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TWO-STEP PROVIDING OF DESIRED QUALITY IN LOSSY IMAGE
COMPRESSION BY SPIHT

Image information technology has become an important perception technology considering the task of provid-
ing lossy image compression with the desired quality using certain encoders Recent researches have shown
that the use of a two-step method can perform the compression in a very simple manner and with reduced
compression time under the premise of providing a desired visual quality accuracy. However, different encod-
ers have different compression algorithms. These issues involve providing the accuracy of the desired quality.
This paper considers the application of the two-step method in an encoder based on a discrete wavelet trans-
form (DWT). In the experiment, bits per pixel (BPP) is used as the control parameter to vary and predict the
compressed image quality, and three visual quality evaluation metrics (PSNR, PSNR-HVS, PSNR-HVS-M) are
analyzed. In special cases, the two-step method is allowed to be modified. This modification relates to the cas-
es when images subject to lossy compression are either too simple or too complex and linear approximation of
dependences is no more valid. Experimental data prove that, compared with the single-step method, after per-
forming the two-step compression method, the mean square error of differences between desired and provided
values drops by an order of magnitude. For PSNR-HVS-M, the error of the two-step method does not exceed
3.6 dB. The experiment has been conducted for Set Partitioning in Hierarchical Trees (SPIHT), a typical im-
age encoder based on DWT, but it can be expected that the proposed method applies to other DWT-based im-
age compression techniques. The results show that the application range of the two-step lossy compression
method has been expanded. It is not only suitable for encoders based on discrete cosine transform (DCT) but

also works well for DWT-based encoders.
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Introduction

In recent years, with the development of infor-
mation communication and digital imaging technolo-
gies, images have become the main means of infor-
mation recording. Sensor resolution and size of images
have increased dramatically, especially in such fields as
Internet of Things, remote sensing, and intelligent med-
ical treatment [1 - 4]. The ultimate goal of imaging and
image processing can be different including object or
target detection [5, 6], classification [2, 7], remote
browsing [8], human perception [9, 10], etc. In any case,
image transmission and/or storage are required. The
increase of image size increases time taken by data
transmission for a given channel bandwidth and requires
more space for image storage. Because of this, image
compression technology is developing synchronously
providing opportunities to reduce the image size suffi-
ciently [8, 9].

However, it should be noted that the transmission
and storage of images is only a process, not the ultimate
goal. Similarly, compression is the tool for image size

reduction. Meanwhile, for lossy compression, one needs
to ensure that a compressed image can still be used to
reach the ultimate goal, i.e., image distortion caused by
compression do not have a critical effect.

In opposite to lossless compression, lossy com-
pression can easily achieve rather high values of com-
pression ratio (CR), but it also introduces distortions;
some lossy compression should be evaluated in terms of
image quality to ensure that it provides no effect (or an
appropriately small negative effect) on execution of a
final goal. Due to this, research on image quality as-
sessment (IQA) with application to lossy compression
has also become a hot field [11 - 13].

Analysis of existing literature [14 - 16] shows that
there are several important issues in lossy compression.
There are numerous compression techniques designed
so far [16 - 18] including standards and special purpose
techniques. They have different advantages and draw-
backs. Some are characterized by good visual quality of
compressed images [17, 19], others are very fast or en-
sure high quality for compression of region of interest
[20]. Many wavelet-based compression techniques as
JPEG2000 or SPIHT [21 - 23] are able to easily provide
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a desired CR which can be very important in some ap-
plications. However, quality of an image compressed
with a given CR can vary in very wide limits depending
on image complexity [24, 25]. Then, a question arises
how to provide a desired quality for images compressed
by such coders with ensuring high accuracy of image
quality providing. One more important aspect is that, in
many modern applications, just visual quality of com-
pressed images is crucial.

Note that the task of providing a desired quality
according to a chosen quality metric can be potentially
solved by iterative procedures that employ multiple
compression/decompression, quality estimation, and
coder parameter changing towards a final value [17].
This procedure is usually time consuming which can be
a serious drawback. To partly solve the problem, a two-
step procedure has been recently proposed for compres-
sion techniques based on discrete cosine transform
(DCT) [26, 27]. But these methods use quantization step
or scaling factor to control compression characteristics
(CR and quality). Meanwhile, performance of SPIHT is
controlled by BPP (bits per pixel) connected with CR.
So, our goal is to analyze whether or not the two-step
principle is applicable for SPIHT. Another goal is to
understand what are peculiarities of providing a desired
peak signal-to-noise ratio (PSNR) and other quality
metrics in this case.

This paper is organized as follows. Section II ana-
lyzes the state-of-the-art of the research. In Section III,
the encoder and visual quality metrics used in this study
are introduced. The fourth Section mainly involves the
use of the two-step method in SPIHT. Section V uses a
two-step method to evaluate the image quality employ-
ing visual quality metrics. Section VI analyzes the ex-
perimental results in detail. Then, we give conclusions
and suggestions.

Review of research status

Many researchers have conducted studies on
improving the compression ratio of lossy compression
[12, 13], while some researchers have performed
analysis on evaluation of image quality in lossy
compression [14 - 16], trying to strike a balance
between compression ratio and introduced distortions. If
the compression process can be performed with
providing a desired image quality with appropriate
accuracy, then a user can control the error when
performing post-image recognition or classification
tasks, otherwise the error will be cumulatively
transmitted or even amplified, affecting the final task
execution.

There are two main approaches to provide a
desired image quality according to a used quality
metric. One approach is based on prediction. The
existing prediction method is to pre-compress a part of

the considered image to obtain a trend prediction,
thereby providing parameters for the compression of the
complete image. This method is relatively simple and
fast, but it is related to the selected area and the
complexity of the image, and can only provide a limited
accuracy. The cost of improving accuracy is to select
the Salient area through the detection algorithm, or to
predict by a mixture of micro and macro algorithms.
Undoubtedly, these need to sacrifice compression
efficiency [18-20]. Another method is to use an iterative
method that presumes multiple compression / decom-
pression, and gradually approaches the expected value
of image quality. This method can get better accuracy,
but the number of iterations is uncertain, and sometimes
it is very large, which reduces the time efficiency of
compression [17, 28].

The recently proposed two-step compression
method performs this work in a novel way [26, 27]. The
method first presets the parameters through the average
distortion curve, and then adjusts the parameters after
the first step of compression to ensure better accuracy.
In the previous research work, the method has been
tested and verified on the encoder based on DCT, and
the results show that this method can take into account
the compression efficiency and accuracy. However, the
applicability of this method to encoders based on DWT
such as JPEG2000 and SPIHT is uncertain and has not
been studied yet. In this paper, related experiments are
carried out for the encoder SPIHT which is based on
wavelet transform, so as to obtain a general feasibility
analysis of the method.

SPIHT-based encoder and image quality
evaluation metrics

The commonly used method in lossy compression
is space transfer [17 - 24] - map the spatial domain
image to another space (transform domain), generate a
set of transform coefficients, and then gquantize, encode
and transmit these coefficients. This process results in
loss of information, and, at the same time, it obtains
zero data for easy storage, which improves the
compression ratio. The commonly used transforms are
DCT and DWT. DCT is adopted in such encoders as
JPEG and AGU [29, 30], while discrete wavelet
transform is adopted in JPEG2000 and SPIHT [8,
21 - 24]. The wavelet transform has the localization
characteristics in both time and frequency domains and
its multi-resolution characteristics can be combined with
the human visual characteristics [31]. Considering wide
application of DWT-based encoders in lossy
compression, this paper chooses SPIHT encoder for
detailed experiments.

Set Partitioning in Hierarchical Trees (SPIHT) is
improved on the basis of embedded zero-tree wavelet
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(EZW) [32], which mainly uses the self-similarity of
wavelet coefficients of the original signal at various
scales to preferentially transmit wavelet coefficients
with larger absolute values. Unlike the zero tree, SPIHT
uses a splitting method (spatial direction tree), and the
algorithm encoder and decoder use the same diversity
arrangement rules. So, SPIHT has higher compression
efficiency and faster execution speed.

There are three popular metrics for visual quality
assessment, namely PSNR, PSNR-HVS and PSNR-
HVS-M employed in this paper. PSNR is the most
common and widely used objective measure of image
quality, but if the end user is a human, the results
characterized by this metric can be not adequate with
respect to human perception. PSNR-HVS and PSNR-
HVS-M [33] are visual quality metrics that take into
account peculiarities of human visual system (HVS)
[34] (for all these metrics, the larger values correspond
to better quality). The assessment results can match well
with human perception. Considering possibly different
purposes of image compression, we have tested all these
three visual quality metrics.

For different images, the same compression ratio
(or control parameter BPP) may correspond to different
visual quality, so the image quality after decompression
cannot be directly determined by BPP. Let us
demonstrate this using two images - Baboon and Frisco
- as examples. The Baboon image has high complexity
and obvious texture characteristics, while the Frisco
image has low complexity and not obvious texture
characteristics.

Both images are set with BPP=0.5 and the corre-
sponding CR=16. Although the compression ratio is the
same, the levels of distortions introduced to these imag-
es are different. In Fig. 1, the distortions are obvious;
they are well seen in places marked by red and yellow
frames. On the contrary, in Fig. 2, the compressed im-
age is practically the same as the original image. Visual
quality metric values for these two compressed images
also reflect the same difference. In particular, PSNR-
HVS-M for Baboon compressed image equals to
26.69 dB whilst PSNR-HVS-M for Frisco equals
42.52 dB (recall that it is considered that PSNR-HVS-M
values larger than 40...42 dB correspond to invisibility
of distortions).

This example shows that providing a desired visual
quality is not an easy task because quality of com-
pressed image is related to its complexity and texture
characteristics.

Two-step approach for SPIHT

The two-step method is a novel method recently
proposed to provide a desired visual quality. The basic
step is initial prediction of visual quality and parameter

setting using average distortion curve. The average dis-
tortion curve reflects general relationship between visu-
al quality and control parameters.

Fig. 1. Comparison of the original image and com-
pressed image of Baboon: original image (a), CR=16,
PSNR=25.63 dB, PSNR-HVS-M=26.69 dB (b)

In order to understand the dependence of image
quality and compression ratio on control parameters,
Goldhill image was used as an example for testing. The
experimental results are shown in Fig. 3.

For the SPIHT encoder, BPP is used as the control
parameter. As it can be seen in Fig. 1, as BPP increases,
the compression ratio decreases, and the image quality
improves. CR and BPP are strictly dependent where, for
8-bit representation of grayscale images, CR~8/BPP
and, vice versa, BPP=8/CR. Thus, knowing a desired
CR, one calculates BPP and SPIHT provides BPP
slightly less than 8/CR. Dependences of quality metrics
on BPP are monotonously increasing (or non-
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decreasing) but, due to specific properties of SPIHT, are
not smooth.

Fig. 2. Comparison of the original image and com-
pressed image of Frisco: original image (a), CR=16,
PSNR=42.69 dB, PSNR-HVS-M=42.52 dB (b)

To provide a desired image quality through the
two-step method, the average distortion curve needs to
be obtained first. In this paper, nine images are used as
the image library, so as to obtain the average distortion
curve of a small sample. The graphs for three visual
quality metrics are shown in Fig. 3, Fig. 4, and Fig. 5.
Among the image library, there are four standard imag-
es (Lenna, Barbara, Baboon, and Goldhill), four remote
sensing images, and one medical image, which repre-
sent a variety of images that can be subject to lossy

compression. In particular, there are highly textural im-
ages Baboon and Diego whilst the test images Frisco
and MRT _preparted are quite simple.

120 .
PSNR Goldhil
—&—PSNR-HVS Goldhil
L —*—PSNR-HVE-M Goldhi
1o CR Goldhill i

visual Evaluation Metric

BPP

Fig. 3. Dependences of image quality and compression
ratio on control parameter

In Fig.4, the distortion curve of the PSNR of each
image is relatively smooth. For the same BPP value,
different image values differ greatly (up to 23 dB). The
simple image Frisco's curve is at the top, and it has the
highest PSNR value under any BPP. The curves for Ba-
boon and Diego that are complex structure images are at
the bottom, which means that the distortions are the
largest under the same CR (BPP). However, the overall
change trend is consistent. The average distortion curve
obtained from these nine images is locally “approxi-
mately parallel” to other curves.

—#— Goldhill
~—#—— Baboon
“# Barbara
Lenna
60 | —+— Aerial
—%— Airfield
55 b © Frisco
Diego
- Mrr.perpared e ;

—— Average

0 05 1 15 2 25 3

BPP
Fig. 4. Particular and average distortion curves
for PSNR

In Figures 5 and 6, one can observe that, for the
same BPP, values of PSNR-HVS and PSNR-HVS-M
are also sufficiently different. However, for PSNR-
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HVS-M this difference is smaller than for PSNR, Com-
plex structure images (such as Baboon) have the worst
visual quality, and correspondingly, simple structure
images (such as Frisco) have the best visual quality. The
average distortion curves are again locally approximate-
ly parallel to dependences for particular images.

—#— Goldhill
65 | ——Baboon
Barbara
60 H Lenna B
“— Aerial
55 H—#—Airfield 4
Frisco

H Diego =
50

anerpared B
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30
25+

20 + &

0 0.5 1 15 2 25 3
BPP

Fig. 5. Particular and average distortion curves
for PSNR-HVS
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Fig.6. Particular and average distortion curves
for PSNR-HVS-M

SPIHT-based
experiment implementation

From the previous analysis, it can be concluded
that, in SPIHT, it is feasible to perform compression
prediction through the average distortion curve. In the
average distortion curve, the data to be extracted are the
corresponding visual quality metric values and deriva-
tives for a series of control parameters.

Table 1
Dependence of PSNR (in dB) on BPP for SPIHT
) BPP
Testimage 51T T 07 0.8
Goldhill 27.949 | ..| 34.663 | 35.308
Baboon 21352 | ..| 27.176 | 27.827
Barbara 24.650 | ..| 34.549 | 35.493
Lenna 30.189 | ..| 38.775 | 39.380
Aerial 22,631 | ..| 30.561 | 31.452
Airfield 22551 | ..| 28.715 | 29.287
Frisco 33.734 | ..| 45.091 | 46.052
Diego 22,934 | ..| 27.834 | 28.379
MRT prep | 29.586 | ..| 40.882 | 41.937
Average 26.175 | ..| 34.250 | 35.013
Derivative | 23.089 | 7.6301 | 7.5715

Table 1 contains a part of statistical data for the
dependence of PSNR on BPP. Averaging has been done
for each BPP for a set of test images, then the derivative
values have been determined (they are all positive and
their values decrease if BPP increases).

In the first step of compression, we propose to set
the compression control parameter (PCC) according to
the measured average rate/distortion curve, the argu-
ment of which in SPIHT is BPP. Let us give one exam-
ple. Suppose we need to provide compression with a
desired PSNR (PSNRges) equal to 35 dB for the test im-
age Baboon. According to the average rate/distortion
statistics (see the row “Average” in Table I), the value
of BPP should be between 0.7 and 0.8. Then, using line-
ar interpolation, we can calculate initial BPP value by
the following formula:

PSNR

=BPP_ + des — PSNRave
est

Mr

BPP,

init

, )

where BPPes is the left margin of the interval of the av-
erage rate/distortion curve (equal to 0.7 in the consid-
ered example), PSNRa is the PSNR average distortion
value corresponding to the BPP estimate. M' is the de-
rivative corresponding to the BPP estimate. Using data
in Table I, it can be calculated that the initial value of
BPP is equal to 0.798.

After the initial value of BPP is obtained, the im-
age Baboon is compressed at the first step and then de-
compressed to obtain the visual quality value corre-
sponding to a considered image. Let us denote this value
as PSNRin.. For the image Baboon, it equals to
27.815 dB. As one can see, this value is quite far from
the desired value of visual quality metric (35 dB). Re-
calling the analysis in the third section, the Baboon im-
age has high complexity and strong texture characteris-
tics, which can result in poor visual quality. Of course,
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the accuracy of this value (difference between PSNRjnit
and PSNRges) is unsatisfactory and actions to improve
the accuracy of providing PSNRges are needed.

In the second step of the compression procedure, a
BPP corrected value for this image should be calculated
using the PSNRinit value obtained at the first step to im-
prove accuracy. We propose to do this as follows:

BPPdes = BPPinit + PSNRdeSI\;fPSNRinn ' (2)

The corrected (desired) BPP value is used at the
second step of compression. The provided PSNRprov
equals to 33.414 dB and is closer to the desired value
than the PSNRinit (27.815 dB) obtained at the first step.
From this example, a specific implementation of the
two-step method is shown. It is seen that after the sec-
ond step of compression, the provided value PSNRproy iS
closer to the desired value PSNRdes than the initial val-
ue PSNRinit. But can the two-step method also provide
precision control for the compression of other images?
Further experiments and statistical data are necessary.

Analysis of compression accuracy

After the average distortion curves based on the
three visual evaluation metrics are obtained separately,
the image can be compressed by a two-step compression
method. Taking the desired value of PNSR-HVS-M as
40dB as an example, nine images were tested, as shown
in Table 2. In this Table, we give the following data:
BPPini: calculated according to (1) and PSNR-HVS-Mipit
calculated after compression with BPPii: and decom-

. PSNR, . —PSNR. . .
pression, ABPP calculated as deSM' Mt in

(2), BPPges calculated according to (2), PSNR-HVS-
Mprov Obtained after the second step of image compres-
sion using BPPges; in the lowest line we present variance
(Var) for PSNR-HVS-Mjnir and PSNR-HVS-Myroy, re-
spectively.

Before starting to analyze these data in detail, let
us recall the following. There are several reasons why
the proposed two-step procedure can lead to residual
errors in providing a desired value of a used metric.
First of all, linear interpolation is used in (2) and it is
valid only in a certain (not too large) neighborhood of
BPPinit and under condition that an approximated func-
tion behaves linearly (absolute values of the second and
higher derivatives are close to zero). Clearly, this is not
guaranteed in our case. Secondly, linear approximation
(2) exploits M’ obtained for average curve as derivative
estimate for all particular dependences. But this is also
the idealization.

Table 2
Statistics and paramters of providing
PSNR-HVS-Mges=40dB
PSNR- PSNR-
Testimage | BPPu | HVS- | ABPP | BPPes | HVS-
Minit Morov
Goldhill 1.007 | 40215 | -0.021 | 0.986 | 40.031
Baboon 1.007 | 32688 | 0721 | 1.729 | 39.186
Barbara 1.007 | 40616 | -0.061 | 0.947 | 39.912
Lenna 1.007 | 44934 | -0487 | 0521 | 39762
Aerial 1.007 | 36721 | 0323 | 1331 | 40455
Airfield 1.007 | 33631 | 0628 | 1.636 | 39.168
Frisco 1.007 | 48.944 | -0.882 | 0504 | 42.565
Diego 1.007 | 33388 | 0652 | 1.660 | 39.962
Mrt_prepared | 1.007 48.632 | -0.851 0.504 | 40.316
Var 40.971 1.013

One can see in Table 2 that IABPPI obtained for
Frisco and MRT _prepared images after the first com-
pression step is quite large - it exceeds half of the BPPinit
value. The values obtained after BPP calculation using
(2) are 0.125 and 0.156, respectively, and the PSNR-
HVS-M values obtained after such parameter compres-
sion are 32.085dB and 29.186dB, respectively. So, ac-
curacy of visual quality providing has not been im-
proved after the second step of compression. This is due
to the aforementioned factors. Really, when BPP is
smaller, the curve changes steeper and the derivative
changes more. At this time, the BPP is predicted by the
derivative of the initial value point, which causes
IABPPI to be too large. This means that the expected
improvement of providing visual quality accuracy can-
not be ensured by Equation (2) in some cases. Similar
situations happened for DCT-based encoders such as
AGU and ADCTC [27, 35] controlled by quantization
step. For SPIHT we propose to use similar correction
formula for BPPges — if the absolute value of ABPP is
larger than BPPinit / 2 and ABPP is negative, then set

BPPrec = BPPinit/2, (3)

then continue the two-step compression. Due to this
modification, the improvement in accuracy of providing
a desired quality is guaranteed. The experimental data
proving this are given in Table II. After using the modi-
fied formula, the obtained visual quality values are
42.565 dB and 40.316 dB (closer to the desired visual
quality value). Comparison of variance values shows
that, after the second step, variance has decreased by
about 40 times, i.e. considerable benefit is provided.
Meanwhile, comparison to the data for AGU [27] shows
that accuracy of providing a desired PSNR-HVS-M for
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SPIHT is worse (for AGU, variance of providing
PSNR-HVS-M after two-steps is equal to 0.0108).

Let us test accuracy for the range of metric values
that is the most important in practice. Three typical
thresholds of 30 dB, 35 dB, and 40 dB for our visual
quality metrics, PSNR, PSNR-HVS, and PSNR-HVS-
M, respectively, have been obtained for nine test images
of experimental data, which are summarized in Table 3.

Table 3
Statistics for test images
Quality metric Maes | VARfis | VARsee | MAXafin
PSNR 40 | 50.715 | 4.213 5.950
PSNR 35 | 39.577 | 9.598 7.673
PSNR 30 | 29.432 | 10.82 7.168
PSNR-HVS 40 | 45.320 | 2.175 3.517
PSNR-HVS 35 | 37.937 | 4.603 4.263
PSNR-HVS 30 |31.349 | 3.599 4.369
PSNR-HVS-M 40 | 40.971 | 1.013 2.565
PSNR-HVS-M 35 | 32.867 | 2.922 3.598
PSNR-HVS-M 30 | 26.890 | 4.028 3.314

Here Mges is the desired value of the considered
visual quality metric, VARs;s is the variance of visual
quality metric for nine test images obtained after the
first-stage compression, VARsc is variance of visual
quality metric obtained after the second (correcting)
step of compression, MAXam IS Maximum error
between Mges and provided value of the considered
visual quality metric.

It can be seen from the data in this Table that the
variance after the first compression step is large (up to
50.715dB?), and the variance after the second
(correction) step is an order of magnitude lower than
VARsis (except PSNRgs = 30 dB). The higher the
desired visual quality, the smaller the error. In addition,
through comparison, it can be concluded that the two-
step method works better with employing the HVS-
based visual quality metrics, and the maximum error
does not exceed 5 dB. In the evaluation based on PSNR,
the variance is improved, but the maximum error is still
large, and more effective improvements are needed to
reduce the error.

Conclusion

Through the experiments of two-step compression
method applied in SPIHT encoder based on wavelet
transform, it can be concluded that the method works
well enough. For three visual quality metrics, the results
have been improved sufficiently, and the variance after
the second compression has dropped by about an order
of magnitude. Of course, the maximum error of some

data is still relatively large, especially for PSNR. In the
future work, in response to this problem, it is expected
to propose a better second-step correction method to
improve the control accuracy and reduce errors.
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JIBOETAITHE 3ABE3IEYEHHS BA’KAHOI AKOCTI TP CTUCHEHHI 3065PAKEHB
3 BTPATAMMU 3A 1OIIOMOTI'OIO KOJEPA SPIHT

@. JIi, C. C. Kpusenxo, B. B. JIykin

IHdopmariitai TeXHOIOTI] BiIIrpaloTh BXIINBY Poib B 00po0Omi 300pakeHp, 0COOIMBO B 3a/1a4aX CTHCHEHHS
300pakeHb 3 BTpaTaMu i3 3abe3meueHHsIM HeoOXigHoi skocTi. HemonaBHi TOCTIIKEHHS TTOKA3aIH, 10 BUKOPHC-
TaHHS JBOETAITHOIO METOJY JO3BOJISIE 3/1IHCHUTH CTUCHEHHS Y€ IIPOCTUM CIIOCOOOM, 3a0€3MeUyl0UH MPpH LbOMY
3MEHIIEHUH Yac 0OpOOKH 32 YMOBH JTOCSTHEHHSI HEOOX1HOTO Bi3yalbHOTO SKOCTi. OHAK Pi3HI KOJEPU MAIOTh Pi3-
Hi QJITOPUTMHU CTHCHEHHA. 30KpeMa, 0co0IMBe MiCIle 3aiiMal0Th TUTAHHS 3a0€3MeYeHHsT TOYHOCTI He0OXiTHOT IKOC-
Ti. Y JgaHiil cTaTTi po3rsAaeThes 3aCTOCYBAaHHS JBOETAITHOTO MiAX0y B KOJEpi HA OCHOBI AWCKPETHOTO BEWUBIIET-
neperBopernst (DWT). B npomy ekcriepuMeHTI KiJbKicTh OiT Ha oauH mikcenb 300paxenHs (BPP) BukopuctoBy-
I0ThCS B SIKOCTI TIapaMeTpa YIpaBIiHHS SKICTIO CTUCIIOTO 300paXeHHs. AHANI3YIOThCSI TPH ITOKa3HUKH OIIHKH Bi3y-
anpHOT sikocTi (PSNR, PSNR-HVS, PSNR-HVS-M), nBa 3 kX BpaxoBYIOTh OCOOJIMBOCTI Bi3yaJIbHOTO CIIPHHHST-
Ts. B okpemMux BHUIIaaKax JOMycKajlacst 3MiHa JABOETAmHOro merony. Lls Moandikamis crocyeTbes BUMAAKIB, KOJIH
300pa)XeHHs, 1110 IiIAI0ThCS CTUCHEHHIO 3 BTPAaTaMH, € a00 3aHaATO MPOCTHUMH, a00 3aHA/ATO CKJIQJHUMH, 1 JTiHIHHA
arpoKCHMAIlisl 3aJIeKHOCTEH J1a€ He3a10BUIbHUI pe3yibTaT. EkcriepuMeHTasbHi JaHi JOBOAATH, 0 B OPIBHSHHI 3
OJTHOKPOKOBUM METOJIOM ITiCJIsi BUKOHAHHS JIBOETAITHOIO METO/y CTUCHEHHS CEePeHbO-KBaIpaTUuHa MOXHUOKa Bill-



32 ISSN 1814-4225 (print)
PAIOEJIEKTPOHHI I KOMIT'FOTEPHI CUCTEMM, 2020, Ne 2(94) ISSN 2663-2012 (online)

MIHHOCTEH MiXk Oa’kaHUMH 1 O/IEPXKYBaHUMH 3HaYEHHSIMH 3MEHIIYEThCS B KisibKa pasiB. s merpukn PSNR-HVS-

M noxubka J1BoeTarnHoro MeToay He nepesuinye 3,6 n1b. Excriepument 0yB nposeaenuit aist kogepa SPIHT - cran-

JapTHoro xonepa Ha ocHOBi DWT. OxHak MOXHA OUiKyBaTH, IO 3alPONMOHOBAHMHA METOJ MO>KHA 3aCTOCOBYBATH

JI0 iHIMUX METOIIB CTHCHEHHSA 300pakeHh Ha ocHOBI DWT. PesympraTé mokasyroTs, IO 00JACTh 3aCTOCYBaHHS

JBOCTAITHOTO METOIY CTUCHEHHS 3 BTpaTaMu Oyia po3mupeHa. BiH miIxoauTs He TUTBKU U KOAEPiB, 3aCHOBAaHUX

Ha TUCKpeTHOMY KocuHycHOM neperBopeHHi (DCT), aie Takox qoOpe mpamroe s koaepi Ha ocHoBI DWT.
KirouoBi cjioBa: 1BoCTyIIeHeBUI MioXi; CTUCHEHHS 3 BTpaTaMu; Oaxana Tounicts; DWT; SPIHT

JABYX3TAIIHOE OBECIIEYEHMUE KEJTAEMOTI'O KAYECTBA
MPU C)KATUU U30BPAXKEHU C IOTEPSIMU IIPU IOMOIIU KOJEPA SPIHT

@.JIu, C. C. Kpugenko, B. B. J/Iykun

HudopmanmoHHbIe TEXHOJIOTHH UTPAIOT BaKHYIO POJIb B 00pabOTKe M300paKeHUH, 0COOEHHO B 3a1a4ax CiKa-
TUSI U300paKeHUH ¢ MOTEepsIMU M obecrieueHreM TpedyeMoro kadectBa. HemaBHHe McciieoBaHUS ITOKa3alH, YTO
UCIIONIb30BAaHKUE JABYXATAITHOTO METO/A IO3BOJIIET OCYIIECTBUTH CXKAaTHE OYEHb MPOCTBHIM CIIOcoOOM, obecreunBas
IIPHU 3TOM YMEHBIIEHHOE BpeMsi 00pabOTKH MPH YCIOBUH JTOCTHKEHHUS TPpeOyeMOoro BU3yallbHOTO KadecTBa. OmHAKO
pas3HbIe KOJEpbl UMEIOT pa3Hble aITOPUTMBI cxkaTus. B yacTHOCTH, 0c000€ MECTO 3aHMMAIOT BOIPOCH 0OECIICUCHNU S
TOYHOCTH TpeOyeMoro kauecTBa. B maHHOM cTaThe paccMaTpHBaeTCsl IPIMEHEHHUE JIBYX3TAIHOTO ITOX0/1a B KOAEpE
Ha OCHOBE JMCKpETHOro BeiBier-npeodpazoBanust (DWT). B 3ToMm sKcriepuMeHTe KOJMYECTBO OWT Ha OAMH ITHK-
cens u3o0pakerns (BPP) ncrmose3yrorcst B KauecTBe mapaMeTpa yNpaBICHUs KaueCTBOM CXKATOTO H300paKeHHS.
AHaIM3UPYIOTCS TPU MOKa3aTelsl OleHkH Bu3yanbHoro kadectsa (PSNR, PSNR-HVS, PSNR-HVS-M), aBa u3 ko-
TOPBIX YUUTHIBAIOT OCOOCHHOCTH BU3YaJbHOTO BOCHPUATHA. B OTHENBbHBIX ClTydasx JIOMyCKaloCch N3MEHEHHE JIBYX-
STAIHOTO MeTOoa. JTa MOAU(DUKALNS OTHOCUTCS K CIydasiM, KOTrJa H300paXKeHusl, 0IBEpPraeMble CHKATUIO C MOTe-
PSIMH, SIBJISIFOTCS JTMOO CIIMIIKOM HPOCTBIMHM, JIMOO CIIMIIKOM CIIO)KHBIMH, U JIMHEHHAs alpoOKCHMAlXs 3aBUCUMO-
CTeH MaeT HeyIOBJIECTBOPUTENBHBIN pe3yibTaT. DKCIIEPUMEHTANIbHBIC JaHHBIE OKAa3bIBAIOT, YTO IO CPABHEHHIO C
OJIHOIIIArOBBIM METOJOM IIOCJIE BBIMOJIHEHHS JBYXITAITHOTO METOJa CXKaTHs CpelHEeKBaJpaTHdyeckas OIIMOKa pas-
JTMYUHA MEXIy >KeaeMBIMH M TOJyYacMBbIMH 3HAUCHHSAMH YMEHBIIACTCS B HECKONbKO pa3. Jlms merpuxu PSNR-
HVS-M mnorpemHocTs OBYXITAalTHOTO METOAa He mpesbimaer 3,6 nb. DkcnepuMeHT ObLT NMpOBENeH Ui Kojepa
SPIHT - crangaptHOTo Konepa Ha ocHoBe DWT. O1Hako MOKHO 0XKHAATh, YTO MPEATI0KEHHBIH METOJ] TPUMEHNM K
JIpYyrUM METoJaM CkaTusi u3o0paxeHud Ha ocHoBe DWT. Pe3ynbraThl MokaspIBafoT, 4TO 00JacTh NMPUMEHECHUS
JBYX3TAITHOTO METOJa CXKaTus ¢ moTepsiMu OblIa pacmmpera. OH MOIXOAUT HE TOJIBKO U KOAEPOB, OCHOBAHHBIX
Ha TUCKPETHOM KocHHycHOM mpeodpazoBanun (DCT), HO Takke Xopomio padoTaet A KoJaepos Ha ocHoBe DWT.

KirwueBble ¢J10Ba: IBYXCTYIICHYATHIN MOIXO0/; CKATHE C TIOTEPAMH; sKenaemasi TouHocth; DWT; SPIHT

JIn ®@anrdanr — ct. nper., Mxenepnas nadoparopus L[3ssHcH 17151 TECTUPOBAHUSI TEXHOJIOTHI OTITOAIEKTPOHUKH,
Hanpuanckuit  yauepcurer Xanr-Konr, Hanpuan, 330063, KHP; acnmpantka kad. HWHPOPMAIHOHHO-
KOMMYHHUKAITMOHHBIX TeXHONorui uMm. A. A. 3eneHckoro, HanmoHanmbHBIH ad3pPOKOCMUYECKHI YHUBEPCHUTET
uM. H. E. XKykoBckoro «XapbKOBCKUI aBUALIMOHHBIA HHCTUTYT», XapbKOB, ¥ KpauHa.

Kpusenkxo Cepreii CTanuciaBoBHY — KaH/. TEXH. HayK, C.H.C. Kad. MH(POPMAIMOHHO-KOMMYHHUKAaIIMOHHBIX
TexHosoruii um. A. A. 3enenckoro, Hamnumonanbublii a’poxkocmuueckuil yHuBepcurer uMm. H. E. XKykoBckoro
«XapbKOBCKHM aBUaLIMOHHBIA UHCTUTYT», XapbKOB, Y KpauHa.

Jlykun Baamumup BacuabeBu4 — 1-p TexH. Hayk, mnpod., 3aBeayromui kad. WHOOPMAIMOHHO-
KOMMYHHUKAITMOHHBIX TexHoJorui uMm. A. A. 3eneHckoro, HanmoHaJlbHBII a’pOKOCMHUYECKUN YHHBEPCUTET
uM. H. E. XKykoBckoro «XapbKOBCKHI aBHAIIMOHHBIA HHCTUTYT», XapbKoB, YKpauHa.

Fangfang Li — Senior Lecturer, Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nan-
chang Hang-kong University, Nanchang, 330063, PR China; PhD student of Dept. of Information and communica-
tion technologies named after A. A. Zelensky, National Aerospace University “Kharkov Aviation Institute”,
Kharkiv, Ukraine, e-mail: liff_niat@sohu.com. Scopus Author ID: 57211096654, ResearchGate: Li_Fangfang3.

Sergey Krivenko — PhD, Senior Researcher of Dept. of Information and communication technologies named
after A. A. Zelensky, National Aerospace University “Kharkov Aviation Institute”, Kharkiv, Ukraine,
e-mail: krivenkos@ieee.org, Scopus Author ID: 24344247200, ORCID Author ID: 0000-0001-6027-5442,
ResearchGate: Sergey_Krivenko2.

Vladimir Lukin — Doctor of Technical Science, Professor, Head of Dept. of Information and communication
technologies named after A. A. Zelensky, National Aerospace University “Kharkov Aviation Institute”, Kharkov,
Ukraine,
e-mail: lukin@ai.kharkov.com, Scopus Author ID: 7102438809, ORCID Author ID: 0000-0002-1443-9685,
ResearchGate: Vladimir_Lukin2.



