98 ISSN 1814-4225 (print)
PAJIOEJEKTPOHHI I KOMII’'FOTEPHI CUCTEMM, 2020, Ne 4(96) ISSN 2663-2012 (online)
UDC 004.658.051 doi: 10.32620/reks.2020.4.09

A. GORBENKO'?, O. TARASYUK?

! Leeds Beckett University, UK
2 National Aerospace University “Kharkiv Aviation Institute”, UKraine
3 Odessa Technological University STEP, Ukraine

EXPLORING TIMEOUT AS A PERFORMANCE AND AVAILABILITY FACTOR
OF DISTRIBUTED REPLICATED DATABASE SYSTEMS

A concept of distributed replicated data storages like Cassandra, HBase, MongoDB has been proposed to effec-
tively manage the Big Data sets whose volume, velocity, and variability are difficult to deal with by using the
traditional Relational Database Management Systems. Trade-offs between consistency, availability, partition
tolerance, and latency are intrinsic to such systems. Although relations between these properties have been
previously identified by the well-known CAP theorem in qualitative terms, it is still necessary to quantify how
different consistency and timeout settings affect system latency. The paper reports results of Cassandra's perfor-
mance evaluation using the YCSB benchmark and experimentally demonstrates how to read latency depends on
the consistency settings and the current database workload. These results clearly show that stronger data con-
sistency increases system latency, which is in line with the qualitative implication of the CAP theorem. Moreover,
Cassandra latency and its variation considerably depend on the system workload. The distributed nature of such
a system does not always guarantee that the client receives a response from the database within a finite time. If
this happens, it causes so-called timing failures when the response is received too late or is not received at all.
In the paper, we also consider the role of the application timeout which is the fundamental part of all distributed
fault tolerance mechanisms working over the Internet and used as the main error detection mechanism here. The
role of the application timeout as the main determinant in the interplay between system availability and respon-
siveness is also examined in the paper. It is quantitatively shown how different timeout settings could affect
system availability and the average servicing and waiting time. Although many modern distributed systems in-
cluding Cassandra use static timeouts it was shown that the most promising approach is to set timeouts dynam-
ically at run time to balance performance, availability and improve the efficiency of the fault-tolerance mecha-
nisms.

Keywords: timeout; NoSQL; distributed databases; replication; performance benchmarking; consistency; avail-
ability; latency; trade-off.

pay for distributed data handling and horizontal scalabil-
ity. They are also subject to the tradeoff between Con-

Introduction

Distributed data storages have become the standard
platform and a major industrial technology for dealing
with enormous data growth. They are now widely used
in different application domains, including distributed In-
ternet applications, social networks and media, critical
infrastructures, business-critical systems, 10T and indus-
trial systems. A new generation of such databases are
called NoSQL (Not Only SQL or NO SQL) [1]. They are
designed to provide horizontal scalability and employ In-
ternet-scale replication to guaranty high availability,
throughput and low latency.

A concept of distributed data storages has been pro-
posed to effectively manage the Big Data sets whose vol-
ume, velocity and variability are difficult to deal with by
using the traditional Relational Database Management
Systems. Most NoSQL databases sacrifice the ACID (at-
omicity, consistency, isolation and durability) guarantees
in favour of the BASE (basically available, soft state,
eventually consistent) properties [2], which is the price to

sistency, Availability, and Partition tolerance (CAP).
The CAP theorem [3], first appeared in 1998-1999,
declares that the only two of the three properties can be
preserved at once in distributed replicated systems. Gil-
bert and Lynch [4] consider the CAP theorem as a partic-
ular case of a more general trade-off between consistency
and availability in unreliable distributed systems propa-
gating updates eventually over time. However, a tradeoff
between availability and latency is less studied. There
have been a number of studies, e.g. [5 - 8], evaluating and
comparing the performance of different NoSQL data-
bases. Most of them use general competitive benchmarks
of usual-and-customary application workloads (e.g. Ya-
hoo! Cloud Serving Benchmark, YCSB). The major fo-
cus of those works is to compare and select the best
NoSQL databases based on performance measures. How-
ever, reported results show that performance of different
NoSQL databases significantly depends on the use case
scenario, deployment conditions, current workload and

© A. V. Gorbenko, O. M. Tarasyuk, 2020

Kioepoesneka i 3axucm oanux

99

database settings. Thus, there is no NoSQL database that
always outperforms the others. Other recent related
works, such as [9 - 11], have investigated measurement-
based performance prediction of NoSQL data stores.
However, the studies, mentioned above, do not investi-
gate an interdependency between availability and perfor-
mance and do not study how time-out settings affect da-
tabase latency.

The aim of this work is to experimentally evaluate
a trade-off between availability and latency, which is in
the very nature of NoSQL databases, and to study how
timeout settings can be used to interplay between them.

1. The role of the application timeout as the
main performance and availability factor

Most error recovery and fault-tolerance techniques
depend on the time-out setup. In particular, setting appro-
priate time-outs is key to improving many distributed
systems’ performance and dependability. However, re-
searchers have focused mainly on optimizing timeouts
used by communication protocols [12, 13]. They haven’t
examined how application level timeout settings affect
performance and dependability of distributed systems. A
replicated fault-tolerant system becomes partitioned
when one of its parts does not respond due to arbitrary
message loss, delay or replica failure, resulting in a
timeout. System availability can be interpreted as a prob-
ability that each client request eventually receives a re-
sponse. In many real systems, however, a response that is
too late (i.e. beyond the application timeout) is treated as
a failure.

For example, the failure model introduced by Avi-
zienis, et al. in [14] distinguishes between the two main
failure domains in distributed systems: (i) timing failures
when the duration of the response delivered to the client
exceeds the specified waiting time — the application
timeout (i.e. the service is delivered too late), and (ii) con-
tent failures when the content (value) of the response de-
viates from implementing the system function.

Failure to receive responses from some of the repli-
cas within the specified timeout causes partitioning of the
replicated system. Thus, partitioning can be considered
as a bound on the replica’s response time [15]. A slow
network connection, a slow-responding replica or the
wrong timeout settings can lead to an erroneous decision
that the system has become partitioned. When the system
detects a partition, it has to decide whether to return a
possibly inconsistent response to a client or to send an
exception message in reply, which undermines system
availability.

Timeout settings are crucially important is distrib-
uted replicated systems. If the timeout is lower than the
typical response time, a system is likely to enter the par-
tition mode more often. On the other hand, timeout which

is too high does not allow timely detect errors and failure
and effectively apply fault-tolerance mechanisms. The
application timeout can be considered as a bound be-
tween system availability and performance (in term of la-
tency or response time) [16, 17]. Thus, system designers
should be able to set up timeouts according to the desired
system response time, also keeping in mind the choice
between consistency and availability.

2. Cassandra Performance Benchmarking

In this paper we put a special focus on quantitative
evaluation of one of the fundamental trade-offs between
system availability and latency in distributed replicated
data storages using the Cassandra NoSQL as a typical ex-
ample of such system. Various industry trends suggest
that Apache Cassandra is one of the top three in use today
together with MongoDB and HBase [18].

2.1. Experimental setup

This section describes the performance benchmark-
ing methodology used and reports the experimental re-
sults showing how timeout settings affect latency of the
read requests for the Cassandra NoSQL database.

As a testbed we have deployed the 3-replicated Cas-
sandra 2.1 cluster in the Amazon EC2 cloud (Fig. 1).
Replication factor equal to 3 is the most typical setup for
many modern distributed computing systems and Inter-
net services, including Amazon S3, Amazon EMR, Face-
book Haystack, DynamoDB, etc.

The cluster was deployed in the AWS US-West-2
(Oregon) region on c3.xlarge instances (vCPUS — 4,
RAM - 7.5 GB, SSD — 2x40 GB, OS — Ubuntu Server
16.04 LTS).

2.2. Benchmarking methodology

Our work uses the YCSB (Yahoo! Cloud Serving
Benchmark) framework which is considered to be a de-
facto standard benchmark to evaluate performance of
various NoSQL databases like Cassandra, MongoDB,
Redis, HBase and others [5]. YCSB is an open-source
Java project. The YCSB framework includes six out-of-
the-box workloads [5], each testing different common
use case scenarios with a certain mix of reads and writes.
In this paper we report experimental results correspond-
ing to the read-only Workload C. All the rest Cassandra
and YCSB parameters (e.g. request distribution, testbed
database, etc.) were set to their default values. The
testbed YCSB database is a table of records. Each record
is identified by a primary key and includes F string fields.
The values written to these fields are random ASCII
strings of length L. By default, F is equal 10 and L is
equal 100, which constructs 1000 bytes records. The

100 ISSN 1814-4225 (print)

PAJIOEJIEKTPOHHI I KOMIT'IOTEPHI CUCTEMM, 2020, Ne 4(96) ISSN 2663-2012 (online)
YCSB Client is a Java program that generates data to be 3. Data analysis
loaded to the database, and runs the workloads. The client
was deployed on a separate VM in the same Amazon re- 3.1. Cassandra read performance

gion to reduce influence of the unstable Internet delays.
In this section we report new experimental results

Replica 2 in addition to those discussed in our previous study [19].

Tables 1 - 3 report Cassandra read latency statistics de-

Location: Amazon WS, Replica 3 pending on the number of requests executed in parallel

M e 2 gr;g‘r’gg region (threads) and consistency settings. It is also shown that

(VCPUs 4, RAM 7.5 GB, Cassandra 2.1 the average Cassandra latency as well as the maximum
SSD — 2x40 GB) Cluster

response time steadily increase with the increase of the
number of threads.

OS: Ubuntu Server 16.04 LTS

Table 1

YCSB client Cassandra read latency (us)

Replica 1 i X
for the strong consistency setting ALL

[]]
LFERN
Threads| Min Max |Average|Std. Dev. Ops. per

Fig. 1. Experimental setup: deployment second
Of Cassandra NoSQL Cluster 100 3789 47818 17427 4494 5380

200 6056 | 100394 | 29217 | 11208 6471

300 4875 | 139900 | 41326 | 18638 7010

2.3. Benchmarking scenario 400 | 2310 | 163312 | 52920 | 23231 | 7312

500 7191 | 184161 | 65569 | 26339 7438

Some examples of general methodologies for 600 1176 | 233869 | 77215 | 29799 7586
benchmarking Cassandra and other NoSQL databases 700 | 4712 | 229903 | 84427 | 31298 8155
with YCSB can be found in [18]. However, unlike these 800 6703 | 255587 | 92091 | 32050 8521

900 2448 | 267868 | 107238 | 38731 8280

and other works (e.g. [5 - 8]) studying and comparing 1000 6176 | 207612 | 117367 | 44185 8398

performance of different NoSQL databases we put the fo-

cus on analysing the dynamic aspects of the Cassandra Table 2
performance under different workloads (i.e. number of Cassandra read latency (us)
concurrent requests/threads) and various consistency set- for the consistency setting QUORUM

tings (.. ALL, QU(_)RUM’ ONE). . Threads| Min Max | Average|Std. Dev. Ops. per
Cassandra consistency model defines the number of second

requested replicas that must acknowledge a read (or 100 | 1016 | 67819 | 18138 | 7273 5189
write) operation before the most recent result is returned 200 4424 | 86830 | 26350 | 12764 7022

300 4892 | 116258 | 35995 | 15503 7814

to the client (or the write operation is considered success- 200 5278 1160904 | 48053 | 23762 7998
ful). In the paper we consider three different consistency 500 1082 | 179521 | 59799 | 27485 8172
level: 600 1750 | 240746 | 72983 | 30551 8016

— ALL (the strongest consistency level); all replicas 700 939 | 245338 | 79918 | 31542 8567
are queried and must respond; the most recent (based on 800 | 1225 |312977 | 87444 | 33830 9040

900 3047 | 267239 | 98086 | 37974 9006

the time stamp) read result is returned to a client; 1000 1349 1322059 | 110761 | 45804 8371

— ONE (the weakest consistency level); only one

replica is requested and must respond with the result Table 3

which is returned to a client; a client can receive stalled Cassandra read latency (us)

data if the most recent updates have not been propagated for the weak consistency setting ONE

to that replica; . Ops. per
— QUORUM (the moderate consistency level); Threads| Min | Max |Average|Std. Dev. SECOEd

quorum (e.g. 2-out-of-3) of replicas are queried and must ;88 ﬁgg gzggg ;gigg 183837904 ggég

respgnd; this level provides a compromise between data 300 648 115569 | 31038 | 19683 9324

consistency and system latency. 400 | 1668 | 173360 | 38927 | 22649 | 9660
A series of YSCB read performance tests were per- 500 761 | 193154 | 49930 | 26879 9723

formed on the 3-replicated Cassandra cluster with the 600 1623 | 203336 | 56432 | 28424 10221

consistency setting setto ALL, ONE and QUORUM with 700 2139 | 203004 | 69526 | 31119 9799

a number of threads varying from 100 to 1000. The oper- 800 | 1011 |235942 | 74766 | 35047 | 10486

ation count within each thread was set to 1000. 900 1504 | 318241 | 89478 | 44925 9848

1000 1437 | 347631 | 91853 | 44077 10707

Kioepoesneka i 3axucm oanux

101

120000

Delay,u Read delay />
100000 | ONE /
QUORUM

%0000 - L

80000

70000 / ﬁ/E/

60000 y e

50000 / /

40000 / /

30000 m/ﬂ

20000 M

10000 V ‘ No oft‘hreads

100 ‘ 200 ‘ 300 ‘ 400 ‘ 500 ‘ 600 ‘ 700 ‘ 800 900 1000
Fig. 2. Cassandra read delay depending
on the number of threads

120000

110000 . D1V, s Read delay vs Workload f
100000 V
90000 / §> / ,,,,,, W ,,,,,,,,,,,,
80000 % /
70000 [S — _G-ALL f/ / J
60000 - QUORUM # / L\/
50000 TTONE)¢ / Fp]
40000 //Z/ }r
30000 / J
20000 /
10000 | <
0 Number 9f requests Pes second ‘

0 2600 40‘00 6600 8000 10000
Fig. 3. Cassandra read delay depending
on the database workload

12000

It is clearly shown that the higher the level of con-
sistency, the higher the latency of the system inde-
pendently of the number of threads/database workload
(see Figs. 2 - 3).

Fig. 3 shows that the system is saturated with
around 800 threads on average and delays become highly
volatile when Cassandra operates close to its maximal
throughput. When the workload reaches the, delays in-
crease in exponential progression. It is worth noting that
Cassandra reaches the maximum throughput (approx.
1100 requests per second) when it is configured to pro-
vide the weakest consistency level ONE.

3.2. Interplay between availability and latency

Cassandra uses the following timeout values set by
default: 5000 ms for read requests and 2000 ms for write
requests (Cassandra is designed to perform write opera-
tion faster than read requests).

At the same time in our experiments the maximum
read response time never exceeded 500 ms even for the
strong consistency level ALL and the maximum number
of threads. Thus, the default timeout setup is significantly
higher (in 10 times!) than the worst-case execution time.
Thus, Cassandra could be slow to respond to possible er-
rors and failures that may occur during operation. At the
same time, too short timeout can lead to an erroneous de-
cision that the system has become partitioned. A general
approach, widely used in communications protocols, as-
sumes that the doubled average latency or the worst-case
execution time can be set as the timeout value. However,
Tables 1-3 show that the maximum response time in-
creases with the increase if the database workload.

Moreover, as shown in Fig. 4, probability density
series of Cassandra response time considerably expand
with increasing database workload. On the one hand, this
means that the standard deviation of Cassandra response
time increases, and its latency becomes more uncertain
[20]. On the other hand, it shows that timeout settings
suitable for low workloads could be inadequate when the
database experiences the high demand.

Fig. 4 depicts a situation if the timeout is set to 1000
ms (approx. the doubled maximum response time for the
threads count 100). Red bars correspond to the situation
when Cassandra would have responded after the speci-
fied timeouts. This clearly shows that the proposed
timeout is too short for heavy workloads. At the same
time, short timeout reduces user servicing and waiting
time, as discussed in [16]. This is because the average
waiting time (for all invocations, including those when a
timeout is triggered) is calculated as the sum of the aver-
age time of received responses and a product of the
timeout value and the probability of timeout.

Table 4
Trade-offs between system availability and latency depending on timeout settings
Timeout=100 ms Timeout=150 ms Timeout=200 ms
Threads |availabil-| avg. servic- | avg. waiting |availabil-|avg. servicing| avg. waiting |availabil-| avg. servicing | avg. waiting
ity ing time, us | time, us ity time, us time, us ity time, us time, us
100 |0.99986 17428 17440 0.99986 17428 17447 1 17428 17428
200 |0.99987 29213 29222 0.99993 29218 29226 1 29218 29218
300 |0.97448| 39598 41139 0.99996 41326 41331 1 41326 41326
400 [0.94491| 49232 52028 0.99846 52762 52912 1 52921 52921
500 |0.88904| 58806 63376 0.99633 65240 65551 1 65569 65569
600 |0.80293 65908 72627 0.98600 76055 77091 0.99995 77207 77214
700 |0.75438 69944 77326 0.97014 81843 83878 0.99738 84084 84387
800 |0.66633 74857 83246 0.94071 87262 90982 0.99643 91591 91979
900 |0.50582 77891 88817 0.85748 95656 103401 0.97554 104426 106764
1000 |0.39259 77702 91246 0.78265 99083 110150 0.95472 112041 116024

102 ISSN 1814-4225 (print)
PAJIOEJEKTPOHHI I KOMII’'FOTEPHI CUCTEMM, 2020, Ne 4(96) ISSN 2663-2012 (online)
0.6

p
05 | Timeout=0.1 |
0.4
0.3
0.2
100 threads
0.1
Response time, us
om . _
0.3
0.2
200 threads
0.1 I I
0 - II II | [
0.2
400 threads
* il
-III IIIII----- ______
0.2
600 threads
0.1
R | (1] [[T7
0.2
o1 800 threads
0 ,-_-I-.lIlIIIIIIIII.I------ ______
0.2
1000 threads
0.1
0 ____-----.I.IIIIIIIII.I......------ ____________

= 10000
10000, 15000
55000
60000
65000
00000
05000
10000
15000

15000, 20000
20000, 25000

105000
110000

HHHHHHHHHH

30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000
85000
220000
225000
230000
235000
240000
245000

aaaaaaaaaaaa

125000
130000
135000
140000
145000
150000
155000
160000
165000
170000
175000
180000
220000
225000
230000
235000
240000
245000

Fig. 4. Probability density series of Cassandra read ALL latency under different workloads

Ultimately, timeout could be considered as a tool to
interplay between system availability and latency, as
shown in Table 4. Shorter timeout reduces system la-
tency. However, the availability of the system may also
be reduced as some responses may arrive after the
timeout is triggered.

Conclusions

Availability, consistency and performance of dis-
tributed database systems are tightly connected. Alt-
hough these relations have been identified by the CAP
theorem in qualitative terms [3, 4], it is still necessary to
quantify how different timeout settings affect system la-
tency. Understanding this trade-off is key for the effec-
tive usage of distributed databases.

In the paper we report results of Cassandra perfor-
mance benchmarking and also examine the role of the ap-
plication timeout as the main determinant in the interplay
between system availability and responsiveness. The ap-
plication timeout can be considered as a bound between
system availability and performance (in term of latency
or response time). Moreover, application timeout is the
fundamental part of all distributed fault tolerance tech-
niques and is used as the main error detection mechanism
here. Thus, system designers should be able to set up
timeouts according to the desired system response time,
also keeping in mind the choice between consistency and
availability.

Unfortunately, many modern distributed systems
including Cassandra use static timeout settings that are
often too long. This can worsen system latency and

Kioepoesneka i 3axucm oanux

103

causes ineffective failure detection and fault tolerance.
Yet the most promising approach is to set timeout dy-
namically at run time to balance performance, availabil-
ity and fault-tolerance. Our experiments show that the
optimal timeout should be application specific (i.e. set
depending on the database structure, volume and the
most common read/write queries) and needs to be ad-
justed dynamically at run-time taking into account vari-
ous factors, including: current system workload; number
of replicas; consistency settings, etc.

References (GOST 7.1:2006)

1. Meier, A. SQL and NoSQL Databases: Models,
Languages, Consistency Options and Architectures for
Big Data Management [Text] / A. Meier, M. Kaufmann.
— Berlin : Springer Verlag, 2019. — 229 p.

2. Pritchett, D. Base: An Acid Alternative [Text] /
D. Pritchett // ACM Queue. — 2008. — Vol. 6, No. 3.
— P. 48-55.

3. Brewer, E. Towards Robust Distributed Systems
[Text] / E. Brewer // Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Compu-
ting. — Portland, USA, 2000. — P. 7-8.

4. Gilbert, S. Brewer’s Conjecture and the Feasibil-
ity of Consistent, Available, Partition-Tolerant Web Ser-
vices [Text] / S. Gilbert, N. Lynch // ACM SIGACT News.
—2002. - Vol. 33, No. 2. — P. 51-59.

5. Benchmarking Cloud Serving Systems with YCSB
[Text] / B. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, R. Sears // Proceedings of the 1st ACM Symposium
on Cloud Computing. — Indianapolis, USA, 2010. — P.
143-154.

6. Abramova, V. Testing Cloud Benchmark Scalability
with Cassandra [Text] / V. Abramova, J. Bernardino,
P. Furtado // Proceedings of the IEEE 10th World Congress
on Services. — Anchorage, USA, 2014. — P. 434-441.

7. Performance Evaluation of NoSQL Databases: A
Case Study [Text] / J. Klein, I. Gorton, N. Ernst, P.
Donohoe, K. Pham, C. Matser // Proceedings of the 1st
ACM/SPEC Int. Workshop on Performance Analysis of
Big Data Systems. — Austin, USA, 2015. — P. 5-10.

8. Haughian, G. Benchmarking Replication in Cas-
sandra and MongoDB NoSQL Datastores [Text] /
G. Haughian, R. Osman and W. Knottenbelt // Proceed-
ings of the 27th Int. Conf. on Database and Expert Systems
Applications. — Porto, Portugal, 2016. — P. 152-166.

9. Regression based performance modeling and
provisioning for NoSQL cloud databases [Text] /
V. A. Farias, F. R. Sousa, J. G. R. Maia, J. P. P. Gomes,
J. C. Machado // Future Generation Computer Systems.
—2018. -Vol. 79. - P. 72-81.

10. Karniavoura, F. A measurement-based ap-
proach to performance prediction in NoSQL systems
[Text] / F. Karniavoura, K. Magoutis // Proceedings of
the 25th IEEE Int. Symposium on the Modeling, Analysis,
and Simulation of Computer and Telecom. Systems. —
Banff, Canada, 2017. — P. 255-262.

11. Resource usage prediction in distributed key-
value datastores [Text] / F. Cruz, F. Maia, M. Matos,
R. Oliveira, J. Paulo, J. Pereira, R. Vilaca // Proceedings
of the IFIP Distributed Applications and Interoperable
Systems Conf. (DAIS'2017). — Heraklion, Crete, 2017. —
P. 144-159.

12. Abdelmoniem, A. M. Curbing Timeouts for
TCP-Incast in Data Centers via A Cross-Layer Faster
Recovery Mechanism [Text] / A. M. Abdelmoniem,
B. Bensaou // Proceedings of the IEEE Conf. on Com-
puter Communications. — Honolulu, HI, 2018.
—P. 675-683.

13. Libman, L. Optimal retrial and timeout strate-
gies for accessing network resources [Text] / L. Libman,
A. Orda // IEEE/ACM Transactions on Networking.
—2002. - Vol. 10, No. 4. — P. 551-564.

14. Basic concepts and taxonomy of dependable
and secure computing [Text] / A. Avizienis, J.-C. Laprie,
B. Randell and C. Landwehr // IEEE Transactions on De-
pendable and Secure Computing. —2004. — Vol. 1, No. 1.
- P.11-33.

15. Brewer, E. CAP twelve years later: How the
"rules" have changed [Text] / E. Brewer // Computer.
—2012. - Vol. 45, No. 2. — P. 23-29.

16. Gorbenko, A. Fault tolerant internet computing:
Benchmarking and modelling trade-offs between availa-
bility, latency and consistency [Text] / A. Gorbenko,
A. Romanovsky, O. Tarasyuk // Journal of Network and
Computer Applications. — 2019. — Vol. 146. - P. 1-14.

17. Gorbenko, A. Time-outing Internet Services
[Text] / A. Gorbenko, A. Romanovsky // IEEE Security &
Privacy. — 2013. — Vol. 11, No. 2. — P. 68-71.

18. Benchmarking Cassandra and other NoSQL da-
tabases with YCSB [Electronic resource]. — Github. — Ac-
cess: https://github.com/cloudius-systems/osv/wiki/
Benchmarking-Cassandra-and-other-NoSQL-data-
bases-with-YCSB. — 12.07.2020.

19. Gorbenko, A. Interplaying Cassandra NoSQL
consistency and performance: A benchmarking approach
[Text] / A. Gorbenko, A. Romanovsky, O. Tarasyuk // In:
Communications in Computer and Information Science,
Vol. 1279/ Editors: S. Bernardi, et al. — Berlin : Springer
Nature, 2020. — P. 168-184.

20. The threat of uncertainty in Service-Oriented
Architecture [Text] / A. Gorbenko, V. Kharchenko,
O. Tarasyuk, Y. Chen, A. Romanovsky // Proceedings of
the RISE/EFTS Joint International Workshop on Soft-
ware Engineering for Resilient Systems. — Newcastle,
UK, 2008. — P. 49-54.

References (BSI)

1. Meier, A., Kaufmann, M. SQL & NoSQL Data-
bases: Models, Languages, Consistency Options and Ar-
chitectures for Big Data Management, Berlin, Springer
Verlag Publ., 2019. 229 p.

2. Pritchett, D. Base: An Acid Alternative. ACM
Queue, 2008, vol. 6, no. 3, pp. 48-55.

3. Brewer, E. Towards Robust Distributed Systems.
Proceedings of the 19th Ann. ACM Symp. on Principles
of Distributed Computing, Portland, USA, 2000, pp. 7-8.

104

PAJIOEJIEKTPOHHI I KOMIT'IOTEPHI CUCTEMM, 2020, Ne 4(96)

ISSN 1814-4225 (print)
ISSN 2663-2012 (online)

4. Gilbert, S., Lynch, N. Brewer’s Conjecture and
the Feasibility of Consistent, Available, Partition-Toler-
ant Web Services. ACM SIGACT News, 2002, vol. 33, no.
2, pp. 51-59.

5. Cooper, B., Silberstein, A., Tam, E., Ramakrish-
nan, R., Sears, R. Benchmarking Cloud Serving Systems
with YCSB. Proceedings of the 1st ACM Symp. on Cloud
Computing, Indianapolis, Indiana, USA, 2010, pp. 143-
154,

6. Abramova, V., Bernardino, J., Furtado, P. Test-
ing Cloud Benchmark Scalability with Cassandra. Pro-
ceedings of the IEEE 10th World Congress on Services.
Anchorage, USA, 2014, pp. 434-441.

7. Klein, J., Gorton, I., Ernst, N., Donohoe, P.,
Pham, K., Matser, C. Performance Evaluation of NoSQL
Databases: A Case Study. Proceedings of the 1st
ACM/SPEC Int. Workshop on Performance Analysis of
Big Data Systems, Austin, USA, 2015, pp. 5-10.

8. Haughian, G., Osman, R., Knottenbelt, W.
Benchmarking Replication in Cassandra and MongoDB
NoSQL Datastores. Proceedings of the 27th Int. Conf. on
Database and Expert Systems Applications, Porto, Portu-
gal, 2016, pp. 152-166.

9. Farias, V. A., Sousa, F. R., Maia, J. G. R., Gomes,
J. P. P., Machado, J. C. Regression based performance
modeling and provisioning for NoSQL cloud databases.
Future Generation Computer Systems, 2018, vol. 79, pp.
72-81.

10. Karniavoura, F. & Magoutis, K. A measure-
ment-based approach to performance prediction in
NoSQL systems. Proceedings of the 25th IEEE Int.
Symp. on the Modeling, Analysis, and Simulation of
Computer and Telecom. Systems, Banff, Canada, 2017,
pp. 255-262.

11. Cruz, F., Maia, F., Matos, M., Oliveira, R.,
Paulo, J., Pereira, J., Vilaca, R. Resource usage predic-
tion in distributed key-value datastores. Proceedings of
the IFIP Distributed Applications and Interoperable Sys-
tems Conf., Heraklion, Crete, 2017, pp. 144-159.

12. Abdelmoniem, A. M., Bensaou, B. Curbing
Timeouts for TCP-Incast in Data Centers via A Cross-
Layer Faster Recovery Mechanism. Proceedings of the
IEEE Conf. on Computer Communications, Honolulu,
HI, 2018, pp. 675-683.

13. Libman, L., Orda, A. Optimal retrial and
timeout strategies for accessing network resources.
IEEE/ACM Transactions on Networking, 2002, vol. 10,
no. 4, pp. 551-564.

14. Avizienis, A., Laprie, J.-C., Randell, B., Land-
wehr, C. Basic concepts and taxonomy of dependable and
secure computing. IEEE Trans. on Dependable and Se-
cure Computing, 2004, vol. 1, no. 1, pp. 11-33.

15. Brewer, E. CAP twelve years later: How the
"rules" have changed. Computer, 2012, vol. 45, no. 2, pp.
23-29.

16. Gorbenko, A., Romanovsky, A., Tarasyuk, O.
Fault tolerant internet computing: Benchmarking and
modelling trade-offs between availability, latency and
consistency. Journal of Network and Computer Applica-
tions, 2019, vol. 146, pp. 1-14.

17. Gorbenko, A., Romanovsky, A. Time-outing In-
ternet Services. IEEE Security & Privacy, 2013, vol. 11,
no. 2, pp. 68-71.

18. Github, Benchmarking Cassandra and other
NoSQL databases with YCSB. [Online]. Available at:
https://github.com/cloudius-systems/osv/wiki/Bench-
marking-Cassandra-and-other-NoSQL-databases-with-
YCSB. (accessed 12.07.2020).

19. Gorbenko, A., Romanovsky, A., Tarasyuk, O. In-
terplaying Cassandra NoSQL consistency and perfor-
mance: A benchmarking approach. In: S. Bernardi & e.
all., eds. Communications in Computer and Information
Science. Berlin: Springer Nature, 2020, pp. 168-184.

20. Gorbenko, A., Kharchenko, V., Tarasyuk, O.,
Chen, Y., Romanovsky, A. The threat of uncertainty in
Service-Oriented Architecture. Proceedings of the
RISE/EFTS Joint Int. Workshop on Software Engineering
for Resilient Systems, Newcastle, 2008, pp. 49-54.

Haoitiuna 0o pedaxyii 12.09.2020, posensnyma na pedxoneeii 16.11.2020

JOCJIJKEHHS TAUM-AYTY SIK ®AKTOPA BILIMBY HA IPOAYKTUBHICTh
I JOCTYIHICTbD PO3NNOAIVIEHUX PEIIVIIKOBAHUX BA3 TAHUX

A. B. I'opoenxo, O. M. Tapacrok

KoHnenist po3no/iiieHux perlikoBaHuX CXOBUII AaHuX, Takux sk Cassandra, HBase, MongoDB 6yna 3ampo-
ITOHOBaHA IS €(EeKTUBHOTO YNPABIiHHI BEIUKUMH JaHUMH, 00CAT SIKUX NEPEBUIILYE MOXKIIMBOCTI TPaAUIIHHUX pe-
JSAUIRHUX CUCTEM KepyBaHHs 0a3aMu JTaHUX MO iX eeKTUBHOMY 30epiranaio i o0poomi. Taki cucTeMu XapakTepu-
3YIOTHCS HAsIBHICTIO KOMIPOMICY MiX Y3TO/IKEHICTIO, IOCTYIHICTIO, CTIHKICTIO JIO TIO/IUTY Ta YaCOBUMH 3aTPUMKaMH.
Xoya SIKICHI BITHOCHHH MI)X IIMIMH BJIACTUBOCTSIMH OYyiM paHime Bu3HaueHi B Teopemi CAP, npore, akTyanbHOIO 3a-
JIMIIAETHCS KIJIbKICHA OLlIHKA CTYIIEHS Ta XapaKTepy BIUIMBY Pi3HUX HaJlAIITyBaHb y3TO/PKEHOCTI 1 TAM-ayTy Ha NPO-
JQYKTHBHICTB TaKMX CUCTEM. Y CTaTTi NPEJCTaBICHO Pe3yabTaTH BUMIpIOBaHHS NMpoaykTuBHOCTI Cassandra 3a gomno-
Moroto Habopy TecTiB Y CSB i KiIbKICHO 1MOKa3aHO, SIKOI0 MipOIO 3aTpUMKa BUKOHAHHS 3aITUTIB YMTaHHS iH(popMaril
3aJIeXKHTh BiJl HATAIITYBaHb Y3TOPKEHOCTI TO p0O0YOro HaBaHTa)KEeHHs 6a3u naHuX. L{i pe3ynbTaT ICHO NOKA3yIOTh,
110 O1TBII BUCOKA CTYIIHB Y3TO/PKEHOCTI JaHUX 3HAYHO 301JIBIIy€E YaCOBi 3aTPUMKH, II0 TAKOX Y3TOIKY€ETHCS 3 SIKi-
cuumu BucHOBKamu TeopeMu CAP. Binbin Toro, mokasaHo, 110 4acoBa 3aTpuMKa Ta i1 Bapiallist B 3HaYHi# Mipi 3aste-
KaTh BiJl TOTOYHOTO POOOYOT0 HABAaHTAKEHHS CUCTEMH. P0o3moiieHuit XapakTep po3TTHYTHX CHCTEM HE TapaHTYeE,
110 BiATIOBiAB Bif 0a3u maHuX Oyzae OTPHMaHO MPOTSITOM BCTAHOBJICHOTO Yacy OYiKyBaHHS. B mboMy BUIaaKy BHHU-
Kae, Tak 3BaHUN 4aCOBH 301l CHCTEMHU, KOJIM BiITMOBIIb BT HET OTpUMAHO 3aHAITO Ti3HO a00 K B3aralli He OTPUMAaHO.

Kibepoesneka i 3axucm oanux 105

VY cTatrTi aHaMi3yeThCs POJIb TaliM-ayTy HMPUKIATHOTO PIBHS, KU € ()yHIAMEHTAILHOK YACTHHOK BCIX PO3MOJLIe-
HUX MEXaHi3MiB 3a0€3IICUCHHS BIIMOBOCTIHKOCTI Ta BUKOPUCTOBYETHCS B SIKOCTI OCHOBHOTO MEXaHi3My BHSBICHHS
BiIMOB IIpH pOOOTI B KOMYHIKaIlifHOMY cepenoBuIli [HTepHeT. 30kpeMa, TaliM-ayT pO3TIIAIAETHCS B SIKOCTI OCHOB-
HOTO (haKTOpa, IO BU3HAYAE B3aEMO3B'SI30K MiXK JOCTYITHICTIO CUCTEMH Ta 1i mBuaKoaier0. KinbKkicHO TIOKa3aHo, K
Pi3HI HaJAIITyBaHHS TaliM-ayTy MOXYTh BIUIMHYTH Ha TOCTYITHICTh CUCTEMH, a TAKOX Ha CEpelHii 9ac 00CIyroBy-
BaHHSA i OUiKyBaHHS 00CIyroByBaHHs. He3Bakaroun Ha Te, 110 0arato CyJacHHX pO3MOAISICHUX CUCTEM Ha ITPUKIAI-
HOMY PiBHI BUKOPHUCTOBYIOTh CTaTHYHO-33/IaHUH TaliM-ayT, HAaHOUTBII MEPCIIEKTUBHUM ITiTXOJ0OM € TUHAMIYHE BU-
3HAYCHHS MAaKCUMAJFHOTO Yacy OYiKyBaHHS BiJIMIOBI/I BiJf CHCTEMH AJIs 3a0e3neueHHs OaaHCy MiK IPOAYKTHBHICTIO
Ta JIOCTYIHICTIO, @ TAKOX JUIS MiJBUIICHHS ¢()eKTUBHOCTI MEXaHi3MiB BiTMOBOCTIHKOCTI.

KarouoBi cioBa: Taiim-ayT; posnoaineni 6a3u nanux; NoSQL; pemikanisi; BUIIpoOyBaHHS NPOJYKTHBHOCTI;
LUTICHICTD; TOCTYMHICTD; IIBUIKO/IIS; 3a0¢3MCYCHHS KOMIIPOMICY.

MCCJIEJOBAHUE TAMM-AYTA KAK ®AKTOPA BJIUSIHUSA HA NIPOU3BOAUTEJILHOCThH
N JOCTYIIHOCTB PACHPEJEJIEHHBIX PEIIVIMIIUPOBAHHBIX BA3 TAHHBIX

A. B. I'opoenko, O. M. Tapacrok

KoHtenus pacnpeneIeHHbIX peIUIMIMPOBaHHBIX XPaHUIIHII TaHHBIX, Takux Kak Cassandra, HBase, MongoDB
U p. ObUIa TIpeioKeHa sl d3PPEKTHBHOTO YIPaBICHUS OONBIIMMHU JaHHBIMHU, 00BEM KOTOPHIX MPEBHIMIACT BO3-
MOJKHOCTH TPAIUIMOHHBIX PEIIIHOHHBIX CHCTEM YIIPABJICHUS PEISAIMOHHBIMU 0a3aMM JaHHBIX MO WX 3 (EKTHB-
HOMY XpaHEeHHIO U 00paboTke. Takne CHCTEMBI XapaKTepU3YIOTCs HAJMYHUEM KOMIIPOMHUCCA MEXIy COTJIaCOBAaHHO-
CTBIO, IOCTYITHOCTBIO, YCTOMUHMBOCTBIO K Pa3JEJICHUIO U BPDEMEHHBIMU 3a/1€PKKAMU. XOTs KAUECTBEHHbIE OTHOLLEHUS
MEXAy 3TUMHU CBOMCTBAMH M OBUTH paHee onpeneneHbl B Teopeme CAP, Tem He MeHee, akTyallbHOI OcTaeTcsi KOJH-
YCCTBCHHAA OLCHKA CTCIICHU U XapaKTEpa BIUAHUA PA3TIUYHBIX HACTPOCK COTJIACOBAHHOCTH U TaﬁM-ayTa Ha Mpouns-
BOJUTCJIBbHOCTb TAKUX CHUCTEM. B craTtbe MPEACTAaBJICHBI PE3YJIbTAThl U3MEPCHUA NMPONU3BOJUTCILHOCTH HEPEIIAIIUOH-
Hoii 0a3bl anHbIX Cassandra ¢ moMoinkio Habopa TectoB YCSB 1 KOJIMYECTBEHHO MOKa3aHO, B KAKOI Mepe 3a/iepKKa
BBITOJTHECHHS 3a[IPOCOB UTCHMS HH(GOPMAITUH 3aBUCUT OT HACTPOCK COTIIACOBAHHOCTH M pabouell Harpy3Kku 6a3sl 1aH-
HBIX. DTH Pe3ybTaTHl SICHO MOKA3BIBAIOT, YTO 0OJIee BHICOKAS COTJIACOBAHHOCTH JAHHBIX YBEINYHBACT BPEMCHHEIC
3a/Iep>KKH, YTO COIJIACyeTcs C KaueCTBEHHbIMH BhIBogamu TeopeMbl CAP. bonee Toro, mokazaHo, 4To BpeMEHHas
3a[iepXKKa U €¢ BapHallid B 3HAYUTENBHOW CTEIICHH 3aBUCAT OT pabodel Harpy3Kd CHCTeMBI. PacmpeneneHHbIH xa-
pakTep pacCMaTPUBACMBIX CHCTEM HE TAPAHTUPYET, YTO OTBET OT 0a3bl JaHHBIX OYAET MMOTyUYeH B TEUCHNUE KOHEYHOTO
BPEMCHH OXHIAHHUA. B 3TOM cilydae BO3HHKAET, TaK HA3BIBACMBII BPEMEHHOW COOM CHCTEMBI, KOTAa OTBET OT Heé
MIOJTYYCH CIIHIIKOM IO3IHO WJIM XK€ BOOOIIe He TMONydeH. B cTaThe aHanm3mpyercs poib TaiM-ayTa MPHUKIATHOTO
YPOBHS, KOTOPBIH ABIseTCA (yHIAMEHTAIFHONW YacThIO BCEX paclpe/ieIeHHBIX MEXaHW3MOB OOECIeYeHHs 0TKa30-
YCTOHYMBOCTHU M UCTIONB3YETCS B KAUECTBE OCHOBHOT'O MEXaHN3Ma OOHAPYXKEeHHsI OIUOOK MpU paboTe B KOMMYHHUKA-
LMOHHOM cpene VHTepHeT. B wactHOCTH, TaliM-ayT paccMaTpHBaeTCsl B Ka4eCTBE OCHOBHOTO (hakTopa, onpeaessio-
IIETO B3aUMOCBSI3b MEXKIY IOCTYITHOCTBIO CUCTEMBI U €€ ObICTpoaelicTBreM. KonuecTBEHHO TOKa3aHo, KakK pa3iind-
HBIE HACTPOHKH TalfM-ayTa MOTYT TIOBJIMATH Ha JJOCTYITHOCTh CUCTEMBI, a TAK)KE Ha CpeHee BpeMs 00CITyKUBaHUS U
OXUJJaHUuA O6CHy)KI/IBaHI/I$[. HeCMOTpH Ha TO, YTO MHOT'ME€ COBPEMEHHBIC PACIIPCACIICHHBIC CUCTEMbBI Ha MPUKIIaJJHOM
YPOBHE HCHOJB3YIOT CTaTUUCCKU-3aIaHHBIN TaliM-ayT, HanOoJee MePCIeKTHBHEIM MOIX0A0M SIBIISICTCS AHHAMHIYC-
CKOE OIpeJieieHe MaKCHMaJIbHOTO BPEMEHHU OKUIAaHUS OTKIUKA OT CHCTEMBI IS 0OeCTIedeHUs OalaHca IPOU3BO-
JTUTEIBHOCTH, TOCTYITHOCTH | MOBHIICHHS 3 (HEKTHBHOCTH MEXaHU3MOB OTKa30yCTOHYHNBOCTH.

KaruesBble ciioBa: TaiiM-ayT; pactpenerneHHble 0a3el qanabix; NOSQL; perummkaris; TecTHpoBaHUE TPOU3BO-
JTUTEIBHOCTH; IIEIOCTHOCTD; TOCTYITHOCTR; OBICTPOJCHCTBIE; 0OecleueHue KOMIIPOMUCCA.

I'op0enko Anato/uii BUkTOpoBHY — 1-p TexH. HayK, npod., mpod. kad. KOMIBIOTEPHBIX CHCTEM, CETEH U
knbepbezonacHoctn, HanmonanbHeli aspokocmudecknit ynusepeuteT uM. H. E. JKykoBckoro «XapbskoBckuii aBua-
[IMOHHBINA HHCTUTYT», XapbKoB, YKpanHa, Leeds Beckett University, Leeds, Benukobpuranusi.

Tapaciok Oabra MuxaiiJloBHa — KaH. TEXH. HAyK, JOIEHT, HONeHT OJeCCKOTr0 TeXHOJIOTHIECKOTO YHHUBEP-
cutera «IIIAT», Onecca, YkpaunHa.

Anatoliy Gorbenko — Doctor of Science on Engineering, Professor, Professor of the Department of Computer
Systems, Networks and Cybersecurity, National Aerospace University “Kharkiv Aviation Institute”, Kharkiv,
Ukraine; Reader with the School of Built Environment, Engineering and Computing, Leeds Beckett University,
Leeds, United Kingdom,
e-mail: a.gorbenko@Ileedsbeckett.ac.uk, ORCID: 0000-0001-6757-1797, Scopus Author I1D: 22034015200,
ResearcherID: X-1470-2019, https://scholar.google.com/citations?user=nm8TOtEAAAAJ.

Olga Tarasyuk — PhD, Docent, Associate Professor with the Odessa Technological University STEP, Odessa,
Ukraine,
e-mail: O.M.Tarasyuk@gmail.com, ORCID: 0000-0001-5991-8631, Scopus Author ID: 6506732081,

ResearcherID: X-1479-2019, https://scholar.google.com/citations?user=Xmxkp8Y AAAAJ.

http://www.researcherid.com/rid/V-4024-2017
http://www.researcherid.com/rid/V-4024-2017

