DESIGN AND TECHNOLOGICAL FEATURES OF HELICOPTER LIFTING SURFACES MADE OF POLYMER COMPOSITE MATERIALS
Abstract
The analysis of both foreign and domestic experience in the use of polymer composite materials in the structures of the lifting surfaces of a helicopter (blades, wing, stabilizer, fin), as well as the technological features of the manufacture of such structures is performed. The design and technological and operational advantages and disadvantages of composite blades compared to all-metal blades are noted. The load-carrying structures of the composite main rotor blades of a helicopter, as well as the schemes of special joints of the MR blade and the polymer composite materials package are considered. The route scheme for manufacturing of the composite blade of a helicopter is presented. The technological features of manufacturing the composite spar of a blade are analyzed by the methods of lay-up and winding-on. The scheme and route technology for manufacturing the tail section of a blade, including the scheme of lay-up and molding of composite covers and ribs, are presented. The efficiency of the equipment for automatic cutting of the roll prepreg and manual lay-up of the prepreg layers with the help of a laser projector is noted. The technological tasks of special software for lay-up CNC equipment are given. The technological transitions of the general assembly-bonding of a helicopter composite blade in the assembly jig are presented. Recommendations are given on the method of manufacturing a monoblock lifting surfaces of type of a wing, tail pylon and helicopter stabilizer from polymer composite materials using automated winding-on. A scheme of surface reinforcement is proposed. It allows to obtain a variable wall thickness from the root rib to the end rib. The trajectories of movement of the working bodies of a three-coordinate CNC winding machine for their implementation are determined. A variant of a computer simulation of the stages of lay-up of a reinforcing tape on a technological mandrel is shown. The technology of manufacturing a low aspect wing made of polymer composite materials by the method of automated winding is presented.
Keywords
Full Text:
PDF (Русский)References
Grebenikov, A.G., Gumennyj, A.M., Dolmatov, A.I., Docenko, V.N., D'jachenko, Ju.V., Epifanov, S.V., Karpov, Ja.S., Kovalev, E.D., Losev, L.I., Markovich, S.E., Sikul'skij, V.T., Trubaev, S.V., Udovenko, V.A., Usik, V.V., Urbanovich, V.A., Fedotov, M.N. Proektirovanie tjazhelyh odnovintovyh vertoletov i ih transmissij. Ch. 1. Uchebnik. [Design of heavy single-rotor helicopters and their transmissions]. Khakov. Zhukovsky National Aerospace University, Kharkiv Aviation Institute. Publ., 2007, 331p.
Vorobej, V.V., Markin, V.B. Kontrol' kachestva izgotovlenija i tehnologija remonta kompozitnyh konstrukcij: monografija [Production quality control and repair technology for composite structures].Novosibirsk. Nauka, 2006, 190 p.
Bratuhin, A.G., Bogoljubov, V.S., Sirotkin, O.S. Tehnologija proizvodstva izdelij i integral'nyh konstrukcij iz kompozicionnyh materialov v mashinostroenii [Production technology of products and integral structures made of composite materials in mechanical engineering]. Moscow, Gotika, 2003, 516 p.
Chernyshov, E.A., Romanov, A.D. Sovremennye tehnologii proizvodstva izdelij iz kompozicionnyh materialov [Modern production technology of composite materials]. Sovremennye naukoemkie tehnologii, 2014, no.2, pp. 46-51.
Grebenikov, A.G., Vorob'ev, Ju.A., Fomichev, P.A. Integrirovannoe proektirovanie vintokrylyh letatel'nyh apparatov transportnoj kategorii: ucheb. posobie: v 3 ch. [Integrated design of rotary-wing aircraft transport category]. Khakov. Zhukovsky National Aerospace University, Kharkiv Aviation Insti-tute. Publ., 2016, part1, 407 p.
Komissar, O.N. Kompozicionnye materialy i tehnologii dlja ajerokosmicheskoj promyshlennosti [Composition materials and technologies for aerospace industry]. Novosti materialovedenija. Nauka i tehnika, 2013, no. 4, pp.1–4.
Jose Manuel Luna Dias Composites: 30 years of continued R&D as the driving force behind aero structures progress / SAMPE EUROPE 33th International Conference and Forum – Keynote 1. – pp. 2 – 41.
Bitjukov, Ju.I., Kalinin, V.A. Chislennyj analiz shemy ukladki lenty peremennoj shiriny na tehnologicheskuju opravku v processe namotki konstrukcij iz kompozicionnyh materialov [Numerical analysis of chart of piling of ribbon of variable width on the technological mounting in the process of winding of constructions from composition materials]. Mehanika kompozicionnyh materialov i konstrukcij, 2010, vol. 16, no. 2, pp. 276-290.
Knjazev, D.N. Matematicheskie modeli i algoritmy programmirovanija processov formoobrazovanija izdelij metodom namotki.: Avtoref. dys. … kand. tekhn. nauk [Mathematical models and algorithms of programming of pro-cesses of shaping of wares a winding method. Avtoref. diss. … cand. tech. sci.]. Novocherkassk, 2002.
Popov, Ju.O., Kolokol'ceva, T.V., Hrul'kov, A.V. Novoe pokolenie materialov i tehnologij dlja izgotovlenija lonzheronov lopastej vertoleta [A new generation of materials and technologies for the manufacture of helicopter blade spars]. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 5–9.
Kablov, E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitija materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of FSUE "VIAM" SSC RF on the implementation of the "Strategic directions of development of materials and technologies for their processing for the period until 2030"]. Aviacionnye materialy i tehnologii, 2015, no. 1(34), pp. 3–33.
Sljusar', B.N., Flek, M.B., Gol'dberg, E.S. Tehnologija vertoletostroenija. Tehnologija proizvodstva lopastej vertoletov i aviacionnyh konstrukcij iz polimernyh kompozicionnyh materialov [Helicopter technology. The production technology of helicopter blades and aircraft structures made of polymer composite materials]. Rostov n/D, JuNC RAN Publ., 2013, 230 p.
Bohoeva, L.A. Vybor optimal'noj tehnologii izgotovlenija lopasti vertoleta iz kompozicionnyh materialov [Selection of the optimal manufacturing technology for a helicopter blade from composite materials]. Moscow, Mashinostroenie, Izv. vuzov. Publ., 2011, no. 5, pp. 20– 24.
Manufacturing Solutions for The Aerospace Industry. Products Brochure // MAG IAS, LLC. 2010. URL: http://exposant.technotheque.fr/files/docs/ solu-tions-mag-dans-aeronautique_1294911440.pdf
Dudnik, V.V. Konstrukcija vertoletov [Helicopter design]. Rostov n/D, Izdatel'skij dom IUI AP Publ., 2005, 158 p.
Baker, A. A. Composite Materials for Aircraft Structures / A. A. Baker. – Eu-rospan, 2004. – 400 p.
Mihajlin, Ju.A. Konstrukcionnye polimernye kompozicionnye materialy [Structural Polymer Composite Materials]. St. Petersburg, Nauchnye osnovy i tehnologii, 2008, 822 p.
Krysin, V.N., Krysin, M.V. Tehnologicheskie processy formovanija, namotki i skleivanija konstrukcij [Technological processes of forming, winding and gluing structures]. Moscow, Mashinostroenie, 1989, 235 p.
Composite Materials Handbook. V. 1 - Polymer Matrix Composites Guide-lines Marinin, V. I. Raschet seti namotki dlja slozhnoj poverhnosti /V.I. Marinin, D.N. Knjazev, S.M. Zhurihin // Trudy IV Moskovskoj mezhdunarodnoj konferencii «Teorija i praktika tehnologii proizvodstva izdelij iz kompozicionnyh materialov i novyh metallicheskih splavov». – M., 2005.
Composite Materials Handbook. V. 2 – Polymer Matrix Composites Materials Properties, 2002, Department of Defense, USA, 760 p.
Composite Materials Handbook. V. 3 - Polymer Matrix Composites Materials Usage, Design and Analysis, 2002, Department of Defense, USA, 840 p.
Rach, V.A., Mogil'nyj, G.A., Malkov, I. V. Sposob izgotovlenija slozhnoprofil'nyh izdelij iz kompozicionnyh materialov metodom nepreryvnoj namotki [A method of manufacturing complex profiles of composite materials by the method of continuous winding]. Patent RF, no. 2089444, 1997.
Marinin, V.I., Artemenko, A.A. Optimizacija traektorii ukladki niti na pover-hnosti opravki [Optimization of the path of laying the thread on the surface of the mandrel]. Izvestiya vuzov. Severo-kavkazskyi region Tekhniches-kie nauki, 2003, annex 1, pp. 23-28.
Marinin, V. I., Knjazev, D.N., Zhurihin S.M. Raschet seti namotki dlja slozhnoj poverhnosti [Calculation of the winding network for a complex surface]. Trudy IV Moskovskoj mezhdunarodnoj konferencii «Teorija i praktika tehnologii proizvodstva izdelij iz kompozicionnyh materialov i novyh metallicheskih splavov» [Proc. IVth Moscow Int. Conf. "Theory and practice of the production technology of products from composite materials and new metal alloys"]. Moscow, 2005. (In Russian).
Gumennikov, V.V., Karpov, Ja.S. Issledovanie sily natjazhenija v nitjah pri prodol'noj namotke izdelij iz kompozitov [The study of the tension force in the threads during the longitudinal winding of products from composites]. Otkrytye informacionnye i komp'juternye integrirovannye tehnologii. Sb. nauch. trudov. Khakov. Zhukovsky National Aerospace University, Kharkiv Aviation Institute. Publ., 2013, vol. 59, pp. 104–114.
Bogoljubov, V.S., Sirotkin, O.S., Golovkin, G.S. Tehnologija proizvodstva izdelij iz kompozicionnyh materialov, plastmass, stekla i keramiki. Mashinostroenie. Jenciklopedija. [Production technology of products from composite materials, plastics, glass and ceramics. Engineering. Encyclope-dia]. Moscow, Mashinostroenie, 2006, vol. III-6, 576 p.
Aljamovskij, A.A. SolidWorks/CosmosWorks. Inzhenernyj analiz metodom konechnyh jelementov [SolidWorks / CosmosWorks. Engineering Finite Element Analysis]. Moscow, DMK Press, 2004, 432 p.
Kireev, I.Ju. Tehnologija namotki kompozitnyh kryl'ev malogo udlinenija bespilotnyh letatel'nyh apparatov. Diss. kand. tekhn. nauk [The technology of winding composite wings of small lengthening of unmanned aerial vehicles. Diss. cand. tech. sci.]. Khakov. Zhukovsky National Aerospace University, Kharkiv Aviation Institute. Publ., 2011. 163 p.
DOI: https://doi.org/10.32620/oikit.2019.84.01
Refbacks
- There are currently no refbacks.