DESIGN, MANUFACTURE AND TESTING OF CARBON FIBER PLASTIC DIMENSION-STABLE TUBULAR ELEMENTS OF SPACECRAFT TRUSS STRUCTURES

Ігор Владиславович Малков

Abstract


The article shows that one of the main areas of development of spacecraft (SC) "in service" of the Earth is to increase the accuracy of SC orientation to ground reference points and the resolution of the target equipment. The main destabilizing factor during SC operation in orbit is the temperature deformation of the structure due to the constantly acting "heating-cooling" thermal cycles. The properties of carbon fiber allow it to be used in dimensionally stable truss structures of spacecraft. The influence of space factors on the properties of carbon fiber over time has not yet been sufficiently studied. Therefore, it is necessary to study the effect of thermal cycles on the change in the geometric parameters of carbon fiber structures over a long period of time. Research has been conducted and the effect of thermal loads of varying intensity and duration on the dimensional stability of tubular elements of truss structures for spacecraft has been assessed. Requirements have been formulated and a design and layout scheme of an experimental truss for resource tests has been developed. Studies were carried out on tubular elements of square cross-section, which are one of the main components of the model truss. A selection of materials, manufacturing technology and reinforcement scheme for tubular elements has been made. For manufacturing a dimensionally stable truss from composite materials, it is most preferable to use a composite based on carbon fibers. Pipes and fittings were made of carbon bundle UKN/5000 impregnated with epoxy binder EDT-10 by the "wet" method using automated winding technology. When selecting the reinforcement scheme, the following criteria were taken into account: ensuring a minimum coefficient of linear thermal expansion (CLTE) and regulated strength. For the prompt assessment of the influence of different types of loads on the geometric parameters of the truss, a method of thermal tests of the model truss was developed. The tests included several series of thermal cyclic loads of the model truss of varying intensity and duration. The method establishes the rules and procedure for measuring the linear dimensions of the truss, the rules for calculating changes in angular dimensions, as well as requirements for the workplace and personnel. The developed method meets the regulated requirements and allows measuring linear changes in the truss dimensions with an accuracy of 2 microns and angular deformations with an accuracy of 2 angular seconds. The efficiency of the method was confirmed by analyzing changes in the geometric parameters of the truss after a series of thermal cycling loads. Thermal cycling tests of the model truss were carried out. After thermal cycling, changes in the geometric parameters of the model truss were measured in accordance with the developed method. Based on the measurement results, average values of elongations of four pipes, CLTE and angular deformations at one stage of thermal cycling were calculated. It was found that with an increase in the number of thermal cycles, thermal stabilization occurs. This shows the need to introduce preliminary thermal cycling into the process of manufacturing elements of dimensionally stable structures. It is shown that angular deformations of the truss are practically independent of the duration of thermal cycling and remain constant throughout the entire period of thermal loading.


Keywords


dimensional stability, truss structures, spacecraft, tubular elements, design and layout scheme, carbon fiber, automated winding technology, reinforcement schemes, strength, thermal testing methods, thermal cycling loads, coefficient of linear thermal exp

References


Гаврюсев, В. И. Размерная стабильность материалов и элементов конструкций: обзор / В. И. Гаврюсев. – Л.: ЦНИИ «Румб», 1990. – 112 с.

Вышванюк, В. И. Тепловое расширение гибридных однонаправленных композитных материалов с малым температурным коэффициентом линейного расширения / В. И. Вышванюк, В. Т. Алымов // Механика композитных материалов. – 1985. – № 2. – С. 357 – 360.

Плуме, Э. З. Термическое деформирование композита, армированного гибридными ткаными лентами / Э. З. Плуме, В. М. Пономарев // Механика композитных материалов. – 1988. – №3. – С. 392 – 401.

Кирулис, Б. А. Методика проектирования оптимальной структуры несущих стержней из углепластика с учетом термического расширения / Б. А. Кирулис // Механика композитных материалов. – Рига: Риж. политехн. ин-т, 1982. – С. 61 – 67.

Оптимизация технологии формообразования намоткой размеростабильных трубчатых элементов / И. В. Малков, Ю. М. Тарасов, В. Н. Рыбаков, В. И. Воскобойников // «Теория и практика технологии производства изделий из композиционных материалов и новых металлических сплавов», Труды 5-й Московской Междунар. конф., 24-27 апреля 2007 г., МГУ – М.: SAMPE-Европа, НИАТ. - С. 403 – 408.

Кочетков, В. А. Термическое деформирование однонаправлено армиро-ванных гибридных композитов. Сообщение 1 / В.А. Кочетков, Р.Д. Максимов // Механика композитных материалов. – 1989. – №2. – С. 229 – 236.

Углеродные волокна и углекомпозиты / под. ред. Э. Фитцера. – М.: Химия, 1988. – 336 с.

Термическое деформирование композитов для размеростабильных конструкций / А. В. Суханов, В. А. Лапоткин, В. Я. Артемчук., Л. А. Соболь // Механика композитных материалов. – 1990. – №4. – С. 599 – 604.

Гурвич, М. Р. Влияние схемы армирования на прочность многонаправленных углепластиков при одноосном нагружении / М. Р. Гурвич, А. В. Суханов // Механика композитных материалов. – 1989. – №2. – С.346 – 348.




DOI: https://doi.org/10.32620/oikit.2025.105.04

Refbacks

  • There are currently no refbacks.