ШІ-КЕРОВАНІ СИСТЕМИ РОЗРОБКИ КРОСПЛАТФОРМНИХ ЗАСТОСУНКІВ
Abstract
Keywords
Full Text:
PDF (Українська)References
AI Trends Report 2024: AI’s Growing Role in Software Development. URL: https://www.docker.com/blog/ai-trends-report-2024/
Wang Y., Wang W., Joty S., Hoi St. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021. P. 8696-8708. DOI: https://doi.org/10.18653/v1/2021.emnlp-main.685
Lu S., Guo D., Ren S., et al. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation. arXiv. 2021. Vol. 2102.04664. DOI: https://doi.org/10.48550/arXiv.2102.04664
Feng Z., Guo D., Tang D., et al. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. Findings of the Association for Computational Linguistics: EMNLP 2020. P. 1536-1547. DOI: https://doi.org/10.18653/v1/2020.findings-emnlp.139
Fried D., Aghajanyan A., Lin J., et al. InCoder: A Generative Model for Code Infilling and Synthesis. arXiv. 2022. Vol. 2204.05999. DOI: https://doi.org/10.48550/arXiv.2204.05999
Negri-Ribalta C., Geraud-Stewart R., Sergeeva A., Lenzini G. A systematic literature review on the impact of AI models on the security of code generation. Frontiers in Big Data. 2024. Vol. 7. Article 1386720. P. 1-20. DOI: https://doi.org/10.3389/fdata.2024.1386720
Martinović B., Rozić R. Impact of AI Tools on Software Development Code Quality. Communications in Computer and Information Science. 2024. Vol. 2124. P. 202-216. DOI: https://doi.org/10.1007/978-3-031-62058-4_15
Ukrainian Catholic University Machine Learning Lab. Research Portfolio 2020-2025. Lviv: UCU, 2025. URL: https://apps.ucu.edu.ua/en/mllab/
Ma L., Wang H., Yang K, et al. An empirical study of AI techniques in mobile applications. Journal of Systems and Software. 2024. Vol. 220. Article 112233. DOI: https://doi.org/10.1016/j.jss.2024.112233
Blanco J. Z., Lucrédio D. A holistic approach for cross-platform software development. Journal of Computer Languages. 2021. Vol. 65. Article 101049. DOI: https://doi.org/10.48550/arXiv.2104.14614
Alenezi M., Akour M. AI-Driven Innovations in Software Engineering: A Review of Current Practices and Future Directions. Applied Sciences. 2025. Vol. 15, No. 3. Article 1344. DOI: https://doi.org/10.3390/app15031344
Peng S., Kalliamvakou E., Cihon P., Demirer M. The Impact of AI on Developer Productivity: Evidence from GitHub Copilot. arXiv. 2023. Vol. 2302.06590. DOI: https://doi.org/10.48550/arXiv.2302.06590
Chen M., Tworek J., Jun H., et al. Evaluating Large Language Models Trained on Code. arXiv. 2021. Vol. 2107.03374. DOI: https://doi.org/10.48550/arXiv.2107.03374
Fu Ju., Liang P., Tahir A., et al. Security Weaknesses of Copilot-Generated Code in GitHub Projects: An Empirical Study. arXiv. 2025. Vol. 2310:02059v4. DOI: https://doi.org/10.48550/arXiv.2310.02059
CodeScene ACE: Auto-Refactor Code. Technical Documentation. 2025. URL: https://codescene.io/docs/auto-refactor/index.html#codescene-ace-auto-refactor-code
Maltseva A. JetBrains AI Assistant: Smarter, More Capable, and a New Free Tier. 2025. URL: https://blog.jetbrains.com/ai/2025/04/jetbrains-ai-assistant-2025-1/
Трофименко О. Г., Дика А. І., Лобода Ю. Г. Аналіз інструментів тестування вебзастосунків. Кібербезпека: освіта, наука, техніка. 2023. № 4(20). С. 62-71. DOI: https://doi.org/10.28925/2663-4023.2023.20.6271
Ramchand S., Shaikh S., Alam I. Role of Artificial Intelligence in Software Quality Assurance. Lecture Notes in Networks and Systems. 2022. Vol. 295. P. 89 102. DOI: https://doi.org/10.1007/978-3-030-82196-8_10
Ren S., Guo D., Lu S., et al. CodeBLEU: a Method for Automatic Evaluation of Code Synthesis. arXiv. 2020. Vol. 2009.10297. DOI: https://doi.org/10.48550/arXiv.2009.10297
Bhatt M. et al. CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models. arXiv. 2024. Vol. 2404.13161. DOI: https://doi.org/10.48550/arXiv.2404.13161
Трофименко, О. Г., Лобода, Ю. Г., Гура, В. І., Дика, А. І., Стрілець, М. І. Інструменти штучного інтелекту для системного аналізу. Вісник Херсонського національного технічного університету. 2024. № 4. С. 349–357. DOI: https://doi.org/10.35546/kntu2078-4481.2024.4.46
DOI: https://doi.org/10.32620/oikit.2025.105.15
Refbacks
- There are currently no refbacks.