 5-Kg in (8) is constant value. Therefore it can
be neglected because its value doesn’t influence of set
of optimal heights h; . This set we can consider as vec-

tor h. Thus, fitness-function can be selected in follow-
ing form:
CD(H): h12 +h% ..+ hf\l_l+
Winax < dl

01
+ 2
Z'(Wmax _dl) s Wpay > dp

0, Whin 2 dO
+ 2 9)
Z'(Wmin _dO) , Wpin <dg

+

Here Wppqy = i=r1nzli\lx—l{wi}’ Wmin :izgnil\rl]fl{wi} -

maximum and minimal translations (displacements) of
reference points and minimal translations (displace-
ments) of beam reference points (nodes) at given vector

h; Z — definite large number selected during algorithm
adjusting. To calculate values of fitness-function one
has to find beam deflections, which correspond to given

set of heights h by means of system (6) solving.

l.e. if displacements don’t overexceed restrictions
then fitness-function is proportional to structure mass.
But if maximum displacements elevate restrictions spe-
cial penalties are involved for analysis. Such penalties
are proportional to squared over exceeding of maximum
displacement by given restrictions. Penalty functions are
selected as quadratic to guarantee smoothness of func-

tion <D(ﬁ) at minimal point. Such approach allows

making algorithm convergence to be better. Minimum
can be reached at condition of minimal structural length
and doesn’t overexceed restrictions by displacements. If
mass is decreased more then displacements increase and
penalty functions are “turned on” increasing function
value.

Following algorithm is suggested for problem
solving:

1. Original population of vectors ﬁ(j), where
j=1...,n, (n - quantity of individuals in population) is
created. Individuals can differ by average height, for
example.

2. By data of sets with height h() correspondent
values of @; =CD(H(D) can be found using (8).
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3. Selection. Ranging of vectors ﬁ(j) presented in
population in accordance with correspondent values of
fitness-function @ i Select from population 2k (where

2k <n) elements ﬁ(j). Probability of getting into sam-
ple can depend either on number in ranged list or on @;

values in such way to guarantee getting to the sample

the best sets of height H(J) in population to ensure less
values of fitness-function.

4. Selection of parents. Arbitrary select from
sample k elements of the same «sex» (selection without
returning), and select arbitrary pair to each of them from
the rest k elements. Thus, k pairs of «parents» are se-
lected.

5. Mating. Compose mask for each pair, i.e. vec-
tor which contains approximately the same quantity of
figures zero and one and their total quantity equals to
N -1. By this mask new code for derivative of current
pair is composed. If a digit in mask is equal to zero
(false) we take correspondent element from one of par-
ents. If a digit is equal to one (true) then we take ele-
ment from second parent. The result of this operation is
creation of k derivative.

6. Mutation. In suggested version of algorithm
mutation can happen at previous stage of mating.. l.e.
mutations occur between individuals, which belong to
the group of k derivatives. Let’s assume that mutation
happens in definite small amount of random elements

hi(j) per each of k derivatives. Mutation is in changing
values of beam heights at several reference points of

individual h!) on random value with zero mathemati-
cal expectation. The value of random deviation can be
described, for example, by Gauss distribution with zero
mathematical expectation. In this case probability of
beam height increasing and decreasing at a node are the
same.

7. After embedding changes to genome code all
derivatives are return to population, volume of which is
increased from n to n+k individuals.

8. Death. Depopulation of individuals in popula-
tion can be organized by two ways: a) arbitrary, with
probability which is proportional to values of fitness-
function («worse» code higher depopulation); b) after
reaching definite age by individual (quantity of new
generations in population).

9. Checking of stop criterion. If criterion is not
reached (for example, given quantity of generation cy-
cles Ng) — returning back to the item 3.

10. Selection of best individuals to separate popula-
tion. If the population is filled with best individual — algo-
rithm stops. Otherwise — returning back to the item 1.

11. Averaging of heights values at reference points

by results of calculations. l.e. final population of the
best individuals (which of them are produced after cor-
responding cycle of evolution) has to be averaged.

The goal of the last item of algorithm is in
smoothening of some deviations, which are nevertheless
presented in process of evolution algorithm realization.

4. Numerical realization

To illustrate operation of suggested algorithm let’s
consider single-span hinged supported beam loaded
with concentrated force F, Fig 1.

L L X
F
X o
R, R,
. :
| <
[~ :

Fig. 1. Scheme of beam loading
Reactions in supports

L-L, LF

F, RZZT

Rl:

Bending moments in beam

—Rz('—_x)' Ly <x<L;
( ):{Fi(Ll—X)—RZ(L_X)' 0<x<Ly;

Let L=2m, L :gL, F=9800 N. In this case
maximum bending moment but
|Minax| = 2722,2 N-m.

Select I-section caps two times less than its height
and cap thickness is 0.1 of I-section height. Then
K| =0.0905, Kg=0.16494 . Elasticity modulus equals

to E =200 GPa that corresponds to steel.

At first try to solve problem of bending of beam
with constant cross-section. Cross-section of beam is I-
section with constant height hy =50 mm along beam
length. Calculations have shown that maximum by
modulus beam deflection appear in the first load case
and reach value W, =3.432 mm.

Fig. 2 shows diagrams of beam elastic line and
bending moments. Diagrams are drawn in dimension-

modulus equals



Intelligent information technologies

87

less mode as ratio of displacement to maximum sagging
(continuous line) and ratio of bending moments to max-
imum moment (dash line) mentioned above.

Then maximum sagging of beam with constant
cross-section is used as restriction for optimization of
beam height variable along beam length. Thus, we as-
sign in  restriction (4) dy=-3.432 mm and

d; =3.432 mm. Therefore, one can find beam height

variable along beam length, which guarantees minimal
mass of a structure and has the same maximum dis-
placements as in a beam with constant cross-section.

0.0 0.2 04 x 06 0.8 10

L

Fig. 2. Bending moment and sagging of beam
with constant cross-sections

Following parameters were used at implementation
of suggested algorithm;

— quantity of beam division intervals N =24;

— quantity of individuals in population n=50;

— quantity of pairs at the stage of mating k =8;

— maximum portion of mutated genomes in mutat-
ing individual 0.2;

— ultimate age of individual after which individual
removes from population, is equal to 6 cycles of genera-
tion (even if exact individual was not engaged to gener-
ation cycles);

— deviation of beam height at mutation is described
Gauss distribution with zero mathematical expectation
and mean-square deviation ¢ =0.2 mm;

— quantity of generation cycles Ng =5000;

— guantity of such cycles and volume of best se-
lected individuals is equal to 40.

Fig. 3 shows diagram of beam height changing
along beam length got for three cycles of problem solv-
ing, therefore, only some three solutions from the best
final population from all best solutions.

Beam height is shown on Fig. 3 in dimensionless
mode as ratio to height of beam with constant height
hg =50 mm. It can be seen that maximum beam height

corresponds to neighborhood of the point where bend-
ing moment is maximal.

Moreover, solutions suggested differ significantly
from each other due to random “interference” of muta-
tion. To compensate influence of such random devia-
tions the sample of 40 individuals was created. Each of
them represents optimal solution found in process of
genetic algorithm realization. Such technique allowed to
determine average beam height value at each reference
point. Result of such estimation is shown on Fig. 4.

0.0 0.2 04 x 06 0.8 10

L
Fig. 3. Beam height at nodes

1.0
0.81
ho 0.6
0.41
0.2

0.0 1

0.0 0.2 04 x 06 0.8 1.0

L
Fig. 4. Height of optimal beam at nodes

It can be seen that diagram has two slope breaks —
at the point of maximum bending moment and at the
point of concentrated force application. Result coincides
with solution which got by another way [10] that proves
correctness of operation of suggested algorithm.

Mass of the beam with constant cross-section

Mg = Vop = Ksh3Lp =9.26289 kg.

Mass of beam with variable cross-section along
beam length and having the same maximal displacement
like beam with constant cross-section

m=Vp= Kss(hf ot h,z\,,l)p —7.660458 Kg.
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Thus, developed optimal structure has mass 17.3%
less than original one.

Fig. 5 shows diagrams of displacement for beam
with constant height (W) and displacements for opti-

mal beam (W*).

It is clear that maximum deflections of beams are
the same, but sagging of beam with variable cross-
section along majority of total length are more than sag-
ging of beam with constant cross-section.

Fig. 5. Sagging of optimal beam and beam
with constant cross-section

Sets of beam heights got after each cycle of genet-
ic algorithm differ from each other due random muta-
tions (Fig. 3), so the is a sense to estimate scattering of
calculated values. Formally all reference points are
equivalent let’s consider deviations of heights from their
mean values at all reference points by means of creation
general array of deviations over all 40 individuals of
final population. Diagram of deviation frequencies is
shown on Fig. 6.

J
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Deviation, mm

Fig. 6. Diagram of deviation frequencies

Mean-square deviation of this sample is approxi-
mately equal to 1.2 mm. Obviously, another realization
of the algorithm will give slightly another diagrams of

deviation frequencies and mean-square deviation. But
calculation have shown that difference in obtained re-
sults is negligible.

Strictly speaking, scattering of beam heights at
nodes near mean value is stipulated by influence of ran-
dom mutations and mating. To estimate influence of
algorithm parameters on final results let’s change some
parameters of algorithm. Try to increase duration of
algorithm genetic selection from Ny =5000 genera-

tions to Ny =10000 generations. At the same time try

to reduce mean-square deviation of mutations from
6=0.2 mmto o =0.15 mm. All other parameters will
keep the same. Correspondent frequency diagram is
shown on Fig. 7.

o
o

0.6 1 -l
0.5 .I
2.4
z
_QO.3
2 |
{ o
) -I.
N AJ=-‘>
2 -1 '

0o 1 2
Deviation, mm

Fig. 7. Diagram of deviation frequencies

In this case mean-square deviation for given sam-
ple is reduced up to 0.7 mm (it was expectable).
Heights distribution visually doesn’t differ from one
shown on Fig. 4.

5. Conclusions

Suggested in the paper genetic algorithm allows to
find solution of beam height optimal distribution along
beam length at given restrictions on maximum dis-
placements. Moreover, in comparison with majority of
known analogous problems the position of point with
maximum beam deflection is unknown before analysis.

Algorithm shows good stability and gives similar
results in wide range of algorithm parameters (volume
of population, quantity of cycles, portion of mutative
genomes etc). Since solving of direct problems about
beam sagging is separated from optimization problem
application of genetic algorithm allows quite simply to
add restrictions on structural strength, buckling, apply
such approach to statically undetermined structures,
curved rods, non-linear beams sagging etc.

Further researches could be directed to algorithm
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perfection. For example, it is believable to be prospec-
tive to have significant portions of mutations and their
mean-square deviation at beginning iterations. Then
simultaneously with increasing quantity of generations
in algorithm to reduce values of these parameters. This
will allow from one hand to find quite quickly solutions
close to optimal at beginning stages of iterations, from
another hand to have minimal scattering of beam
heights close to optimal at final stages of iterations

Moreover, suggested algorithm is planned to be
used for solution of adhesive joints optimization [16,
17]. In this problem the law of two joining articles
thickness variation along joint length will be objective
function. Restrictions can be taken from strength condi-
tion but not the from rigidity like in current paper.

Contributions of authors: formulation of the
problem — S. Kurennov; development of genetic algo-
rithm — S. Kurennov, K. Barakhov; program realiza-
tion of algorithm — K. Barakhov, V. Stepanenko;
analysis of model problem, analysis results processing —
I. Taranenko, V. Stepanenko; text of preliminary ver-
sion of the paper S. Kurennov; editing and postediting
— K. Barakhov, I. Taranenko. All authors have read
and agreed to the published version of the manuscript.
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TEHETUYHUI AJITOPUTM ONTUMAJIBHOI'O ITIPOEKTYBAHHSI
BAJIKHU 3A HASIBHOCTI OBMEKEHb HA IIEPEMIIINEHHSA

C. C. Kypennos, K. I1. Bapaxos, I. M. Tapanenxo, B. M. Cmenanenxo

3ampoIoOHOBAaHO NEHETUYHNN aJITOPUTM PO3B’sI3aHHSA 3a7a4l ONTUMAILHOIO PO3IOAITY MaTepialy MO JTOBXKHHIL
OaJIKM 3a HAsIBHOCTI OOMEXEHHS Ha MaKCHMalIbHY BEJIMUMHY T1i BUTHHY. [IpOBeIeHO OISy JIiTepaTypH, 1 IMOKa3aHo,
IO BiZIOMI PO3B’SI3KH OOMEXKYIOTHCS JIAIIE OKPEMHUMH BUIIAAKAMH, U1 IKUX PO3TALIyBaHHSI TOYKA MAaKCHMAaJIbHOIO
BUTWHY BIZIOMO 3a34ajerigpb. Y IIPEIcTaBlIEHI poOOTI PO3IIIAmaeThCsa Oajka JIBOTABPOBOIO MEPEPI3Y MOCTIMHUX
MPOITOPIIH, TOOTO mKMpHHA OaJKH, TOBIIMHH ITOJIMIIL 1 CTIHOK OajKH IIPOMOPIIiHHI Il BUCOTI B JaHOMY Itepepisi. Po3-
IISAAETHCA CTATUYHO BU3HAYHI Oanka. HaBaHTa)keHHs, 110 i€ Ha O0anky, MOKe OYTH JOBIJIBHHUM, Y TOMY YHCII He-
CHUMETPUYHUM 1 PI3HOCIIPSIMOBAaHUM. Po3ramryBaHHs TOYOK (200 TOYKH), B SIKHX BUTMHHM OaJIKM MaKCHMMAaJIbHI — 3a-
3J1aJIETIIb HEBIJOMO 1 3HAXOIMTHCS B IIPOIEC] PO3B’SA3aHHA 3a7aui. 3ajada po3risiHyTa B JIHIWHIN mocraHoBIN. B
SIKOCT1 KPHUTEPIIO OITMMI3ammii OpuiiHaTo Macy Oanku. JIis 3HaXOMKEHHS BUTHMHIB OalIki, TOOTO IJIS PO3B’sI3aHHSI
b ePEHIIIAIIFHOIO PIBHAHHSA BUTHHY OaJIKH 3MIHHOTO IEPEPI3y BUKOPUCTOBYETHCS METO KIHIIEBUX PI3HHUIKG. uc-
KpETH3allis TO3BOJISIE 3BECTH 3a/1a9y MPOSKTYBAHHS 10 3aJadi 3HAXOKCHHS TOTPiOHUX BUCOT OAJIKH B CHCTEMI BY3-
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JIOBUX TOYOK. [Ipy HbOMY IIYKAHHK PO3B’SI30K MAa€ 3aJOBOJBLHITH CUCTEMI OOMEKEHb Ha IEPEMIIICHHS B BY3JIOBUX
Toukax. OCKIILKH OOMEKEHHS Ha IIEPEMIIICHHS KOKHOI BY3J0BOi TOUKH PO3IIISAAIOTECS OKPEMO 1 HE3ATIEKHO OJHE
BiJ OJHOI0, 3aIIPOIIOHOBAHA METOAMKA J03BOJISAE€ THYYKO KEpYBaTH OOMEKEHHSIMH Ha IepeMilleHHs Oalku. 3ampo-
IMOHOBAHO IIJILOBY (DYHKIIIIO, KA € JIHIHHOK CYIEPIO3HUIIEI0 Macu OAJIKU Ta MOXKIIMBOIrO IITpady 3a MepeBUIICHHS
MaKCHMAaJIbHOI'0 BUTHHY 3aJaHOr0 B yMOBi. IIpu poOOTI reHeTUYHOro ajJropuTMYy 3 IOMYJIAIii ICHYIOUMX HaOOpiB
TOBIIUH OaJIOK BiAOUPAIOTHCA Ti, sIKI 3a0€3MEeUYIOTh JOCATHEHHS 1[1JIbOBOKO (YHKIIIEIO MiHIMyMY. Po3B’s13aH0 Moze-
JIBHY 3a7a4y, 1 TOKa3aHo, 1110 3aIllPOIOHOBAHMI aJIrOPUTM J03BOJIsIE e(hEKTHUBHO PO3B’I3yBATH 3a]adl OIITHMAILHOIO
MPOEKTYBaHHs 0ajOK 3a HAgBHOCTI OOMEKEHh Ha MaKCHMAaJIbHY BEJIMYMHY BUTHHY. 3aIIPOIIOHOBAHMM ITIIX1J MOXKE
OyTH PO3BHHYTO Ha HAasIBHICTH OOMEKCHB IO MIITHOCTi, CTATUYHO HEBU3HAYCHUX KOHCTPYKIIIH TOIIIO.
Karo4osi cioBa: yMOBHa ONTUMI3allist; METO/ KiHIIEBUX Pi3HUIIb; TEHETUYHHUN aJlTOPUTM.

TEHETUYECKHHA AJITOPUTM ONTUMAJIBHOI'O TPOEKTUPOBAHMUSI
BAJIKM ITPU HAJIMYUU OI'PAHUYEHUU HA TIEPEMEINEHU S

C. C. Kypennoe, K. II. Bapaxoe, H. M. Tapanenxo, B. H. Cmenanenxo

TIpemnoxeHn reHeTHYECKHi aaropuT™M pelIeHUs 3aJaud ONTHMAILHOIO0 pacipeneicHus MaTepuasia Mo JJIHHE
OaJIKy IIPY HAJIMYUK OrpaHUYEHMs Ha MaKCHMAaJIbHYIO BEIUUYMHY ee nporuba. IIposenen 0030p MUTEPATYpEI, U I0-
Ka3aHo, YTO M3BECTHLIE PEIICHUST OrPAHHUYHMBAIOTCS JIMIIL YACTHLEIMU CIIYYAasIMHU, JJI1 KOTOPBIX IOJOKEHHE TOUYKHU
MaKCHMaJIbHOIO Tporuda M3BECTHO 3apaHee. B mpeacraBiieHHON paboTe paccMaTpuBaercsi 0ajgka JIBYTaBPOBOI'O
CEYEHHsT MOCTOSHHBIX IIPOITOPLMI, T.€. IIUPHHA OajaKH, TOJIIMHELI IOJIOK M CTEHOK OajKi IpOIOPIHMOHAILHEI €€
BBICOTE B JaHHOM ceueHuu. PaccMaTpHBaeTcs CTaTHUECKH onpeaenumas 0anka. Harpyska, geicTByroniast Ha Oajiky,
MOKET OBITH MPOM3BOJILHOM, B TOM YKCJIE€ HECUMMETPUYHON M pa3HoHanpaBiieHHOW. ITonoxeHus Todek (WIM TOY-
KH), B KOTOPBIX IPOrHObI OAJIKH MaKCHUMabHbLI — 3apaHee HEM3BECTHLI M HAXOAATCS B IIPOLIECCE PELICHUS 3a1a4uH.
3azaya pacCMOTPEHA B JIMHEMHOH IOCTaHOBKE. B KauecTBe KpPUTEpHsS ONTHMHU3AIMU NPHHATA Macca Oanku. s
HaXOXJEHUs NPOruOOB Oalku, T.e. IS pemeHus auddepeHuans,Horo ypapHeHus n3ruda Oajku IepeMeHHOro
CEYEHHS MCIOIL3YETCS METO KOHEUHELIX pa3HocTel. JIuckpernsalus Mo3BOISIET CBECTH 3a1a4y MPOEKTUPOBAHMS K
3aJa4e HAXOXKIEHUS MOTPEOHBIX BLICOT OAJIKM B CHCTEME Y3JIOBBIX TOYEK. IIpM 3TOM HMCKOMOE pEIIEHHE JOIKHO
VIOBJIETBOPATL CHUCTEME OrPaHMYEHUM Ha IEpEMENIEHNUS B Y3I0BLIX ToukaX. ITOCKOIBKY OrpaHHYEHHs Ha IEpEMe-
IIEHUS KaKIOH Y3JI0BOI TOUKH PACCMATPUBAIOTCS OTAEILHO M HE3aBUCUMO APYT OT APYyra, NpeUIoKeHHass METOIH-
Ka II03BOJISET THOKO YIIPABJIATH OrPaHUYEHHSIMH Ha nepemenienns oanku. [Ipemioxena nenesas GyHKIUS, KOTopas
MPEACTABIIAET COOOH TUHEHHYIO CYIEPIIO3UIINIO0 MAacChl OATKM M BO3MOXKHOrO mTpada 3a mpeBBIIIEHHe MaKCUMaJlb-
HOTro Iporuba 3aJaHHOr0 B YCIOBHH. [Ipn paboTe TEHETHYECKOr0 alTOPUTMA U3 MOMYIISIIIMK CYIIECTBYIONUX Hab0-
POB TOJIIUH OAJIOK OTOMPAIOTCA T€, KOTOPbIE 00ECIIEUNBAIOT JOCTHKEHUE LIeJIeBOl GyHKIMEH MUHUMYMa. Perena
MOJIeTbHAs 3a7a4a, U MOKa3aHo, YTO MPEMIOKEHHBIN aJrOPUTM 03BOJIsET 2((MEKTUBHO PEIIaTh 3aJa4i ONTHMAIIb-
HOT'O MPOEKTHPOBAHMS 0AJOK IIPH HAJIMYUH OrpaHHYEHHMH HA MAaKCUMAIbHYIO BEIHMYHHY Tporuba. IIpeaioeHHbIi
MOAX O MOXKET OBITh Pa3BUT HA HAIWYME OPAHUYCHHHN 110 MPOYHOCTH, Ha CTATMYECKH HEONpeJeIMMbIe KOHCTPYK-
WM, U T.[I.

KnroueBble c10Ba: yciIoBHAs ONITUMU3ALMS; METOJ KOHEUYHBIX PA3HOCTEH; T€HETHYECKHUI allrTOPUTM.
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