SELECTION OF LASER TECHNOLOGICAL PARAMETERS FOR OBTAINING NANOSTRUCTURES ON U12A TOOL STEEL

Ю. В. Широкий, Ю. О. Сисоєв, Т. О. Постельник

Abstract


Using the previously developed model of theoretical processes in the zone of laser irradiation, where thermal and thermomechanical processes are described, including the influence of crystallization energy and other internal energies during the formation of nanostructures at various temperature levels, further investigation of the thermal and thermomechanical characteristics of different structural steels during the formation of nanostructures on their surfaces using laser irradiation was conducted. To validate the model, temperature fields were determined in the zone of laser irradiation on steel 20 (Fig. 1a) and steel 50 (Fig. 1b), considering both heating and cooling processes. Calculations were performed for heat flux densities and durations of exposure close to those necessary for obtaining nanostructures (500...2000 K) and with temperature rise rates exceeding 10^7 K/s. As a result of calculations using the refined thermal model, temperature distributions at a depth of 1 μm during laser irradiation on steel with different carbon contents (steel 20, 38Х, 50, and У8) at various peak heat flux densities in the surface layer were obtained. A spatiotemporal distribution of temperatures along the radius of the laser spot and over time during laser irradiation with a heat flux density of q=3∙10^8 W/m^2 at a spot radius of 0.1 mm was constructed. Zones of nanostructure formation were identified depending on the heat flux density over the duration of laser irradiation. Theoretical investigations using the updated thermal model confirmed the need to consider the temperature rise rate, as exceeding it increases the likelihood of thermomechanical failure. At the same time, due to insufficient temperature rise rates during laser nanostructure formation in the surface layers of carbon steels, more micro- and sub microstructures are formed.


Keywords


nanostructure, laser irradiation, temperature, heat flux, steel, temperature stress, technological parameters

References


Kostyuk G. Improving the resource and reliability of details from zirconium alloys during the application of nanocoating and formation of nanostructures. G. Kostyuk, V. Popov [Bulletin of the National technical university "Kharkiv Polytechnic Institute" Series: Techniques in a machine industry], 2019, no. 19, pp. 40–50.

Kostyuk H. Y. Teoretycheskoe yssledovanye deystvyya yonyzyruyushcheho yzluchenyya na konstruktsyonnыe materyalы y obrazovanye nanostruktur v alyumynyevom splave D16T H. Y. Kostyuk, Bekhzad Razmdzhuy, Yu.V. Shyrokyy, Yu.S. Panchenko [Otkrыtыe ynformatsyonnыe y komp'yuternыe yntehryrovannыe tekhnolohyy zbirnyk naukovykh prats' – Kharkiv : Nats. aerokosm. un-t "KhAI"], 2015, no. 68, pp. 20–25.

Kostyuk G. Prospects for producing nanostructures in the volume of parts under the action of plasma flows. G. Kostyuk, O. Melkoziorova, E. Kostyuk, I. Shyrokyi [ Rizannya ta instrumenty v tekhnolohichnykh systemakh. – Kh.: NTU «KhPI»], 2020, no 92, pp. 107–121

Kostyuk G. Determination of Technological Parameters for Obtaining Nanostructures under Pulse Laser Radiation on Steel of Drone Engine Parts G. Kostyuk, M. Nechyporuk and K. Kostyk [2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT), Leeds, UK], 2019, pp. 208–212.

Kostyuk, H. Y. Nanopokrytyya y nanostrukturnыe uprochnennыe sloy dlya povыshenyya resursa y nadezhnosty detaley avыatsyonnыkh dvyhateley H. Y. Kostyuk, E. A. Volyak, V. A. Fadeev [ KhAI, BBK 72: 74 N56], 2018, pp. 54.

Khan, M. A., Microplasma-assisted synthesis of CuO nanostructures for catalytic degradation of organic dyes under solar irradiation. M. A. Khan, H. Mahmood, M. S. Khan, et al. [J Solid State Electrochem], 2020, No. 24, pp. 1123–1132

Shyrokyy, Yu. V. Modelyuvannya duhovoho rozryadu na midnomu katodi dlya heneratsiyi nanostruktur Yu. V. Shyrokyy, H. I. Kostyuk [ Vidkryti informatsiyni ta komp"yuterni intehrovani tekhnolohiyi, zbirnyk naukovykh prats' – Kharkiv : Nats. aerokosm. un-t "KhAI"], 2021, no. 91, pp. 62-77.

Shyrokyy, Yu. V. Vybir tekhnolohichnykh parametriv lazera dlya otrymannya zmitsnyuyuchykh pokryttiv z nanostrukturamy na instrumental'niy stali U12A. Yu. V. Shyrokyy, Yu. O. Sysoyev, O. V. Torosyan, H. D. Torosyan-Zhydyeyeva [Vidkryti informatsiyni ta komp"yuterni intehrovani tekhnolohiyi, zbirnyk naukovykh prats' – Kharkiv : Nats. aerokosm. un-t "KhAI"], 2023, no. 97, pp. 111-125.

Baranov, O. Hierarchical Nanomaterials by Selective Deposition of Noble Metal Nanoparticles: Insight into Control and Growth Processes / O. Baranov, T. Belmonte, I. Levchenko, K. Bazaka, M. Košiček, U. Cvelbar [Advanced Theory and Simulations], 2023, no. 6, Vo. 9. pp. 2300288.

Prasad, K. Carbon Nanocomposites in Aerospace Technology: A Way to Protect Low-Orbit Satellites Weerasinghe Janith. Prasad Karthika, Mathew Joice, Trifoni Eduardo, Baranov Oleg, Levchenko Igor, Bazaka Kateryna [Nanomaterials], 2023, no. 13, Vo. 11, pp.1763.

Ji T. Influence of pulse frequency on discharge characteristics of micro-cathode arc thruster. Tianyuan Ji, Liqiu Wei, Yanfei Wang, Yan Song, Haikuo Cai, Hong Li, Yongjie Ding, Daren Yu [Vacuum], 2021, Vo. 196, pp. 110748.

Gökçe M. Ay. Optical and Nanomechanical Properties of C Coated BN Thin Film Deposited by Thermionic Vacuum Arc Technique Prasad Karthika. Gökçe, M. Ay. and Pat, Suat. [Journal of Solid-State Science and Technology], 2021, Vo. 10, no. 10, pp.103013.

Elmas S. Determination of physical properties of graphene doped ZnO (ZnO:Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Saliha, Elmas, Suat, Pat, Reza, Mohammadigharehbagh, Caner, Musaoğlu, Mustafa, Özgür, Uğur, Demirkol, Soner, Özen, Şadan, Korkmaz [ Physica B: Condensed Matter], 2019, no. 557, pp. 27–33.

Vladoiu R. Structural and Mechanical Properties of Nanostructured C-Ag Thin Films Synthesized by Thermionic Vacuum Arc Method. Rodica Vladoiu, Aurelia Mandes, Virginia Dinca-Balan, Vilma Bursikova [Journal of Nanomaterials], 2018, no. 2018, pp.10.

Košiček, M. In search of the limits of CuO thermal oxidation nanowire growth by combining experiment and theory [Text] /Košiček, Martin, Baranov, Oleg, Zavašnik, Janez, Cvelbar, Uroš// Applied Physics Letters. – 2023. – No. 123 – Vol. 424. – P. 041601. https://doi.org/10.1063/5.0151293

Baranov O. Formation of 2D Copper Oxide Nanostructures on Substrates Exposed to Glow Discharge Plasma Baranov, O [Lecture Notes in Mechanical Engineering 5th Grabchenko’s International Conference on Advanced Manufacturing Processes], 2023, pp. 247-255

Lin W. Structural characteristics of nanocrystalline copper after carbon ion implantation Wan-ming, Lin, Ying-hui, Wei, Hua-yun, Du, Li-feng, Hou, Guo-dong, Wang, Hai-xiang, Bi, Bing-she Xu [Micron], 2011, no. 7, pp. 691–694.

Baranov, O. Current Distribution on the Substrate in a Vacuum Arc Deposition Setup O. Baranov, M. Romanov [Plasma Processes and Polymers], 2008, no. 3, pp. 256–263.

Popov, V. Study of Ions Energy, Their Varieties and Charge on Temperature, Rate of Temperature Rise, Thermal Stresses for Nanostructures on Construction Materials V. Popov, G. Kostyuk, M. Nechyporuk, K. Kostyk [Grabchenko’s International Conference on Advanced Manufacturing Processes. Advanced Manufacturing Processes. InterPartner, 2019, Lecture Notes in Mechanical Engineering. Springer, Cham], 2019, pp. 107–121.

Shyrokyy Yu. V. Modelyuvannya umov otrymannya nanostruktur v alyuminiyevykh splavakh pry diyi ionizuyuchoho vyprominyuvannya Yu.V. Shyrokyy, Yu.O. Sysoyev, T.V. Postel'nyk [Aviatsiyno-kosmichno tekhnika ta tekhnolohiya: sb. nauch. tr. Nats. aerokosm. un-ta ym. N.E. Zhukovskoho «KhAY»], 2022, no. 2, pp. 55 63

Kostyuk, H. Y. Perspektyvы prymenenyya lazernoy obrabotky dlya sozdanyya nanostruktur na RY yz «VolKar» H. Y. Kostyuk, Yu. V. Shyrokyy [Visnyk NTU «KhPI». Seriya: Tekhnolohiyi v mashynobuduvanni. – Kh.: NTU «KhPI»], 2017, no 26(1248), pp. 60–65.

Kostyuk, H. Y. [Perspektyvы poluchenyya nanostruktur pry deystvyy ympul'snoho lazernoho yzluchenyya na staly] H. Y. Kostyuk, V. N. Pavlenko, Yu. V. Shyrokyy [Visnyk NTU «KhPI». Seriya: Tekhnolohiyi v mashynobuduvanni. – Kh.: NTU «KhPI»], 2015, no. 40(1149), pp. 47–52.

Shyrokyy, Yu. V. Otsenka rezhymov lazernoy obrabotky, pry kotorыkh neobkhodymo uchytыvat' konechnuyu skorost' rasprostranenyya tepla pry reshenyy sovmestnoy zadachy teploprovodnosty y termoupruhosty Yu. V. Shyrokyy [Otkritie ynformatsyonnыe y komp'yuternыe yntehryrovannыe tekhnolohyy: sb. nauch. tr. Nats. aэrokosm. un-ta ym. N.E. Zhukovskoho «KhAY»], 2015, no. 58, pp. 33–40.

Kantemyr, I. V. Udoskonalennya protsesiv stvorennya nanostruktur u plazmovo-ionnykh ta lazernykh tekhnolohiyakh dlya pidvyshchennya efektyvnosti rizal'noho instrumentu; dys. kand. tekhn. Nauk, 05.03.07 protsesy fizyko - tekhn. obrob., I. V. Kantemyr [Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho "Kharkiv. aviats. in-t. – Kharkiv], 2018, pp. 190.

Shyrokyi, Y. Investigation of the Influence of Crystallization Energy on the Size of Nanostructures During Copper Ion-Plasma Treatment. Y. Shyrokyi, G. Kostyuk [Integrated Computer Technologies in Mechanical Engineering], 2022, no. 367. pp. 57 66.

Shyrokyy, Yu. V. Modelyuvannya umov otrymannya nanostruktur v alyuminiyevykh splavakh pry diyi ionizuyuchoho vyprominyuvannya Yu. V. Shyrokyy, Yu. O. Sysoyev, T. V. Postel'nyk [Aviatsiyno-kosmichno tekhnika ta tekhnolohiya: sb. nauch. tr. Nats. aerokosm. un-ta ym. N.E. Zhukovskoho «KhAY»], 2022, no. 2, pp. 55 63.

Shyrokyy, Yu. V. Teoretychne doslidzhennya temperaturnykh poliv midi pry formuvanni nanostrukturnykh shariv u plazmovomu seredovyshchi Yu. V. Shyrokyy, A. Yu. Sysoyev, Yu. S. Panchenko [Aviatsiyno-kosmichno tekhnika ta tekhnolohiya: sb. nauch. tr. Nats. aerokosm. un-ta ym. N.E. Zhukovskoho «KhAY»], 2022, no. 5, pp. 51–60.

Breus, A. O. Udoskonalennya kombinovanoyi plazmovo-ionnoyi tekhnolohiyi dlya otrymannya nanostruktur na poverkhni rizhuchoho instrumentu : dys. kand. tekhn. nauk A. O. Breus [Nats. aerokosm. un-t im. M. Ye. Zhukovs'koho "Kharkiv. aviats. in-t", M-vo osvity i nauky Ukrayiny ; Kharkiv], 2018, pp. 143.

Baranov, O. O. Razrabotka kombynyrovannoy tekhnolohyy dlya formyrovanyya poverkhnostnoho sloya avyatsyonnыkh konstruktsyonnыkh materyalov : dys. kand. tekhn. nauk : 05.07.04 - tekhnolohyya proyzvodstva letatel'nыkh apparatov O. O. Baranov [Nats. aэrokosm. un-t ym. N.E.Zhukovskoho "KhAY", Kh.], 2000, pp. 207.




DOI: https://doi.org/10.32620/oikit.2023.98.07

Refbacks

  • There are currently no refbacks.