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TOMIC FUNCTIONS AND LACUNARY INTERPOLATION SERIES
IN BOUNDARY VALUE PROBLEMS FOR PARTIAL DERIVATIVES EQUATIONS
AND IMAGE PROCESSING

In the paper we consider and solve the problem of construction of the so called tomic functions — the systems of
infinitely differentiable functions which while retaining many important properties of the shifts of atomic func-
tion up(x) such as locality and representation of algebraic polynomials and being based on the atomic func-
tions nevertheless have nonuniform character and therefore allow to take into account the inhomogeneous
and changing character of the data encountered in real world problems in particular in boundary value prob-
lems for partial differential equations with variable coefficients and complex geometry of domains in which
these boundary value problems must be solved. The same class of tomic functions can be applied to processing,
denoising and sparse storage of signals and images by lacunary interpolation. The lacunary or Birkhoff inter-
polation of functions in which the function is being restored by the values of derivatives of order r in points in
which values of function and derivatives of order k<r are unknown is of great importance in many real world
problems such as remote sensing. The lacunary interpolation methods using the tomic functions possesss im-
portant advantages over currently widely applied lacunary spline interpolation in view of infinite smoothness
of tomic functions. The tomic functions can also be applied to connect (to stitch) atomic expansions with differ-
ent steps on different intervals preserving smoothness and optimal approximation properties. The equations for
of construction of tomic functions tofu;(x) — analogues of the basic functions of the generalized atomic Taylor
expansions are obtained — which are needed for lacunary (Birkhoff) interpolation. For the applications in var-
iational and collocation methods for solving bondary value problems for partial derivative and integral equa-
tions the tomic functions ftupj(x) are obtained that are analogues of B-splines and atomic functions fupa(x).
Using similar methods, the tomic functions based on other atomic functions such as Z,(X) can be obtained.

Keywords: atomic functions; tomic functions; lacunary interpolation; Birkhoff interpolation; image pro-
cessing and storage; variational methods; collocation method.

Introduction 1. Formulation of the problem:

Birkhoff or lacunary interpolation
In this paper, we solve the problem of overcoming

some limitations of atomic functions which found wide
applications in solving the boundary value problems of
electromagnetics and image processing and possess
important properties of locality and representation of
algebraic polynomials but does not possess sufficient
flexibility to allow to take into account nonuniform and
inhomogeneous character of the data of the objects of
research — complex geometry and variable coefficients.
The properties and parameters of the systems which are
the objects of analysis and processing in electromagnet-
ics, distant sensing, processing of multidimensional sig-
nals often undergo rapid changes and are described by
differential equations with variable coefficients in the
domains with complex geometry.

The aim of this paper is to introduce some gener-
alization of atomic functions (AF) — so called tomic
functions (TF) which while retaining most important
advantages of AF take into account this inhomogeneity,
variability of the behaviour of the solutions of the prob-
lems encountered in applications.

The main task of this paper is starting from ideas
and machinery of atomic functions offer the solution of
the lacunary interpolation problem by construction the
new class of function — tomic functions.

As one example we consider a solution with the
help of this new apparatus of the constructive theory of
functions of the problems of Birkhoff or lacunary inter-
polation. In the well- known Newton or Lagrange inter-
polation in order to reconstruct an unknown function we
use its known values in some points. In Hermite interpo-
lation in addition to the values of the function in some
points the derivatives to some order in the same points
are used. The Birkhoff (or lacunary) interpolation uses
the known values of the derivatives of some order in
points where the values of the function are unknown.
Let us here make a remark that the opinion that it is
more easy to determine the values of a variable than to
find the values of the derivatives of this variable is not
always true. It is in fact very often absolutely wrong.
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Let us give some examples. Consider such frequently
met functions as Inx, arctgx . Their derivatives are

correspondingly

1
1+ x2

1
<

Its obvious that in this case the derivatives are
computed much easier. One more frequently used in
probability theory and its applications function is

F(x) = % [exp(—? 1 2)ct.
0

The tabulated computed values of this function are con-
tained in practically every probability and statistics
textbook. Its derivative is

F'(x)= iexp(—x2 /2)
/Y

on

— this is an elementary function. Let us recollect that the
computation of integrals is often much harder task than
computation of the derivatives. The derivative of an
elementary function is always an elementary function
while antiderivative (primitive) of an elementary func-
tion is not as a rule. The problems of solving the differ-
ential equations are problems of finding the function
given some information about its derivatives and are
called the integration of the differential equation. Now
let us Consider such mechanical quantities as displace-
ment (position), velocity, acceleration, jerk, snap etc. If
displacement as function of time is denoted by d(t),

velocity as v(t), acceleration a(t), jerk j(t), snap
sp(t) , then by definition we have

d@(t)) _ ..y, dd®) ...
T_J(t)’ it =V(t);
d(v(t) _ . dG(0) _

T_a(t)' ot =sp(t) .

Determining of the displacement as function of
time at given moment of time is considerably more dif-
ficult than determining of the velocity — first derivative
of the displacement because for determining the veloci-
ty we need only local frame of reference while to de-
termine displacement relative to some distant initial
point of space we need global frame of reference, de-
termining of the velocity is more difficult than deter-
mining of the acceleration in view of the Newton law
F=ma and we can determine the acceleration even
without local reference frame.

Determining of the acceleration is more complex
than determining of the jerk — the derivative of accelera-

tion. What is measured by the sensors of plants and an-
imals (including human beings) -temperature or its
change, loudness of sound or its change, brightness of
light or its change? Turning to computer science - what
is more memory efficient for storage of the information
on a function — 1) to store the values directly or 2) to
store only some values with large steps and differences
or both differences and second differences and third
differences with diminishing small steps? The books
containing very precise tables of logarithms and trigo-
nometric functions with 10 digit accuracy of the pre-
computer era used the second approach — values with
large steps on the left side of a page, to the right to the
column of values the column of the first differences
with smaller step, and next to the right the column of
second differences with the smallest step. But the dif-
ferences by the Lagrange theorem are derivatives multi-
plied by the powers of the steps. And when the steps are
small and constant the powers of steps are even more
small, so in order to provide the needed accuracy of the
values of the function, we need less digits to store the
values of derivatives than to store the values of the func-
tion itself. Those are arguments in favour of lacunary or
Birkhoff interpolation and one observes a lot of papers
on lacunary spline interpolation which were published
recently. Lacunary interpolation was invented by
George Birkhoff (the same Birkhoff who proved the
ergodic hypothesis and created the dynamic system the-
ory) at the beginning of the twentieth century but was
not very successful because mathematical tools he used
were algebraic polynomials and an algebraic polynomial
P, (x) of degree n has not more than n real roots, its

derivative — not more than n—1roots, its second deriva-
tive not more than n—2 roots and so on, and the de-
rivative of the order nis constant not equal to zero, so
has no roots at all. As well- known saying goes “new
wine needs new skin bags”. To develop lacunary inter-
polation new tools were needed — the splines [12, 16-
18]. Numerous examples of applications of polynomial
splines to lacunary interpolation are in [25-36]. But
splines of degree n are functions of finite smoothness —
only first n—1 derivatives are continuous. To construct
the lacunary interpolation series we need the atomic
functions. The generalized atomic Taylor expansion
proposed in 1991 by V. A. Rvachev (V. O. Rvachov in
Ukrainian) is an example of such lacunary interpolation
of infinite order. Atomic and tomic functions are the
tools for such kind of interpolation. Examples in medi-
cine, geophysics, image processing, remote sensing [19-
21, 23-25]. Now we will state reasons in favor of lacu-
nary (Birkhoff) interpolation. There are many applica-
tions where robot motion with abrupt changes of jerk is
not wanted, such as in transportation of people and
goods where dropouts and breakages may easily occur.
Limiting jerk in robot trajectories also contributes to
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extended life of robot joints and thus to more precise
trajectory tracking. A technique for time-jerk optimal
planning of robot trajectories. The trajectory planning
problem is a fundamental one in Robotics. It may be
formulated thus: define a temporal motion law along a
given geometric path, such as certain requirements set
on the trajectory properties are fulfilled. Hence, the aim
of trajectory planning is to generate the reference inputs
for the control system of the manipulator, in order to be
able to execute the motion. The inputs of any trajectory
planning algorithm are: the geometric path, the kinemat-
ic and dynamic constraints; and the output is the trajec-
tory of the joints (or of the end effector), expressed as a
time sequence of position, velocity and acceleration
values. Usually, the geometric path is specified in the
operating space, i.e. with reference to the end effector of
the robot. Standard generalized Taylor expansions on
the basis of up(x) function which were introduced by

V. A. Rvachev in 1981 use values of the function and its
first derivative in integer points, the values of derivative
of the order 2 in half integer points. The values of the

derivatives of the order in points of form k2. In

places where the unknown functions are varying rapidly
the discretization step should be made smaller and alter-
nately in regions where those functions are slow varying
the step could be made larger. So, generalised atomic
Tailor expansion (GATE) expansions should be made
with different steps in different regions. But then the
problem of smooth transition from one region to the
neighbour must be solved. To solve this problem we
have to introduce new smooth compactly supported
functions similar to the atomic functions but which have
zeroes of the derivatives placed non-uniformly or in
other words the widths of the intervals between two
neighbouring zeroes of the derivatives (parts of the de-
rivative on this intervals which could be named hills and
holes) should be different in different regions. Atomic
function which satisfy functional differential equation
(FDE) of pantograph type with some fixed compression
coefficient? The hills and holes of the derivative of a
given order have equal widths. Let us remind here that
atomic functions by definition are compactly supported
solutions of the equations of the form

Ly(x) = > cxy(ax—by),
k=1

where L is linier differential operator of order m with
constant coeffitients. Their Fourier transforms are of the
form

p (elt/a )
Fap(t) =
AR kHOQm(t/a Ky

where P, (t),Qu,(t) are algebraic polynomials. If we
denote

Snc ( ) SInX

then Fourier transform of the up(x) function will be

Ftup(t) = [ Sne(t/2),
k=0

m
Ly(x) = > cy(ax+by) .
k=1
Convolution of up(x) with itself is needed for applica-

tion in variational and projection methods. To compute
the convolution upp =up(x) *up(x), we expand it into

Fourier series on interval [-2,2]. Coefficients of this

series are values of the square of the Fourier transform
of the function upp(x) in points kr/2, where

upp() = [ up(x—t)up(t)dt ,

_[ eX'Fup? (t)dt,

—00

upp(x

where

k
smt2

Fip(®) = H —— .
K=1 t2

Support of the function upp(x) — is the interval [-2,2].
It is an even function so its Fourier expansion will con-
tain only cosins. Function upp(x) is used for compu-
tations when building orthogonal bases of the spaces of
spans of shifts of functions fup, (x) . It is obvious that

1
upp(0) =y = [ up?(x)dx .
-1

To solve multidimensional problems — on the plane or
in the space, we use the functions

up(n,x) = [ Jup(xy).

k=1

Besides there are other atomic function which are much
promising for applications. For example, the function
Ep(x) is the solution with support [-1,1] of FDE
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v (x) = ai (DX CKy((n+1)x — 2k +n).
k=0

In particular case n=3 we have

E3(})® =A(Z5(4x—3) -3, (4x —1) +
+353(4x +1) —E3(4x +3)).

Application of this function instead of the function
up(x) has the advantage that the derivatives of it grow
more slow than the derivatives of up(x) function, and
its derivatives possess fewer zeroes and in GATE on the
basis of this function will contain fewer terms with de-
rivatives of the given order. The orthogonal systems on
the basis of Z,(x) functions have similar advantage.
The negative feature of these functions when compared
with the function up(x) is in the fact that the deriva-
tives of it from the first to the derivative of order n-1
are not linear combinations of shifts of this function
with linearly transformed argument as is with up(x)

and to compute them we need additional formulas. The
function of two variables

U(Xq,Xp) = e (aX2) e to)ditydity,
1X2 (27:)2_'[0_'[ 1, 12)0400;
where

© sin(t;37K) +sin?(t,37%)
F(t;,t,) =
(t2.t2) g{ (4,372 +(1,37%)?

is a fast decreasing solution of the equation

A(u(Xq,Xp) = %(u(Bxl —2,3X9) +U(3xy +2,3%,) +

+U(3x%q,3X, —2) + u(3%q,3X, +2) —4u(3x; — 2,3X5)),
where
A=0%10x2 +8° 1 ox3.
It can be shown that
2" k
up( (x) = D8 2Cn1yp(2"x + 2" +1-2k),
k=1

where 61 =1, 62|( :_Sk’ 52|(—1 :6k .
In addition, the construction of tomic functions
from atomic functions, such as up(x) requires

knowledge of their moments.

2. Pantograph-type equations

Atomic functions are solutions with a compact
support of linear functional differential equations with a
linearly transformed argument.

Equations of this type are often called pantograph-
type equations.

The generalized pantograph equation is

y'(t) =a(t)y(t) +b(t)y(at) ,

where o >1, has numerous applications. Such equa-
tions describe the absorption of light by an interstellar
medium; they are found in the theory of electrical mate-
rials, mathematical cell biology uses similar equations
to describe the number of cells in the process of divi-
sion. Similar equations in physics are called Fokker-
Planck equations. Fokker-Planck equation is

y"(x) + by (x) +py(x) +qy(ax) =0.

Here, the coefficient shows how many parts the cell
divides during division (mitosis), i.e. almost always
equal to 2. But in nuclear physics, the coefficient can be
greater than 2, since the nucleus can be divided into a
larger number of particles - neutrons and protons.

3. Linear spaces generated by shifts
of function up(x)

In approximation theory and computational
mathematics, spaces of linear combinations of
function up(x) shifts are used [1-3, 7, 8]

UP, = {i cup(x —k2™ M}
k=l

It makes sense to consider a wider set of linear
spaces

S
UP, (M) ={D_cup(2"x-k2™ ")}, nmeZ
k=l

since the operations of differentiation and integration of
functions from spaces transform them into functions
from. Note that here the limits in the sums can also be
taken as infinite, since for each only a finite number of
terms are different from O due to the compactness of the
support of the function. Important elements of space are

functions  fup, (x). These functions among the
elements of UP, have minimal support (the support of

a function is the set — the closure of the set of points
where the function is not equal to 0).
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Namely, the length of the function fup,(x) sup-

port is equal to (n+2)27". Function fupy(x)is up(x)
this. The shifts of these functions form a basis in space
UP, , consisting of functions with the smallest support.
It is obvious that

lim,_,,(n+2)27" =0.

For comparison the length of the support of Shoenberg
basic spline B, (x) cremenn n with step h=2" s

(n+1)27", that is somewhat less, but the form of it is

different for different n and it is of finite smoothness.

The letter f in notation of this function is taken
from the first letter of the word fundamental (basic).
There are two variants Fup, (x) and fup,(x) . The ini-
tial variant had capital F and means the function normed
by condition

j Fup,, (x)dx =1.

—00

The variant with f small means the function the maxi-
mum value of which is 1. This is convenient in applica-
tions of atomic functions in collocation methods
(E. A. Fedotova, Gotovac (Chroatia (Split))). It is easily
seen that

UP, < UP,.;.

Denote the orthogonal complement to UPR, in
UP,,1 by OUP,. In the linear space UP, there is a
base of shifts of the function fup,(x) of the form

fup, (x—k2™), in the linear space UP,,; there is a
base of shifts fupn+l(x—k2’”’1). The supports of

these functions are of lengths (n+1)2™" and

(n+ 2)2‘”‘1 respectively. In the space OUP,, a base of
shifts of a function ofup,, (X) the length of the support

of which is (2n+2)27". As the space UP, contains
subspace of polynomials of degree n the function
ofup,, () has zero moments of degree less or equal to

n. This is an important fact for applications in border
element methods (Boundary integral equations) because
the solutions of Laplace equation and similar equations
in half plane or circle which have zero moments of de-
gree less or equal to given integer are small far from the
boundary and the coefficients of the linear algebraic
systems are accordingly small.

4. Achievements of atomic function theory
and applications

Atomic functions were successfully applied to var-
ious problems of mathematical analysis including ap-
proximation theory, for solving the problem of represen-
tation of infinitely differentiable function by Taylor-
Birkhoff expansions, in numerical methods for ordinary
differential equation (ODE), FDE, partial differential
(PDE), for signal and image processing [1-11]. Some-
times someone asks — why atomic functions are need-
ed? Are not already used function classes sufficient for
all purposes? The answer is following. The analytic
functions are not sufficient and spline functions (which
are piecewise analytic) are now widely applied. Splines
have the advantage of being local — we can change a
spline on small interval not changing elsewhere. But
splines are only piecewise smooth and at the joining
points of the pieces are differentiable only several times
so that approximation rate is not very high. The approx-
imation by atomic functions which are infinitely differ-
entiable but nonanalytic allows to change the approxi-
mating aggregate on small intervals nevertheless provid-
ing high rate of approximation if the function that is
approximated is very smooth. But approximation spaces
generated by atomic functions have some limitations
due to insufficient flexibility and refinement. As noted
above the main task of this paper is starting from ideas
and machinery of atomic functions offer the solution of
the lacunary interpolation problem by construction the
new class of function — tomic functions.

5. Necessity and indispensability
of tomic function - motivations
and definitions

Shortcoming of AF Disadvantage of using the
atomic functions consists in the fact that that the zeroes
od derivatives of an atomic function are spaced uni-
formly, equidistantly and hills and holes of the deriva-
tives have equal widths. If the behaviour of the analyzed
object — be it solution of a boundary value problem for
a partial derivatives equation or the signal or image to
be processed in different locations differs considerably
— varies slow or fast — to take into account these varia-
tions the size of hills and holes of the derivatives of the
function which describes this object ought to be ac-
cordingly variable. We certainly can try to divide the
domain under exploration into more or less homogene-
ous parts and choose for each part the atomic functions
of suitable size of the support and then sew together the
different atomic expansions but we will need neverthe-
less functions with compact support and heterogeneous
location of zeroes of the derivatives( the size of hills and
holes of the derivatives) for area of transition. Introduc-
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tion of tomic functions targets exactly this problem —
the construction of expansions of the solutions of the
problem which possess different behaviour in different
parts of the domain of definition. The word atom means
indivisible and the term tomic function means divisible
function but to avoid mixing with other uses of the
words such as division, divisor in different branches of
mathematics we introduce the term tomic for our pur-
pose.

6. Definition and construction

Tomic function of order 1 is a function

f(x)
equal 0 outside the interval [a,b], one time continuous-
ly differentiable, positive inside [a,b] and which has
unique point of strict maximum c, a<c<b (where the

derivative is zero f'(c)=0). If f(x) is twice continu-

ously differentiable, i.e. f(x) e C?[R] and let

I(X):{f'(x), x efa.c];

0, xeglac];
and
(x)= {f’(x), x e[c,b];

0, xg[cb]

Both I(x)) and —r(x) are tomic functions of order 1,
then the functionf(x) is called tomic function of or-
der 2. If functions 1(x),—r(x) are tomic functions of
order 2, thenf(x) is called tomic function of order 3.
Similarly tomic function of any positive integer order is
defined. Tomic function which for every positive inte-
ger kis tomic function of order k is called tomic func-
tion of infinite order. The point ¢ is called the middle
point of order 1. Middle points c¢;,c,o0f functions

I(x),—r(x) are called middle points of order 2 and so
on. The number of middle points of the order n of a

tomic function of order n will be 2", Naturally two
problems concerning tomic functions of infinite order -
the problem of existence and the problem of uniqueness
arise. It is obvious that function up(x) is tomic function
of infinite order. So tomic functions of infinite order
exist. From the theorem of uniqueness of restoration of
function up(x) by zeroes of its derivatives which was
proved in paper by V. A. Rvachev (V. O. Rvachov) in
the paper [2] (Compactly supported solutions of func-
tional-differential equations and their applications) fol-
lows that when middle points are in the middle. That is
when ratio of lengths of supports of functions
1(x), r(x) at each step and in each part is 1 the existence

and uniqueness of the tomic function takes place. One
can prove the existence and uniqueness of tomic func-
tion of infinite order if the ratio of lengths of supports of
functions 1(x),r(x) at each step and at each part takes

place only starting with some order of derivatives. We
will consider only such functions now because they are
sufficient to take care of heterogeneousness for most
problems. There are such two now unproven hypothe-
ses. Hypothesis A. The existence and uniqueness of
tomic function with given zeroes of derivatives and be-
ing normalized by some condition, such as its maximal
value equals 1 holds if the ratio of the lengths of sup-
ports 1(x)/r(x) —1 at each step and in each part. Hy-

pothesis B. The existence and uniqueness of tomic func-
tion with given zeroes of derivatives and being normal-
ized by some condition, such as its maximal value
equals 1tholds if the ratio of the lengths of supports
I(x)/r(x) at each step and in each part is bounded

O<a<I(x)/r(x) <b<+oo where a,bdo not depend on

the order of a derivative and number of a part on which
the support of the function is partitioned by the zeroes
of the derivative.

7. Coordinated (coherent) systems
of tomic functions

Spaces of atomic functions or Atomic spaces are
by definition linear spaces of linear combinations of
shifts (translates) of the function up(x) of the

formup(x—k2™") (in other words generated by the

shifts of function up(x) with constant step 2°") . The

contain algebraic polynomials of degree n,These spac-
es can be considered to be spaces of smoothed polyno-
mial splines. In order to build the spaces of linear com-
binations of tomic functions (which will be called the
tomic spaces), the zeroes of derivatives of which are not
uniformly spaced we cannot use shifts (or translates) of
a single tomic function. Here some construction of co-
herent systems of tomic functions is needed to satisfy
the condition that the linear combinations of the func-
tions belonging to such system must contain all algebra-
ic polynomials of degrees not greater than some n. This
condition provides for good approximation properties of
tomic spaces. This can be done in the following way:
subdivide the interval [a,b], on which we want to build
a coherent set of tomic functions with given steps be-
tween the nodes at which the senior derivatives of re-
quired order r are prescribed, by the required quantity
of nodes from Xq,...... XM - Then we add at the left and

at the right sides additional 2" nodes so that total num-
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2M + 2r+l

ber of nodes will be rename all the nodes

from left to right as

Zl<22 <...<ZN,

where N =2M 121 Now we start construction of the
sought coherent system of tomic functions tofu;(x) in

the following way: on each interval [z,.,z, 4] we place
the function of the form up(ax—by) in such a way

that its support coincided with the interval and denote it
Ok () . Simple calculations give

2 Zpi +2
I~ Zk Zk41 — 2k
For each j consider the function ¢;(x)defined on the

j+2"
D" c0k (X) . Notice that
ki

interval [Zj,---zj+2r] 9j(x)=

unknown coefficients in fact depend on j ¢, =cy (j),
i.e. for different basic function tofuj(x) the coefficients

Cx =Ci (J) are different unlike the case of generalized
Taylor series on the basis of the function up(x) . We
assume that the function ¢;(x) is to be the derivative

of the order r of the function tofuj(x), that is

tofugr) (X) =@j(x). To find the unknown coefficients

Cx =Ci () we have some linear algebraic system. How

do equations of this system for determining a basic tom-
ic function tofuj(x) look like? The sought function

tofu;(x) the zeroes of derivatives must be in prescribed

points. For the derivative of the order r zeroes are all
points z, .As we assumed that the function ¢;(x) is

the derivative of order r of the function tofu;(x) ,so

the conditions on the zeroes of the order r are satisfied
by its definition. Unknown coefficients ¢, we find
from the conditions of vanishing of the derivatives of
orders from 1 go r—1 in prescribed points and the con-
dition that the function itself either equals to 1 in the
middle points cpexmmeii Touke or the condition that its
integral equals 1 ( 2 different normalizations which are
convenient in different applications). For the derive of
the order r—1 the zeroes are to be in points z, with

k =j+2s. For the derive of the order r—2 the zeroes
are to be in points z, withk =j+4sand so on. The

derivatives of the order less than r are found by succes-
sive integration (finding the primitive) of the derivative

jr2f

of the order r which is ¢;(x) = Z CrIk (X) in limits
k=]

from z; no to variable x. Therefore

y X j+2’ ]+2r X
(tofu; ) = [ 3 cygr(t)dt = Y ¢y [ gty
Zj k=j k= ] ZJ

Integrals contained in these equations are successive
primitives of compressed and shifted function up(x)
and as a consequence of the functional differential
equation for this function satisfies , also are functions
of the form up(Bx+y) on left side of the support and
further to the right an algebraic polynomial of the de-
greel for derivative r—I—1). Here it is convenient to
make use the Cauchy formula

f0M (x) =

1)| j (t—x)"Lf (t)dt .

Derivative of a negative order (antiderivative) is just
what we need here -the operation of successive multiple
integration to obtaining the primitives. With the help of
this formula the equations for finding the coefficients
C, obtain a simple look. Now we see that expanding

expressions (t—x)”’lin this integral it remains to com-
Zj+1

pute the integrals of the form J t°g j(thdt. And as
Zj

g;j(x) =up(ajx—b;), such integrals are expressed via

the known moments of the function up(x) . Moments of

the up(x) functions are computed by the recursive for-

mula
1
a, = .fx”up(x)dx, Aoy =0, ag =1,
]
(2n)! < 32n-2k

a = .
20~ Hon _1k2=1(2n —2K)1(2k +1)!

Integrals of the form (half-moments)

1
bonsg = [ X" Hup(x)dx
0

are computed by the recursive formula

1 n+1

bonig = Z ons2-2kConsz -

( 1)22n+3
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In particular a 1 a, = 19 ag = 583
29 g2 "0 g g2
5 143 1153
b].:_’ b3:—’ 5:—6'
36 8-27-25 64.3°.49

The number of conditions (the numbers of equations) is
equal to the number of unknowns and the structure of
the matrix of this linear algebraic system is block diag-

onal. If the order of system we denote by N =2" +2"*
then we have N/2equations with two different un-
knowns in each, N/4equations with 4 different un-
knowns in each, N/8equations with 8 different un-
knowns in each and so on,... ending with 2 equations
with half different unknowns in each corresponding to
the 2 zeroes of first derivative and 1 equation for one
zero at the right end for all unknowns and 1 equation
with all unknowns to satisfy normalization condition. It
is obvious that the matrix of the system is invertible. So
the solution exists and is unique.From the construction
of this coherent system of tomic follows that the linear
combinations of the elements of it contain algebraic
polynomials of the order r—1, but the proof of it being
straightforward is rather lengthy and is omitted here. It
can be calculated that due to the special block-diagonal
structure of the matrix of the linear algebraic system for

finding the 2'coefficients c,we need only Cr2"
arithmetic operations (ao) ( per one function). For r=5
to find 33 ¢y coefficients for one function ¢;(x) takes
160 ao and for coherent system of 1000 functions —
200000 ao. To store 33 thousand of coefficient — ade-
quate amount of memory. For r=10 to compute 1025
coefficients per one tomic function we need 10 thousand
ao and for computation of such coefficients for the co-
herent system of 10 thousand functions -100 million ao
and storage of 10 million coefficients — the adequate
amount of memory. If the norm C' is insufficient we
can break each interval [z,,z.,4] by half and add to
already built coherent system of tomic functions addi-
tional tomic functions. The tomic functions are ana-
logues of shifts (translations) of the function up(x) — the
functions up(x—k2™"). But in applications to the
methods of solution of the boundary value problems for
PDE of the finite element type or boundary element
type we use not the shifts of the function up(x), but

shifts of the functions fup,, (x) ) because the supports of
shifts of up(x) are too wide and supports of fup, (x)

are minimal possible. For GATE — Birkhoff interpola-
tion series, where we do not integrate but collocate the
shifts of up(x) are optimal, but for methods where we

integrate we need to build analogues of shifts of

fup, (X)) in the space of tomic functions. They
ftup, j(x) are constructed in the form of the antideriva-

tive of the order r of the sums of the form

JHr+2
vj(X)= D gk (x). With conditions only at the
k=]

right end zj,,,3 antiderivatives of w(x) of the order

from 1 to r being 0, and possess minimal possible sup-
ports. They are analogues of the function fup,(x) for

tomic expansions. Glueing (matching) two homogene-
ous atomic expansions with different steps depends on
the kind of the problem we solve. In case of Birkhoff
interpolation we need to construct tomic functions for

interval of 2" +r steps to the left and to the right of the
transition point because we need wide tomic function
which possess zeroes of derivatives in needed places.
But in variational problems where we use orthogonal
systems and in collocation we use the function
ftup, j(x) - analogues of B-splines and functions

fup, (x) the transition interval (where we need tomic
functions) is only 2r +3 steps wide.

Conclusions

In this paper we introduce the tomic functions in
order to transfer the application of atomic functions to
solving problems with sharp geometric inhomogeneities
and rapidly variable medium properties of the objects
under study. The tomic functions are constructed on the

basis of atomic function up(x) by iterative procedure

and are of two kinds, namely, designed for lacunary
interpolation — analogues of the basic functions of atom-

ic generalized Taylor series bafu, . (x) and designed

for variational and collocation methods in boundary
value problems for partial differential equations — ana-

logues of atomic functions fup,, (x).
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TOMIK ®YHKIIIi TA JAKYHAPHI IHTEPIIOJISIIIIAHI PSIJIH Y KPAMOBUX 3AJTAYAX
JJIS1 PIBHSAHDB 3 YACTUHHUMMU NOXIAHUMMU TA OBPOBII 305PA’KEHbD

B. O. Psauos, T. B. Peauosa, €. I1. Tominosa

VY mii cTarTi MM PO3MIAAAEMO 1 BUPINIYEMO 3aBAaHHS MOOYIOBH TaK 3BAaHUX TOMIK (YHKIIH — CHCTEM
HecKiHYeHHO nudepeHniHoBHNX (yHKIIH, sKi, 30epiratoun Oararo BaKJIMBUX BIIACTUBOCTEH 3CYBIB aTOMapHOL
ObyHkuii UP(X) Takux SK JOKAJbHICTh 1 300pakeHHs anreOpalyHMX MHOTOWICHIB i 3aCHOBaHI Ha aTOMapHUX
(YHKIIAX, IPOTE MAIOTh HEOTHOPITHWHA XapakTep i OTKe JO3BOJIAIOTH BPAXOBYBAaTH HEOTHOPIMHUHM 1 MiHIMBHI
XapakTep AaHHUX, IO 3yCTPIYalOThCS B 3ajJadax peaJibHOTO CBITY, 30KpeMa B KpalOBMX 3ajadax Uil PiBHSHB 3
YaCTHHHUMH MOXITHUMH 3 3MIHHUMH Koe(illieHTaMH 1 CKJIQJIHOIO TE€OMETpiero o0nacTei, B IKMX IIi KpaioBi 3a1adi
BupinIyroTecs. Toif jke Kimac ToMiK (QyHKIIH MOXKe 3aCTOCOBYBATHCS U1l OOpPOOKH, YCYHEHHS IIyMiB 1 €KOHOMHOTO
30epiraHHs CUTHANIB 1 300pa)XeHb 3a JONMOMOTOI0 JIaKyHapHOi iHTepmoisamii. JlakyrmapHa a6o bipkroddosa
iHTepHOsLis (GYHKIIH, B AKiH QYHKIIS BiJHOBIIOETHCS 3a 3HAYEHHSAMHU IOXITHUX MOPSAKY I B TOYKax, B SKHX
3Ha4eHHsA ¢QyHKOii i ii moxigHnx mopsaaky k<r HeBimoMi, Mae BelWKE 3HAYEHHS B 0ararboxX peajbHHX 3a/1adax,
TaKuX, HANPUKIAM, K JUCTaHILiHE 30HIyBaHHA. MeToaM JakyHapHOI IHTEpHOJALii, 0 BUKOPHCTOBYIOTh TOMIK
¢yHKOii, MaOTh BaXXJIHMBI IepeBar y TMOPIBHAHHI 3 MIHPOKO BHKOPHCTOBYBAHOIO JIAKYHAPHOIO CIUIAH-
IHTEPIIOJISLIEI0 Yepe3 HECKIHYEHHY IIIaAKicTh TOMUK QYHKIIH. Tomik QyHKIIT TaKOK MOXXYTh 3aCTOCOBYBATHCS JJIS
3'eqHAaHHS (3IIMBAHHA) aTOMapHUX PO3KJIAAIB 3 PI3HMM KPOKOM Ha PIi3HHX iHTepBajax, 30epiraioud TIajkicTh i
ONTHUMAJIbHI anpoKcUMaliiiHi BracTuBOCTi. OTpuMaHi piBHSHHA Ui noOynoBu ToMmik ¢yHkuii tofuj(x) — anamor
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OasucHUX (PYHKLIN y3arajbHEHHX aToMapHMX psmiB Teitmopa, siki moTpiOmi mns nmakyHapsoi (Bipxrogdosoi)
iHTeprossAnii. Matpuni JTiHIHHMX anreOpaiyHuX cucTeM JUIsi OOYMCIICHHS KOe]ili€eHTiB TOMIK (yHKUIH MaroTh
crenianbHy OJOK-AiaroHANBHY CTPYKTYPY 1 Jierko oGepHeni. [y 3acToCyBaHB y BapiallifHHX 1 KOJUTOKAIiHHUX
METOZIAX PO3B’S3aHHs KPAHOBHX 3a1ad JUis PIBHSHP 3 YACTHHHHUMH MOXITHUMH i IHTETPANbHUX PiBHAHb OTPUMAaHi
tomik Qyskiii ftup:j(X), ski € anamoramu B-crutaiiHis i aToMapHuX (yHKLUiH fupn(X). BukopucroBytoun momioHi
METO/IM, MOKHA OOy IyBaTH TOMIK (YHKIIi1, 3aCHOBaHI Ha 1HIIHNX aTOMapHHX q)yHKumx TaKHX, K Zn(X).

KurouoBi cioBa: aromapri (QyHKIIi; ToMiK (yHKII{; TakyHapHa iHTepIosis; bipkroddosa iHTEpHOIAILIis]
00po0OKa i 30epiranHs 300paXKeHb; BapialliiHI METO/T;, METO/I KOJLIOKAIIi.

TOMUK ®YHKIHUU U JIAKYHAPHBIE UHTEPIIOJIIHUOHHBIE PAJIbI
B KPAEBBIX 3AJAYAX JIJISI YPABHEHUU .
C YACTHBIMU ITPOU3BOJHBIMHU U OBPABOTKE U30BPAKEHUU

B. A. Peaués, T. B. Psauéea, E. II. Tomunosa

B aT0ii cTaThe MBI paccMaTpuBaeM M peliaeM 3aaady IMOCTPOEHHS TaK Ha3bIBAEMBIX TOMHUK (YHKIWIH — CH-
cTeM OecKOHEYHO MudQepeHIUPYEeMBIX QYHKINH, KOTOPBIe, COXpaHss MHOTO Ba)KHBIX CBOMCTB CIBUTOB aTOMapHON
¢GyHKIMKM up(X) TaKWUX KakK JIOKaJbHOCTh U MPEACTAaBICHUE allre0panyecKuX MHOTOYIEHOB M OCHOBAaHHbBIE HA aTo-
MapHbIX QYHKIHAX, TEM HE MEHEEe MMEIOT HEOAHOPOIHBIH XapaKTep M CICIOBATEIBHO MO3BOJIIOT yUHTHIBATH HE-
OIHOPOJHBIM ¥ U3MEHYMBBINA XapaKTep JAaHHBIX BCTPEYaEMbIX B 331a4ax pealbHOrO MHpPA, B YACTHOCTH B KPaeBBIX
3a7a4ax Uil ypaBHEHUH C YacTHBIMU IPOU3BOJHBIMU C IEPEMEHHBIMU KO3 UIMEHTaMH 1 CI0XXKHON reoMeTpuei
obnacteil, B KOTOPBIX 3TU KpaeBble 3aJayd pemaroTcst. TOT ke Kiacc TOMUK (YHKIHMHA MOXKET MPUMEHSTHCS IS
00paboTKH, yCTPaHEHUs IIYMOB U SKOHOMHOI'O XpaHEHHs CHTHAJIOB U W300paXKEHHH C MOMOIIBIO JIaAKyHApPHON WH-
tepriomsanun. JlakynapHas nnn bupkroddosa naTepriomsunsa GyHKONH, B KOTOPOH (yHKINS BOCCTAaHABIMBACTCS TI0
3HAYEHMSIM MPOU3BOJHBIX MOPSIKA I' B TOYKAX, B KOTOPBIX 3HAueHMsl (YHKIMU M €€ MPOM3BOAHBIX Mopsiaka k<r
HEHM3BECTHBI, IMEET OOJNBIIOE 3HAUYCHNE BO MHOTHX PEaIbHBIX 3a/1adaX, TAKMX KakK JUCTAaHIMOHHOE 30HIMPOBAHHE.
MerTo/pl TaKyHApHOW MHTEPHOJIALUH, UCTIONB3YIOMINE TOMUK (PYHKINY, 001a1al0T BKHBIMU IPEUMYIIIECTBAMH 110
CPaBHEHUIO C MIMPOKO HCIIONIB3yEeMOH JTaKyHApHO! CIUIaifH-MHTEpHOIALel BBUAY OECKOHEUHON IMTaIKOCTH TOMHK
¢ynkimid. ToMuK QyHKIMHM TakkKe MOTYT NPUMEHSTHCS AUl COeIUHEHMs (CIIMBAHUs) aTOMapHbBIX Pas3iIoKeHHH C
Pa3IMYHBIM IIarOM HAa PAa3HBIX MHTEpBAJIaX, COXPAaHSA INIAAKOCTh U ONTHUMAIbHBIC AINPOKCHMAIIOHHBIE CBOKCTBA.
IMony4eHs! ypaBHEHUs Ui MOCTPOCHHUS TOMHK GyHKuui tofuj(X) — aHamoroB GasucHBIX (QYHKIHHA 0GOOIICHHBIX
aTOMapHBIX psAnoB Teinopa, KOTopsle HYXHHI U1 TakyHapHO# (Bupkroddosoit) uatepmomsinun. MaTpuipl THHEH-
HBIX alNreOpanvecKux CHCTEM JJIs BBIYUCICHUS KOI(D(GUIMEHTOB TOMHMK (QYHKIMH HUMEIOT CIEUUaJIbHYIO OJIOK-
JIMaroOHaIbHYIO CTPYKTYPY U JIETKO oOpamtatoTcs. it mpuiao)keHuH B BapHallMOHHBIX U KOJJIOKAIIMOHHBIX METO/AaX
pelleHus KpaeBbIX 3a/1a4 JUIS YPaBHEHHUI ¢ YaCTHBIMHU MTPOM3BOJHBIMU M MHTETPAJIbHBIX YPAaBHEHHUH IOJYyYEHBI TO-
MUk GyHkimu ftuprj(X), KoTopeie sBisIOTCS aHanoramMu B-crtaiiHoB U aromapubix (yHkiuit fupn(x). Ucnomns3ys
M0JIOOHBIE METO/IbI, MOXKHO MOCTPOUTh TOMHUK (DYHKIIMK, OCHOBaHHBIE Ha JIPYTUX aTOMapHBIX (QYHKIUIX, TAKUX, KaK
En(X).

KaioueBble cioBa: atomapHble (DyHKIMH; TOMHK (YHKIMH; JaKyHapHas uHTeprnoysinus; bupkroddosa na-
TepHoJsIHs; 00paboTKa M XpaHEeHHE N300paKeHUI; BApUAIIMOHHBIM METO]T; METO]T KOJTOKAITHH.
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