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ON COVID-19 EPIDEMIC PROCESS SIMULATION: THREE REGRESSION
APPROACHES INVESTIGATIONS

An outbreak of a new coronavirus infection was first recorded in Wuhan, China, in December 2019. On January
30, 2020, the World Health Organization declared the outbreak a Public Health Emergency of International
Concern and on March 11, it a pandemic. As of January 2022, over 340 million cases have been reported world-
wide; more than 5.5 million deaths have been confirmed, making the COVID-19 pandemic one of the deadliest
in history. The digitalization of all spheres of society makes it possible to use mathematical and simulation mod-
eling to study the development of the virus. Building adequate models of the epidemic process will make it pos-
sible not only to predict its dynamics but also to conduct experimental studies to identify factors affecting the
development of a pandemic, determine the behavior of the virus in certain areas, assess the effectiveness of
measures aimed at stopping the spread of infection, as well as assess the resources needed to counter the epi-
demic growth of the disease. This study aims to develop three regression models of the COVID-19 epidemic
process in given territories and to investigate the experimental results of the simulation. The research is tar-
geted at the COVID-19 epidemic process. The research subjects are methods and models of epidemic process
simulation, which include machine learning methods, particularly linear regression, Ridge regression, and Lasso
regression. To achieve the research aim, we have used forecasting methods and have built the COVID-19 epi-
demic process and regression models. As a result of experiments with the developed model, the predictive dy-
namics of the epidemic process of COVID-19 in Ukraine, Germany, Japan, and South Korea for 3, 7, 10, 14, 21,
and 30 days were obtained. The authorities making decisions on the implementation of anti-epidemic measures
can use such predictions to solve the problems of operational analysis of the epidemic situation, an analysis of
the effectiveness of already implemented anti-epidemic measures, medium-term planning of resources needed to
combat the pandemic, etc. Conclusions. This paper describes experimental research on implementing three re-
gression models of the COVID-19 epidemic process. These are models of linear regression, Ridge regression,
and Lasso regression. COVID-19 daily new cases statistics were verified by these models for Ukraine, Germany,
Japan, and South Korea, provided by the Johns Hopkins Coronavirus Resource Center. All built models have
sufficient accuracy to make decisions on the implementation of anti-epidemic measures to combat the
COVID-19 pandemic in the selected area. Depending on the forecast period, regression models can be used to
solve different Public Health tasks.

Keywords: epidemic model; the epidemic process; epidemic simulation; simulation; COVID-19; Ridge regres-
sion, Lasso regression, linear regression.

Introduction

An outbreak of a new coronavirus infection was
first recorded in Wuhan, China, in December 2019. On
January 30, 2020, the World Health Organization de-
clared the outbreak a Public Health Emergency of Inter-
national Concern and on March 11 a pandemic [1]. As of
January 2022, over 340 million cases have been reported
worldwide; More than 5.5 million deaths have been con-
firmed, making the COVID-19 pandemic one of the
deadliest in history [2].

The first coronaviruses, representatives of the Coro-
naviridae family from the order Nidovirales, were dis-
covered in the first half of the last century. The first hu-
man coronavirus, HCoV-B814, was isolated in 1965 and

has not survived to date [3]. By the beginning of the 21st
century, coronaviruses were a severe veterinary problem,
but it was believed that epidemic coronaviruses were not
among the most dangerous for humans. These views have
been revised. First, in 2002, the Severe acute respiratory
syndrome-related coronavirus (SARS-CoV) virus en-
tered the human bat population in Southeast Asia [4].
And then in 2012, when natural foci of the Middle East
respiratory syndrome-related coronavirus (MERS-CoV)
virus were discovered in the Arabian Peninsula [5].

At the end of November 2019, an outbreak of res-
piratory disease, later called COVID-19 (from the Eng-
lish Coronavirus infectious disease), caused by a third,
previously unknown coronavirus, was registered in Wu-
han (Hubei Province, China). Genetic studies have
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shown that the etiological agent of COVID-19 is closely
related to SARS CoV (2002-2003) and belongs to the
same species Severe acute respiratory syndrome-related
coronavirus of the genus Betacoronavirus. In this regard,
the virus was named SARS-CoV-2 [6].

The exponential spread of the new coronavirus,
named COVID-19, is facilitated by a globalized intercon-
nectedness of existing mobility systems, the same transit
routes, and modes of transport used in international mi-
gration [7]. This distinguishes the current pandemic from
previous ones and has contributed to the rapid spread of
the virus worldwide.

COVID-19 has had an unprecedented impact on
communities around the world [8]. Over the past two
years, many problems have emerged with a wide range
of medical, economic, and social impacts, directly or in-
directly caused by the virus or exacerbated by the pan-
demic. Many millions of people have lost their jobs and
others have faced the closure of their businesses as entire
manufacturing sectors have been forced to shut down [9].

The global pandemic has also affected the digitali-
zation of many areas of life: from the economy [10] to
medicine [11]. Many interactive online information dash-
boards have emerged to enable health authorities, re-
searchers, and the general public to visualize and track
the COVID-19 outbreak as it develops [12]. These dash-
boards show the number of confirmed COVID-19 cases,
deaths, and recoveries at the country level and how the
number of cases has changed over time.

This is what makes it possible to use mathematical
and simulation modeling to study the development of the
virus. Building adequate models of the epidemic process
will make it possible not only to predict its dynamics but
also to conduct experimental studies to identify factors
affecting the development of a pandemic, determine the
behavior of the virus in certain areas, assess the effective-
ness of measures aimed at stopping the spread of infec-
tion, as well as assess the resources needed to counter the
epidemic growth of the disease.

The paper aims to develop three regression models
of the COVID-19 epidemic process on given territories
and investigate the experimental results of the simulation.
The research is targeted at the COVID-19 epidemic pro-
cess. The research subjects are methods and models of
epidemic process simulation, which includes machine
learning methods, particularly linear regression, Ridge
regression, and Lasso regression.

To achieve the aim of the research following tasks
have been formulated:

1. Methods and models of the COVID-19
epidemic process should be analyzed;

2. Data on COVID-19 morbidity should be
analyzed;

3. A simulation model of the COVID-19 epidemic
process based on linear regression should be developed,;

4. A simulation model of the COVID-19 epidemic
process based on Ridge regression should be developed,;

5. A simulation model of the COVID-19 epidemic
process based on Lasso regression should be developed;

6. Experimental evaluation of regression models
should be provided,;

7. Results obtained during the experimental
studies should be analyzed.

The respective contribution of this study is two-
fold. Firstly, the development of models based on the re-
gression methods will allow estimating the accuracy of
simple machine learning methods applied to the simula-
tion of the COVID-19 epidemic process. Secondly, a
comparison study of three machine learning models to
emergence disease epidemic process simulation will con-
tribute to empirical evaluation of the effectiveness of
their application not only to COVID-19 but also to other
infectious diseases simulations.

In this paper, section 1, namely current research
analysis, provides the current state of COVID-19 epi-
demic process simulation methods and models. Section
2, namely COVID-19 data analysis, describes the data
used within the research and COVID-19 pandemic anal-
ysis in Ukraine, Germany, Japan, and South Korea. Sec-
tion 3, namely Models and methods, provides a brief
overview of linear regression, Ridge regression, and
Lasso regression methods to develop epidemic process
models based on them. Section 4 provides the results of
forecasting the COVID-19 new cases in Ukraine, Ger-
many, Japan, and South Korea with developed models.
The accuracy and complexity of developed models are
estimated. The discussion section discusses the obtained
results with Public Health tasks. Conclusions describe the
outcomes of the proposed models used.

Given research is part of a complex intelligent in-
formation system for epidemiological diagnostics, the
concept of which is discussed in [13].

1. Current Research Analysis

Methods for modeling epidemic morbidity originate
from the work of Kermack and McKendrick [14], who
developed the approaches of Ronald Ross [15] for mod-
eling infectious morbidity. The approach is based on di-
viding of the population into compartments that corre-
spond to the states of people. A system of differential
equations describes the spread of an infectious disease in
a given population using infection and recovery rates.

The digitalization of health care has opened up new
opportunities for automated diagnostics [16], building
medical information systems [17], security of medical
data [18], medical data storage [19], virus research [20],
and, in particular, for the study and modeling of epidemic
processes. The global COVID-19 pandemic has also con-
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tributed to modeling the spread of infectious diseases, at-
tracting research groups from around the world.

Many researchers use the classical compartment ap-
proach to COVID-19 simulation. The authors of the pa-
per [21] have applied the classical Susceptible-Infected-
Removed (SIR) model to the transmission of COVID-19
disease simulation. Transmission between states is real-
ized by the classical linear incidence rate and considers
the nonlinear removal rate, which depends on the hospi-
tal-bed population rate. Research [22] has proposed the
same structure but with a convex incidence rate. The au-
thors have calculated the disease-free and endemic equi-
librium and the basic reproduction number Ro. The re-
sults have shown that migration should be strictly prohib-
ited to save humanity from overcoming the pandemic.
Also, the isolation of infected ones is the best option to
secure a healthy community. Research [23] has proposed
to modify the classical SIR model with age structures.
The reason for such modification was the hypothesis that
the population age distribution has a significant effect on
disease spread and mortality rate. Authors have defined
disease parameters of the COVID-19 pandemic, such as
hospitalization, intensive care, and mortality rate for each
age bracket.

Some researchers expand the set of states of the
compartment models. Paper [24] presents Susceptible-
Exposed-Infected-Recovered (SEIR) model. The pro-
posed models showed that social distancing, wearing
masks in public, limiting non-essential travel, frequent
hand washing, and other control measures are necessary
to avoid the sizeable COVID-19 pandemic. On the other
hand, the model has been designed only to look at trans-
mission dynamics, so it does not investigate severity and
death. Authors of [25] have modified the SEIR model
taking into account the spreading of infection during the
latent period. The model is dedicated to evaluating the
confinement rate at the first stages of the pandemic out-
break to assess the scenarios that minimize the incidence
and the mortality rates. The model does not consider
space explicitly as authors have used aggregated data.

Other researchers apply more complex structures of
compartment models to simulate the COVID-19 epi-
demic process. For example, model [26], called
SEIHRD, consists of seven states, including Susceptible
(S), Exposed (E), Infected (1), Hospitalized (H), Recov-
ered (R), and Death (D), and considers social distancing,
as an attitude or behavior which can change the behaviors
and decrease contact rates that makes to reduce the trans-
mission of infectious and control the diseases. Paper [27]
has proposed deterministic compartmental model
SEAMHCRD, which includes various stages of infec-
tion, such as Mild, Moderate, Severe, Critical, based on
clinical stages of infection. The simulation results have
shown that there is no need for complete lockdown, and
values on transmission rates can be reduced by proper

contact tracing mechanisms and effective social distanc-
ing measures. Authors of [28] have added state Asymp-
tomatic and proposed the Susceptible-Asymptomatic-
Hospitalized-Isolated-Removal (SEAHIR) model. The
dividing of state Infected into three compartments
Asymptomatic, Isolated, and Hospitalized, makes it pos-
sible to delineate the transmission specifics of each com-
partment and forecast health requirements. Still, the pro-
posed model does not consider the reinfections and dura-
tion of immunity following SARS-CoV-2 infection.

Despite their popularity, classical deterministic
compartmental models have several disadvantages:

—high computational complexity;

—the impossibility of making changes to the model.
When changing the rules of the dynamics of infectious
disease and the virulence of a virus, the system of differ-
ential equations has to be rebuilt anew;

—the impossibility of taking into account the heter-
ogeneity of the population. The introduction of features
of individuals, such as gender, age, place of work, dra-
matically complicates the model and makes it unsuitable
for practical use;

—the impossibility of extending the model to other
diseases and areas of knowledge.

Authors of research [29] say that SIR-like modeling
could not be applied to outbreak simulation because it de-
pends on various parameters, most of which quantitative
information is not yet available. So, it is applicable only
for short-term forecasting. In [30] authors affirm that
such models often have conflicting messages that are
hard to interpret, and it is almost impossible to distin-
guish a good model from an unreadable one.

Therefore, to improve the accuracy of forecasting
the dynamics of the epidemic process, it is advisable to
use approaches based on machine learning. Their ad-
vantages are the high accuracy of the constructed fore-
cast, the possibility of retraining the model on updated
data, the possibility of using data not only on the inci-
dence but also characterizing the individuals of the pop-
ulation.

Thus, within the framework of this study, the fol-
lowing methodology is proposed. Analyze data on new
cases of COVID-19 hosted by the Johns Hopkins Re-
search Center coronavirus aggregator. Analyze the dy-
namics of the pandemic and control measures in different
countries to select countries for verification of machine
learning models. Implement three machine learning re-
gression models based on linear regression, Lasso regres-
sion, and Ridge regression methods. Build forecasts for
various periods, analyze their accuracy and identify tasks
for which they can be used in practice. To assess the ac-
curacy and adequacy of the constructed models, use both
the relative error and the mean absolute value. To assess
the possibility of using the developed models in medical
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institutions of the healthcare system, evaluate the compu-
tational complexity of the models.

2. COVID-19 Data Analysis

The data source used in the given research was the
Johns Hopkins Coronavirus Resource Center, which col-
lects available data on cases, death, hospitalization, tests,
vaccination and stores it publicly. The data is aggregated
and continuously updated.

We used the data on new cases in Ukraine, Ger-
many, Japan, and South Korea for the experimental
study. The purpose of selecting these countries is differ-
ences in testing, counter-measures, and policy to combat
the current pandemic.

As of January 2022, almost 4 million cases of
COVID-19 were registered in Ukraine, almost 100 thou-
sand of which ended in death. The first case of the spread
of a new coronavirus infection was recorded on March 3,
2020, in the Chernivtsi region after the patient returned
from Italy. Despite the constantly implemented anti-epi-
demic measures, a high incidence rate is observed. In
Ukraine, a nationwide quarantine was announced from
March 11 to April 3, 2020, which ended with a gradual
weakening of anti-epidemic measures on May 11, 2020,
May 22, 2020, and June 1, 2020. In April 2020, the “Diy
Vdoma” mobile application was introduced to control
people, who are required to undergo mandatory self-iso-
lation or observation. Adaptive quarantine in the country
is still ongoing, and control measures depend on the re-
gion’s distribution into four zones: green, yellow, orange,
and red [31]. On February 24, 2021, vaccination against
COVID-19 began. However, despite a sufficient number
of vaccines, immunization remains the lowest in Europe
[32]. Another characteristic of the pandemic in Ukraine
is the high level of disinformation and fakes among the
population due to the active information campaign of the
Russian Federation [33]. As of January 2022, the fourth
wave of incidence can be observed.

As of January 2022, almost 9 million cases of
COVID-19 were registered in Germany, more than 117
thousand of which are fatal. The first case was registered
on January 27, 2020, in Bavaria. From March to May
2020, a hard lockdown was introduced in the country,
which began to gradually loosen later [34]. In the fall of
2020, mass protests against quarantine took place, and at
the end of October, quarantine was again tightened for a
month [35]. On December 27, 2020, the country's official
coronavirus vaccination campaign began. As of January
2022, almost 75% of the population has been vaccinated,
80% of whom are under 60 years old [36]. Germany has
one of the lowest fatality rates (0.3%), which is associ-
ated with almost 100% testing of all suspected virus cases
and their isolation [37]. They also note one of the best
preparedness for a pandemic globally, associated with a

high level of medicine in the country [38]. In January
2022, there is a 4th wave of incidence associated with the
spread of a new strain of Omicron.

As of January 2022, 2.3 million cases of COVID-
19 were registered in Japan, 18.5 thousand of which are
fatal. The first confirmed case in Japan was identified on
January 16, 2020, in Kanagawa Prefecture. The state of
emergency in the country was announced on April 7,
2020 [39]. It should be noted that Japan was one of the
first countries outside of China in which a pandemic be-
gan. At the same time, successes in the fight against
COVID-19 also show the highest results. This is because
even before the pandemic, the Japanese wore masks,
even on the streets. At the same time, they monitor their
health, nutrition, aggression, and panic are not inherent
in Japanese society. The country’s people trust the gov-
ernment and carry out all anti-epidemic measures [40].
At the entrance to the country, careful control is carried
out with mandatory testing [41]. When an infected person
is detected, a particular protocol is implemented, accord-
ing to which all contact people are isolated. As of January
2022, 80.5% of the population has been vaccinated [42].
At the same time, the sixth wave of the pandemic is ob-
served.

As of January 2022, more than 760 thousand cases
of COVID-19 were registered in South Korea, of which
6.6 thousand are fatal. The first suspected case of a new
coronavirus was on January 8, 2020. On February 23,
2020, the highest level of danger was declared. At this
time, South Korea became the second country in the
world after China in terms of the spread of the virus, as a
result of which a hard lockdown was introduced until
May 2020 [43]. The country's leadership managed to ef-
fectively control the disease in a short time. Mass testing
of the population was carried out in the country with the
isolation of all infected and contact persons [44]. Such
large-scale testing has avoided a further increase in mor-
bidity and mortality. Mass testing also shows the lowest
death rate globally after Taiwan (0.4 per 100,000 popu-
lation). As of January 2022, 86.6% of the population has
been vaccinated [45]. At the same time, a new wave of
mortality is observed, which is associated with a new
strain of Omicron.

3. Models and Methods

Within the framework of this study, three models of
the spread of the incidence of COVID-19 were built
based on regression analysis. The models are based on
linear regression, Ridge regression, and Lasso regression.

Regression analysis is a classic approach to fore-
casting time series of any nature, easily implemented us-
ing modern computing tools. Non-adaptive models make
it possible to obtain a forecast of the incidence dynamics
for any period. However, they ignore local fluctuations in
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epidemic indicators and therefore are poorly suited for
short-term forecasting. On the other hand, adaptive mod-
els are designed to generate forecasts for several weeks
ahead and can be used to predict long-term trends.

3.1. Linear Regression

Linear regression is a model of the dependence of
the variable x on one or more other variables (factors, re-
gressors, independent variables) with a linear depend-
ence function. Linear regression refers to determining the
“line of best fit” through a set of data points and became
a simple precursor to the non-linear methods used to train
neural networks [46]. The advantage of models based on
linear regression is the ease of implementation.

The linear regression method consists in selecting
such coefficients of a linear equation with one or more
independent variables so that this equation best predicts
the value of the dependent variable. The result of linear
regression can be represented as a straight line in a plane,
minimizing the discrepancy between predicted and actual
values.

Let’s consider two continuous variables

X = (X1, Xz, ...

, Xn), Q
y= (Y1 Y2 ...s V). (2)

The country's leadership managed to effectively
control the disease in a short time. If we assume that y
depends on X, and changes in x cause changes in y, we
can define a regression line (regression of y on x) that
best describes the straight-line relationship between these
two variables.

A mathematical equation that describes a simple
linear regression model is

y=f(xb) +e, ®)

where b are parameters of the model;
¢ is a random model error.
The regression function has the following form:

f(x,0) =bo + baxg + boXxo + ... +oix,  (4)

where bj are regression parameters;
xj are model factors;
k is a number of model factors.

3.2. Ridge Regression

Ridge regression is the enhancement of linear re-
gression with improved error tolerance [47]. The model
imposes restrictions on the regression coefficients to ob-
tain a result closer to actual data. The advantage of using

Ridge regression is that this result is much easier to inter-
pret. A method is applied to deal with data overabun-
dance when independent variables correlate with each
other.

The following formula can describe Ridge regres-
sion. Let X be a suitably centered and normalized matrix,
which corresponds to the case when the regression prob-
lem under study is expressed in a correlation form. Then,
for the model, we can obtain estimates of the parameters
b by the formula:

b(h) = (XTX + AD)XTy. (5)

As the A parameter increases, the estimates decrease
in absolute value and tend to 0, while A tends to infinity.
The choice of alpha value is guided by the following fac-
tors [48]:

— at a certain value of A, the system stabilizes and
acquires the usual properties of an orthogonal system;

— coefficients with obviously wrong signsat A = 0
can be changed to make the sign fit;

— coefficients cannot have exorbitantly high abso-
lute values compared to the factors concerning represent-
ing rates of change;

— the residual sum of squares should not increase
to unreasonably high values. It should not be too large in
relation to the minimum residual sum of squares or in re-
lation to the value that corresponds to acceptable process
variations.

3.3. Lasso Regression

Lasso regression (Least absolute shrinkage and se-
lection operator) is similar to Ridge regression, except
that the regression coefficients can be zero (some features
are excluded from the model) [49].

The method introduces a constraint on the norm of
the vector of model coefficients. This leads to the con-
version to 0 of some coefficients of the model. The
method leads to an increase in the stability of the model
in the case of a large number of conditionality of the fea-
ture matrix X, allowing you to get interpretable models
by selecting features that have the most significant im-
pact on the response vector.

Lasso regression can be described by the following
equation:

Lw) = 3 I, (f0x, w)? + A ZPolwi|.  (6)

The Lasso tends to make the w part of the value be-
come 0, so it can be used as an object selection since the
regular term is not output everywhere here, so the gradi-
ent-based method cannot be used directly.

The considered machine learning models are not
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ideal. When used with complex data, errors are inevita-
ble.

Therefore, when implementing them and applying
them to actual data, the source should be considered. Un-
certain factors may cause data errors during data collec-
tion and storage.

In our case, the data is collected and cleaned. There-
fore, to improve the accuracy of the simulation, we can
optimize the model parameters to balance bias and vari-
ance.

One reason for the deviation is using a linear
method to solve a non-linear problem. The high variance
is that the model is too complex or overfitting.

If the deviation decreases, the variance increases ac-
cordingly, and if the variance decreases, the deviation in-
creases accordingly. Therefore, it is necessary to find the
optimal set of parameters in machine learning models.
Such a set of parameters can weigh the variance and var-
iance of the model so that the model's performance be-
comes optimal.

Therefore, these factors should be considered when
assessing the model's adequacy.
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4. Results

The models described in Section 3 were imple-
mented in the Python programming language. An exper-
imental study was carried out to predict the dynamics of
the spread of the epidemic process of COVID-19 for 3,
7,10, 14, 21 and 30 days.

4.1. COVID-19 New Cases Forecasting

We used data from the Johns Hopkins Coronavirus
Resource Center on new cases of COVID-19 reported
daily for experimental study. Morbidity dynamics mod-
els have been applied to predict new cases of COVID-19
in Ukraine, Germany, Japan, and South Korea.

Figure 1 shows the results of predicting new cases
of COVID-19 obtained using a linear regression model.

Figure 2 shows the results of predicting new cases
of COVID-19 obtained using the Ridge regression
model.

Figure 3 shows the results of predicting new cases
of COVID-19 obtained using the Lasso regression model.
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Fig. 1. Forecasting of COVID-19 new cases by the linear regression model
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Fig. 2. Forecasting of COVID-19 new cases by the Ridge regression model
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Fig. 3. Forecasting of COVID-19 new cases by the Lasso regression model
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4.2. Forecast Accuracy Estimation Table 3
Relative error of forecast for Japan (%)

To assess the accuracy of the constructed forecasts, Duration of Li Rid L
relative errors were calculated for a retrospective morbid- forecast R inear R 1age R asso
ity forecast for 3, 7, 10, 14, 21, and 30 days. Using the (days) egression | Regression | Regression
relative error of the training data, one can assess the ade- | Training 3 2.249401 | 15.43302 | 16.94114
quacy of the constructed model. The relative error of | predict 3 0.024418 0.796758 1.006096
forecast data shows the accuracy of the constructed fore-  ["Training 7 2.263346 15.52653 17.04295
cast of new cases of COVID-19. Predict 7 0.022876 | 0.797736 | 1.006635

Table 1 shows the accuracy of built regression mod- Training 10 | 2.273905 1559745 17.12016
els to estimate new cases of COVID-19 in Ukraine. Predict 10 0.023429 0.798279 1.00748

Training 14 | 2.288174 15.6931 17.22431
_ _Tablel oredict14 | 002231 | 0.797551 | 1.006077
Relative error of forecast for Ukraine (%) Training 21 | 2.313564 15.86356 1740992
D;’;‘:‘;g’;t"f Linear Ridge Lasso Predict2l | 0.021923 | 0.795017 | 1.002993
(days) Regression | Regression | Regression Training 30 | 2.347055 16.08861 17.65497
Predict 30 0.02175 0.792057 | 0.999613
Training 3 | 0.51047 | 7.218654 | 9.167315 redic
Pre(.jlc-:t 3 0.01954 0.077852 | 0.049995 Table 4 shows the accuracy of built regression mod-
Training 7| 0.522203 | 7.26747 9.229511 els to estimate new cases of COVID-19 in South Korea.
Predict 7 0.070956 | 0.064677 | 0.039235
Training 10 | 0.524341 7.302967 9.274878 Table 4
Predict 10 | 0.07866 0.152506 | 0.150389 Relative error of forecast for South Korea (%)
Training 14 | 0.526901 | 7.351176 | 9.335145 Duration of _ '
Predict 14 | 0.097589 | 0.198273 | 0.260624 forecast Linear Ridge Lasso
Training 21 | 0.531659 | 7.43091 | 9.434995 (days) Regression | Regression | Regression
Predict21 | 0.107914 | 0.40696 | 0.560994 Training 3 | 0.591071 | 1.488872 | 2.245665
Training 30 | 0.538668 | 7.527658 | 9.556304 Predict 3 0.440518 | 1.134591 | 1.642878
Predict 30 0.100237 | 0.695296 | 0.942586 Training 7 0.594315 1.492614 2 95156
Predict 7 0.230382 1.002351 1.460166
Table 2 shows the accuracy of built regression mod- Training 10 | 0.595863 1.49597 2 257425
els to estimate new cases of COVID-19 in Germany. Predict 10 0241142 0.940384 1.33219
raining . . .
bl Training 14 | 0.599411 1.503444 2.269125
. . Table2  predict1ia [ 0.182298 | 0.768649 | 1.079225
Relative error of forecast for Germany (%) Training 21| 0.604283 | 1517709 | 2.291235
D?;?;g;ff Linear Ridge Lasso Predict21 | 0.176351 | 0.597856 | 0.831502
(days) Regression | Regression | Regression Training 30 | 0.611314 1.534434 2.317176
Training 3 1315567 (3078552 | 3587338 Predict 30 0.160347 | 0.537641 | 0.748017
Predict 3 0.380621 1.243194 | 1.735014 Table 5
Tralr.nng ! 1.350275 3.082998 3.592783 Mean absolute error of cumulative new cases forecast
Predict 7 0.199158 1.894353 2.306608 for Ukraine (nUmber of CaseS)
Training 10 | 1.355431 3.089665 3.599147 Duration of
Predict10 | 0.21654 | 1.835582 | 2.295945 forecast Linear Ridge Lasso
Training 14 | 1.362386 | 3.0921 3.602342 (days) Regression | Regression | Regression
Predict14 | 0.227986 | 2.086237 | 2.527049 | ["pregict 3 713.6667 | 2846.667 | 1831.667
Training 21 | 1.37433 | 310433 | 3.61621 Predict 7 2566 2350.286 | 1427.857
Predict 21 0.25063 2.06512 2.481326 Predict 10 2833.5 5480.3 5395.8
Training 30 | 1.390609 | 3.132654 | 3.648929 | I'pregict14 | 3419.855 | 32607.11 | 3376341
Predict30 | 0.253488 | 1.807561 | 2.164123 | ['predict21 | 3790.905 | 14160.19 | 19474.24
Predict 30 3460.167 | 23371.93 | 31661.63

Table 3 shows the accuracy of built regression mod-
els to estimate new cases of COVID-19 in Japan.
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Table 6

Mean absolute error of cumulative new cases forecast

for Germany (number of cases)

Duration of Linear Ridge Lasso
forecast Regression | Regression | Regression
(days)
Predict 3 23663.67 77680.67 108349
Predict 7 12345.29 116295.4 141743
Predict 10 13156 111274.2 139142.9
Predict 14 13546.71 123638.3 149939.1
Predict 21 14301.62 118556.9 142688.4
Predict 30 13901.9 101110.5 121276.8
Table 7

Mean absolute error of cumulative new cases forecast
for Japan (humber of cases)

Duration of Linear Ridge Lasso
forecast Regression | Regression | Regression
(days)
Predict 3 421.6667 13759 17374
Predict 7 395 13774.29 17381.29
Predict 10 404.5 13782.5 17394.4
Predict 14 385.1429 13768.43 17368.29
Predict 21 378.381 13721.57 17311.14
Predict 30 375.2667 13665.5 17246.5
Table 8

Mean absolute error of cumulative new cases forecast
for South Korea (number of cases)

Duration of Linear Ridge Lasso
forecast Regression | Regression | Regression
(days)

Predict 3 2024.333 5250 7593.667
Predict 7 1053.714 | 4552.429 6630.429
Predict 10 1082.7 4221.4 5984.9
Predict 14 815.6429 3422.857 4812.714
Predict 21 766.1905 2624.667 3656.19
Predict 30 677.6 2295.4 3197

Relative error rates of epidemic process models are
not informative for health and public health workers, so
Tables 5-8 show mean absolute errors of regression mod-
els for cumulative rates of daily COVID-19 incidence.

4.3. Models Complexity Estimation

Let us estimate the computational complexity of the

linear regression model. Suppose X is a matrix (n X m)
and y is a vector of results. In that case, transposing the
matrix (n x m) will take O (n * m) time, (X’X) will take
O (n * m?) time, inverting the matrix (m x m) will take
O (m®) time, (X*Y) will take O (n * m) time, and matrix
(m x m) and (m x 1) multiplication will take O (m?) time.

Thus, the execution time of the model is
O (n*m +n*m2+m3+ n*m+m?). Therefore, the ac-
tual running time is O (m? (n + m). At the same time, the
probability of an increase in the number of observations
is higher than the number of attributes. Therefore, if the
model is used only to predict daily new cases of COVID-
19 cases, i.e. the number of attributes will remain con-
stant when calculating the elapsed time, you can ignore
the number of terms m. Then the time complexity of lin-
ear regression will be O (n).

The computational complexity of Ridge and Lasso
regressions is approximately the same, both of them are
cubic. Highly correlated data produce coefficient esti-
mates with large variance, which can make the estimates
unreliable. Lasso Regression removes the correlated co-
efficients and simply selects one of the sets of correlation
coefficients. The Lasso regression model is that it
chooses which coefficients to exclude. Ridge regression
makes the coefficients less correlated. Both operations
with coefficients introduce a systematic error into the
forecast. Thus, the Lasso regression model should be
used when it is necessary to reduce the number of instru-
mental variables since we do not evaluate their influence.
The Ridge regression model should be used if it is im-
portant that the model parameters do not fall out of it.

5. Discussion

The constructed models were applied to calculate
the forecast of new cases of COVID-19 for 6 periods:

— the forecast for 3 days is the nearest forecast for
implementing of the operational analysis of the epidemic
situation. At the same time, the main drawback of the
forecast is the possibility of unreliable statistics in a
three-day period, which is caused by weekends or holi-
days. Such a decrease in registered incidence on week-
ends and holidays, and, on the other hand, an increase in
statistics on subsequent days, is observed in all analyzed
countries;

— the forecast for 7 days can also be used for op-
erational analysis of the situation. At the same time,
7 days make up a week, so the outliers associated with
the registration of morbidity on weekends are smoothed
out in such a forecast, i.e. the dynamics of the forecast is
similar to the actual incidence of COVID-19. Also,
7 days is the minimum incubation period for COVID-19,
so new cases will also fall into this forecast [50];

— the 10-day forecast can be used to assess the de-
velopment of the current epidemic situation. Such a prog-
nosis also includes those already ill without external
manifestations, etc. The average incubation period for
COVID-19 is 10 days [50];

— the 14-day forecast assesses the effectiveness of
the anti-epidemic measures taken today. Because 14 days
is the maximum incubation period for COVID-19 [50],
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such a forecast includes both new cases of the disease and
those who have already become infected, but so far with-
out external manifestations;

— forecasts for 21 and 30 days can be used to study
the dynamics of the virus. Based on such forecasts, it is
possible to assess the need for anti-epidemic measures,
and what they should be. Analyzing such forecasts, one
can estimate the speed of filling beds and the need to pro-
vide hospitals with new beds, the required number of
beds with connected oxygen, the purchase of medicines,
and the required number of medical workers.

When choosing a model, one should also pay atten-
tion to the possibility of overfitting, i.e. situations when
the error probability of the trained algorithm on the ob-
jects of the test sample is significantly higher than the av-
erage error on the training sample. An analysis of the re-
gression models built within the framework of this study
showed that they are not overfitted.

The minimum required number of observations for
all constructed models was estimated to obtain a signifi-
cant result. For a linear regression model, this is 25 days;
for Ridge and Lasso regression models, this is 40 days
for any samples.

Also of interest is the observation of an increase in
errors with an increase in the forecast period for Ukraine,
slight fluctuations in error depending on the forecast pe-
riod for Germany, and a decrease in the error with an in-
crease in the duration of the forecast for Japan and South
Korea. Because since this situation is observed for all
three models, we can conclude that the accuracy of the
models depends on the correctness of the statistics. Thus,
in Japan and South Korea, there is a constant testing of
the entire population, i.e. asymptomatic patients are iden-
tified, and the actual incidence of COVID-19 is close to
that reported. Germany also has a high level of testing.
However, vaccination rates are lower than in Japan and
South Korea, and asymptomatic cases may not be in-
cluded in the statistics. It can be concluded that the reg-
istered statistics in Ukraine differ from the actual ones.
This is due to mandatory testing only when traveling
abroad if this is required by the entry rules of a certain
country. Those, testing covers severe cases of COVID-
19 that require hospitalization, and most asymptomatic
patients remain behind the official statistics.

Conclusions

The paper describes experimental research on im-
plementing of three regression models of the COVID-19
epidemic process. These are models of linear regression,
Ridge regression, and Lasso regression. Models were
verified by COVID-19 daily new cases statistics for
Ukraine, Germany, Japan, and South Korea, provided by
the Johns Hopkins Coronavirus Resource Center.

The scientific novelty of the study lies in the devel-
opment and study of models of the epidemic process of
emerging diseases using the example of COVID-19,
which are based on state-of-the-art methods of regression
analysis. Unlike others, the study analyzed forecasting
for different periods, which allows us to evaluate the pos-
sibility of using the calculated dynamics of the epidemic
process for different tasks.

The practical novelty of the study lies in determin-
ing the dynamics of the COVID-19 epidemic process for
different territories. At the same time, it is shown that the
accuracy of the models depends on the completeness of
registered cases of COVID-19. The tasks that can be
solved by public health workers depending on the period
of the available forecast are analyzed.

All built models have sufficient accuracy to make
decisions on the implementation of anti-epidemic
measures to combat the COVID-19 pandemic in the se-
lected area. Depending on the forecast period, regression
models can be used to solve the problems of operational
analysis of the epidemic situation, analysis of the effec-
tiveness of already implemented anti-epidemic measures,
medium-term planning of resources needed to combat the
pandemic, etc.

The nature of the dynamics of model errors depend-
ing on the forecasting period indicates a high agreement
between actual and registered data on the incidence of
COVID-19 in Japan and South Korea, sufficient com-
pleteness of data on new cases of COVID-19 in Ger-
many, and insufficient registration of asymptomatic and
contact patients with COVID-19 in Ukraine.

Future research development. Despite the high
accuracy of the constructed forecasts of new cases of
COVID-19, machine learning models do not allow to
identification of the factors that affect the dynamics of
the epidemic process, which is an important task for pub-
lic health professionals. Therefore, the further develop-
ment of this study is the development of multi-agent
models of the COVID-19 epidemic process in selected
areas and combining them with machine learning models
to improve the accuracy of forecasts. The development
of such combined models will allow taking into account
the intellectual behavior of individuals in the population
under study, social factors affecting the development of
the epidemic process, as well as assessing the effective-
ness of specific anti-epidemic measures, such as full or
partial lockdowns, wearing masks, social distancing, vac-
cination, etc.
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PO MOJEJJIOBAHHSA ENIAEMIYHOI'O ITPOLIECY COVID-19:
JOCJII)KEHHA TPbOX PETPECIMHUX ITIIXO/IIB

. I. Yymauenko, €. C. Mensaiinos, K. O. bazinesuu, O. I. 9yo

Crnaax HOBOI KOpOHaBIpYCHOI iH(eKii OyB Briepiie 3apeectpoBanuii B YxaHi, Kuraii, y rpyani 2019 poky. 30
ciuast 2020 poky BcecBiTHsI oprani3aiisi OXOPOHHM 3/I0pOB'Sl OTOJIOCHIIA ClTAJIaX HAJ3BHYAHHOIO CHTYAIli€l0 B Taiysi
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TPOMAJICHKOI OXOPOHHM 3JI0POB's, 1[0 Ma€ MiKHApOTHE 3HAUEHHS, a 11 Oepe3Hst — manaemiero. CTaHOM Ha ciueHb 2022
POKY y BChOMY CBITi 3apeecTpoBaHo noHan 340 MinbiioHiB Bumaakis; [TinTBepmkeHo MoHAM 5,5 MITBHOHIB CMepTeH,
o poouts mangeMito COVID-19 onHiero 3 Half0iIbII cMepTOHOCHUX B icTopii. Llndposizamis Beix chep cycminabeTBa
Jla€ MOXKJIMBICTh BUKOPHUCTOBYBAaTH MaTeMaTHYHE Ta iMiTaliifHe MOJEIIOBaHHS BUBUYEHHS PO3BUTKY Bipycy. [1o0y-
JIOBa a/IEKBaTHUX MOJEINEH eriieMiYHOro MPOoLECY JO3BOINUTH HE TIJIbKH MPOTHO3yBAaTH HOro TMHAMIKY, ane i mpo-
BOJIUTH €KCIIEPUMEHTAJIbHI JOCIIKEHHS 3 BUSIBIICHHS (DaKTOPIB, IO BIUTUBAIOTH HAa PO3BUTOK IMaHJEMii, BU3HAYATH
TIOBE/IIHKY BIpyCy Ha OKPEMHUX TEPUTOPISX, OLIHIOBATH €(DEKTUBHICTh 3aXO0/IiB, CIPSIMOBAaHUX Ha NPUITMHEHHS ITOIIH-
peHHsI iH]eK1ii, a TAKOX OLIHUTH PecypcH, HeOOXiHi UIsl TPOTUAIT eITiAeMIYHOr0 3pOCTaHHs 3aXBOpIOBaHHs MeTo1o
CTaTTi € pO3p0o0Ka TPHOX perpeciiHux Mopaenei emigemignoro nporecy COVID-19 Ha 3amaHuX TEpUTOPISIX Ta TOCTi-
JDKEHHS eKCIIEPUMEHTAIBHUX pe3yNIbTaTiB MozientoBaHHs. O0'€KT qocaimkeHns — eninemivnnii npouec COVID-19.
IIpeamet pocrixKeHHsT — MOZIEINI Ta METOM MOJICITIOBAHHS €IT1IEMIYHOT0 MPOIIECY, 0 BKIFOYAIOTh METOIM MaIlliH-
HOT'0 HABYAHHSA: JIHIHHY perpecito, Pipk perpeciro Ta perpecito Jlacco. [l TOCATHEHHS METH JOCIIHKEHHS MU BU-
KOpPHCTOBYBaJII METOAM TIPOTHO3YBAaHHS Ta IMOOYAyBasiM perpeciiiHi Mmoneni emigemiuHoro npouecy COVID-19. B
Pe3yJabTaTi eKCIIEPUMEHTIB 3 PO3POOIEHIMH MOJIENSIMH OYJIO OTPUMAaHO MPOTHO3HY AWHAMIKY €IiJIeMiyHOro Ipo-
necy COVID-19 B Vkpaini, Himeuuuni, Snonii Ta ITiBxenniit Kopei Ha 3, 7, 10, 14, 21 ta 30 guiB. Takuii mporHo3s
MOXe OyTH BUKOPHCTaHUI 0co0aMH, 110 MPUIMalOTh PillIeHHS PO BIPOBAPKEHHS MPOTHEITIEMIYHHUX 3aXO0IiB, IS
BUpILIIEHHS 3aBJIaHb ONIEPaTUBHOrO aHalli3y emiJJeMiqHOi CUTYallii, aHalli3y e()eKTUBHOCTI BXKE peai30BaHUX MPOTH-
eMiJIEeMIYHUX 3aXO0/1iB, CEPETHbOCTPOKOBOTrO IIAHYBAHHS PECYPCiB, HEOOXiTHUX It OOPOTHOM 3 MaHAEMIE0, TOLIO.
BucHoBkH. Y cTaTTi ONMCaHO eKCIIEPUMEHTAJIbHI JOCHTIPKEHHS peajli3alii TphoX perpeciiHux Mojesel emigemid-
Horo npotecy COVID-19. Ile moneni niniiHOT perpecii, perpecii Pimka ta perpecii Jlacco. Moaeni 0ynu nepeBipeHi
HIONEHHOIO cTaTHCTHKOI HOBUX BumaakiB COVID-19 B Ykpaini, Himeuunni, Snonii ta Ilisaenniit Kopei, HagaHoi
PecypcHuM 1eHTpoM 3 KopoHaBipycy YHiBepcurery Jona XonkiHca. Bei moOymoBaHi Mozenni MaroTh JOCTaTHIO
TOYHICTh ISl TPUHHATTS PIlICHb IIOAO0 MPOBEACHHS MPOTHEMIISMIYHUX 3aXO/IB IIOA0 OOpOTHOM 3 MaHAEMIEr0
COVID-19 na BuOpaHiii TepuTopii. 3aje:KHO BiJl Iepioy MPOrHO3Y PErpeciiiHi MoJielli MOXKYTh BUKOPHCTOBYBATHCS
JUISl BUPIILIEHHS PI3HUX 3aBJIaHb TPOMAaJICHKOI OXOPOHH 3/10pPOB's.

Karwuoi ciioBa: emigemMidHa MOJENb; SMiAEMIYHAN TPOLIEC; MOJCTIOBAHHS eriaemMil; monemoBantsa; COVID-
19; Pijok perpecisi; perpecist Jlacco; niHiiiHa perpecis.

O MOJEJIMPOBAHUU INMUJEMUYECKOI'O IPOLIECCA COVID-19:
HCCJIEJOBAHHUE TPEX PETPECCHOHHBIX IIOJAX0O10B

. U. Yymauenko, E. C. Menaiinos, K. A. bazunesuu, O. H. Uy

Bcenblika HOBOM KOpOHaBHPYCHOW MH(pEKIMU OblIa BIIEPBbIC 3aperucTpupoBaHa B Yxane, Kutaii, B nekadpe
2019 roxa. 30 suBapst 2020 roma BeemupHas opranu3zaiiys 31paBOOXpaHeHUs] OOBbSIBIIA BCIBIIIKY YPE3BbIYAHHOM
cUTyalnuel B 001aCTH 00IECTBEHHOIO 3[PaBOOXPAaHEHHsI, HMEIOIIel MeXIyHApOAHOE 3HaUeHHe, a 11 MapTa — mas-
nemueii. Ilo cocrostHuio Ha stHBaph 2022 roma Bo BCeM MHUpe 3apeructpupoBaHo 6onee 340 MUTHOHOB CIIydaes;
[Moareepxaeno Gonee 5,5 MUITHOHOB cMepTeit, uto Aenaet nannemuto COVID-19 oxHolt U3 caMbIX CMEPTOHOCHBIX
B ucropud. Ludposuzamus Bcex cdep oOIIecTBa JaeT BO3SMOXKHOCTD HCIIONIB30BaTh MaTeMaTHUECKOE M MMHUTAIIHOH-
HOE MOJIETTUPOBAaHUE AJIsl U3y4UeHUs pa3BUTHs BUpyca. [locTpoeHue aiekBaTHBIX MOZENEH SMUIEMUYIECKOTO IIPOIIecca
TI03BOJIUT HE TOJIBKO MPOrHO3UPOBATH €TO TMHAMHUKY, HO M IIPOBOJUTH SKCIIEPUMEHTANIbHBIE NCCIIEIOBAHKS 110 BBISB-
JIeHHIO (paKTOPOB, BIMAIOIINX Ha Pa3BUTHE MAHAEMUH, ONPENENATh TOBEICHHE BUPYCa Ha OTACIBHBIX TEPPUTOPHAX,
OLICHUBATh (P (HEKTUBHOCTD Mep, HAIIPABICHHBIX Ha MPEKpallleHHe pacpocTpaHeHHs: HHPEKIHH, a TaKKe OLEHUTH
pecypcbl, He00XOIUMBbIE TS IPOTUBOACHCTBHS AINAEMIYECKOMY pocTy 3aboneBanus. Lleiblo cTaTeu sBIAETCS pas-
paboTKa Tpex perpecCHOHHBIX Mofenel smuaemudeckoro mnporecca COVID-19 Ha 3agaHHBIX TEPPUTOPHIX U HCCITe-
JIOBAaHNE SKCIEPHMEHTAIBHBIX PE3YIbTATOB MOAEINPOBaHUA. O0beKT HCCIed0BAHUS — SMUAEMHYECKUI MTpoecc
COVID-19. IIpeameT uccaea0BaHUsI — MOJICIH U METOJIbI MOJCIUPOBAHUS MTUIEMUYECKOr0 MPOLEcca, BKII0YA0-
e B ce0s MEeTOIbl MAIIMHHOTO OOYYeHNUS: JTMHEHHYI0 perpeccuro, Pumk perpeccuro u perpeccuto Jlacco. s no-
CTIKEHUSI LIETTM NCCIIEOBAHNS MBI HCTIOIb30BAIN METO/bI TIPOrHO3UPOBAHUS 1 TIOCTPOMIN PETPECCHOHHBIE MOJIEIN
stmaemmdeckoro mporecca COVID-19. B pe3yabTaTe SKCIEpUMEHTOB C pa3paboTaHHON MOAENBIO OblIa TIOTydeHa
MIPOTHO3HASI JUHAMUKA rmaeMudeckoro mnpoiecca COVID-19 B Ykpanne, ['epmannu, Anonnu u FOxHOi Kopee Ha
3,7, 10, 14, 21 u 30 aueii. Takoli IPOrHO3 MOXKET OBITH UCIIOIH30BAH JIUIAMH, IPUHUMAIOIIUMH PEIICHUS O TPOBE-
JICHUH TTPOTHBOIIIMAEMUYECKIX MEPOIPHUATHH, ISl PEIICHNS 3aa4d ONEePaTHBHOTO aHAN3a SMHIEMUIECKON CUTYya-
11K, aHanu3a 3QQPEKTHBHOCTH YK€ peaTn30BaHHBIX IPOTHBOIMHUAEMHUIECKIX MEPONPHATHH, CPEAHECPOTHOTO ILIa-
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HUPOBAHMS PECYpPCOB, HEOOXOAMMBIX Uil OOpBOBI ¢ maHaeMuel u T.1. BoIBoabl. B cTaThe omrcaHbl SKciepuMeH-
TaJbHbIE UCCIIEOBAHUS PEATU3ALMH TPEX PErPECCUOHHBIX MOoAeNel anuaeMudeckoro nporecca COVID-19. 3to mMo-
JIeTM JIMHEHHOW perpeccuu, perpeccun Pumxa u perpeccun Jlacco. Monenu OblIM IIPOBEPEHBI €KETHEBHON CTAaTH-
ctukoi HOoBbIX ciiydaeB COVID-19 B Ykpaune, I'epmanun, fAnonuu u FOxHol Kopee, npenoctasnennoil Pecypcusim
LIEHTPOM IO KOpoHaBHpycy YHuBepcurera /[xona XomknHca. Bece moctpoeHHble Mozieny 00JalaloT JOCTaTOYHOM
TOYHOCTBIO JUISl IPUHSATHS PELISHHH O POBEACHUH POTUBOAIINIEMHYECKUX MEPOIPUATHH 110 OoprOe ¢ mangeMueit
COVID-19 nHa BBIOpaHHON TeppUTOPHH. B 3aBUCHMOCTH OT TIEpHOAA MPOTHO3a PETPECCHOHHBIC MO MOTYT HC-
TIOJTB30BATHCS [JIsl PEILICHUS] Pa3InYHBIX 33J1a4 O0IECTBEHHOTO 3paBOOXPaHEHNSI.

KaroueBsie ciioBa: snuaeMudeckas MOJENb; AUAEMHUYECKHH ITPOLIECC; MOJEIHPOBAHUE IUIEMHUH; MOJIEIH-
poBanue; COVID-19; Pumx perpeccus; perpeccus Jlacco; quHEHHAs perpeccus.
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