THE USE OF ARTIFICIAL INTELLIGENCE IN THE PROCESS OF CERTIFICATION OF AVIATION EQUIPMENT
Abstract
The article examines the role and prospects of applying artificial intelligence (AI) in the certification process of aviation technology. It is emphasized that traditional certification system rely on deterministic verification methods and require full predictability of system, whereas machine learning algorithms operate on a probabilistic basis, creating significant challenges for verification and validation.
The study highlights key areas of AI integration, including generative design, digital twins, automated quality control, predictive maintenance, and autonomous manufacturing systems. These technologies accelerate aircraft development cycles, reduce costs, and improve safety levels, yet simultaneously demand a rethinking of regulatory frameworks.
The paper analyzes international practices, particularly the initiatives of the European Union Aviation Safety Agency (EASA), which has introduced the concept of “Human-AI Teaming” and the special condition SC-AI-01, and the Federal Aviation Administration (FAA), which follows a cautious, step-by-step approach with an emphasis on preserving human accountability. New approaches to certification are outlined, such as data-driven digital management, unified platforms for compliance assessment, and hybrid verification methods that combine simulation testing with formal analysis.
The findings suggest that AI integration in aviation is an irreversible trend that transforms the certification paradigm itself: from evaluating a static product to assessing AI-driven processes. This requires the development of new international standards, harmonization of regulatory practices, and creation of methodologies ensuring the reliability and safety of AI systems throughout the entire life cycle of aviation technology.
Keywords
Full Text:
PDF (Українська)References
The Rise of Artificial Intelligence in Aviation: Transforming the Skies. Symphony solutions. Available at: https://symphony-solutions.com/insights/ai-in-aviation#:~:text=How%20is%20artificial%20intelligence%20used,safety%2C%20and%20decision%2Dmaking .
Artificial Intelligence in Aviation Market Size, Share & Trends Analysis Report By Offering (Hardware, Software, Services), By Technology (Machine Learning, Natural Language, Processing, Context Awareness Computing, Computer Vision), By Applications (Virtual Assistants, Smart Maintenance, Manufacturing, Training) and By Region(North America, Europe, APAC, Middle East and Africa, LATAM) Forecasts, 2025-2033. Available at: https://straitsresearch.com/report/artificial-intelligence-in-aviation-market
Громов С. В. Управление разработкой авиационной техники с использованием имитационного моделирования производственных процессов. Известия Самарского научного центра Российской академии наук, Том 16, № 1(5). 2014. С. 1359-1363.
Цифрові випробування: як Китай зміг організувати прискорену сертифікацію авіаційних безпілотників. Available at: https://www.aviationunion.ru/media/news/30889/
Твердохліб А., Катерна О. ШІ та його роль в авіаційній безпеці. Все¬світній конгрес “Авіація в XXI столітті” – “Безпека в авіації та космічні технології”. Available at: https://jrnl.nau.edu.ua/index.php/congress/article/view/19624
ШІ в аерокосмічній галузі: переосмислення інженерії. Visure Solutions. Available at: https://visuresolutions.com/uk/%D0%B0%D0%B5%D1%80%D0%BE%
D0%BA%D0%BE%D1%81%D0%BC%D1%96%D1%87%D0%BD%D0%B0-%D1%82%D0%B0-%D0%BE%D0%B1%D0%BE%D1%80%D0%BE%D0%BD%
D0%BD%D0%B0/%D1%88%D1%82%D1%83%D1%87%D0%BD%D0%B8%D0%B9-%D1%96%D0%BD%D1%82%D0%B5%D0%BB%D0%B5%D0%BA%D1%82/
How AI and automation are transforming the Aerospace industry. Dessia Technologies. Available at: https://www.dessia.io/blog/how-ai-and-automation-are-transforming-the-aerospace-industry
FAA Roadmap for Artificial Intelligence Safety Assurance, Version I. Available at:: https://www.faa.gov/aircraft/air_cert/step/roadmap_for_AI_safety_assurance
McGivern R. Can Machine Learning Systems be Certified on Aircraft? Beca. Available at: https://www.beca.com/ignite-your-thinking/ignite-your-thinking/march-2025/can-machine-learning-systems-be-certified-on-aircraft
How AI (Artificial Intelligence) Is Transforming the Aerospace Industry. GeeksforGeeks. Available at: https://www.geeksforgeeks.org/data-science/how-ai-artificial-intelligence-is-transforming-the-aerospace-industry/
Five ways digitalization streamlines aircraft certification. Available at: https://resources.sw.siemens.com/en-US/e-book-aerospace-defense-digitalization-disrupts-certification-process/
Certification. Federal Aviation Administration. Available at: https://www.faa.gov/uas/advanced_operations/certification
AI & Big Data. Thales Group. Available at: https://www.thalesgroup.com/
en/markets/aerospace/ai-big-data
Honeywell-led consortium awarded £14.1M for AI-driven Additive Manufacturing in aerospace. Metal AM. Available at: https://www.metal-am.com/honeywell-led-consortium-awarded-14-1m-for-ai-driven-additive-manufacturing-in-aerospace/
Artificial Intelligence Roadmap - A human-centric approach to AI. Available at: https://www.easa.europa.eu/en/domains/research-innovation/ai
EASA AI trustworthiness framework Human – AI teaming. Eurocontrol. Available at: https://www.eurocontrol.int/sites/default/files/2024-02/eurocontrol-2023-10-tim-meeting-15-easa-ai-framework.pdf
Formal verification of a machine learning tool for runway. Frontiers. Available at: https://www.frontiersin.org/journals/aerospace-ngineering/articles/10.3389/fpace.2025.1463425/full
How Formal Verification Tools Enhance SoC Simulation Coverage. Synopsys Blog. Available at: https://www.synopsys.com/blogs/chip-design/speed-up-simulation-coverage-closure.html
Науково-освітні школи Національного аерокосмічного університету ім. М. Є. Жуковського "Харківський авіаційний інститут" : [монографія] / М. Ф. Бабаков, О. О. Баранов, І. В. Бичков, Н. Л. Більчук [та др. ] ; М-во освіти і науки України, Нац. аерокосм. ун-т ім. М. Є. Жуковського "Харків. авіац. ін-т" ; за заг. ред. М. В. Нечипорука. - Харків. - Нац. аерокосм. ун-т ім. М. Є. Жуковського "Харків. авіац. ін-т", 2020. - 400 с.
Научные основы интегрированного проектирования самолетов транспортной категории : [монография] , Ч. 2 / Д. С. Кива, А. Г. Гребеников. - Харьков. - Нац. аэрокосм. ун-т им. Н. Е. Жуковского "Харьк. авиац. ин-т", 2014, в 3х томах.
DOI: https://doi.org/10.32620/oikit.2025.105.02
Refbacks
- There are currently no refbacks.