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LOW SNR TRESHOLD IN RAPID ESTIMATORS OF COMPLEX SINUSOIDALS

A task of estimation of complex sinusoid frequency is considered. A particular but practically important case of
low signal-to-noise ratio (SNR) is studied. The low SNR threshold, commonly overlooked in development of the
rapid estimator of complex sinusoidals, is addressed. Signals of different length are considered and SNR is
varied in wide limits. It is demonstrated that a simple interpolation with factor 2 lowers the SNR threshold by
1.5dB for the most complicated practical situations. Further interpolation does not bring any improvement.
This allows proposing a compromise practical algorithm that provides accuracy close to the limit and is still

very simple and fast.
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Introduction

Estimation of sinusoidal signal parameters represents
one of the most important traditional signal processing
problems. First theoretically grounded results in this field
can be followed from seminal paper of Rife and Boorstyn
[1]. In addition to statistical accuracy analysis and achiev-
able bounds in the sinusoidals’ parameter estimation, Rife
and Boorstyn have proposed estimation of the sinusoidal
parameters in the rough stage using the DFT peak position
in an initial stage. In the second stage, some refinement is
applied to reduce the mean squared error (MSE) toward the
Cramer-Rao Lower Bound (CRLB). Over course of time,
this strategy becomes dominant in the field with numerous
extensions. This refinement (interpolation) is performed by

using neighbor samples of the DFT peak k + Ak , where k
is frequency bin corresponding to the DFT peak while Ak
could be small integers Ak =1 or Ak =2, or some frac-
tions like for example Ak =1/2. The goal is to keep
refinement/interpolation as simple as possible producing the
MSE as close as possible to the CRLB.

One of the first attempts to design efficient frequency
estimators in this direction was technique proposed by
Quinn [2, 3]. It has been generalized for estimation of all
parameters of complex sinusoidals in [4]. This technique
includes nonlinear optimization and switching rule; so, nu-
merous simplifications are proposed in the last two decades.
Candan has proposed frequency interpolator using three
DFT samples [5, 6] with evaluation of trigonometric func-
tions. Similar approach has been proposed in [7] with com-
bination of three frequency bins without need for iterative

procedures. An alternative approaches have been proposed
by Zakharov and co-authors in [8] and by Provencher in [9].
Currently the most popular and the most efficient estimator
for rapid frequency estimation is Aboutanios-Mulgrew ap-
proach proposed in [10, 11]. Fine stage of this algorithm
consists of two very simple iterations without need for em-
ploying switching rules or evaluation of trigonometric or
other nonlinear functions. It has been generalized for decay-
ing sinusoidals in [12].

An important advantage of this algorithm is ability to
work in non-Gaussian impulsive environments [13, 14]
with significantly smaller number of iterations than alterna-
tives [15]. As other advantages of this technique, it should
be mentioned simple realization for the real-valued signals
without bias commonly appearing due to effect of the spec-
tral component at negative frequencies [16]. In addition, it
has been shown as an excellent tool for estimation of sinu-
soidal signal parameters in the wireless sensor network
setup [17]. In [18, 19] an overview of recent advances in
this field has been given. Different approaches for rapid
estimation of the frequency are summarized in [20].

Problem statement

In this paper, we are going to discuss how to have as
low as possible value of the SNR threshold in these estima-
tors. The SNR threshold is value of the input SNR where
the algorithm breaks down giving unreliable results. Simul-
taneously, we try to keep the estimator as simple as possi-
ble. These important issues are rarely discussed in the open
literature with only several notable exceptions (threshold
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behavior of the frequency estimators has been briefly stud-
ied in [21, 22]).

The paper is organized as follows. In the next section,
we present the Aboutanios and Mulgrew algorithm as a
representative of the considered estimators class. In Section
M1, requirement for evaluation of the DFT over denser fre-
quency grid in order to reduce the SNR threshold is been
described. Simulations are given in Section IV followed by
conclusions.

1. Aboutanios and Mulgrew estimator

A particularly popular rapid frequency estimator
has been proposed recently by Aboutanios and Mulgrew
[10]. Note that this important estimator is used here just
for illustration purpose while the same conclusions are
confirmed in simulations for other similar estimators
[11], [15].

The estimator can be summarized with the follow-
ing simple steps:

Input: a complex sinusoidal corrupted by the
x(n) = Aexp(joon + j@g) +v(n),

ne [O,N). Number of samples N for a given observa-

Gaussian  noise

tion interval is selected that the Nyquist criterion is
satisfied. The input SNR for a considered task can be

defined as SNR;, =A?/c? where A is amplitude of

sinusoidal while 7 is variance of an additive Gaussian
noise.

Rough stage: Evaluation of the DFT and its
maximization:

k= arg m]?x|X(k)| , (1
N-1
X(k)= Z x(n)exp(—j2nl;\1—k). (2)
n=0

It is supposed that the DFT (2) is evaluated by the
fast Fourier transform (FFT) algorithm of complexity
O(Nlog, N).

Fine stage: Fine stage is performed in two itera-
tions

5=0
for iter=1:2
‘X(ﬁ+1+8)‘—‘X(ﬁ—l+8)‘
2 2
5=8+5 i i 3)
‘X(k +5+8) + X(k—2+8)‘

end

Output: Final frequency estimate is ® = 2nk /N,
where k=k +38.

More iterations could be helpful only in the case of
high SNR (above SNR>40dB ) while for low SNR con-
sidered here (which are of more interest for different

practical situations) two iterations are enough to reach
the CRLB [10].

Obviously, the refinement/interpolation requires 4
additional evaluations of the DFT using direct applica-
tion of sum. The proposed technique for wide range of
SNR;, =A?/&? MSE,

the input gives  the

SNR; = E{[G)— 030]2 }, that is very close to the CRLB

(only about 0.06dB above the CRLB).

2. SNR threshold

A particularly interesting issue quite often over-
looked is how to lower the SNR threshold and price for
such an activity. The DFT peak magnitude for fre-
quency corresponding to the sinusoidal should be as
high as possible in order to obtain low SNR threshold.
Namely, if the sinusoid has frequency on the frequency

grid oy =2kn/N,ke[-N/2,N/2), expected value of

the DFT maximum is proportional to NA (hereafter ex-
pected values for DFT peak magnitude are given for
noiseless signal). The DFT variance is proportional to

No?. Simplified analysis is given with mathematical
rigor reduced to a necessary level.
Then, the ratio between power of the sinusoid and

noise variance is proportional to ~ NA? /2. However,
in the case when frequency is not on the grid
oy #2nk/ N, k € Z, the magnitude of the peak DFT is

smaller than NA. The most critical case is for frequen-
cies in the middle between two frequency bins

oy =2(k +%)n/ N with magnitude of the DFT peak
~NAsin(n/2)/(n/2)=2NA/n~=0.637NA. This

means that the resulting SNR is approximately

~0.405NA? /02, i.e., less than half than for the fre-
quency on the grid. Since rough estimation of the fre-
quency is performed based on the DFT peak position,
this significantly reduces ability to recognize peak for
high noise (low SNR) environments. This effect is only
partially compensated with the fact that there are now
two frequency bins with similar magnitudes correspond-
ing to the considered sinusoidal. The ratio between peak
DFT magnitude and resulting noise standard deviation
is crucial for achieving low SNR threshold and high
estimator accuracy in the rough stage.

Therefore, the Aboutanios-Mulgrew algorithm can
be modified by evaluating the DFT in the initial stage
over p times denser grid:

Rough stage: Evaluation of the DFT and its
maximization:

ﬁ:largmax|Y(k)| , 4
p k
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N-1
.~ n(k/
Y0 = Y x(mexp(i2n 2Py ke [0pN), )
n=0
followed by the same two iterations for

refinement/interpolation of the frequency estimate.
Complexity of the rough stage is increased by p times
with respect to the previous algorithm.

However, for example, consider p=2. After de-

termination of the position of the maxima Y(ﬁ) two
neighbor bins Y(ﬁ 1) are on the position correspond-

ing to X(ﬁ +1/2) for N frequency bins (2). Therefore,

we have already calculated two points for the first itera-
tion (3) and displacement for it can be calculated as

B ‘Y(ﬁ +1)‘ —‘Y(ﬁ +1)‘

=Sl - . (6)
‘Y(k+1)‘+‘Y(k+l)‘

So, the overall complexity is increased for (big O
notation is  dropped due to simplicity)
Nlogy N—2N =Nlog,(N/4). In this way, the small-

est DFT peak magnitude is achieved for displacement of
+1/4 from the grid where amplitude of DFT is

~NAsin(n/4)/(n/4) ~0.9NA what is J2 times lar-
ger than for the most critical case for the DFT evaluated

over N frequency bins.
The SNR between DFT on the peak and output

noise in the most critical case is now ~0.81NA?/c?
(twice than in the case of the most critical situation
when the DFT is evaluated over N frequency bins).

We can proceed further with p=4 increasing
complexity for additional 2Nlog, N operations in the
rough stage but this is not bringing further decrease of

complexity in the fine stage. In that case, minimal DFT
peak magnitude is ~0.9745NA with resulting SNR

~0.95NA% /o?. As it is shown in simulations, this
additional calculation burden cannot be justified with
significant improvement since the largest benefit comes
from the DFT interpolation with the factor p=2. Note
that the this analysis is very rough but, as it will be seen
in the next section, it is good indication what can be
achieved without going in hard and precise characteriza-
tion of the noise effects in the interpolated DFT that is
not white anymore. Again, even this rough analysis is
quite useful and pointing to correct results that are
confirmed by extensive simulations in the next section.

3. Simulation tests

Experiments with sinusoids of various number of
samples N=2",me([5,14] are conducted. In each

trial, frequency is generated randomly. Number of trials
was 10000 for each SNR;, and signal length. Signal

lengths are represented with different colors (see the
plots in Fig. 1). The considered SNR range was

SNR;, €[-30,5]dB with step 1dB while around break-

down point smaller step of 0.1dB was used.

The obtained dependences are given in Figure 1.
Dashed lines represent the case when the DFT in the
rough stage is evaluated over N frequency bins, solid
lines are for the DFT evaluated in the initial stage over
2N frequency bins, while dotted lines correspond to the
DFT evaluated in the rough stage over 4N frequency
bins. It can be seen that the SNR threshold (position
when the MSE increases abruptly) is approximately
1.5dB lower in the case of the DFT evaluated over 2N
samples in the rough stage than in the case when evalua-
tion is performed for N samples. Also, it can be seen
that further increasing number of frequency bins does
not bring almost any benefit in term of the SNR thresh-
old while it increases burden (dotted lines are hardly
visible since results obtained with 4N are almost the
same as for 2N frequency bins).

Similar results are obtained for the dichotomous
estimators [15] and the hybrid estimator from [11]. In
both of these estimators, the situation is the same.
Evaluation of the DFT with 2N points in the rough stage
reduces the SNR threshold as in the case of the consid-
ered estimator.

It can be noted that the SNR threshold decreases
approximately linearly as logarithm of signal length
increases. It can be approximated for the DFT evaluated
over N frequency bins as [1, 21, 22]

A2
SNR thresh =10logyo %[dB] ~

Gthresh
~[-2.8log, N+14]|dB

Since there are techniques (for example [23]) that
can be used for the SNR;, estimation, it can be ar-

ranged that for SNR;, above the threshold SNR,..qh

the DFT in the rough stage is evaluated over N fre-
quency bins while around SNR .., it can be arranged

evaluation of the DFT with 2 N frequency bins in rough

stage (for example in the range of SNR .o, £2dB).

thres

Conclusion

Simple conclusion follows that it is worth evaluat-
ing the DFT over 2N frequency bins in the rough stage
of the rapid frequency estimators. Further interpolation
does not bring any visible improvement so it should be
avoided.
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Fig. 1. MSE in frequency estimation for the Aboutanios-Mulgrew algorithm. Dashed lines - DFT in initial stage
evaluated over N frequency bins (N is signal length); Solid lines - DFT in initial stage interpolated to 2N frequency
bins; Dotted lines - DFT in initial stage interpolated to 4N frequency bins. Signal lengths are represented
with various colors and indicated on the figure
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HUKHU ITOPOT OCII TPU BBICTPOM OLIEHUBAHUM KOMILJIEKCHBIX CUHY COM |
H. /Incyposuu, B. B. Jlykun

PaccmoTtpena 3aaua OLEHKH 9acTOThI KOMIUIEKCHOW CHHYCOHBI. V3ydeH 4acTHBIN, HO BayKHBIN Ha MPaKTUKE
cirydait Hu3koro otHomeHus curaai-ryM (OCII). Ocoboe BHuManue yneneHo HikHeMy npeaeny OCI, oObraHO
HE paccMaTpUBaeMOMY MpPHU pa3pabOTKE METOJOB OBICTPOrO OLIEHMBAaHHS MapaMeTPOB KOMIUIEKCHBIX CHHYCOWI.
PaccMotpensl curnansl paznuyHoi purenbHoctd, OCIHI BapbupyeTcs B MMpoKuX npenenax. [lokasaHo, uTo npo-
CTas MHTEPITOJSIIKS B JIBA pa3a yMEHbLIAET HWKHUH npenen Ha 1,5 nb s Haubonee CI0XKHBIX MPAKTUYECKUX CH-
Tyaruid. JlanpHelmas HHTEpHOISLUS He TPUBOAUT K MOJIOKUTEIBHBIM pe3yNbTaTaM. JTO MMO3BOJISIET HPEITIOKHUTh
KOMITPOMUCCHBIN TPAKTUYECKUH aJrOPUTM, KOTOPBIA 00ECIIeUYMBAET TOYHOCTh, OJHM3KYIO K MpENeNbHOH, HO MpH
9TOM OCTA€TCS OYEHb MPOCTHIM U OBICTPBIM.

KuioueBbie cioBa: J[I1®, onennBanue yactotsl, mopor OCIII.

HUWKHIH ITOPIT BCIII ITPU IIIBUJIKOMY OLIHIOBAHHI KOMILJIEKCHUX CUHY COI ]
L /Dicyposuu, B. B. Jlykin
Po3risinyTO 33129y OLIHKM YaCTOTH KOMIUIEKCHOI CHHYCOiIM. BHBYEHO YacTKOBHH, ajie BaXKIMBUH ISl TIpaK-
TUKH BUMAJOK HU3bKOro BimHomeHHs curHan-myM (BCII). OcobnuBy yBary npuaineno HwxHid mexi BCIL, siky
3a3BHYail HE PO3IJISIAIOTH ITif] Yac pO3POOKH METO/IB IIBUAKOrO OIHIOBAHHS MMApaMeTpPiB KOMILIEKCHUX CHHYCOI.
PosrmsinyTo curnanm pizHoi nosxxunun, BCIL BapiroeTbest B mMpokux mexax. [lokazaHo, 1o nmpocra iHTepIIoNsLis B
JIBa pa3yl 3MEHIIYE HIKHIO MeXY Ha 1,5 ab s HalOiiapI cki1aqHuX NpakTHYHUX cutyaniil. [Toganemia inTeprnomns-
Lisl HE NMPU3BOOUTH 10 MO3UTHBHUX HaciikiB. lle m03BoIsie 3ampornoHyBaTH KOMIIPOMiCHHH NMPAaKTUUHUHA ajro-
pHTM, sIKHi 3a0e31euye TOUHICTh, OJIU3BKY 0 MEXI, ajie IPU [bOMY 3aJIUIIAETHCS TY)KE TPOCTUM 1 HIBUAKHM.
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