COMBINED PVD COATING TECHNOLOGIES: FROM CLASSIFICATION TO INNOVATIVE SOLUTIONS

Д. Р. Степаненко, Є. О. Баранова, О. О. Баранов

Abstract


The article presents a systematic analysis of modern physical vapor deposition (PVD) methods, aimed at enhancing coating technologies for functional surfaces in engineering applications. The key limitations of classical techniques—such as thermal evaporation, cathodic sputtering, and magnetron sputtering—are summarized, focusing on the challenges they face under complex production conditions. The main issues discussed include non-uniform target evaporation, low productivity, target overheating, insufficient coating adhesion, and the risk of arc discharge formation in plasma environments. To overcome these drawbacks, contemporary modifications of traditional PVD processes are explored, including High Power Impulse Magnetron Sputtering (HIPIMS), unbalanced magnetron sputtering, Plasma Immersion Ion Implantation and Deposition (PIII&D), and methods utilizing radio-frequency (RF) power supply. Based on critical analysis, an analytical classification scheme of PVD methods is proposed, illustrating both the structural distinctions between evaporation- and sputtering-based approaches and the logical progression of their development in response to specific technological challenges. This scheme reveals internal connections between conventional and innovative methods and serves as a foundation for the further development of hybrid deposition processes capable of ensuring high coating quality, density, adhesion, and wear resistance. It also highlights the crucial role of magnetic fields in enhancing sputtering processes—particularly in magnetron and unbalanced magnetron modes—where magnetic confinement of electrons enables a high degree of plasma ionization and more precise energy control of the deposited particles. The integration of pulsed power regimes, such as HIPIMS, allows the formation of dense, high-strength coatings with improved adhesion without requiring high substrate temperatures. Thus, the proposed analytical scheme not only structures current deposition technologies but also opens up possibilities for their strategic advancement through deeper analysis of the physical mechanisms underlying each method. The study also emphasizes the need to integrate various deposition techniques to achieve synergistic effects, particularly through the combination of ionization strategies, plasma control, and managed thermal input. The findings can serve as a methodological basis for designing new hybrid PVD deposition systems aligned with the principles of Industry 4.0 and adaptive manufacturing.


Keywords


physical vapor deposition (PVD), plasma, surface treatment, combined coating formation methods.

References


Kravanja, K. A. A review of techniques for the application of bioactive coatings on metal-based implants to achieve controlled release of active ingredients / K. A. Kravanja, M. Finšgar // Materials & Design. – 2022. – Vol. 217. – Article ID 110653. – p. 1-20.

An integrative approach to coating/carbide substrate design of CVD and PVD coated cutting tools during the machining of austenitic stainless steel / O. He, J. M. Paiva, J. Kohlscheen, B.D. Beake, S.C. Veldhuis // Ceramics international. – 2020. – Vol. 46, iss.4. – p. 5149-5158.

Butt, M. A. Thin-Film coating methods: A successful marriage of high-quality and cost-effectiveness-A brief exploration / M. A. Butt // Coatings. – 2022. – Vol. 12. – p. 1-22.

New coatings systems with improved mechanical properties by combining polymer derived ceramic and physical vapor deposition coating methods / J. F. Wendel, M. L. Leite, P. Furtat, K. Tangermann-Gerk, S. Schafföner, G. Motz // Advanced Materials Interfaces. – 2022. – Vol. 9. – Article ID 2201654. – p. 1-9.

Multi-parametric analysis of the CVD of CNTs: Effect of reaction temperature, pressure and acetylene flow rate / G.P. Gakis, E.N. Skountzon, I.G. Aviziotis, C. A. Charitidis // Chemical Engineering Science. – 2023. – Vol. 267. – Article ID 118374. – p. 1-11.

Effects of deposition parameters on the microstructure and mechanical properties of Ti(C,N) produced by moderate temperature chemical vapor deposition (MT-CVD) on cemented carbides / M. Zhu, S. Achache, P. Boulet, A. Verfeu, J.-F. Pierson, F. Sanchette // Vacuum. – 2022. – Vol. 195. – Article ID 110650. – p. 1 10.

Schalk, N. Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community [Text] / N. Schalk, M. Tkadletz, C. Mitterer // Surface & Coatings Technology. – 2022. – Vol. 429. – Article ID 127949. – p. 1-30.

Analyzing industrial CVD reactors using a porous media approach / S. Zou, J. Xiao, V. Wu, X. D. Chen // Chemical engineering journal. – 2021. – Vol. 415. – 129038. – p. 1-12.

Dry-Blasting of α- and κ-Al2O3 CVD Hard Coatings: Friction Behaviour and Thermal Stress Relaxation / N. Schalk, C. Mitterer, C. Czettl, B. Satory, M. Penoy, C. Michotte // Tribology letters. – 2013. – Vol. 52. – p. 147-154.

Klaus, M. Residual stress depth profiling in complex hard coating systems by X-ray diffraction /M. Klaus, C. Genzel, H. Holzschuh // Thin solid films. – 2008. – Vol. 517. – p. 1172-1176.

Czettl, C. Knowledge based coating design of CVD TiN-TiBN-TiB2 architecture.[Text] / C. Czettl, J. Thurner, U. Schleinkofer // International Journal of Refractory Metals and Hard Materials. – 2018. – Vol. 71. – p. 330-334.

Surface topolography of PVD hard coatings / P. Panjan, A. Drnovšek, N. Mahne, M. Čekada, M. Panjan // Coatings. – 2021. – Vol. 11, Iss. 11. – Article ID 1387. – p. 1-31.

PVD for decorative applications: A review / M. Vorobyova, F. Biffoli, S. M. Martinuzzi, M. Linser, A. Caneschi, M. Innocenti // Materials. – 2023. – Vol. 16. – Article ID 4919. – p. 1-30.

Review of Growth Defects in thin films prepared by PVD techniques / P. Panjan, A. Drnovšek, P. Gselman, M. Čekada, M. Panjan // Coatings. – 2020. – Vol. 10, Iss. 5. – Article ID 447. – p. 1-40.

Gudmundsson, J. T. Foundations of physical vapor deposition with plasma assistance / J. T. Gudmundsson, A. Anders, A. von Keudell // Plasma sources science and technology. – 2022. – Vol. 31. – Article ID 083001. – p. 1-33.

Chaudhari, M. N. Thin film deposition methods: A critical review / M. N. Chaudhari, R. B. Ahirrao, S. D. Bagul // International journal for research in applied science & engineering technology (IJRASET). – 2021. – vol. 9. – iss. VI. – p. 5215-5231.

Tsizh, B. Techological methods of forming thin semiconductor layers part 3. Cathode sputtering / B. Tsizh, Z. Dziamski // Scientific messenger LNUVMB. Series: Food technologies. – 2020. – Vol. 22, Iss. 92. – p. 15-17.

A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique / Y.-H. Wang, K. H. Rahman, C.-C. Wu, K.-C. Chen // Catalysts. – 2020. – 10. – Article ID 598. – p. 1-8.

Ionized physical vapor deposition (IPVD): A review of technology and applications / U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, J. T. Gud¬mundsson // Thin solid films. – 2006. – Vol. 513, Iss. 1-2. – pp. 1-24.

Hammadi, O. A. Electrical characteristics of argon discharge plasma employed in sputtering techniques / O. A. Hammadi, M. K. Khalaf, F. J. Kadhim // Iraqi journal of materials. – 2023. – Vol. 2. – Issue 4. – pp. 153-160.

High power impulse magnetron sputtering discharge, 2012, Journal of Vacuum Science & Technology. / J. T. Gudmundsson, N. Brenning, D. Lundin, U. Hel¬mersson // Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. – 2012. – Vol. 30. – Article ID 030801. – p. 1-12.

The influence of operating parameters on pulsed DC magnetron spettering plasma / S. Karthikeyan, A. E. Hill, J. S. Cowpe, R. D. Pilkington // Vacuum. – 2010. – Vol. 85, Iss. 5. – p. 634-638.

Lu, T. Surface modofocation of biomaterials using plasma immersion iion implantation and deposition / T. Lu, Y. Qiao, X. Liu // Interface focus. – 2012. – Vol. 2. – p. 325-336.

Kodaira, F. V. P. Thin films growth by PIIID technique from hexamethyl-disilazane/argon mixture / F. V. P. Kodaira, R. P. Mota, P. W. P. Moreira Jr // Surface and coatings technology. – 2015. – Vol. 284. – p. 400-403.

Lubricating coating prepared by PIIID on a forming tool / J. F. Martinatti, L. V. Santos, S. F. Durrant, N. C. Cruz, E. C. Rangel // Journal of Physics: Conference Series. – 2012. – Vol. 370. – Article ID 012022. – p. 1-14.

Fu, Y. Similarity theory and scaling laws for low-temperature plasma discharge: a comprehensive review / Y. Fu, H. Wang, X. Wang // Reviews of Modern Plasma Physics. – 2023. – Vol. 7, Iss. 10. – p. 1-82.

Chen, F. F. Introduction to plasma physics and controlled fusion. / F. F. Chen // Third edition. Springer International Publishing Switzerland. – 2016. – 497 p.

The atmospheric-pressure plasma jet: A review and comparison to other sources / A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks // IEEE Transactions on plasma science. – 1998. – Vol. 26, Iss. 6. – p. 1685-1694.

Atmospheric pressure Townsend discharges as a promising tool for the one-step deposition of antifogging coatings from N2O/TMCTS mixtures / I. R. Duran, A. Durocher-Jean, J. Profili, L. Stafford, G. Laroche // Plasma processes and polymers. – 2020. – Vol. 20, Iss. 7. – Article ID 1900186. – p. 1-12.

The Current-Voltage Characteristics for electrode geometry model of posi¬tive DC corona discharge in Air / A. Y. Wardaya, Z. Muhlisin, J. E. Suseno, M. Nur, P. Triadyaksa, A. Khumaeni, S. Hadi, E. A. Sarwoko, J. Windarta // Gazi University Journal of Science. – 2022. – Vol. 35, Iss. 3. – p. 1140-1150.

DC gas breakdown and Townsend discharge in CO2 / V. A. Lisovskiy, S. V. Dudin, P. P. Platonov, V. D. Yegorenkov // Problems of atomic science and technology. – 2020. – Vol. 6, Iss. 26. – p. 154-158.

Kogoma, M. Low-temperature atmospheric discharge plasma and its applications for the surface treatment / M. Kogoma, K. Tanaka // Reviews of Modern Plasma Physics. – 2021. – Vol. 5, Iss. 3. – p. 1-65.

Loveless, A. M. Linkage of electron emission and breakdown mechanism theories from quantum scales to Paschen's law / A. M. Loveless, A. M. Darr, A. L. Gar¬ner // Physycs of Plasmas. – 2021. – Vol. 28. – Article ID 042110. – p. 1-14.

Anders, A. Glows, arcs, ohmic discharges: An electrode-centered review on discharge modes and the transitions between them / // Applied Physics Reviews. – 2024. – Vol. 11. – Article ID 031310. – p. 1-36.

Gudmundsson, J. T. Physics and technology of magnetron sputtering discharge / J. T. Gudmundsson // Plasma Sources Science and Technology. – 2020. – Vol. 29. – Article ID 113001 – p. 1-53.

Lieberman, M. A. Principles of Plasma Discharges for Materials Processing / M. A. Lieberman, A. J. Lichtenberg // John Wiley & Sonsm, Inc, Second Edition, New Jersey. – 2005. – 794 p.

Towards universal plasma-enabled platform for the advanced nanofab-rication: plasma physics level approach / O. Baranov, S. Xu, K. Ostrikov, B. B. Wang, U. Cvelbar, K. Bazaka, I. Levchenko // Rev. Mod. Plasma Phys. – 2018. – Vol. 2, Iss. 4. – p. 1-49.

Gao, S. Mechanism analysis of the effect of axial magnetic field on low pressure glow discharge / S. Gao, J.-K. Fang // IEEE Transactions on plasma science. – 2022. – Vol. 50, Iss. 4. – p. 782-790.

Ghimire, B. Influence of liquid conductance on the temporal evolution of self-organization patterns in atmospheric pressure DC glow discharge / B. Ghimire, V. I. Kolobov, K. G. Xu // Physica Scripta. – 2023. – Vol. 98. – p. 1-8.

Bieniek, M. S. Modeling of DC micro-glow discharge in atmospheric pressure helium self-organizing on cathodes / M. S. Bieniek, M. I. Hasan // Physics of Plasma. – 2022. – Vol. 29. – Article ID 034503. – p. 1-9.

Townsend to glow discharge transition for a nanosecond pulse plasma in helium: space charge formation and resulting electric field dynamics / M. S. Simeni, Y. Zheng, E. V. Barnat, P. J. Bruggeman // Plasma Source Science and Technology. – 2021. – Vol. 30. – Article ID 055004. – p. 1-12.

Inspektor, A. Architecture of PVD coatings for metalcutting applications: A review. / A. Inspektor, P. A. Salvador // Surface & Coatings Technology. – 2014. – Vol. 257. – p. 138-153.

Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis / O. Baranov, K. Bazaka, H. Kersten, M. Keidar, U. Cvelbar, S. Xu, I. Levchenko // Applied physics Reviews. – 2017. – Vol. 4. – Article ID 041302. – p. 1-33.

High-rate deposition of thick (Cr,Al)ON coatings by high speed physical vapor deposition / K. Bobzin, T. Brögelmann, C. Kalscheuer, T. Liang // Surface & Coatings Technology. – 2017. – Vol. 322. – p. 152-162.

Sandager, M. K. Growth of Thin AlN Films on Si Wafers by Reactive Magnetron Sputtering: Role of Processing Pressure, Magnetron Power and Nitrogen/Argon Gas Flow Ratio / M. K. Sandager, C. Kjelde, V. Popok // Crystals. – 2022. – Vol. 12, Iss. 10. – Article ID 1379. – p. 1-11.

An, Q. Copper target erosion during unbalanced magnetron sputtering under different electromagnetic fields / Q. An, J. Li, H. Fang // Surface and Coatings Technology. – 2024. – Vol. 477. – Article ID 130360. – p. 1-12.

Suppression of substrate temperature in DC magnetron sputtering deposition by magnetic mirror-type magnetron cathode / T. Motomura, K. Takemura, T. Nagase, N. Morita, T. Tabaru // AIP Advances. – 2023. – Vol. 13. – Article ID 025153. – p. 1-6.

Gudmundsson, J. T. Physics and technology of magnetron sputtering discharge / J.T. Gudmundsson // Plasma sources science and technology. – 2020. – 29. – Article ID 113001. – p. 53.

Rossnagel, S. M. Magnetron sputtering / S. M. Rossnagel // Journal of Vacuum Science and Technology A. – 2020. – 38. – Article ID 060805. – p. 1-22.

Low-pressure planar magnetron discharge for surface deposition and nanofabrication / O. Baranov, M. Romanov, M. Wolter, S. Kumar, X. Zhong, K. Ostrikov // Physics of plasma. – 2010. – 17. – Article ID 053509. – p. 1-9.

Experimental Investigation on Mechanical Properties of TiAlN Thin Films Deposited by RF Magnetron Sputtering / L. Natrayan, S. Balaji, G. Bharathiraja, S. Kaliappan, D. Veeman, W. D. Mammo // Journal of Nanomaterials. – 2021. – Article ID 5943486. – p. 1-7.

Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering / Y. Li, C. Wang, D. Ma, X. Zeng, M. Liu, X. Jiang, Y.X. Leng // Surface and Coatings Technology. – 2021. – Vol. 420. – Article ID 127325. – p. 1-10.

High power impulse magnetron sputtering (HiPIMS) for the fabrication of antimicrobial and transparent TiO2 thin films / B.-S. Lou, W.-T. Chen, W. Diyatmika, J. H. Lu, C.-T. Chang, P.-W. Chen, J.-W. Lee // Current Opinion in Chemical Engineering. – 2022. – Vol. 36. – Article ID 100782. – p. 1-8.

Effect of roughness of substrate and sputtering power on the properties of TiN coatings deposited by magnetron sputtering for ATF / W.i Xiao, H. Deng, S. Zou, Y. Ren, D. Tang, M. Lei, C. Xiao, X. Zhou, Y. Chen // Journal of Nuclear Materials. – 2018. – vol. 509. – p. 542-549.

Structural regularities of the formation of nitride and boride coatings based on transition metals / A. Goncharov, A. Yunda, I. Kolinko, O. V. Maksakova // High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes. – 2023. – vol. 27. – iss 1. – p. 31-52.

Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target / B. Zheng, Y. Fu, K. Wang, T. Schuelke, Q. H. Fan // Plasma sources science and technology. – 2021. – 30. – Article ID 035019. – p. 1 14.

Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharge / O. Baranov, M. Romanov, S. Kumar, X. X. Zong, K. Ostrikov // Journal of Applied Physics. – 2011. – Vol. 109. – Article ID 063004. – p. 1-8.

Energy consumption and material fluxes in hard coating deposition processes / M. Gassner, M. R. de Figueiredo, N. Schalk, R. Franz, C.n Weiß, H. Rudigier, H. Holzschuh, W. Bürgin, M. Pohler, C.h Czettl, C. Mitterer // Surface & Coatings Technology. – 2016. – 299. – p. 49–55.

Magnetic field influence on ionization zones in high-power impulse Magnetron Sputtering / P. Ramana, M. Cheng, J. Weberski, W. Xu, T. Houlahan, J. Rivera, R. Su, I. Shchelkanov, D. Ruzic // Vacuum. – 2018. – 156. – p. 9-19.

Thermionic emission of electrons from metal surfaces in the warm dense matter regime / G. M. Petrov, A. Davidson, D. Gordon, B. Hafizi, J. Peñano // Physics of Plasmas. – 2021. – Vol. 28. – Article ID 083503. – p. 1-8.

Advanced Concepts and Architectures for Plasma-Enabled Material Processing / O. O. Baranov, I. Levchenko, S. Xu, K. Bazaka // Synthesis Lectures on Emerging Engineering Technologies, A Publication in the Morgan & Claypool Publishers series. – 2020. – 90 p.

Beilis, I. I. The Phenomenon of a Cathode Spot in an Electrical Arc: The Current Understanding of the Mechanism of Cathode Heating and Plasma Generation / I. I. Beilis // Plasma. – 2024. – 7. – p. 329–354.

Deng, Y. Physical vapor deposition technology for coated cutting tools: A review /Y. Deng, W. Chen, B. Li, C. Wang, T. Kuang, Y. Li // Ceramics International. – 2020. – 46. – p. 18373–18390.

Yang, W. Particle modeling of vacuum arc discharges / W. Yang, Q. Sun, Q. Zhou // Journal of Applied Physics. – 2020. – 128. – Article ID 060905. – p. 1-19.

A Comprehensive Review of Cathodic Arc Evaporation Physical Vapour Deposition (CAE-PVD) Coatings for Enhanced Tribological Performance / M. Muhammed, M. Javidani, T. E. Sadrabadi, M. Heidari, T. Levasseur, M. Jahazi // Coatings. – 2024. – Vol. 14, Iss. 3 (246). – p. 1-42.

DC vacuum arc deposition system with an anode generating magnetic field for preparation of TiN films. / J. Kito, Y. Saiki, K. Homma, S. Watanabe, T. Bando, T. Harigai, H. Takikawa, H. Gima, H. Sugita // Japanese Journal of Applied Physics. – 2023. – 62. – SI1012. – p. 1-12.

Effect of cathode shape on the lifetime of arc discharge negative Penning ion source / Y. Chen, L. Zhao, J. Long, X. He, P. Dong, T. Wang, J. Li, J. Shi, Z. Yang // Nuclear Inst. And Methods in Physics Research, A. – 2022. – Vol. 1033. – Article ID 166679. – p. 1-8.

Kravchenko, Y. O. Development of hydrophilic NbCuSi(N) &TiAlNb(N) coa-tings as a new strategy for medical implants modification / Y. O. Kravchenko, I. E. Garkusha, A. V. Taran, E. Coy, I. Iatsunskyi, K. Diedkova, A. Roshchupkin, O. Tymo¬shenko, M. Pogorielov, I. Misiruk // Ceramics International. – 2023. – Vol. 49. – p. 4099-4108.

Direct current arc plasma thrusters for space applications: basic physics, design and perspectives / O. Baranov, I. Levchenko, S. Xu, X. G. Wang, H. P. Zhou, K. Bazaka // Reviews of Modern Plasma Physics. – 2019. – Vol. 3, Iss. 7. – p. 1-63.

Pinchuk, N. Comparative analysis of structure formation and properties of pvd coatings TiN, Ti/TiN and TiN-MON / N. Pinchuk // The scientific paradigm in the context of technological development and social change: Scientific monograph. Part 1. Riga, Latvia: “Baltija Publishing”. – 2023. – 532 p.

Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools / G. Skordaris, K.-D. Bouzakis, T. Kot¬sanis, P. Charalampous, E. Bouzakis, O. Lemmer, S. Bolz // Surface and Coatings Technology. – 2016. – Vol. 307. – p. 452-460.

Chen, F. F. Principles of plasma processing / F. F. Chen, J. P. Chang. – 2002. – Plenum/Kluwer Publishers, University of California, Los Angeles. – 249 p.

Dahl-Hansen, R. P. On the Evolution of Stress and Microstructure in Radio Frequency-Sputtered Lead-Free (Ba,Ca)(Zr,Ti)O3 Thin Films / R. P. Dahl-Hansen, M. S. S. Stange, T. O. Sunde, J. H. Ræder, P. M. Rørvik // Actuators. – 2024. – Vol. 13, Iss. 115. – p. 1-13.

Daniel, J. Dynamic Impact Resistance and Scratch Adhesion of AlCrN Coatings Sputtered Using Cathodic Arc Glow Discharge / J. Daniel, R. Žemlička, M. Alishahi, P. Karvánková, P. Souček, D. Karpinski, T. Fořt, H. Bolvardi, A. Lümkemann, P. Vašina // Coatings. – 2023. – Vol. 13, Iss. 515. – p. 1-14.

Bobzin, K. High-performance coatings for cutting tools / K. Bobzin // CIRP Journal of Manufacturing Science and Technology. 2017. – Vol. 18. – p. 1-9.

Characterization of advanced coating architectures deposited by an arc-HiPIMS hybrid process / J. Vetter, K. Kubota, M. Isaka, J. Mueller, T. Krienke, H. Rudigier // Surface & Coatings Technology. – 2018. – Vol. 350. – p. 154-160.

Fabrication and characterization of in-situ duplex plasma-treated nanocrystalline Ti/AlTiN coatings / C. Tan, T. Kuang, K. Zhou, H. Zhu, Y. Deng, X. Li, P. Cai, Z. Liu // Ceramics International. – 2016. – Vol. 42, Iss. 9. – p. 10783-10800.

Synthesis, structure, and protective properties of PVD MAX phase coatings. a review. Part II. Structure, properties, application prospects / E. N. Reshetnyak, A. S. Kuprin, T. A. Prikhna, M. A. Bortnitskaya, V. A. Belous // Problems of Atomic Science and Technology. – 2024. – Vol. 2, Iss. 150. – p. 76-95.




DOI: https://doi.org/10.32620/oikit.2025.104.05

Refbacks

  • There are currently no refbacks.