DEVELOPMENT OF TRANSPORT AIRCRAFT DESIGN METHODS

О. Г. Гребеніков, Д. С. Конишев

Abstract


The existing methods of designing transport-category aircraft are presented. The methods of parametric analysis, synthesis and optimization of the aircraft, the conditions for generating alternative schemes of the designed aircraft are described. The requirements, initial data for design and criteria for the efficiency of transport-category aircraft are considered, the general structure of the design method is formed in the form of a flowchart. The main criteria for designing transport aircraft are presented to ensure their efficiency at the relevant world level. The requirements and initial data for designing the fuselage are highlighted depending on the purpose of the aircraft, for which the preliminary determination of its main parameters of the structural and power scheme and layout is considered. As one of the modern methods, the development of methods of three-dimensional parametric modeling of both the tail parts of the fuselage and transport aircraft as a whole is considered, which is characterized by the creation of a master geometry, a space distribution model, analytical standards of airframe design elements and a model for fully determining the geometric parameters of the aircraft using CAD/CAM/CAE/PLM system technologies. All these methods have been implemented in the practice of designing transport-category aircraft of domestic aircraft manufacturing companies, such as ANTONOV JSC, as well as in the educational processes of the National Aerospace University “Kharkiv Aviation Institute” in the training of aviation industry specialists.

Keywords


transport aircraft, reliability, cargo aircraft fuselage, design and construction methods

References


Advanced Aircraft Analysis [Electroniс resource] : website. URL: http://darcorp.com/Software/AAA/ (21.05.2023).

Ahuja V., Chakraborty I., Hartfield R. J. Aero-Propulsive Analysis for Contemporary Conceptual Design. AIAA Aviation Forum : proceedings, 17–21 June 2019, Dallas, Texas. DOI: 10.2514/6.2019-3019.

Baalbergen E., Lammen W., Noskov P. D., Moerland E. Integrated collaboration capabilities for competitive aircraft design. MATEC Web of Conferences. 2018. Vol. 233. 8 p. DOI: 10.1051/matecconf/201823300015.

cDonald R. A., German B. J., Takahashi T., Bil C., Anemaat W., Chaput A., Vos R., Harrison N. Future aircraft concepts and design methods. The Aeronautical Journal. 2022. Vol. 126, Spec. iss. 1295. P. 92–124. DOI: 10.1017/aer.2021.110.

Champasak P., Panagant N., Pholdee N., Vio G. A., Bureerat S., Yildiz B. S., Yıldız A. R. Aircraft conceptual design using metaheuristic-based reliability optimization. Aerospace Science and Technology. 2022. Vol. 129. P. 1–23. DOI: 10.1016/j.ast.2022.107803.

De Marco A., Di Stasio M., Della Vecchia P., Trifari V., Nicolosi F. Automatic modeling of aircraft external geometries for preliminary design workflows. Aerospace Science and Technology. 2020. Vol. 98. DOI: 10.1016/j.ast.2019.105667.

Elmshaikhi M., Abdallah A. Rear Fuselage Structural Optimization Using Genetic Algorithm. Journal of Karary University for Engineering and Science. 2021. Vol. 1, iss. 2 : The 1st Scientific Conference for Aerospace Researches & Applications Sudan (SCARA’2021). P. 1–4. DOI: 10.54388/jkues.v1i2.61.

Priem R., Bartoli N., Diouane Y., Dubreuil S., Lefebvre T. An adaptive feasibility approach for constrained Bayesian optimization with application in aircraft design [Electroniс resource]. 6th International Conference on Engineering Optimization (EngOpt’2018) : proceedings, 17–19 Sept. 2018, Lisbon, Portugal. URL: https://oatao.univ-toulouse.fr/21347/1/Priem_21347.pdf (21.05.2023).

Андренко Г. И. Расчет летных характеристик самолета : метод. пособие к курсовому и диплом. проектированию. Харьков : ХАИ, 1969. 68 с.

Кива Д.С. Научные основы интегрированного проектирования самолетов транспортной категории. Часть 2. Д. С. Кива, А. Г. Гребеников, Харьков, ГП «Антонов», Нац. аэрокосм. ун-т «ХАИ», 2014.

Брусов В. С., Баранов С. К. Оптимальное проектирование летатель¬ных аппаратов. Многоцелевой подход. М.: Машиностроение, 1989. – 230 с.

Дитрих Я. Проектирование и конструирование. Системный подход / пер. с пол. Л. В. Левицкого, Ю. А. Чванова ; под ред. В. М. Бродянского. М. : Мир, 1981. 454 с.

References

Advanced Aircraft Analysis [Electroniс resource] : website. URL: http://darcorp.com/Software/AAA/ (21.05.2023).

Ahuja V., Chakraborty I., Hartfield R. J. Aero-Propulsive Analysis for Contemporary Conceptual Design. AIAA Aviation Forum : proceedings, 17–21 June 2019, Dallas, Texas. DOI: 10.2514/6.2019-3019.

Baalbergen E., Lammen W., Noskov P. D., Moerland E. Integrated collaboration capabilities for competitive aircraft design. MATEC Web of Conferences. 2018. Vol. 233. 8 p. DOI: 10.1051/matecconf/201823300015.

cDonald R. A., German B. J., Takahashi T., Bil C., Anemaat W., Chaput A., Vos R., Harrison N. Future aircraft concepts and design methods. The Aeronautical Journal. 2022. Vol. 126, Spec. iss. 1295. P. 92–124. DOI: 10.1017/aer.2021.110.

Champasak P., Panagant N., Pholdee N., Vio G. A., Bureerat S., Yildiz B. S., Yıldız A. R. Aircraft conceptual design using metaheuristic-based reliability optimization. Aerospace Science and Technology. 2022. Vol. 129. P. 1–23. DOI: 10.1016/j.ast.2022.107803.

De Marco A., Di Stasio M., Della Vecchia P., Trifari V., Nicolosi F. Automatic modeling of aircraft external geometries for preliminary design workflows. Aerospace Science and Technology. 2020. Vol. 98. DOI: 10.1016/j.ast.2019.105667.

Elmshaikhi M., Abdallah A. Rear Fuselage Structural Optimization Using Genetic Algorithm. Journal of Karary University for Engineering and Science. 2021. Vol. 1, iss. 2 : The 1st Scientific Conference for Aerospace Researches & Applications Sudan (SCARA’2021). P. 1–4. DOI: 10.54388/jkues.v1i2.61.

Priem R., Bartoli N., Diouane Y., Dubreuil S., Lefebvre T. An adaptive feasibility approach for constrained Bayesian optimization with application in aircraft design [Electroniс resource]. 6th International Conference on Engineering Optimization (EngOpt’2018) : proceedings, 17–19 Sept. 2018, Lisbon, Portugal. URL: https://oatao.univ-toulouse.fr/21347/1/Priem_21347.pdf (21.05.2023).

Andrenko H. I. Calculation of flight characteristics of the aircraft: method. course allowance and diploma. design Kharkiv: Khai, 1969. 68 p.

Kiva D. S. Scientific foundations of integrated design of transport category aircraft. Part 2. D. S. Kiva, A. G. Grebenikov, Kharkiv, State Enterprise "Antonov", Nat. aerospace Khai University, 2014.

Brusov V. S., Baranov S. K. Optimal design of aircraft. A multi-purpose approach. M.: Mashinostroenie, 1989. – 230 p.

Dietrich Ya. Design and construction. System approach / trans. with gender L. IN. Levitskyi, Yu. AND. Chvanova; under the editorship IN. M. Brodyansky M. : Mir, 1981. 454 p.




DOI: https://doi.org/10.32620/oikit.2025.104.02

Refbacks

  • There are currently no refbacks.