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COMPARATIVE STUDY OF LINEAR REGRESSION AND SIR MODELS
OF COVID-19 PROPAGATION IN UKRAINE BEFORE VACCINATION

The global COVID-19 pandemic began in December 2019 and spread rapidly around the world. Worldwide,
more than 230 million people fell ill, 4.75 million cases were fatal. In addition to the threat to health, the pandem-
ic resulted in social problems, an economic crisis and the transition of an ordinary life to a "new reality". Math-
ematical modeling is an effective tool for controlling the epidemic process of COVID-19 in specified territories.
Modeling makes it possible to predict the future dynamics of the epidemic process and to identify the factors that
affect the increase in incidence in the greatest way. The simulation results enable public health professionals to
take effective evidence-based responses to contain the epidemic. The study aims to develop machine learning and
compartment models of COVID-19 epidemic process and to investigate experimental results of simulation. The
object of research is COVID-19 epidemic process and its dynamics in territory of Ukraine. The research subjects
are methods and models of epidemic process simulation, which include machine learning methods and compart-
ment models. To achieve this aim of the research, we have used machine learning forecasting methods and have
built COVID-19 epidemic process linear regression model and COVID-19 epidemic process compartment model.
Because of experiments with the developed models, the predictive dynamics of the epidemic process of COVID-19
for 30 days were obtained for confirmed cases, recovered and death. For ‘Confirmed’, ‘Recovered’ and ‘Death’
cases mean errors have almost 1.15, 0.037 and 1.39 percent deviant, respectively, with a linear regression model.
For ‘Confirmed’, ‘Recovered’ and ‘Death’ cases mean errors have almost 3.29, 1.08, and 0.71 percent deviant,
respectively, for the SIR model. Conclusions. At this stage in the development of the epidemic process of COVID-
19, it is more expedient to use a linear model to predict the incidence rate, which has shown higher accuracy and
efficiency, the reason for that lies on the fact that the used linear regression model for this research was imple-
mented on merely 30 days (from fifteen days before 2" of March) and not the whole dataset of COVID-19. Also, it
is expected that if we try to forecast in longer time ranges, the linear regression model will lose precision. Alter-
natively, since SIR model is more comprised in including more factors, the model is expected to perform better in
fore-casting longer time ranges.

Keywords: epidemic model; epidemic process; epidemic simulation; simulation; linear regression; SIR model;
COVID-19.

2021, and as of April 3, 2021, 290,566 people were vac-
cinated in the country, which is not enough to limit the

Introduction

The new coronavirus, first identified at the end of
2019, spread rapidly around the world, and on April 4,
2021, the number of infected was 131,717,907 and the
number of deaths was 2,863,227. The ease of
transmission of the virus by aerosol from person to
person contributed to the high rate of spread of the
pathogen in different countries and created difficulties
in the fight against infection. With the aerosol
mechanism of infection, the most effective measure to
prevent the circulation of the virus is to create a high
level of herd immunity. A person acquires immunity
either naturally — as a result of an illness, or artificially —
as a result of vaccination. In the world, vaccination of
the population began in mid-December 2020, starting
with vaccinations for risk groups, primarily medical
workers. In Ukraine, vaccination began on February 24,

circulation of the virus. The dynamics of the epidemic
process and its patterns differ from country to country.
Vaccination rates and immunization coverage also dif-
fer. For a correct understanding of the development of
the epidemic in the specific socio-economic conditions
of the country and forecasting the epidemic situation to
make optimal management decisions to mitigate the
consequences of the epidemic (outbreak), it is necessary
to develop a mathematical apparatus that can most accu-
rately predict the dynamics of morbidity in a specific
period in a specific territory.

Two aspects typically determine a model fitting to
a data set [1]. Model complexity is obtained by the vari-
ables number and parameters are the first aspect. Gener-
ally, more complicated models might give premier fits
to data. Nevertheless, less complicated models appear
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more lucid and provide more valuable and influential
insights in illustrating the trends. Interchanging between
bias and variance plays an important role in choosing
the complexity optimal level [2]. Relevance between the
parameters is the second aspect. It is substantial to un-
derstand that the basis of such relativity does not need to
be completely precise for the model to be feasible.
Structural stability plays an important role here, which
refers to the possibility of making small changes in the
model assumptions that might cause substantial fore-
casting changes [3].

For this research, we have chosen two models.
Firstly, Linear Regression is handy to execute and uti-
lize for analyzing the COVID-19 trend. Based on lim-
ited factors, the results executed by Linear Regression
can be accountable for investigating the trend. Second-
ly, Susceptible Infective Recovered or SIR includes
more parameters and complicated calculations yet easy
to execute and operate on the desired dataset and also
analyzes the epidemic main drivers.

In the first part, each model will be explained. In
the next part, models will be run on the COVID-19 da-
taset and the result of both implemented models will be
represented and investigated for a limited time range.
The final part will include the comparison among both
model performances in forecasting the trend of COVID-
19 and actual data which is the purpose of this research.
All the investigation was done on Ukraine recorded data
provided by the Center of Public Health of Ministry of
Health of Ukraine.

The paper aims to develop machine learning and
compartment models of the COVID-19 epidemic pro-
cess and to investigate the experimental results of the
simulation. The object of research is the COVID-19
epidemic process and its dynamics in the territory of
Ukraine. The subjects of research are methods and
models of epidemic process simulation, which include
machine learning methods and compartment models.

To achieve the aim of the research following tasks
have been formulated:

1. Machine learning model of the COVID-19 epi-
demic process based on the linear regression method
should be developed.

2. Compartment model of the COVID-19 epidemic
process should be developed.

3. Experimental study of the Linear regression
model of the COVID-19 epidemic process should be
provided.

4. Experimental study of SIR model of COVID-19
epidemic process should be provided.

5. Results obtained during the experimental studies
should be analyzed and compared.

The respective contribution of this study is three-
fold. Firstly, the development of models based on re-
gression methods will allow estimating the accuracy of

simple machine learning methods applied to epidemic
process simulation. Secondly, the development of a
compartment model will allow to estimation application
of classical approaches to novel coronavirus disease
simulation. And, finally, a comparison study of two
different approaches to novel emergence disease epi-
demic process simulation will contribute to the norma-
tive and empirical evaluation of given models’ applica-
tion advisability to develop effective evidence-based
anti-epidemic and control measures.

In this paper, section 1, namely materials and
methods, provides a brief overview of linear regression,
multiple linear regression and compartment approach,
and the development of epidemic process models based
on proposed methods. Section 2 constitutes the results
and findings based on linear regression and SIR com-
partment models’ of the COVID-19 epidemic process in
Ukraine. Comparison results of given models’ perfor-
mance are described in Section 2.3. Conclusions de-
scribe outcomes of the proposed methodology.

1. Materials and Methods
1.1. Linear Regression

Linear regression is considered a statistical test
that is applicable to a set of data and quantifies and de-
fines the relevance among the dependent and independ-
ent variables. Linear regression is impressively mighty
in analyzing data and gives the researcher the allowance
to control the confounders' effects in realizing the rele-
vance among two variables [4].

In clinical research, the researcher intends to figure
out the correlation among two or more independent var-
iables as inputs and therefore to find out a dependent
variable as an output. Thus, this might be comprehended
as how the independent variables are considered for the
forecasting of the disease occurrence chance [5]. The
regression model forecasts a dependent variable value
regarding at least one independent variable value and
represents the chance of understanding the “independent
variables (risk variables) — dependent variables (e.g.,
disease)” relationship and describes it mathematical-
ly [6].

The linear regression model usage is considered
for some main reasons which are being descriptive
which support analyzing the association strength among
the dependent variable as the output and the inputs as
independent variables and adjustment which optimizes
covariates effects or the confounders [7]. Also, it sup-
ports estimating the major independent factors that in-
fluence the dependent variable and analyzes the influ-
ence on the dependent variable caused by changing the
independent variable per one unit. Finally forecasting
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the new cases is another feature of the linear regression
model [8].

The main point to consider is linear regression
analysis forecast does not imply causation. Accordingly,
a researcher is not able to conclude that an independent
variable causes a dependent variable based on given
cross-sectional survey data. As an example, let’s assume
that a person’s income and conspicuous consumption
are relevant [9]. Thus, to forecast the person’s income
level within a margin of error, the person’s purchasing
behavior information can be utilized. Nonetheless, it
would not be correct to conclude that income is caused
by. It is important to indicate that causation assessment
requires a proper design with cause and influence tem-
porally isolation and spuriousness prevention [10]. As a
result, linear regression with the mentioned design can
be utilized to assess causal hypotheses.

To achieve validated results of linear regression
usage, there are assumptions that the basic data needs to
meet [11]. These assumptions are considered the same
for different types of regression such as simple linear
regression, multiple regression, and hierarchical regres-
sion.

These assumptions are as follows:

1. The researcher sets the independent variable
values x.

2. Measuring the independent variable x must be
done with no experimental error.

3. For each independent variable x value, a nor-
mally distributed subset of variables y is there up and
down the Y-axis and the subset of variables y differ-
ences are uniformly distributed.

4. The subsets of variables y mean values perches
on a straight line, which implies the assumption of the
existence of a linear correlation among the dependent
and independent variables.

5. All the y values are dependent on x and inde-
pendent individuals [8].

The Determination Coefficient is the total variation
part in the dependent variable that is described by inde-
pendent variable variation. When R2 is bigger than one,
that means there is a perfect linear relevance among x
and y, or in other words, the variation in y is explained
by variation in x precisely. When 0 < R2 < 1, that
means there is a less precise linear relevance among x
and vy, thus the y variation is explained by x variation
incompletely [12].

Simple linear regression is a model including a
single regressor x that has relativity with a response y
which is a straight line.

The R2 is a best-fit straight-line slope, which
perches as close as possible to the data points collection
on an x-y scatter plot, where the x-axis indicates inde-
pendent variable values and the y-axis indicates de-
pendent variable values. The best-fit line with a non-

zero y-intercept can be utilized to forecast the dependent
variable values in connection with the slope. The simple
linear regression formula is:

9: Bo + BixX + ¢, (1)

where § is forecasted value;

Bo is the slope;

B1 is the value of x and they are called regression
coefficients;

g is an error term that reconciles variances among
actual values and forecasted values and corresponds to
y - [13].

Simplicity and usefulness interpretation are char-
acteristics of these coefficients. The change in the dis-
tribution mean of y occurred by a unit x change is de-
fined by slope B;. For x =0 in the data range on X, the
intercept By is the distribution mean of the response .
For data range on x without including zero, Bo does not
have practical interpretation [14].

Let’s assume that we have a set of n samples of
paired observations (xi, yi) (i =1, 2, ..., n). These obser-
vations are considered to fit the simple linear regression
model; thus, we have the equation as follows:

Vi= Bot+ BiX;+i, (I =1,2, .., n). (2)

The least squares basically estimate Bo and B; pa-
rameters by minimizing the summation of the squares of
the variance among the observations and the scatter dia-
gram line. This might be observed from different per-
spectives. Direct regression is defined as when the ver-
tical difference among the observations and the scatter
diagram line is considered, and its squares summation is
minimized to obtain Bo and B estimation. The ordinary
least square’s estimation is another name for this meth-
od [15].

The summation of the squares is minimized in di-
rect regression method.

n

S(Bo, B) = 2 ¢ =Zn:(yi -B,-Bx,)%, (3

i=1

for Bo and B respectively. Bo and B; solutions are cal-
culable through the formula as follows:

8S(Bo , B1) /6Bo =0, 4)
8S(Bo , B1) /8B1 = 0. ®)

Direct regression estimators or ordinary least
squares (OLS) estimators of Bo and B; are the names
given to solutions of these two equations.

Alternatively, the reverse regression method is de-
fined as when the summation of the squares of the vari-
ance among the observations and the scatter diagram
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line in the horizontal direction can be minimized to ob-
tain Bo and B; estimation [16].
The reverse regression equation is as follows:

xi= B+ B"yi+8i ,(i=1, 2,..., n), (6)

where &; are the random error associated components.

The reverse regression estimates Bog of B and
Bir of B, which are reached by interchanging the x and
y in the By and B; direct regression estimators. The es-
timates formulas are as follows:

Bor = X — Bir \Z (7
BJ_R — Syy / Sxy (8)

for Bo and Bj respectively. The residual squares summa-
tion in this case is

Ss*res = Sxx— Szxy / Syy, (9)

where b is the slope parameter direct regression estima-
tor and the correlation coefficient among x and y is rxy.

Subsequently, if r%y goes close to 1, the two re-
gression lines will get closer to one another. Reverse
regression method is feasible to be utilized in solving
the calibration problem [17].

1.2. Multiple Linear Regression

Practically, a meaningful model includes more
than one variable. Simultaneously, one regression prin-
ciple is to use as few variables as possible and merely
comprising the most important explanatory varia-
bles [18].

The general multiple linear regression model for-
mula with K explanatory variables is as follows:

y =BiXs + Baxa + ... + BiXk + €, (10)
where there are n observations of the outcome y, and for
each one there are the corresponding explanatory varia-
bles values (X, ..., Xk). The Xx; indicates the variable
value x; corresponding to the j-th observation.

The estimates basically minimize the squared re-
siduals summation

Se, (11)
i=1
where
& =VYi- Ji (12)
S\Ii = BO + leli + ...+ ékxki- (13)

The basic least squares assumptions are similar to
simple regression except it has one more assumption

which prohibits the redundancy possibility among the
explanatory variables [19]. For instance, it’s not possi-
ble to have two variables that contain different units but
totally the same information.

Multicollinearity is defined as the redundancy pos-
sibility among the explanatory variables. In its presence,
it degrades the precision of the regression model. Also,
one important point is to know that the estimated slopes
Bi depend on which including variables. Adding and
deleting variables changes the other B; [20].

1.3. SIR Model

The Susceptible Infected Recovered or SIR model
was developed in the twentieth century by Ronald Ross,
William Hamer, and others. This model includes a
three-coupled nonlinear ordinary differential equations
system. Kermack and McKendrinck's theoretical papers
from 1927 to 1933 have had an impressive impact in
modeling infectious diseases mathematically [21]. In-
creasingly utilizing mathematical models since then has
led to clarifying several diseases transmission. Studying
SIR models is crucial in enhancing the fundamental
knowledge of spreading out infectious diseases [22].
Although these models might seem simple, they evalu-
ate the control program's potential impact in decreasing
mortality and morbidity. In the past few years, and en-
hancement in mathematical models’ representation
trend has been seen which shows the interdisciplinary
importance. The SIR model is a tool which is at first
gives a comprehensive understanding of what occurs
rapidly; then, based on enhanced knowledge, enriching
the model by adding more details in the formulation is
possible [23].

The SIR model is a mathematical representation of
outbreaking an infection throughout a population over
time in a simpler way. Population division into pieces of
compartments Forms epidemic models. The SIR model
includes three main compartments as follows:

- Susceptible (S): Individuals who are susceptible
to infection; possibly including the ones who lose their
immunity or immune once. Also, more commonly, in
case of newborn infants whose mother has not passed
on any immunity because she has never been infected;

- Infected (I): The parasite level is impressively
large and potentially there is the chance of infection
transition to other individuals;

- Recovered or Resistant (R): All individuals who
have recovered after infection.

The acute infection dynamics are captured by this
epidemiological model. That confers immunity perma-
nently after recovery. Some diseases for which the SIR
model might be implemented are measles, smallpox,
chickenpox, mumps, typhoid fever, and diphtheria. As
an assumption, the total size of the population is con-
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stant, i.e., N =S + | + R. Then the demographic factors
inclusion or exclusion studies and distinguishes two
cases.

The SIR model basically includes ordinary differ-
ential equations (ODEs) and infers to a deterministic
model which doesn’t involve the randomness with con-
secutive time. Similar to the reaction kinetics principles,
the assumption is that confrontations between suscepti-
ble and infected individuals happen at an adequate rate
to their population respective numbers [24]. The new
infection rate can thus be described as BSI, where B is
the infectivity parameter. Infected individuals are con-
sidered to recover anytime with a steady probability,
which interprets into a rate of constant per capita recov-
ery that is denoted here with r, and (yl) is the recovery
overall rate. Based on the mentioned assumptions, the
differential equation form of SIR models is as follows:

ds dl drR

— =-B*S*l, —=B*S*|—yx*l, —=yx*|. (14

dt dt el g v 49
Another assumption is that population size

(S+I+R) is considered as constant and equal to the ini-
tial size of it, which is denoted with the N parame-
ter [25].

Typically, three threshold values are utilized in ep-
idemiology. The first value is called the basic reproduc-
tion number or basic reproduction ratio or basic repro-
ductive rate, which is denoted by Ro and considered as
the most important value. It is defined as the secondary
infections average number that happens when one infec-
tive is defined throughout a wholly susceptible popula-
tion and represents a borderline between persistence and
a disease death [26].

o is called the contact number, and defined as ade-
quate contacts average number of a common infective
within a period of infectiousness. If the individual who
contacts with the susceptible is infective, the definition
of an adequate contact will be formed which is the one
who is sufficient for transmission. As an assumption, for
the whole infectious period the infected individual is
inside it and mingles as same as a native with the host
population.

R is called the replacement number and defined as
the secondary infections average number turned out by a
common infective within the whole infectiousness peri-
od. It performs as a function of time (t) by disease evo-
lution after the initial invasion.

These three threshold values are all equal at the in-
ception of an infectious disease breakout [27].

R is the secondary cases actual number from a
common infective so that it is always less than the Ro
after everyone is infected. Furthermore, after spreading
out the infection, the susceptible fraction becomes less

than one, so that all adequate contacts result partially in
a new case and therefore R becomes less than o [28].
The result is as follows:

Ro>c>R. (15)

An epidemic will occur if an individual infected
found in the population and if dl / dt > 0. Replacing S
with N in Equation (15) results as BN /y > 1. The equa-
tion will be as follows [16]:

(16)

2. Results

2.1. Experimental Study
of Linear Regression Model

The Ministry Public Health Center of Ukraine pro-
vided data, reports the cumulative recorded death num-
bers and medical tests since the start of the COVID-19
pandemic in Ukraine respectively. To illustrate the
COVID-19 daily confirmed cases increasing number,
performed tests, recovered cases and deaths, a Regres-
sion model was built and the outputs were saved into
two new fields. Next, a list of all the dates was created
and converted from string to date-time format. The daily
confirmed cases increasing number recovered cases,
death cases, and performed tests are shown below re-
spectively. The Linear Regression model was built in a
Python environment and all implementations were done
inside it. The obtained results are shown in figures 1-3.

Figures 1-3 show an ascending trend by the time
which is somehow expected. By the time has passed the
amount of confirmed, recovered, death, and performed
tests have increased. The trends don’t suffer from con-
siderable bias. Thus, there is no need to normalize them.

A range of 30 days from 30/01/2021 until
01/03/2021 was considered for our investigation and
executing linear regression to forecast the first 15 days
of March (from 02/03 until 15/03). obtained determina-
tion coefficient for ‘Confirmed’, ‘Recovered’ and
‘Death cases’ are (0.98889), (0.98877), (0.98718) re-
spectively. The plot for each variable is shown in fig-
ures 4-6. Figures 4-6 show an ascending trend which
was expected.

The upward trend in morbidity and mortality indi-
cates the natural course of the COVID-19 epidemic pro-
cess in Ukraine. From the upward trend, it can be con-
cluded that the anti-epidemic measures taken within the
simulated time frame are ineffective. On the other hand,
the upward trend of the recovered, which has fewer dy-
namics than the predicted values of the sick, indicates a
further increase in the total number of patients in the
simulated territory.



10 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2021, no. 3(99) ISSN 2663-2012 (online)

1.4
1.2
1.0
0.8
0.6
0.4
0.2
L) R T

[ [ [
03.01 08.02 15.03 20.04 26.05 01.07 06.08 11.09 17.10 22.11 28.12 02.02 10.03

Confirmed

Date

Fig. 1. Confirmed cases trend based on COVID-19 actual dataset until 01/03/2021

1.2
1.0
0.8

0.6
0.4 |

0.2
0.0 -

Recovered

03.01 08.02 15.03 20.04 26.05 01.07 06.08 11.09 17.10 22.11 28.12 02.02 10.03

Date

Fig. 2. Recovered cases trend based on COVID-19 actual dataset until 01/03/2021

25
20
15

Death

10 ¢

I | |
03.01 08.02 15.03 20.04 26.05 01.07 06.08 11.09 17.10 22.11 28.12 02.02 10.03
Date

Fig. 3. Death cases trend based on COVID-19 actual dataset until 01/03/2021



Modelling and digitalization

11

Confirmed

Recovered

Death

1.500
1.475
1.450
1.425
1.400
1.375
1.350

1.325

I
17.02 21.02 25.02 01.03 05.03 09.03 13.03 17.03

Date

Fig. 4. “Confirmed cases” trend in 30 days; dots are actual data

1.28

1.26

1.24

1.22

1.20

1.18

1.16

| I i | I i I

17.02 21.02 25.02 01.03 05.03 09.03 13.03 17.03

Date

Fig. 5. “Recovered cases” trend in 30 days; dots are actual data

29.5
29
28.5

28
27.5
27

26.5
26

T
|

17.02

+

————————————————————————
21.02 25.02 01.03 05.03 09.03 13.03 17.03
Date

Fig. 6. “Death cases” trend in 30 days; dots are actual data



12 ISSN 1814-4225 (print)
Radioelectronic and Computer Systems, 2021, no. 3(99) ISSN 2663-2012 (online)

Now let’s have a look at the obtained forecasted
numbers for each variable based on linear regression
model in a table 1.

Type Start End Population

Oth Past 21Mar2020 13Jul2020 44622516

1st Past 14Jul2020 01Sep2020 44622516

Table 1 2nd Past 02Sep2020 30Sep2020 44622516
Linear regression forecasted results 3rd Past 010ct2020 190ct2020 44622516
Date Confirmed Recovered Deaths 4th Past 200ct2020 03Nov2020 44622516
2-Mar 1404965 1220933 27618 5th Past 04Nov2020 15Nov2020 44622516
3-Mar 1411007 1224742 27742 6th Past 16Nov2020 25Nov2020 44622516
4-Mar 1417049 1228551 27865 7th Past 26Nov2020 05Dec2020 44622516
5-Mar 1423091 1232360 27989 8th Past 06Dec2020 16Dec2020 44622516
6-Mar 1429134 1236170 28112 9th Past 17Dec2020 29Dec2020 44622516
7-Mar 1435176 1239979 28235 10th Past 30Dec2020 14Jan2021 44622516
8-Mar 1441218 1243788 28359 11th Past 15Jan2021 06Feb2021 44622516
9-Mar 1447260 1247597 28482 12th Past 07Feb2021 28Feb2021 44622516
10-Mar 1453303 1251406 28606
11-Mar 1459345 1255215 28729 Fig. 7. Different phases in Ukraine.
12-Mar 1465387 1259024 28852
13-Mar 1471429 1262833 28976 Ukraine: Slmulatecf num:ber:of:c‘afsgts .(Iflla'm's]c;enarlo)
14-Mar 1477472 1266642 29099 1200000
15-Mar 1483514 1270451 29223 1000000
16-Mar 1489556 1274260 29346 —
. é 600000
2.2. Experimental Study of SIR Model
400000
The COVID-19 epidemic process dynamics de- 200000 |- —‘ Infected
pendence and interepidemic countermeasures were in- g iz L o S
vestigated by our SIR developed model and the influ- ©Aor May Jun Jul Aug Sep Oct NovDec Ja FebMar
ence of each factor on the dynamics was determined. As
a matter of using a more deve_loped model and th_us hav- Fig. 8. The illustration of COVID-19 trends
ing the capability of including n_wore complfaxny and of ‘Infected’, Fatal’, ‘Recovered’ cases
factors, the SIR-F was used for this research instead of in Ukraine until 16/03/2021
the classic SIR model. ‘F’ represents the ‘Fatal with
confirmation’ in the SIR-F model. Table 2
Figure 7 illustrates the COVID-19 epidemic pro- SIR model forecasted results
cess in different phases in Ukraine based on the imple- -

. . D f R Death
mentation of the SIR-F model on COVID-19 dynamics ate Confirmed ecovered eaths
changes started from the date each stage. 2-Mar 1389629 1229196 27846

. . . . 3-Mar 1393695 1233965 27968

The final step is to illustrate the forecasting results
. 4-Mar 1397735 1238704 28089

of COVID-19 by SIR models. Figure 8 shows the trend
f COVID-19 “Infected’. *Fatal’ and ‘R J 5-Mar 1401749 1243413 28209
? e ‘(‘izc? o ra j‘I“f egfver(‘; “R"ases' 6-Mar 1405739 1248093 28329
tlS,(’: aracterized by increasing “In 'ecte .am ) ecov- 7-Mar 1409702 1252744 28447
ered” b?f Decemb.er 2“020 and”by increasing “Recov- 8-Mar 1413641 1257366 28565
ered” with decreasing “Infected” after December 2020. 9-Mar 1417557 1261960 28683
Based on these separated phases we can compare 10-Mar 1421445 1266524 28799
the results of SIR_—F _model parameters estimation. The 11-Mar 1425310 1271060 28915
results are shown in figure 9. 12-Mar | 1429151 1275568 29030
Table 2 shows the forecasted numbers in each 13-Mar 1432965 1280047 20144
case. 14-Mar 1436758 1284499 29258
15-Mar 1440526 1288923 29371
16-Mar 1444269 1293319 29483




Modelling and digitalization 13

Type Start End Population ODE Rt theta kappa rho sigma  tau alph?j] 1;5:;3 1'9352';'3] 1"EIELE‘J,2] RMSLE Trials

Oth Past 21Mar2020 13Jul2020 44622516 SIRF' 6.46 0.071862 0.000170 0.061032 0.008605 1440 0.072 16 16 5881 2436749 2360
1st Past 14Jul2020 01Sep2020 44622516 SIRF' 1.75 0.000099 0.000586 0.034863 0.019308 1440 0.000 28 51 1706 0.062676 2376
2nd Past 02Sep2020 30Sep2020 44622516 SIRI; 2.44 0.000375 0.000607 0.034413 0.013504 1440 0.000 29 74 1646 0.012637 798
3rd Past 010ct2020 190ct2020 44622516 SIR'; 262 0.000100 0.000586 0.038146 0.013966 1440 0.000 26 71 1706 0.010948 2386
4th  Past 200ct2020 03Nov2020 44622516 SIR'_: 2.31 0.000652 0.000641 0.036765 0.015286 1440 0.001 27 65 1560 0.013197 573
S5th  Past 04Nov2020 15Nov2020 44622516 SIRI_: 1.65 0.001461 0.000594 0.041438 0.024447 1440 0.001 24 40 1682 0.018420 299
6th Past 16Nov2020 25Nov2020 44622516 SIRF' 1.61 0.000938 0.000604 0.041674 0.025268 1440 0.001 23 39 1654 0.010788 1740
7th Past 26Nov2020 05Dec2020 44622516 SIRI_: 1.32 0.001709 0.000445 0.040008 0.029713 1440 0.002 24 33 2247 0.018208 1137
8th Past 06Dec2020 16Dec2020 44622516 SIRF' 0.89 0.017894 0.000010 0.029860 0.032813 1440 0.018 33 30 95809 0.011271 8N
9th Past 17Dec2020 29Dec2020 44622516 SIRF' 0.74 0.019792 0.000087 0.025188 0.033482 1440 0.020 39 29 11436 0.019102 433
10th Past 30Dec2020 14Jan2021 44622516 SIRF' 0.62 0.020148 0.000162 0.017995 0.028403 1440 0.020 55 35 6176 0.020185 293
11th  Past 15Jan2021 06Feb2021 44622516 SIRI; 0.43 0.034389 0.000052 0.022026 0.049195 1440 0.034 45 20 19313 0.019177 881
12th Past O7Feb2021 28Feb2021 44622516 °'C 0.86 0.001556 0.000873 0.031751 0.036078 1440  0.002 31 27 1145 0.040044 307

F

Fig. 9. Experimental study of SIR model parameters based on separation to phases

2.3. Models Performance Comparison

In this part we will compare the obtained results by
each model with the actual data in a range of fifteen
days (from 02/03/2021 to 16/03/2021). Table 3 shows
the percent error and mean error caused by comparing
linear regression model results and actual data.

the percent error and mean error caused by comparing
SIR model results and actual data.

Table 4 shows that or ‘Confirmed’, ‘Recovered’
and ‘Death’ cases mean errors have almost 3.29, 1.08,
and 0.71 percent deviant respectively. This means alt-
hough the SIR model forecasted impressively precise,
the error deviation has a higher number in ‘Confirmed’
and ‘Recovered’ cases forecasted by the linear regres-

Table 3 sion model. Thus, we can acclaim that linear regression
Error obtained by linear regression model forecast model has forecasted more precisely in a short time
Date Confirmed | Recovered Deaths range (fifteen days) than the SIR model. The linear re-
it oowsot vzl | oriss | Yo O Feomed oty sl
3-Mar 0.1233871 0.057237 0.367674 '
4-Mar 0.4148057 0.162468 0.64956 Table 4
5-Mar 0.7103551 | 0.201159 | 0.850334 Error obtained by SIR model forecast
6-Mar 0.9322429 0.174005 0.996016 -
7-Mar | 10148581 | 0.045485 | 0.945635 Date | Confirmed | Recovered | Deaths
8-Mar 0.9854859 0.11875 0.906238 2-Mar 1.1344755 -0.745853 -0.70387
9-Mar | 0.7963324 | -0.341617 | 0.758374 3-Mar | 13670853 | -0.690619 | -0.44336
10-Mar_| 0.8230906 | -0.167572 | 1.115151 4-Mar | 1.8023445 | -0.658511 | -0.15308
11-Mar | 1.0351904 | -0.02406 | 1.622054 5-Mar 2243697 | -0.689554 | 0.063809
12-Mar 1.5088164 0.06092 2017191 6-Mar 2.6120069 -0.782954 0.222387
13-Mar 2.001048 0.165738 | 2.443401 7-Mar 2.8402457 | -0.973942 | 0.193342
14-Mar 2.2004478 0.087791 | 2.529297 8-Mar 2.9554887 | -1.197344 0.17854
15-Mar 2.2481082 0.065489 2.552784 9-Mar 2.9083839 -1.475879 0.052296
16-Mar 2.4865799 0.262348 3.043004 10-Mar 3.0827784 -1.359232 0.437515
mean error | 1.1540855 | 0.037101 | 1.394172 11-Mar | 3.4478114 | -1.270357 | 0.968356
12-Mar 4.0825637 -1.236861 1.391664
For ‘Confirmed’, ‘Recovered’ and ‘Death’ cases 13-Mar 4.7389853 -1.181285 1.852869
mean errors have almost 1.15, 0.037 and 1.39 percent 14-Mar | 50965437 | -1.303621 1.97211
deviant respectively. This means the linear regression 15-Mar 5.2993837 -1.368584 2.036022
model forecasted impressively precise. Table 4 shows 16-Mar 5.7001847 -1.215168 2.56419
mean error | 3.2874652 -1.076651 0.708852
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Conclusions

The paper describes experimental research on two
approaches to epidemic process simulation, which are
based on the linear regression method and compartment
modeling approach. Models are verified and investigat-
ed on COVID-19 morbidity and mortality data in
Ukraine provided by the Center for Public Health of
Ministry of Health of Ukraine.

The novelty of the research is the development of
epidemic process models based on state-of-art methods
and approaches applied to novel emergence disease
COVID-19. The main difference of the proposed study
is that the epidemic process of COVID-19 has not been
investigated, appeared suddenly, and spread rapidly
across the planet. This dictates the development of new
methods for modeling epidemic processes that investi-
gate diseases for which there is no sufficient amount of
data.

The disadvantages of the SIR model may be be-
cause the coronavirus mutates and new strains appear,
immunity after a previous illness is not always long-
lasting, as evidenced by cases of repeated COVID-19
disease, one dose of the vaccine does not lead to the
development of long-term and intense immunity, a very
small proportion the population of Ukraine has post-
vaccination immunity.

At this stage in the development of the epidemic
process of COVID-19, it is more expedient to use a lin-
ear model to predict the incidence rate, which has
shown higher accuracy and efficiency.

Generally, the reason for that lies in the fact that
the utilized linear regression model for this research was
implemented on merely 30 days (from fifteen days be-
fore the 2nd of March) and not the whole dataset of
COVID-19.

Acknowledgment. The study was funded by the
National Research Foundation of Ukraine in the frame-
work of the research project 2020.02/0404 on the topic
“Development of intelligent technologies for assessing
the epidemic situation to support decision-making with-
in the population biosafety management” [29].

Future research directions

It is expected that if we try to forecast in longer
time ranges, the linear regression model will lose preci-
sion. Alternatively, since the SIR model is more com-
prised in including more factors, the model is expected
to perform better in forecasting longer time ranges.
These assumptions can be investigated in detail in fur-
ther researches.

Also, further researches are aimed to develop an

ensemble methodology of epidemic process investiga-
tion which will combine both compartment and machine
learning methods. It is necessary to increase the accura-
cy with machine learning methods and make it possible
to investigate factors influencing the epidemic process
with compartment models.
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MOPIBHSIJILHE JOCJIJPKEHHSI MOJEJIEN JIIHIAHOI PETPECI I SIR
MNOIIUPEHHS COVID-19 B YKPAIHI JO BAKIIMHAILIIL

A. Moxammaoi, €. C. Menaiinos, K.O. bazinesuu, C. B. Akoenes, /. 1. Yymauenko

I'no6anena maggaemis COVID-19 nmouanacs B rpyaai 2019 poky 1 CTpIMKO IIOIIMPHIIACS 10 BCHOMY CBITY. Y
BCLOMY CBITI 3axBopinu nmoHas 230 MinbiioHiB aronei, 4,75 MianioHa BUOAAKIB 3aKIHUMINCE JIETAILHUM PE3yIILTa-
ToM. KpiM 3arpo3u 3710p0B'I0 HACIIIIKOM ITaHAEeMII CTaIM COLiaiabHI MPOoOJeEMH, EKOHOMIYHA KpH3a 1 mepexia 3Bud-
HOTI'O KHTTS B «HOBY pEajbHICTEY». MaTeMaTHYHEe MOJIEIIOBAHHS € e(DEKTUBHUM 1HCTPYMEHTOM JIi KOHTPOJIIO €Ili-
nemiynoro npouecy COVID-19 nHa 3amaHux TepuTOopisx. MoJenroBaHHs J03BOJISE CIIPOrHO3YBATH MalOYTHIO IH-
HaMIKy €MiJeMiYHOro MPOLEeCy i BUABUTH (DaKTOPH, SIKi BIIMBAIOTH HA IiABUIINEHHS 3aXBOPIOBAHOCTI HAHOIIBIIUM
yuHOM. Pe3ynbTatv MOZEIIOBAHHS JO3BOJISIOTH (haxiBISIM IPOMAAChKOI OXOPOHHU 3J0POB'S BXKHUBATH €(hEKTHUBHI
HayKOBO OOIPYHTOBaHI 3aXOIM IIOJ0 CTPUMYBAHHs emigeMii. MeTor0 CTarTi € po3po0Ka MoJeaeil MallnHHOIO HaB-
YaHHS 1 KOMIIAPTMEHTHUX Mojeiei enigeMiunoro npouecy COVID-19, a Tako TOCIIIKEHHS EKCIIEPUMEHTAIbLHUX
pe3yibsTariB MojaeaoBandsa. O0'ekrT pocaigkenns — emigeMiunnii nporec COVID-19 i fioro nuaamika Ha TepUTOPIl
Vkpainn. IIpeamerom gocaiakeHHss € MOJEN] 1 METOIU MOJIEIIOBAHHS E€IiJEMIYHUX IIPOIIECIB, B TOMY YHCJII METO-
I MalldHHOTO HABYaHHS 1 KOMIIAPTMEHTHI Mozem. s JOCSTHEHHS METH NOCTIIKEHHS MH BHUKOPHCTOBYBAIH
METOAM INPOTHO3YBaHHS MAIIMHHOTO HaBYaHHS 1 MOOYIyBaJIM MOJENL JIHIMHOI perpecii emigeMi4HOro IpolEecy
COVID-19 i mozeins SIR emigemiunoro mpouecy COVID-19. B pe3ynbTaTi eKCIEPUMEHTIB 3 pO3pOOJIIEHUMH MOJIE-
JIssMHU OyJia OTpMMaHa IIpOorHo3Ha JuHaMika erigeMmivnoro mnporuecy COVID-19 na 30 gHiB UId MiATBEPIKEHUX BH-
MajKiB, THX, 10 BUAY)Kalu i JetanbHux. Jns BumankiB «IligrBepmkenuii», «Toi, M0 BUIYKaB» 1 «JIeTAIbHUI
cepeHi IOMHUIKA MaroTh Bigxunenus 1,15, 0,037 i 1,39 BincoTka BiAIOBIZHO B pe3yibTaTi MOAENI JIIHIHHOT perpe-
cii. Jlus Bunaakis «IligrBepokenniiy, «ToM, 0 BUAYKaBy 1 «JleTaapHuil» cepeaHi MOMUIKA MaroTh BiIXUIECHHS
3,29, 1,08 1 0,71 Bincorka BigmoBimHo Mg Mmoxein SIR. BucnoBku. Ha manomy erami po3BUTKY €ITiIEMIYHOIO IIPO-
necy COVID-19 ams nporHo3yBaHHSI 3aXBOPIOBAHOCTI IOIIIBHIIIIE BUKOPUCTOBYBATH MOJENb JIiHINAHOI perpecii,
sIKa TI0Ka3ajia OlIbII BUCOKY TOYHICTH 1 €(heKTHUBHICTE. SIK MPpaBHIIO, IPUYKMHA I[LOI'0 IOJATA€ B TOMY, IO BUKOPHC-
TaHa MOJEJIb JIHIHHOT perpecii aIs 1[boro JOCTiKeHHs Oyia peanizoBana e 3a 30 auiB (3a 15 mHiB 10 2 Oepes-
HS), a HE 3 BHKOPHCTaHHSIM BCchoro Habopy manux COVID-19. KpiMm TOro, o4ikyeThcsi, [0 SAKIIO MH CIPOOYEMO
MPOTHO3YBAaTH B OLJIBII TPUBAJIUX YaCOBHX JIialla30HaX, MO/JIe/b JIIHIHHOT perpecii BTpaTUTh TOYHICTh. SIK aabTepHa-
THBA, OCKIJIbKH MoJienb SIR BKiroUae OinbIy KijdbKicTh GaKkTOpiB, OUIKYETHCS, IO MOAEH OyAe Kpallle MparroBaTH
IIpY IPOTHO3YBaHHI Ha OiJIBII TPUBAJII YaCOBI Jiama3oHM.

Kuro4uoBi ciioBa: Mofiens emieMii; emigeMidyHIi Ipoec; MOICTIOBAHHS CIiIeMii; iMiTaliiiHe MOJICTIOBaHHS;
niHiiHa perpecis; moaens SIR; COVID-19.

CPABHUTEJBHOE UCCJIEJJOBAHUE MOJIEJEN INHEMHOMW PETPECCHUHA M SIR
PACITPOCTPAHEHUSA COVID-19 B YKPAUHE /10 BAKIIMHALININ

A. Moxammaou, E. C. Mensiinos, K. A. basunesuu, C. B. fIxoeénes, /I. U. Yymauenxo

I'mobansras mangemuss COVID-19 navanace B aexabpe 2019 roga U CTpEMHUTEIBHO PacIpOCTPAHIIACH IO
BceMy Mupy. Bo Bcem mupe 3abonenu 6onee 230 MUIUTMOHOB sojed, 4,75 MIIIMOHA CITydaeB 3aKOHYHMIIOCH Jie-
TaIbHBIM HCX0A0M. KpoMe yrpo3sl 30pOBBIO CIIECTBHEM HMAaHIEMHH CTallH COIMAIbHBIE MPOOJIEMBI, 3KOHOMHUYE-
CKUI KPH3HC M Nepexo]] MPUBBIYHON KHU3HU B «HOBYIO PEaIbHOCTY». MaTeMaTn4ecKoe MOJAEINPOBAHUE SBISACTCS
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3¢ (GEKTHBHBIM HHCTPYMEHTOM JJIsI KOHTpOJIS snuaemudeckoro mpomecca COVID-19 Ha 3agaHHBIX TEPPUTOPHSIX.
MoenupoBaHue MO3BOJSCT CIPOTHO3UPOBATH OYAYIIYIO JUHAMHKY SMUJIEMUYCCKOrO MPOIecca U BBISBUTH (HaKTO-
PBL, KOTOpEIC BIHUSIOT HA MOBHIIICHUE 3200JI€BAEMOCTH HAaNOOIBIIAM 00pa3oM. Pe3ynbpTaTsl MOIEIMPOBAHHS TTO3BO-
JIAIOT CIEIHAIMCTaM OOIIECTBEHHOIO 3PaBOOXPaHEHUs TPUHUMATEL 3((EKTUBHEIE HAYYHO O0OOCHOBAHHEIE MEPHI
o caepskuBaHuio 3nuaeMud. Ileablo cratby SBISCTCS pa3paboTka MOJEIeil MAIIMHHOTO OOydYeHHsS W KOMIIApT-
MEHTHBIX Mojenei snugemuyeckoro mpouecca COVID-19, a Taxke MCClIeI0BaHKME YKCIIEPUMEHTANILHEIX PE3YbTa-
TOB MozeimpoBanusd. O0beKT ucciaegoBanus — >aunemuueckuii nporecc COVID-19 u ero nuHamMmka Ha TEPPUTO-
pun Ykpaunsl. IIpeaMerom mcc/ieIOBaAHUS SBISIOTCS MOJIEIA M METOALI MOEIMPOBAHUS SIUAECMUYECKUX IIPO-
1IECCOB, B TOM YHCJIE METOIbI MAIIMHHOIO O0yYEHHS U KOMIIAPTMEHTHBIC MOACIH. J{JIs JOCTHKEHHUS LIeIN UCCIIe0-
BaHHUS MBI HCIIOJIE30BAIHd METOJLI MPOTHO3MPOBAHMS MAIIMHHOIO OOYYEHHUS W IIOCTPOMIN MOIEIL JIMHEHMHOH pe-
rpeccun >muaemudeckoro nporecca COVID-19 u monens SIR smunemudeckoro mporecca COVID-19. B pesyiab-
TaTe 3KCIEPUMEHTOB ¢ pa3pabOTaHHBEIMU MOJEISIMHU ObLIa MMOyYeHa MPOTHO3HAs JUHAMMKA SITHIEMUYECKOIO IPO-
necca COVID-19 na 30 nHe# mig MOATBEP)KIEHHBIX CIIYYaeB, BBI3MOPOBEBINNX M JeTanbHbIX. [ ciyyaeB «Ilon-
TBEPKIAECHHBINY, «BbI310poBeBIINX» U «JIeTalbHBINY» cpeanue omnuOKu umeroT oTkiionenue 1,15, 0,037 u 1,39 npo-
IICHTa COOTBETCTBCHHO B PE3YyJIbTATe MOACIHN JIMHEHHON perpeccun. s cinydaeB «Iloareep:xaeHHBINY, «BoI3m0po-
BeBIIHI» U «JIeTalbHEBIHY CpeIHME ONIHOKK UMEIOT oTKIoHeHuEe 3,29, 1,08 1 0,71 mpolieHTa COOTBETCTBEHHO IS
mozaeau SIR. BeiBoabl. Ha manHoMm sTare pasButHs smmuaeMudeckoro mporecca COVID-19 mis nmporao3upoBaHus
3a00J1€BaEMOCTH I[eJIeCO00pa3Hee UCII0IBL30BaThL MOIEL JHHEHHON PErpecCHH, MMOKa3aBIIyI0 00Jiee BLICOKYIO TOY-
HOCTb U 3¢ (heKTUBHOCTL. Kak mpaBuIIo, MpUYKMHA 3TOrO 3aK/II0YaeTCs B TOM, YTO MCIOJIB30BaHHAS MOJIC/b JIMHEH-
HOM perpeccuu s TOT0 MCCIIeI0BaHus Obliia peajiu3oBaHa Bcero 3a 30 mueii (3a 15 gueii mo 2 mapTa), a HE C Hc-
mojb30BaHueM Bcero Habopa gaHHeIx COVID-19. Kpome TOro, 03kMaaeTcs, 4TO €CIU MbI IOMBITAEMCS IPOTHO3H-
poBath B Oojiee MIUTCIHHBIX BPEMEHHBIX AHMAarna3oHaxX, MOJEIb JIMHEHHOW PerpeccHy MmoTepseT TOYHOCTh. B Kaue-
CTBE aJIbTEPHATHBEI, MMOCKOJILKY MoJeah SIR BkiroyaeT 00Jbllee KOIHYECTBO (DAKTOPOB, OKHUIAETCS, YTO MOJEIb
Oyzer mydrre paboTaTh MpU MPOTHO3UPOBAHUH Ha O0Jiee NIINTENbHBIC BPEMECHHBIC THATIa30HBl.
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MOJIeNpoBaHue; THHEeiHas perpeccust; moxens SIR; COVID-19.
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